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Summary

Experimentally determining the three-dimensional structure of a protein is a slow and
expensive process. Nowadays, supervised machine learning techniques are widely used to
predict protein structures, and in particular to predict surrogate annotations, which are
much less complex than 3D structures.

This dissertation presents, on the one hand, methodological contributions for learning
multiple tasks simultaneously and for selecting relevant feature representations, and on
the other hand, biological contributions issued from the application of these techniques
on several protein annotation problems.

Our first methodological contribution introduces a multi-task formulation for learning
various protein structural annotation tasks. Unlike the traditional methods proposed in
the bioinformatics literature, which mostly treated these tasks independently, our frame-
work exploits the natural idea that multiple related prediction tasks should be designed
simultaneously. Our empirical experiments on a set of five sequence labeling tasks clearly
highlight the benefit of our multi-task approach against single-task approaches in terms
of correctly predicted labels. Our second methodological contribution focuses on the best
way to identify a minimal subset of feature functions, i.e., functions that encode properties
of complex objects, such as sequences or graphs, into appropriate forms (typically, vectors
of features) for learning algorithms. Our empirical experiments on disulfide connectivity
pattern prediction and disordered regions prediction show that using carefully selected
feature functions combined with ensembles of extremely randomized trees lead to very
accurate models.

Our biological contributions are mainly issued from the results obtained by the appli-
cation of our feature function selection algorithm on the problems of predicting disulfide
connectivity patterns and of predicting disordered regions. In both cases, our approach
identified a relevant representation of the data that should play a role in the predic-
tion of disulfide bonds (respectively, disordered regions) and, consequently, in protein
structure-function relationships. For example, the major biological contribution made by
our method is the discovery of a novel feature function, which has - to our best know-
ledge - never been highlighted in the context of predicting disordered regions. These
representations were carefully assessed against several baselines such as the 10th Critical
Assessment of Techniques for Protein Structure Prediction (CASP) competition.





Résumé

Déterminer la structure tridimensionnelle des protéines de manière expérimentale est
un processus lent et coûteux. De nos jours, pour palier ces difficultés, les techniques
d’apprentissage automatique supervisé se sont fortement développées dans le domaine
de la prédiction des structures de protéines, et plus particulièrement pour prédire des
annotations partielles sous-jacentes à la structure 3D, quoique moins complexes.

Cette thèse présente, d’une part, des contributions méthodologiques dans le domaine
de l’apprentissage multitâches (multi-task learning), où l’objectif est d’apprendre plu-
sieurs tâches simultanément, ainsi que dans le domaine de la sélection de représentations
pertinentes (feature selection), c’est-à-dire, des représentations capables d’extraire l’es-
sence de l’information utile pour le problème de prédiction considéré. D’autre part, cette
thèse présente également des contributions biologiques directement issues de l’application
de nos méthodes à divers problèmes d’annotation de protéines.

Notre première contribution méthodologique réside dans la formulation multitâche
de problèmes d’annotation liés à la prédiction de la structure des protéines. Dans la lit-
térature bioinformatique, les problèmes d’annotation des protéines sont habituellement
traités de manière indépendante. Or, au vu du lien fort qui unit ces différentes tâches,
nous avons développé une méthodologie qui exploite l’idée que des tâches qui semblent
liées entre-elles devraient être traitées simultanément. Nos expériences, menées sur un
ensemble de cinq problèmes d’annotation de séquences liés à la prédiction de la struc-
ture des protéines, nous ont permis de clairement mettre en évidence l’intérêt de notre
approche multitâche comparée à une approche qui ne traite qu’une seule tâche à la fois.
Notre seconde contribution sur le plan méthodologique se focalise sur la manière d’iden-
tifier une représentation pertinente pour un problème particulier, où une représentation
“pertinente” est définie comme un sous-ensemble minimal de jeux de variables (feature
functions) permettant de réaliser la tâche de prédiction considérée. Dans ce contexte, un
jeu de variables permet d’encoder une information particulière d’intérêt d’une séquence
ou d’un graphe, sous un format exploitable par des algorithmes d’apprentissage automa-
tique (généralement, un vecteur de nombres). Nos expériences pour déterminer le meilleur
moyen de représenter les protéines pour la prédiction du motif formé par les ponts disul-
fures, ainsi que sur le meilleur moyen de représenter les protéines pour la prédiction de
régions dites désordonnées, nous ont permis de montrer qu’une représentation soigneu-
sement choisie combinée avec des ensembles d’arbres extrêmement aléatoires permettait
d’obtenir des modèles prédictifs très performants par rapport à l’état de l’art.

Notre contribution biologique résulte de l’application de notre méthodologie de sé-
lection de jeux de variables. Dans les deux études que nous avons menées (à savoir, la
prédiction du motif formé par les ponts disulfures et la prédiction de régions désordon-



nées), notre approche nous a permis d’identifier des représentations pertinentes pour
l’apprentissage de modèles prédictifs et ainsi d’aider à la compréhension de la relation
structure-fonction des protéines. Par exemple, notre contribution principale au niveau bio-
logique est la découverte d’un nouveau jeu de caractéristiques qui, à notre connaissance,
n’ont encore jamais été mis en évidence dans le cadre de la prédiction de régions désor-
données. La pertinence de ce nouveau jeu caractéristiques a été rigoureusement évaluée
par rapport à plusieurs points de comparaison dont la 10ème édition de la compétition
CASP (Critical Assessment of Techniques for Protein Structure Prediction).
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1.1 Introduction

Proteins play a considerable role in life. They are among the most fundamental mo-
lecules of biology that are responsible for most processes that make life possible. The
functions of proteins are extremely diverse. Among them, there are structural proteins
that provide the structure and shape of cells ; contractile proteins that are involved in
muscle contraction and movement ; enzymes that catalyze chemical reactions, i.e., speed
up a reaction to a sufficient rates for life ; regulatory proteins that control the transcrip-
tion of genes by binding themselves to segments of the DNA ; transport proteins that
move molecules from one place to another such as hemoglobin, which transports oxygen
through the blood ; receptor proteins that cover the surfaces of cells and transfer informa-
tion from the environment into the cell ; antibodies allow the immune system to recognize
other proteins ; and this list is far from exhaustive.

Basically, a protein is a one-dimensional sequence of amino acids assembled just like a
pearl necklace. Such a linear representation of a protein is called its primary structure. It
is admitted that the primary structure of a protein determines its tertiary structure, i.e.,
the position of each amino acid in the three-dimensional space when the primary structure
is folded. Under suitable environmental conditions (e.g., temperature and pressure), the
tertiary structure is generally unique, stable and spontaneously adopted. The process by
which the primary structure assumes its shape is called the protein folding and is subject
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to the laws of thermodynamics, which assert that a system attempts to find a three-
dimensional conformation that minimizes the Gibbs free energy. Nevertheless, in biology,
there are no rules without exception and sometime additional proteins are required to
assist the folding process.

Moreover, it is admitted that the function of a protein is directly determined by
its tertiary structure. Generally, a small part of the structure is essential to achieve its
function. For example, in the case of enzymatic proteins, this part is called the active site.
The rest of the structure creates and fixes the spatial relationship. An alteration in the
active site, e.g., a suppression of one of the amino acids forming the active site, is often
destructive and may lead to the loss of the function. More generally, protein mutation
can involve the misfolding of the protein and, consequently, its malfunction, i.e., the
protein no more correctly works in the cellular machinery. Malfunctioning proteins cause
a broad range of severe diseases. For example, the Alzheimer’s disease is due to a deposit
of misfolding proteins that have aggregated together within the brain causing an atrophy
[21] ; a mutation of the regulatory protein p53, which occupies the most important role
in the cancer resistance network, can cause the uncontrolled proliferation of cells [137]
that is the hallmark of tumor formation ; the diabetes is a group of diseases related
to insulin [125], which is an hormone that regulates sugar concentration in the blood ;
mutations of antibodies directly affect the efficiency of our immune system and may lead
to autoimmune disorders, i.e., the immune system attacks its own healthy tissue. Clearly,
the knowledge of the structure of proteins is crucial in medicine and drug design, and
more generally in biology and bioengineering.

The great variety of protein structures and functions is explained by the “Sequence
→ Structure → Function" paradigm and the very large range of possible amino acid
combinations. There exist twenty amino acids in human beings. Therefore, the number
of possible combinations of ten residues length proteins is 2010 = 1.024 × 1013 and, in
theory, as many structures and functions. In practice, since some amino acids are more
or less similar or share a common chemical property, the number of distinct folds and
functions is drastically reduced but is still very high. These similarities enable to reduce
the effect of mutations on structures. Protein structures are therefore more robust and
more preserved than protein sequences over the time. For instance, the median protein
length in human cell is ≈ 375 [19] and the number of unique proteins sequences deposited
in the public databases is just of 16 million 1.

1.1.1 Protein structure prediction

Experimentally determining the three-dimensional structure of a protein is a slow and
expensive process that requires sophisticated experimental techniques. Most popular me-
thods for deriving macromolecular structures are : the x-ray crystallography, the nuclear
magnetic resonance (NMR) spectroscopy and the electron microscopy. Among the known
protein structures, 88.6% of them are determined by x-ray crystallography and 10.7% by

1. We have used the statistics of the NCBI Reference Sequences[102] database release no. 54 (July,
2012) : http://www.ncbi.nlm.nih.gov/RefSeq/. The database provides a comprehensive and non-
redundant set of sequences of which 16 393 342 are protein primary structures.

http://www.ncbi.nlm.nih.gov/RefSeq/
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NMR spectroscopy. The remaining 0.7% of structures are determined by either electron
microscopy or hybrid methods 2.

Despite the advances of experimental techniques, the determination of protein struc-
tures is still time- and labor-intensive. On the contrary, the rapid progress of gene sequen-
cing technology enables researchers to determine thousands of novel protein sequences
per year. In order to fully understand their role in the organism, each of them should be
associated to a three-dimensional structure and to one or several functions. Unfortuna-
tely, only a very limited number of them have an experimentally determined structure.
For example, among the 16 million of unique proteins sequences mentioned above, just
70 000 protein structures have so far been experimentally determined. This enormous
gap between the number of protein sequences and structures has driven research towards
computational methods for predicting protein structures from sequences.

Protein structure prediction is thus one of the most venerable of holy grails in bio-
informatics. The methods developed for predicting protein structures from amino acid
sequences can be classified into four categories :

Homology modeling. Two sequences are homologous if they share a common ancestry,
i.e., the two sequences were initially the same gene but evolved differently through
generations. The homology modeling is based on the observation that, during evolu-
tion, the structure is more stable than its sequence, so that homologous sequences
still fold into similar structures. All homology modeling approaches consist of a
multistep process : a search of homologous fragments among the known structures ;
an alignment of those fragments w.r.t the query and an optimization of the model.
An overview of current trends in homology modeling in drug discovery is available
in [25].

Fold recognition methods. These methods attempt to determine which of known
structures share significant similarities with a query primary structure. The advan-
tage of these methods is that they take into account the available three-dimensional
structures to predict how well a fold will fit the query. Fold recognition approaches
can be particularly useful in the case of divergent evolution, i.e., the sequences simi-
larities are very distant. [121] proposes an overview on good-practice benchmarking
for fold recognition methods.

Ab initio methods. These modeling methods attempt to build the native conformation
of proteins from scratch by using the principles of thermodynamics. They are based
on the assumption that native state of a protein is the one that minimizes the
free energy function. Since the application of physical force fields on all atoms
of a macromolecules is impossible for today’s computational capacity, ab initio
methods have to deal with two major problems : (i) the protein energy function
design, e.g., by restricting the protein representation to its backbone ; and (ii) the
vast conformational search space. We refer the reader to [76] for more information
about ab initio methods.

Structural annotations. The core idea of these methods is based on the assumption
that it seems easier to solve a one- or even a two-dimensional problem derived from

2. The percentages are derived from the statistics of the repository of biological macromolecular
structures : Protein Data Bank [12] : http://www.rcsb.org/pdb/statistics/ (release of September,
2012).

http://www.rcsb.org/pdb/statistics/
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three-dimensional structure than the three-dimensional structure itself. The goal
is to provide accurate indications about the 3D structure without attempting to
explicitly assemble them into a 3D structure. A typical example of such a surro-
gate problem is the secondary structure prediction, which attempts to detect local
regular regions in the sequence such as helixes or sheets.

Our research focuses on structural annotation for several reasons :
– Limitation of comparative modeling : homology modeling and fold recognition me-

thods are the most accurate when there exist structure templates that share a (high)
sequence identity with the query. Consequently, comparative modeling approaches
are limited to known structures.

– Thermodynamic versus kinetic hypothesis : there is still a heavy debate [112, 37, 59]
whether the native state of a protein is the one that minimizes the Gibbs free energy
(thermodynamic hypothesis) or the one that is kinetically accessible (kinetic hypo-
thesis). Regardless of this, ab initio approaches focus on thermodynamic stability,
probably because it remains easier to formulate the problem as an optimization
one.

– Unreliable ab initio approaches : in spite of recent progress, ab initio approaches
are still far to be accurate enough. Moreover, all methods seem to fail on sequences
longer than 100 residues. This can be explained by the unavoidable errors introdu-
ced by the simplification of the energy function and the fact that, in practice, not
all native protein structures reach their global minimum free energy [8].

– The sequence determines the structure : according to Levinthal [77], “If the final
folded state turned out to be the one of lowest configurational energy, it would be
a consequence of biological evolution and not of physical chemistry".

Nowadays, both comparative modeling and ab initio methods are still limited. The
current known structures limits the former and the latter is limited to proteins that do
not show large kinetic barriers in the free energy landscape.

In this work, we believe that there exists a function that given an amino acid sequence
determines a unique and stable structure w.r.t. their environmental conditions. However,
this function is extremely complex and cannot be solely resumed to a search of the lowest
energy. Therefore, we prefer to adopt a bottom-up viewpoint that consists in (i) solving
structural annotation problems, (ii) gathering as much structural information as possible
and then (iii) assembling them to form a three-dimensional structure. In this thesis, we
focused on (i) and (ii).

1.1.2 Protein structural annotation

To progress towards the prediction of the tertiary structure of proteins, many research
efforts have already been devoted to address surrogate annotation problems. According
to the dimensionality of these structural annotations, they can be categorized into three
groups :

Global property prediction. The input is a sequence of amino acids and the output
is a single value that describes a biochemical property of the whole protein. Well-
known examples are the protein function and the localization of the protein within
the cell.
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Sequence labeling. To each element of the amino acid sequence, the sequence labeling
problem consists in assigning a label (numerical or categorical) that describes a
residue property. Well-known examples of sequence labeling problems are : secon-
dary structure prediction, where labels correspond to local 3D structures such as
alpha helices, beta strands or turns ; solvent accessibility prediction, where labels
are the level of exposition of protein residues to the solvent ; and disordered regions
prediction, that aims at identifying amino acids belonging to a disordered region,
i.e., a region that does not adopt a stable 3D structure.

Contact map prediction. The input is an amino acid sequence of length N and the
output is a binary two-dimensional matrix N ×N . For each pair of residues (i, j) of
the sequence, the corresponding element of the matrix is 1 if the three-dimensional
Euclidean distance between the i-th and the j-th amino acid residues is less than
a user-defined threshold, and 0 otherwise. It has been shown [43] that the simpli-
fication of three-dimensional structures into contact maps is a valid approxima-
tion. Various distance definitions have been proposed such as the distance between
Cα−Cα atoms, i.e., the carbon atoms that compose the main-chain of the protein ;
the distance between Cβ − Cβ atoms, i.e., the carbon atoms of residues that are
bonded to Cα ; or the distance between the centers of mass of the residues. There
also exist simpler maps such as contact maps between β-sheets or contact maps
between cysteine residues, which are known to form covalent bonds.

1.2 Contributions

In the bioinformatics literature, these problems have mostly been treated indepen-
dently, e.g., one designs and uses a predictor for inferring secondary structure and sepa-
rately designs and uses another predictor for inferring solvent accessibility. On the other
hand, the field of machine learning has investigated in the recent years so-called multi-
task approaches, which aim at treating multiple related prediction tasks simultaneously
with the hope to get an improvement on each one of the addressed tasks with respect
to predictors designed and used in a single task fashion. Since the various protein struc-
tural annotation tasks are closely related, it is a natural idea to explore such multi-task
approaches in this context.

In order to deal with the different kinds of data, the first part of our research focuses
on the development of a multi-task framework called iterative multi-task sequence labe-
ling. Chapter 4 presents this approach. We successfully applied this strategy on the top
of a machine learning algorithm to jointly solve a set of protein sequence labeling tasks :
secondary structure prediction, solvent accessibility prediction, disordered regions pre-
diction and a rich structural alphabet, where labels correspond to local three-dimensional
conformations.

However, the wide majority of available machine learning algorithms cannot process
complex objects such as secondary structures, disordered regions, etc. They usually re-
quire the user to encode such objects into vectors of (categorical or numerical) features.
Since, the way to perform this encoding typically has a major impact on the predictions,
the second part of our research focuses on the best way to identify a minimal subset of
feature representations. Chapter 5 introduces a tractable and interpretable feature se-
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lection methodology, called forward feature function selection. We successfully applied
this approach on top of ensembles of extremely randomized trees to predict disulfide
connectivity patterns and disordered regions. In the former case, the aim was to identify
the best way to represent pairs of cysteine residues from an input sequence in order to
accurately determine those that form disulfide bridges, i.e., a covalent link between two
sulfides atoms. In the latter case, we focus on determining in a similar way a feature
representation for identifying residues that do not adopt a stable 3D structure.

1.3 Thesis layout

This thesis is divided into seven chapters. The first chapters are intended to give the
reader some background on supervised learning and on structural biology, particularly on
protein structures and its structural annotations. The next chapters, comprising Chapter
4 though Chapter 6, describe our contributions in both the field of machine learning
algorithms and the field of structural bioinformatics. The last chapter concludes and
gives an overview of the perspectives raised by this thesis.

The chapters of this thesis are organized as follows :
Chapter 2 introduces relevant background on supervised learning. In particular, it pro-

vides precise descriptions of the machine learning algorithms that we used in our
studies : k-nearest-neighbors, support vector machines and extremely randomized
trees.

Chapter 3 provides a general background to understand what a protein is made of
and how their tertiary structure is characterized. It describes the central dogma of
biology : from the DNA to the protein and especially focuses on the paradigm of
proteins : the sequence-structure-function relationship.

Chapter 4 introduces a framework for jointly solving several closely related sequence
labeling tasks. We named this approach iterative multi-task sequence labeling. It
then compares the results obtained on a set of five protein annotations to models
designed in a single task fashion. It finally shows that the multi-task approach
systematically outperforms the single-task approach on all tasks and even leads to
a secondary structure predictor that outperforms the state-of-the-art.

Chapter 5 describes experiments on the best way to identify a minimal subset of rele-
vant features for disulfide connectivity pattern prediction. This chapter first intro-
duces a forward feature function selection algorithm and then applies this algorithm
on various structural annotations, of which the five tasks studied in the previous
chapter. The observations indicate that a very limited number of feature repre-
sentations are sufficient to reach and outperform the state of the art for disulfide
pattern prediction.

Chapter 6 applies the feature function selection developed in the previous chapter to
the problem of predicting disordered regions. Among the selected feature functions,
one is particularly novel in the field of disordered regions prediction. It then as-
sesses a model using these feature functions against the proteins of the 10th CASP
competition and shows that this model is very competitive with respect to the
state-of-the-art.

Chapter 7 concludes this manuscript and gives some directions for future research.
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approach described in Chapter 4. The publications [1,2] are about our forward feature
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Machine learning is the area of artificial intelligence that studies the ability of compu-
ter programs to automatically learn decision rules from examples. This field is also called
statistical learning or automatic learning. One of the fundamental ideas is to extract
knowledge from observations in order to recognize complex patterns and make decisions.
Over the past sixty years, many techniques and methodologies have been developed cha-
racterized by the type of data and by the properties of the decision rules, such as (i)
the predictive performance that measures the ability to make correct decision, (ii) the
computational scalability, that is, the ability to handle large amounts of data and/or
to exploit high-dimensional observation spaces in a reasonable manner in terms of com-
putational resource consumption and (iii) the interpretability, that is, the ability to be
confronted to human knowledge domains.

Since the remainder of this manuscript exclusively treats problems where the aim is
to learn decision rules given a set of labeled examples, this chapter is intended to provide



20 Chapitre 2. Background in machine learning

Figure 2.1: Recognition of handwritten digits. It consists in classifying 28 × 28
pixels images into a digit. This task can be expressed as a supervised learning problems.

the sufficient understanding of the general family of supervised learning problems. This
chapter has not the purpose to give an exhaustive overview of machine learning.

After an introduction to supervised learning in Section 2.1, the four following Sections
2.2, 2.3, 2.4 and 2.5 describe four different families of supervised learning algorithms,
which are further used in our experiments. Section 2.2 defines the notion of stochastic
gradient descent and focuses on linear models. Section 2.3 shows a way to construct a
hyperplane in a linearly separable space and how to deal with non-linear separators.
Section 2.4 describes approaches based on decision trees. In particular, it introduces
the notion of extremely randomized tree and ensemble-based methods. As a baseline,
Section 2.5 presents a very simple method that relies on a distance metric. Finally, Section
2.6 gives an introduction on the importance of selecting relevant descriptions of the
observations in order to make better decisions.

2.1 An introduction to supervised learning

Supervised learning aims at inferring a function f : X → Y that predicts the value
of an output object y ∈ Y based on an input object x ∈ X . The function f is induced
from a collection D of n training examples D = {(x(i), y(i))}i∈[1,n], sometimes called
observations, sample or dataset.

A classical example to depict supervised learning is the problem of recognizing hand-
written digits, illustrated on Figure 2.1. Each digit corresponds to a 28×28 pixels image.
The goal is to induce a function f that is able to recognize the digit : f : image →
{0, 1, . . . , 9}.

Usually, supervised learning makes sense on problems where the observation of X is
easy or cheap, while the observation of Y often requires human expertise and is costly. It
is particularly the case in many fields of biological research such as in genome annotation,
where high-throughput sequencing methods can rapidly sequence a whole genome while
the annotation process requires human expertise ; or in protein structure prediction, where
the three-dimensional determination of the structure requires very sophisticated and time-
consuming experiments.

Moreover, supervised learning commonly assumes that the distribution of the training
set D is representative of the actual joint distribution P (X ,Y) of input-output pairs. In
other words, if we would like to learn an function f , the learning examples must be
independently and identically drawn from the joint distribution of the variables (X ,Y),
which is usually unknown.
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2.1.1 Examples of supervised learning tasks

Supervised learning embraces various different learning tasks, depending on the nature
of the output space Y. In the example of handwritten digits, the output space is a finite
set of ten labels {0, 1, . . . , 9}. Such problems can be expressed as a multiclass classification
tasks.

Binary classification. Binary classification is the task of classifying objects into two
possible classes, by convention : Y = {−1,+1}. Examples of binary classification problems
include i.) medical diagnosis, that determines if a patient has a certain disease on the
basis of several measurements (age, height, weight, smoker, etc.) and tests (rest heart
rate, blood pressure, blood type, etc.) while Y = {unhealthy, healthy} ; ii.) quality control,
that is the process by which a factory tests the quality of their products to uncover defects
and discard them (Y = {defect, not defect}) ; iii.) spam filtering, that is the processing
that filters unsolicited email messages such as advertising (Y = {spam, not spam}).

Multi-class classification. Multi-class classification is the problem of classifying
objects into more than two possible classes. The large body of multi-class classification
problems can be expressed as document classification problems. Document classification
consists to assign a document to one or several genres. The documents to be classified
may be texts, where the goal is to predict the topic of the document according to pre-
determined categories (e.g., Y = {fantastic, romantic, fiction, horror}) ; music, where the
goal is to classify pieces of music with respect to their genre ; images, as illustrated in the
handwritten digit recognition problem ; movies, etc.

Regression. Regression focuses on problem with scalar outputs Y ⊆ R. Examples of
regression problems include dating objects, which aims to estimate the date of an object
based on observable evidences such as tree rings or carbon-14. The problem of dating
objects belongs to a larger family of problems known as calibration. It also includes stock
market prediction, where the goal is to determine the future value of a company stock,
earthquake forecasting, which attempts to predict the magnitude or time of occurrence of
a future earthquake.

Structured prediction. Structured prediction concerns tasks with arbitrary com-
plex outputs such as sequences, trees or graphs. This stands in contrast to previous
approaches, where an input data is mapped to a single value (discrete or continuous).
Structured prediction corresponds to a wide range of real-world problems. Examples
where structured output object arise include sequence labeling, which assigns a label to
each member of an input sequence ; parsing, which assigns a concrete syntax tree (i.e.,
a syntactic structure according to some formal grammar) to an input sentence. A well-
known example of parsing is machine translation, which aims at automatically translating
a sentence from a language to another. Sequence labeling is extensively used in computa-
tional biology, where the wide majority of problems consist to map an input sequence of
DNA, RNA or amino acids into a labeled sequence of the same length, where a label des-
cribes a physico-chemical property. Figure 2.2 gives an application of sequence labeling :
the secondary structure prediction. In this example, the input is a sequence of amino
acids (x1, x2, . . . , xT ) where each element xt ∈ {alanine, arginine, . . . , valine} is mapped
into a label yt ∈ {sheet, helix, coil} in order to form an output sequence (y1, y2, . . . , yT ).

Multi-task learning. Multi-task approaches aim at treating multiple related pre-
diction tasks simultaneously. This stands in contrast to previous approaches, where re-
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Figure 2.2: Sequence labeling : secondary structure prediction. The task consists
in classifying each member of the primary structure into one of three possible classes :
sheet, helix or coil. This example is a part of the protein 4GUG.
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Figure 2.3: Multi-task learning. The goal is to jointly classify images (x) into human

or animal (y1) and into gender of human subjects (y2).

lated problems are treated independently, i.e., one designs and uses a predictor for in-
ferring a task and designs and use another predictor for inferring another task related
to the first one. The purpose is then to learn a mapping from input x ∈ X to tar-
gets y1, y2, . . . , yT ∈ Y1,Y2, . . . ,YT for each task t ∈ [1, T ]. The training set is therefore
composed of pairs composed of an input associated with some or all of the target tasks
D = {(x(i), y

(i)
1 , y

(i)
2 , . . . , y

(i)
t )}i∈[1,n].

Figure 2.3 illustrates an example of multi-task learning. Here, inputs are images and
the goal is to distinguish humans from animals and girls from boys Y = {human, animal}
× {girl, boy,−}.

Many real-world problems can be formulated as multiple related classification or re-
gression tasks. For example, in therapy determination, the tasks are the estimation of the
effectiveness of several drugs for a given patient. In disease progression, the task of predic-
ting the evolution of a disease at different time points can be considered as a multi-task
problem where the tasks are temporally related. In the field of natural language proces-
sing, which studies the interactions between computers and human languages, there exist
several related tasks. These tasks include part of speech tagging, which aims at labeling
each word of a sentence with a tag that indicates its syntactic role as plural noun, verb,
adjective, etc. chunking, which aims at labeling segments of a sentence with a syntactic
tag ; named entity recognition, which labels each element in a sentence into a category.

In some sense, multi-class classification can be expressed as a multi-task problem
using a one-versus-all strategy. The idea is to consider each class t ∈ {1, 2, . . . , T} as a
binary classification problem, where the goal is to distinguish data that belong to the t-th
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class from the others. Especially under the constraint that if the t-th predictor classifies
an example in the t-th class, all the other r predictors, r 6= t, should not classify such an
example in their class. Without this constraint, the approach can assign multiple labels
to inputs. Such problems are called multi-label classification problems.

2.1.2 The global architecture of supervised learning algorithms

Machine learning algorithms are rarely able to process complex input objects directly
(e.g., images, music, protein, etc.), hence it is necessary to define a mapping from these
input objects to a standardized representation. The wide majority of available supervised
learning algorithms require the user to encode such inputs into vectorial representations
φ : X → R

d. The elements of φ(·) are called features. For example, when dealing with Feature
images a possible choice is to have one feature per pixel and per channel (e.g., red, green
and blue channels). In the case of recognizing handwritten digits (Figure 2.1), an input
28× 28 pixel grayscale image x can be represented by a vector φ(x) of 784 real numbers
(one per pixel). The goal is then to build a function f : φ(image) → digit = R

784 →
{0, 1, . . . , 9}.

The way to perform this encoding typically has a major impact on the performance
of predictors. In many cases, extracting the appropriate features is an art rather than a
science as it often relies on domain knowledge, heuristics and intuition.

The global architecture of a supervised learning approach consists of a training phase
and an inference phase. Given a feature representation φ : O → X , where O is the
space of observations, and given a data set D = {(φ(o(i)), y(i))}i∈[1,n] of input-output
pairs, called in this context the training set, the learning algorithm learns a model of Learning
the function f : X → Y. This model is further exploited by the inference algorithm

Inferencethat performs predictions of new input objects. Figure 2.4 summarizes the process of
supervised learning approaches.

The training phase can be deterministic or stochastic. In the former case, two calls of
the training algorithm always produce the same model on an identical learning set. It is
not always the case in stochastic algorithms, where the model produced by the learning
algorithm may vary from one call to another, even if applied to a same learning set.

2.1.3 Supervised learning and the theory of risk minimization

From a statistical learning point of view, all supervised learning problems can be
formalized as expected risk minimization problems. The statistical machine learning fra-
mework stems on two fundamental concepts.

The first fundamental concept is the hypothesis that the learning examples D =
{(x(i), y(i))}i∈[1,n] are independently and identically drawn from the joint distribution
over the input and output spaces P (X ,Y), that is, D ∼ Pn(X ,Y).

The second fundamental concept is the notion of loss function ∆ : Y × Y → R
+. Loss function

The loss function measures how bad is the error between the prediction ŷ = f(x) and
the actual output y. Higher ∆(ŷ, y) is, worst the prediction ŷ will be. Depending on the
learning tasks being solved (e.g., classification, regression, etc.), the choice of the loss
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Figure 2.4: Global architecture of a supervised learning. The raw training set
is converted into vectorial representations according to the feature function φ. Based on
these feature vectors, the learning algorithm builds a model f . According to this model,
the inference algorithm is able to make predictions for new input examples.

function may vary. A typical loss function for classification problems is the zero-one loss,
which equals zero if the prediction is correct and one otherwise :

∆0/1 =

{

0 if ŷ = y
1 if ŷ 6= y

,

whereas a typical loss function for regression problems is the squared error given by :

∆squared = (ŷ − y)2.

Supervised learning aims at seeking the function f that minimizes the expected risk
R(f), i.e., the expectation of loss over the joint distribution P (X ,Y) and defined asExpected risk
follows :

R(f) = EP (X ,Y){∆(f(x), y)}.

Unfortunately, it is generally not possible to solve this problem exactly, because the
distribution P (X ,Y) is unknown. However, thanks to the first fundamental concept,
supervised learning can approximate the expected risk by calculating the empirical riskEmpirical risk
R̂(f), which is the average loss over the instances of the training set :

R̂(f) =
1

n

n
∑

i=1

∆(ŷ(i), y(i)),
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where each ŷ(i) = f(x(i)). Therefore, since the empirical risk converges to the expected
risk as n goes to infinity (according to the law of large numbers), supervised learning
becomes the problem of selecting the function f∗ ∈ F , where F denotes a set of candidate
functions, that minimizes the empirical risk :

f∗ = argmin
f∈F

R̂(f) ≃ argmin
f∈F

R(f).

However, the minimal empirical risk does not necessarily converge to the minimal
expected risk for an arbitrary function space F as n goes to infinity (i.e. the learning
algorithm is not necessarily consistent). Also, for finite on even infinite samples, the loss Consistency
induced by the inability of f∗ to reach the minimal expected risk on average is called the
bias of the learning algorithm. Moreover, the function f∗ may be sensitive on peculiarities Bias
of the training set used to learn it. Namely, several instances of the learning algorithm on
different data sets of the same size n will produce different models. The variation of these
models may lead to different predictions for an input x. The measure of how strongly
depends a function f∗ on the training set is called variance. Both bias and variance Variance
contribute to suboptimal expected risk values of a learnt model.

When learning a model, the empirical risk decreases, in a way that has a joint effect on
the bias, that decreases, and the variance, that increases. In particular, when the model
perfectly fits the training data, the bias is often very small whereas the variance may be
rather large. Due to the fact that the empirical risk is calculated on training examples,
which are used to optimize the model, the empirical risk normally underestimates the
actual risk (generalization risk), i.e., the expected value of the loss function on new
examples that are independent from those that are in the training set. This phenomenon
is known as overfitting. Generally, there is a tradeoff between bias and variance, i.e., a Overfitting
tradeoff between the complexity of the function f and the generalization error. Figure
2.5 illustrates this phenomenon.

In order to avoid the overfitting phenomenon, where the model is too strongly tailored
to the particularities of the training set and generalizes poorly to new data, it is common
to insert a regularization term Ω(·). The term Ω(f) aims at measuring the complexity
of f . Higher the complexity of f is, higher Ω(f) will be. Therefore, supervised learning
becomes a problem of selecting a function f , which is a good compromise between low
empirical risk and simplicity (and consequently, generalizability) :

f∗ = argmin
f∈F

R̂(f) + λΩ(f),

where λ is a user-defined parameter that weights the regularizer so as to control the
tradeoff between the minimization of the empirical risk and the minimization of the
regularizer. This function is known as the regularized empirical risk or structural risk Regularized empi-

rical riskminimization.

The direct estimation of the generalization error on an independent testing set is not
always possible. For example, in many fields, the amount of data available is limited
and a large body of studies prefers to use as many as possible observations in order
to obtain better predictors. In such a situation, a widely used technique is the k-fold
cross-validation. It consists in running the learning algorithm once for each of k different k-fold cross-

validationnon-overlapping train/test splits of the data. In this setting, the learning algorithm is
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Figure 2.5: Bias/variance tradeoff. Curves on the top represent a typical behavior of
a loss function obtained when the complexity of the model varies. Bottom plots represent
three possible states of the model on a one-dimensional regression problem. Bottom-left :
the model is too simple and both training and testing errors are high. Bottom-middle : the
model is a good compromise between complexity and generalization error. Bottom-right :
the model is too complex, it perfectly fits training samples at the price of generalization
error.

executed k times on a training dataset composed of the union of k − 1 splits of the data
and the learnt function is evaluated using the remaining k-th split of the dataset. The
generalization error is then calculated by averaging the error computed over the k models
thus learnt.

For more details, one can refer to one of the multiple existing books introducing
supervised learning [14, 129, 60]. We describe below four supervised learning techniques
used in this thesis : stochastic gradient descent methods (Section 2.2), support vector
machines (Section 2.3), extremely randomized trees (Section 2.4) and k-nearest neighbors
(Section 2.5).

2.2 Stochastic gradient descent for linear models

Given a family F of functions fθ parameterized by a weight vector θ ∈ R
d, gradient-

based learning aims at minimizing the regularized empirical risk R̂(fθ) + λΩ(fθ) using a
gradient descent. Namely, such approach aims at finding the best parameter θ∗ such as :Gradient descent

θ∗ = argmin
θ∈Rd

R̂(fθ) + λΩ(fθ),
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using an iterative procedure that updates the weight vector θ on the basis of the gradient
of the regularized empirical risk at each iteration :

θt+1 = θt − αt
∂(R̂(fθ) + λΩ(fθ))

∂θ
,

where αt, called the learning rate, is a parameter that weights the gradient so as to control
the convergence speed of the descent.

Nevertheless, this algorithm requires computing the gradient of the regularized em-
pirical risk exactly. This involves calculating the average loss over the instances of the
training set at each iteration. A drastic simplification of the gradient descent is the sto-
chastic gradient descent, which estimates this gradient on the basis of a single example Stochastic gradient

descent(x, y) :

θt+1 = θt − αt
∂(∆(fθ(x), y) + λΩ(fθ))

∂θj
.

In this manuscript, we focus on stochastic gradient descent method for linear models
with a hinge loss function :

∆(fθ(x), y) =

{

1− y.Fθ(x) if yFθ(x) ≤ 0
0 otherwise

,

where Fθ(x) = 〈θ, x〉 is the scoring function. In our case, the scoring function is
defined as the dot product between the parameters and the input features. Moreover, we
only consider a widely used regularizer in gradient descent : the l2-norm of the parameters

‖θ‖ =
√

θ2
1 + θ2

2 + · · · + θ2
d.

For prediction purposes, and in order to deal with the nature of the outputs, dif-
ferent function spaces F are proposed. The simplest one is the case of regression, where
candidate functions fθ are identical to the scoring functions Fθ :

f regression
θ (x) = Fθ(x).

In the case of binary classification, the output space is Y = {−1,+1} and the candi-
date functions are defined as :

f binary
θ (x) = sign(Fθ(x))

=

{

−1 if Fθ(x) < 0
+1 if Fθ(x) > 0

The extension to multiclass problems requires defining one weight vector θy per class
y ∈ Y. The function space is the set of functions defined by :

fmulticlass
θ (x) = argmax

y∈Y
(Fθy

(x)).

That is, given the parameters θy, the prediction for an input x is the class that has the
highest score.
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The biggest advantage of learning a linear model learned with a stochastic gradient
descent is the scalability of the method, that is, the ability to handle large amounts of
data in a reasonable manner. Indeed, the learning complexity is linear with respect to
the number of training examples n and the dimensionality d of the input feature space.
The second advantage is the efficiency of making predictions of a new input, which solely
consists in performing a dot product.

2.3 Kernel methods and support vector machines

The present section provides a description of support vector machines and kernel-
based support vector machines, which are able to deal to with non-linear data. As the
mathematics behind support vector machines is somewhat intimidating, the explanation
is divided into two parts. The first part (Section 2.3.1) gives a general introduction with
few mathematical considerations, whereas the second part (Section 2.3.3) gives a more
detailed description on the related convex optimization problem and may not be accessible
to readers without a mathematical background.

2.3.1 Introduction

Support vector machines (SVM). SVM is a supervised learning method used for
binary classification problems Y = {−1,+1}. SVM algorithm was originally invented by
Vladimir N. Vapnik in the nineties [35]. In this section, we focus on the classical binary
classification SVM. However, it can easily be extended to multiclass classification pro-
blems by reducing single multiclass problems into multiple binary classification problems
(e.g., via one-against-all or one-against-one strategies). There also exists a version for
regression problems, named support vector regression.

In simple words, the basic idea of SVM is to construct a hyperplane in X that separatesSupport vector
machine all training examples (x(i), y(i)) into two groups {−1,+1} by a clear gap that is as wide

as possible. Therefore, a new example x ∈ X is classified based on which side of the
hyperplane it is. More formally, the family of candidate functions f ∈ F is given by the
weighted sum :

f(x) = sign

(

n
∑

i=1

y(i)αi〈x(i), x〉+ b

)

,

where each training example (x(i), y(i)) is weighted by a coefficient αi ≥ 0.

Figure 2.6 illustrates the intuitive idea of SVM on a two-dimensional problem. There
exist an infinite number of hyperplanes that separate the two classes. Among them, the
SVM selects the one that maximize the margin, i.e., the distance between the hyperplane
and the closest samples. Samples on the margin are called the support vectors.

Kernel support vector machines. However, it is often the case that input spaces
X are not linearly separable. In order to tackle non-linear problem, Boser et al.[15] have
proposed to replace every dot product 〈·, ·〉 by a non-linear kernel function K(·, ·) (asKernel
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x1

x2 〈w,x〉+ b = 0〈w,x〉+ b = -1〈w,x〉+ b = 1
Figure 2.6: Idea of support vector machine on a two-dimensional problem.
The plain line is the hyperplane that separate examples into two classes with the largest
margin. Dashed lines represent the bounds of the margin. Samples on the margin are the
support vectors.
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Figure 2.7: Idea of kernel-based support vector machines on a two-dimensional
problem. Left : the original data distribution is not linearly separable. Right : according
to the mapping function ψ, the data distribution in the new space is linearly separable.

illustrated in Figure 2.7) :

f(x) = sign

(

n
∑

i=1

y(i)αiK(x(i), x) + b

)

.

The goal of the kernel K(x(i), x) is to measure how similar x is to example x(i).
Nevertheless, in order to correctly use this kernel trick, K must satisfies a mathematical
constraint : K must be positive definite. According to the constraint, it was shown that
K can be represented as an inner product K(x(i), x) = 〈ψ(x(i)), ψ(x)〉, where ψ is a
mapping from a general observation space into an inner product space that can have a
higher and even infinite dimension. The goal of such mappings is to obtain a new space
that is linearly separable. Fortunately, based on Mercer’s theorem [90], it is not necessary
to know an explicit representation of ψ due to the fact that the computation only involves
the kernel and the training examples.
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2.3.2 Common kernel functions

Among the kernel functions that are known to satisfy the conditions of Mercer’s
theorem, some of them are common :

Linear kernel. The linear kernel is the simplest kernel function as it is given by the dot
product of its inputs.

K(z, x) = 〈z, x〉.

Polynomial kernel. The polynomial kernel is a non-stationary kernel and seems to be
well suited for problems where all the training data are normalized.

K(z, x) = (〈z, x〉)m,

where m is a constant hyper-parameter that correspond to the degree of the poly-
nomial.

Gaussian radial basis kernel. The Gaussian kernel or normal distribution function is
particularly widely used in pattern recognition. These kernels are rotationally and
translationally invariant, i.e., their level curves are circles.

K(z, x) = exp(−γ‖z − x‖2),
where γ > 0 is a shape (or scale) hyper-parameter that tune the shape of level
circles.

Hyperbolic tangent. The hyperbolic tangent kernel comes from the neural networks
field, where the sigmoid function is often used as an activation function for neurons.

K(z, x) = tanh(γ〈z, x〉 + c),

where the slope α is an adjustable hyper-parameter and the intercept c is a constant
hyper-parameter.

2.3.3 Beyond support vector machines

As presented in the introduction, the goal of SVM is to construct a hyperplane F (x)
in the space X ∈ R

d to separate two classes.

F (x) = 〈w, x〉 + b = 0,

where the w ∈ R
d is the normal vector of the hyperplane and b ∈ R determines the offset

from the origin. A new example x is classified based on the sign of F (x) :

f(x) = sign (F (x)) .

Hard margin. In hard margin point of view, the model assumes that the space is
linearly separable, i.e., the hyperplane perfectly separate the two classes. As multiple
hyperplanes may be possible, a heuristic is to select the one that maximizes margins
from both classes and will lead to the smallest generalization error. This problem can
be viewed as a problem of maximizing the distance between two parallel hyperplanes



2.3. Kernel methods and support vector machines 31

〈w, x〉+b = +1 and 〈w, x〉+b = −1 that separate the data. Figure 2.6 gives an illustration
of these hyperplanes.

Therefore, we wants to maximize the distance 2
‖w‖ , so, minimize ‖w‖. As the compu-

tation of the norm ‖w‖ involves a square root, which makes the minimization difficult,
the use of a mathematical trick modified the equation to :

min
w

1

2
‖w‖2,

subject to the constraint that each sample (x(i), y(i)) must satisfies the condition :

y(i)(〈w, x(i)〉+ b) ≥ 1.

This non-linear quadratic optimization problem can be solved by considering Lagran-
gian duality. The problem can be expressed as :

min
w,b

max
αi,∀i

{

1

2
‖w‖2 −

n
∑

i=1

αi[y
(i)(〈w, x(i)〉+ b)− 1]

}

,

where αi ≥ 0,∀i, are the Lagrange multipliers and must satisfy
∑n

i=1 αiy
(i) = 0. As the

equation is subject to the Karush-Kuhn-Tucker condition :

w =

n
∑

i=1

αiy
(i)x(i),

it is possible to substitute this condition in the Lagrangian function that gives the follo-
wing dual optimization problem :

max
αi,∀i

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjy
(i)y(j)〈x(i), x(j)〉,

subject to
∑n

i=1 αiy
(i) = 0 with αi ≥ 0,∀i.

Once the dual problem is solved, the hyperplane F (x) can be expressed as :

F (x) = 〈w, x〉 + b =

n
∑

i=1

y(i)αi〈x(i), x〉+ b,

by substituting w with the Karush-Kuhn-Tucker condition. The solution of the dual
problem is usually sparse and has a significant number of αi coefficients equal to zero.
Samples associated to a non-zero αi are the support vectors.

Soft margin. However, in practice, a perfect separation of classes is often not pos-
sible. This may be due to an overlapping in the distribution of data or the presence
of noises in the observations. For dataset that are not linearly separable, Cortes and
Vapnik[35] proposed the soft margin method that allows the margin to make few mis-
takes, i.e, some samples are inside or on the wrong side of the margin.
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In order to construct a hyperplane that splits the data as cleanly as possible, the soft
margin methods introduces slack variables ξi ≥ 0, which measure how misclassified the
training example x(i) is. The optimization problem becomes :

min
w,ξi,b

{

1

2
‖w‖2 + C

n
∑

i=1

ξi

}

,

where C > 0 is a user-defined parameter that weight the importance of slack variables so
as to control the tradeoff between the maximization of the margin and the minimization
of the slack variables. Note that when C → +∞, the problem is equivalent to the hard
margin one. The equation is subject to the constraint that each example (x(i), y(i)) must
satisfy the condition :

y(i)(〈w, x(i)〉+ b) ≥ 1− ξi, ξi ≥ 0.

As done in hard margin, the problem of minimizing ‖w‖ can be solved by considering
Lagrangian duality :

min
w,ξi,b

max
αi,βi,∀i

{

1

2
‖w‖2 + C

n
∑

i=1

ξi −
n
∑

i=1

αi[y
(i)(〈w, x(i)〉+ b)− 1 + ξi]−

n
∑

i=1

βiξi

}

,

with αi ≥ 0 and βi ≥ 0.

Similarly to hard margin, it is possible to formulate the dual problem. The maxi-
mization problem is identical to the one of hard margin except for the constraints on
parameters αi :

max
αi,∀i

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjy
(i)y(j)〈x(i), x(j)〉,

subject to
∑n

i=1 αiy
(i) = 0 with 0 ≤ αi ≤ C,∀i.

Finally, once the dual problem is solved, we obtain the same hyperplane formulation
F (x) as previously :

F (x) = 〈wT , x〉+ b =

n
∑

i=1

y(i)αi〈x(i), x〉+ b.

For more details, the reader is invited to refer to the books of Cortes et al.[35] and
Cristianini et al.[36].

2.4 Tree-based ensemble methods for classification

Decision trees are machine learning methods based on a hierarchical tree structure.
Decision trees learn to organize data in a hierarchical way based on questions on the
input variables x ∈ X . Decision trees can be used to solve classification problems or
regression problems. Since the organization depends on the answers (and not directly
on x), the input space X can potentially be any kind of object under the condition to
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provide questions that can deal with such objects. Commonly, X = X1 × X2 × · · · × Xd,
where each Xi can be either continuous or (finite) discrete. The elements of x are called
attributes with respect to features that are restricted to be in R.

Tree. A tree is defined recursively as a node, called the root node, which consists of aTree
value and a list of nodes, called the children nodes. Note that all the nodes are different.
Symbolically, this definition can be written as :

tree ::= node

node ::= value
node ::= value, list-of-node

list-of-node ::= node
list-of-node ::= node, list-of-node

This definition recursively describes the structure of a tree in the sense that a tree
(line 1) is simply a node (the root node) and that a node is either composed of a value
(line 2) or composed of a value and a list of children nodes (line 3), which at their turn
can be composed of several children nodes. Nodes with no children are called leafs or
terminal nodes while nodes with at least one child are called internal nodes or interior
nodes.

Decision tree. A decision tree [18] is a tree where internal nodes correspond to test Decision tree
nodes with a child node for each of the possible answers (e.g., yes or no, true or false,
pass or fail). A test node consists of a question about one of the input attribute Xi. The
question depends of the type of Xi. In case of a continuous attribute Xi ∈ R, the question
may be whether the value xi is greater than a (learned) threshold. The question for a
finite discrete attribute may be whether xi belongs to a (learned) subset of values. In
decision trees, a terminal node represents a predicted output value that corresponds to
the majority class (for classification) or the mean of the output (for regression) taken
over the training samples that belong to that node.

Figure 2.8 shows the structure of a decision tree. This example modelizes the decision
process of a marathoner to run or not run (Y = {run, don’t run}) based on climate
conditions X = Xoutlook × Xhumidity × Xwindy, where Xoutlook = {sunny, overcast, rain},
Xhumidity ∈ [0, 100] and Xwindy = {true, false}.

In order to make one prediction, the basic idea is quite simple. The new example
traverses the tree from the root node to a leaf. At each encountered internal node in
the tree, the algorithm answers the associated question and follows the branch that
corresponds to the outcome. In the case where the branching operation leads to a leaf,
the algorithm returns the output value associated to this leaf. Otherwise, the algorithm
recursively follows the branches until it reaches a leaf. Therefore, making predictions is
fast and the calculation is easy as it just consists of an if-then-else cascade.

In the classification problem illustrated on Figure 2.8, the prediction of the example
x = {sunny, 83, false} is Don′t run and the path of nodes form the root to the leaf is
Outlook?→ Humidity < 70?→ Don′t run.

In practice, decision trees are represented by binary trees, i.e., internal nodes have at
most two children. A node with more than two children can always be accommodated as
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Run

Run Don't run Don't run Run

Humidity < 70 ? Is windy ?

Outlook ?

yes no yes no

sunny over cast rain

Figure 2.8: Structure of a binary classification decision tree. Internal nodes (in
white) perform a test on one attribute. Each internal node has as many children nodes as
possible outcomes of the test. Terminal nodes (in red or green) are labeled by the output
value.

multiple binary nodes. In the same way, asking a question about multiple attributes at
once is equivalent to asking multiple questions about single attribute.

Each internal node must carefully select its question in order to create the most
efficient and, consequently, the smallest tree. Unfortunately, finding the smallest tree
that minimizes the training error is known to be a NP-complete problem [62]. Namely,
there is no known efficient way to construct such an optimal tree. However, tree-based
learning algorithms are based on greedy algorithms that make locally optimal sub-trees
(or nodes) with the hope of finding the global optimal tree.

The common way to construct decision tree is a to adopt a top-down approach,
starting from the root node to leafs. The algorithm starts with all the training samples
D and creates the most efficient internal node, i.e., determines the question on one
attribute that best splits the data : D → (Dleft,Dright), where Dleft ∪Dright = D and
Dleft ∩ Dright = ∅. This process is then recursively applied on Dleft and Dright until a
stopping criterion is triggered (e.g., all elements of D share the same output). The most
common way to determine the “best" split is to select the attribute and the question that
reduce the indecision of the output variable in Dleft and Dright, as formulated in the
following equation :

max
Dleft,Dright

|D|.I(D)− |Dleft|.I(Dleft)− |Dright|.I(Dright),

where I(·) is the indecision of the output for a given set. There exist different manners
of measuring the indecision. Among them, two are widely used for classification : the
Shannon entropy and the Gini impurity.

The Shannon entropy is defined by :

IShannon(D) = −
∑

y∈Y

py log2 py,

where py is the proportion of elements in D labeled with the value y. In a different
way, the Gini impurity measures how often a randomly chosen sample from D would be
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incorrectly predicted if it were randomly predicted according to the distribution of Y in
Dleft and Dright. The Gini impurity equation is :

Igini(D) = 1−
∑

y∈Y

p2
y.

Overfitting is a significant difficulty in decision tree induction. It is frequently the case
that a fully developed tree, where each terminal node contains elements of the same class,
perfectly classifies training samples but does not generalize well on unseen examples. In
order to avoid overfitting, there exist two types of pruning mechanisms : pre-pruning,
that stops growing the tree earlier, and post-pruning, that fully develops the tree and
then post prunes it. Pre-pruning consists in defining a stopping criterion that determines
whether a given node should be subdivided or should be a leaf. In post-pruning, the
basic idea is to randomly divide the available data into two folds. The first one is used to
build a fully developed tree and the second is used to assess the quality of more or less
strongly pruned versions of the tree, e.g., obtained by iteratively merging two leafs with
a common parent.

In the experiments presented in this manuscript, we used IShannon as measure of node
uncertainty and the size cutoff pre-pruning method. Namely, if the number of samples
reaching the node is greater or equal to a predetermined threshold Nmin, then the node
is divided (when possible). However, an a priori estimation of Nmin is difficult and often
requires preliminary experiments form the user.

Ensemble methods. Over the past two decades, approaches based on the use of Ensemble methods
multiple models have emerged. The core idea of ensemble methods is to learn a set of T
functions fi : X → Y and to combine the predictions of each fi in order to form a better
predictor f . Since learning multiple functions fi may lead to a more expressive function
f , one of the advantages of ensemble methods could be the reduction of bias. In theory,
this flexibility can however overfit the training data. Thus, in practice, ensemble methods
mainly aim at reducing the variance by introducing randomization either by subsampling
the training set, which makes predictions less dependent on the particularities of a single
training set, or by making the algorithm stochastic. The aggregation of the predictions
can be made by an average of each output ŷi = fi(x) (for a regression problem), by a
majority vote (for a classification problem) or any more evolved calculation such as a
weighted average or a weighted majority vote that give more importance to some fi.

Tree-based ensemble methods. Tree-based ensemble methods are ensemble me-
thods where each function fi is a decision tree. Figure 2.9 depicts the general scheme
of an inference procedure of a tree-based ensemble method for a binary classification
problem. Basically, decision trees are deterministic. Consequently, tree-based ensemble
methods differ in the way they introduce diversity among the different trees. As an
example, Breiman proposed the Bootstrap AGGregatING [16] technique (often abbrevia- Bagging
ted as Bagging) that introduces randomization by building each tree using a subsampling
of the training set. Five years later, he proposed the Random Forests [17], which com- Random Forests
bine Bagging and random attribute selection. Namely, for each internal node of the tree,
the algorithm calculate the “best" split for K randomly chosen attributes among the d
candidate attributes. When K = d, the method is equivalent to Bagging.

Extremely randomized trees. The extremely randomized trees (ETs), proposed by Extremely
randomized trees
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Figure 2.9: Inference of a tree-based ensemble method. A new example x traverses
each of the T trees, which return T predictions ŷi (one per tree). Then, the predictions are
combined to form the output value ŷ. At each node, the two colors represent an example of
the output distribution of samples reaching the node (for a binary classification problem).

Geurts et al. [58], add an extra level of randomization compared to the Random Forests.
ETs do not attempt to determine the “best" cut-off value (for continuous attribute) or the
“best" subset of values (for finite discrete attributes) for each of the K randomly chosen
variables. Instead, ETs fix cut-off and subset values in a random fashion. The “best"
split is then determined among K random splits. Unlike the Random Forests method,
each tree is built using the original learning samples and does not rely on bootstrap
replicates. The parameter K determines the randomness of trees. When K = 1, the
trees are completely randomized as each internal node is defined by one randomly chosen
attribute associated to a random cut-off (or subset). In opposite, when K = d, each node
can select the “best" split among d random splits. In the empirical study of Geurts et
al. [58], the authors showed that K =

√
d seems to be near-optimal on classification

problems.

2.5 k-Nearest neighbors

The k-nearest neighbors method (kNN) is perhaps the most simple machine learning
technique. The training stage is trivial. It just stores all training samples. Such techniques
are also called memory-based learning. In order to make a prediction of a new example,
the algorithm identifies the k nearest training samples, according to a distance metric,
and returns the mean of the output value (for regression) or the most frequent class
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x1

x2

x1

x2

Figure 2.10: Idea of a 3-nearest neighbors on a two-dimensional binary classi-
fication problem. Circles are the query examples. Dashed lines represent the distance
between the query to training samples. Solid lines represent the three smallest distances.
Left : among the three nearest neighbors of the query, there are two blue and one red.
Right : all the three nearest neighbors are red samples.

(for classification) among these neighbors. When k = 1, the method simply consists in
returning the output value of the nearest neighbor. When k = n, the algorithm always
returns the same value, namely, the mean (or the majority vote) over all samples. An
example of binary classification problem using a 3-nearest neighbors is depicted on Figure
2.10.

In order to be a valid distance metric, the distance between two feature vectors a and
b must conform to the following four criteria :

1. dist(a, b) ≥ 0 non-negativity
2. dist(a, b) = 0 only if a = b identity
3. dist(a, b) = dist(b, a) symmetry
4. dist(a, b) ≥ dist(a, c) + dist(c, b) triangle inequality

Typical distance metrics are derived from the l2-norm (also called Euclidean distance)
and the normalized Euclidean distance. Given a training set D = {(x(i), y(i))}[1,n] and an
unknown example x, the l2-norm distance is defined as :

distl2(x, x
(i)) =

√

√

√

√

d
∑

j=1

(xj − x(i)
j )2,

where xj (resp. x(i)
j ) is the j-th feature of x (resp. x(i)). However, the Euclidean distance

is biased towards features that have a larger range of value. In order to reduce this effect,
the normalized Euclidean distance proposes to normalize each feature xj by its standard
deviation σj calculated over the training set :

distnorm(x, x(i)) =

√

√

√

√

√

d
∑

j=1

(

xj − x(i)
j

σj

)2

.

Among the experiments presented in this thesis, some of them concern the application
of kNNs on biological data. In this context, we have used a weighted version of normalized
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Euclidean distance :

distweighted(x, x
(i)) =

√

√

√

√

√

d
∑

j=1

wj

(

xj − x(i)
j

σj

)2

,

where the weight wj enables to control the impact of the j-th feature in the calculation
of the distance. This may be particularly interesting when several features are known to
be correlated such as when they are involved in the description a common property of
the input object. Correlated features produce the same kind of side effect than mixing
features with large range and low range of values when using (not normalized) Euclidean
distance. Note that setting each weight to 1 is equivalent to using the classical normalized
Euclidean distance metric.

2.6 An introduction to feature selection

From a theoretical point-of-view, when the distribution P (X ,Y) is known, it is easy
to create a Bayes rule that classifies a new example as the most probable class :

argmax
y∈Y

P (Y = y|X = x),

where Y denotes the output variable and X = (X1,X2, . . . ,Xd) is the vector of input
random variables. When the distribution P (X ,Y) is assumed to be known, adding new
features (random variables) cannot decrease the predictive performance of the classifier.
A feature can be strongly relevant, weakly relevant or irrelevant. A feature is strongly re-Feature relevancy
levant if its removal will result in degradation of the predictive performance. By contrast,
a feature Xi is weakly relevant if it is not strongly relevant and there exists a subset
of features X ′ that do not include Xi such that X ′ is worse than X ′ ∪ Xi in terms of
predictive performance. A feature is irrelevant if it is not strongly or weakly relevant, i.e.,
features that are not necessary for the prediction problem.

In theory, it is never advised to restrict learning to a subset of features. However,
in practical learning scenarios, we typically observe a degradation of performances of
learning algorithms when faced with irrelevant features. This phenomenon is explained
by the fact that the exact distribution P (X ,Y) is rarely known, but instead we have at
our disposal a dataset D ∼ P (X ,Y). As a consequence, among the training samples, an
input variable can be fortuitously correlated with the output that may lead the model to
overfit and then increase the generalization error.

Since the goal of supervised learning is to minimize the generalization error, a funda-
mental field of research in machine learning is devoted to the development of algorithms
that identify subsets of features that are relevant for the predicting task. This field of
research is known as feature selection, variable subset selection or feature reduction. Fur-Feature selection
thermore, feature selection may be interesting for additional reasons :

1. To speed-up an algorithm or reduce its memory consumption. It is particularly
the case for large-scale datasets such as DNA microarrays, which contain tens of
thousands of microscopic fragments of DNA used to measure the expressions levels
of large numbers of genes simultaneously ;
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Figure 2.11: Scheme of filter and wrapper approaches. Filter methods discard
features prior to the induction algorithm whereas wrapper selection search is driven by
the evaluation of the induction algorithm.

2. To improve the model interpretability. By removing most irrelevant and redundant
features, feature selection helps to draw more general scientific conclusions by a
better understanding of which features are important and how they are related
with each other ;

3. To obtain a simpler model according to Ockham’s razor principle that states :
“Simpler explanations are, other things being equal, generally better than more
complex ones". Namely, we should prefer the simple feature subset, i.e., the subset
with the smallest dimensionality, among different feature subsets leading to models
that are not significantly suboptimal in terms of generalization error.

Note that feature selection aims at finding the subset of relevant features from the
original features set such that the generalization error is the lowest, but does not aim at
constructing or extracting new features from the data. However, because different learning
algorithms may use different heuristics, biases and tradeoffs, the subset of features that
works optimally for an algorithm may be different for another algorithm. Therefore, the
problem of finding the relevant subset of features is reduced to the problem of finding an
optimal subset with respect to a particular machine learning algorithm.

Formally, given an learning algorithm A and a dataset D ∼ P (X ,Y) with the random
variables X = (X1,X2, . . . ,Xd), an optimal feature subset Xopt = (Xopt

1 ,Xopt
2 , . . . ,Xopt

t ), Optimal
feature subsett ≤ d, with respect to A is a subset of features that minimizes the generalization error

of A. Since two features may be perfectly correlated, the optimal feature subset is not
necessary unique. Consequently, a feature that is in an optimal feature subset of a learning
algorithm does not imply that it is relevant and a relevant feature does not imply that
it is in an optimal feature subset of a given learning algorithm.

Subset selection algorithms are essentially divided into wrappers, filters and embedded
methods. Figure 2.11 summarizes the process of filter and wrapper approaches.
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2.6.1 Filters

Filter approaches attempt to discard irrelevant features prior to the application of
the learning algorithm. They rely on the characteristics of the training data. Therefore,
filter approaches do not take into account the effects of the selected features on the
performance of the machine learning algorithm. The independence of filter approaches
with respect to the predictor are particularly interesting when the number of features is
very large because they are computationally less expensive.

Basically, filter approaches rank the features using a score function S and select
the top-ranked ones. There also exist more evolved filters that directly rank subsets of
features. Below are few examples of scoring functions S.

Variance score. The variance score is probably the simplest score function. The
variance is an unsupervised filter that prefers features with a large distribution of values.
Therefore, the score of the i-th feature is Svar(Xi) = σ2

i .

Fisher score. The Fisher score is a supervised measure that assigns higher score to
features that require that examples of different classes have a large value difference.

Sfisher(Xi) =

∑

y∈Y |Dy|(Xy
i −Xi)

2

∑

y∈Y |Dy|(σy
i )2

,

where Dy is the set of samples of D of class y, Xi is the mean value of the i-th feature
in D, Xy

i and σy
i are the mean value and variance of the i-th feature in Dy.

Correlation-based feature selection. The Correlation-based Feature Selection
(CFS) is a filter that ranks feature subsets X ′ ∈ X based on the feature-class corre-
lation corr(Xi, Y ) and the feature-feature intercorrelation corr(Xi,Xj). An example of
CFS is the heuristic “merit" :

Scfs(X ′) =
|X ′| corr(X ′, Y )

√

|X ′|+ |X ′| (|X ′| − 1) corr(X ′,X ′)
,

where corr(X ′, Y ) is the mean value of all feature-class correlations and corr(X ′,X ′) is
the mean value of all feature-feature correlations.

For more information about filter approaches, the reader is invited to refer to [44].

2.6.2 Wrappers

Wrapper methods make use of the learning algorithm to choose a set of relevant
features. The search for a good subset of features is driven by the evaluation of the
machine learning algorithm on different candidate feature subsets.

Brute-force. The simplest way to determine the optimal subset of features would
be to evaluate all possible combinations of feature subsets. Obviously, since the number
of possible subsets (2d − 1) growth exponentially with respect to the number of features
d, an exhaustive search is computationally prohibitive and usually impractical.
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Greedy forward selection. The greedy forward selection is a iterative algorithm,
starting from an empty set of selected features and adding one element at each iteration
according to an heuristic. The goal of the heuristic is to locally select the optimal feature
with the hope of finding a global optimal subset of features. Typically, the heuristic
selects the feature that minimizes the evaluation error when coupled with the current
set of selected features. The greedy approach starting from the full set of features and
discarding one element at each iteration is called greedy backward selection. Note that
due to the greedy nature, the feature selection may fall into local minima.

Genetic algorithm. In a genetic algorithm, a population of many randomly sampled
subsets of features is first generated. Among the subsets, the most promising ones in
terms of generalization error are used to generate a new population. Each element of the
new population is obtained by applying a genetic operator on the promising subsets. The
operators are inspired from the process of natural evolution in life such as mutations (add
or remove one feature) and crossover (combine two subsets). The process is repeated until
a stopping criterion is reached (e.g., fixed number of generations).

However, by proceeding in this way, the user of wrapper methods must be aware
that the selected features may lead to a model that overfits the samples, if no special
care is taken. Indeed, if we consider the simple case in which training samples are used
to select the subset of features, the evaluation of the model on an independent set of
samples may be strongly lack of generalization since the selected features can perfectly
fit the training samples. To tackle this phenomenon, a widely used approach is to cross-
validate the selection, i.e., to run the feature selection once for different train/test splits.
Although this method is usually well adapted to evaluate a model with a fixed set of
features, this approach is not suitable for feature selection. Indeed, by proceeding in this
way, the same data would be used for both selecting the set of features and assessing
the quality of this selected set. Ambroise et al. [6] have been shown that this approach
is biased due to using the same data for selecting and for evaluating and that it could
lead to highly over-estimated the model performance. To avoid this risk of overfitting, we
recommend a more evolved approach based on a second loop of cross-validation, in which
the training stages perform a cross-validated feature selection on a part of the data and
the testing stages perform the evaluation of the selected features on the remaining data.
This approach is further detailed in Chapter 5 and 6.

For more information about wrapper approaches, the reader is invited to refer to [71].

2.6.3 Embedded methods

Embedded methods are learning algorithms that have a built-in mechanism to perform
variable selection. For example, in decision trees, the variable that composes an internal
node is chosen according to its importance for the classification task. Therefore, it is
possible to estimate the importance of each feature and then to perform a selection. For
linear models, the importance of a variable can be estimated using the weight associated
to all variables.

For an introduction to embedded methods, we refer the reader to one of the multiple
existing articles devoted to this subject, for example Lal et al.[75].
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Structural biology is an area of molecular biology that studies the structure of ma-
cromolecules, especially proteins. In molecular biology, there exists a fundamental prin-
ciple that describes the genetic information flow within biological systems. This principle,
known as the central dogma of molecular biology, states that DNA sequences are transcri-
bed into messenger-RNA sequences and that these mRNA sequences are translated into
protein sequences. In addition, in structural biology, it is widely assumed that the pro-
tein sequence determines the three-dimensional structure and that the three-dimensional
structure confers the function to the protein. However, the process by which the amino
acid sequence assumes its conformation is extremely complex because the protein can be
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subject to a variety of posttranslational modifications (e.g., phosphorylation, glycosyla-
tion, sulfation, etc.).

Biology is “a science of exceptions". Namely, there is an exception to every rule. As an
example, some RNA fragments may play important functions without being transcribed
into proteins, e.g., transfer-RNAs are molecules of RNA actively used in peptide synthesis,
micro-RNAs are small non-coding RNA fragments, which may bind to mRNAs and thus
prevent their translation into proteins [28]. There also exist proteins that are known to
be intrinsically disordered, i.e., that do not fold into stable structures.

This chapter introduces relevant background on proteins to understand the expe-
rimental parts of the thesis. After an introduction to the biochemistry of proteins in
Section 3.1, Section 3.2 reviews the different ways to experimentally derive the three-
dimensional structure of macromolecules. Section 3.3 presents the Protein Data Bank, in
which experimentally determined structures are recorded. Finally, Section 3.4 introduces
the structure-based annotations that will be addressed in the next chapters.

3.1 Fundamentals of protein structure

Proteins are among the most fundamental molecules of biology that are responsible
for most activities that make life possible. The functions of proteins are extremely diverse.
Among them, we roughly distinguish three kinds of proteins : globular proteins that are
soluble within the cell and speed-up specific metabolic reactions ; fibrous proteins that
play structural roles (e.g., skin, muscle fibers, hair, etc.) ; and membrane proteins that
transfer information from the environment into the cell.

Proteins are usually regarded at four levels of structure : primary structure, secondary
structure, tertiary structure and quaternary structure. Section 3.1.1 briefly describes the
common chemical interactions involved in protein structures. Section 3.1.2 introduces
primary structures as sequences of amino acids in polypeptide chains. Local regions of
primary structures adopt ordered arrangements. Section 3.1.3 describes these regular
conformations, called secondary structures. Section 3.1.4 discusses around the global
shape (tertiary structure or three-dimensional structure) of proteins. Finally, Section
3.1.5 briefly discusses the affinity that some protein structures may have with other ones
and then form complexes of proteins.

3.1.1 Chemical bonds

There are four commonly mentioned types of interactions responsible for the structure
and function of proteins : covalent bonds, hydrogen bonds, van der Waals forces, and
hydrophobic effect.

Covalent bonds are the most common chemical interactions. A covalent bond involves
the sharing of electrons between atoms, which are very close to each other. This
kind of interaction is considered as “strong", i.e., difficult to break.

Hydrogen bonds are strong interactions dipole-dipole attraction between a polar mole-
cule in which the hydrogen interacts with a highly electronegative atom (typically,
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Figure 3.1: Structure of an amino acid. R is the side chain of the amino acid and
vary from one amino acid to another. Cα is the central carbon atom.

nitrogen or oxygen in the context of protein structure). Since a hydrogen bond
does not rely on the sharing of electrons but on an attraction phenomena, hydro-
gen bonds are “weaker" than covalent bonds, e.i., it is easier to break a hydrogen
bond than a covalent bond.

Van der Waals forces is the sum of the attractive or repulsive forces between atoms
and molecules caused by the polarizations of nearby particles. These interactions
are weaker than hydrogen bonds and can easily be broken.

Hydrophobic effect, meaning “water-fearing", is the tendency of nonpolar molecule or
part of molecule to aggregate together in aqueous solution, such as a mixture of
oil and water. This effect is a consequence of Van der Waals force and plays an
important role in the formation of protein structure.

3.1.2 Primary structure

The primary structure can be pictured as a pearl necklace of different kinds of pearl
shapes. The primary structure is a linear sequence of amino acids. Amino acids are Amino acid
molecules composed of an amino group, a carboxyl group and a radical R, often called side
chain, which varies from one amino acid to another. The three groups and an additional
hydrogen atom are attached to a carbon atom Cα. Figure 3.1 depicts the structure of an
amino acid.

There exist 20 common side chains and, consequently, 20 standard amino acids.
Among the amino acids, 9 of them are essential for human being, i.e., our organism
is not able to synthesize them. Essential amino acids are then supplied in the diet (typi-
cally, in meats). Essential amino acids may vary upon the species and sometimes upon
the stage of development of the organism. Table 3.1 lists the 20 standard amino acids and
their usual three-letter and single-letter codes 1. In addition, they are grouped according
to the pKa value of their side chains, i.e., the acid dissociation constant that measures
of the strength of the acid in solution. The following example (in single-letter code) is a
subsequence of the human hemoglobin primary structure :

RLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDN

Among the standard amino acids, three of them have special properties : glycine,
proline and cysteine. Glycine is the smallest with a side chain that solely consists of a

1. The origin of the single-letter code is discussed at
http://www.biology.arizona.edu/biochemistry/problem_sets/aa/Dayhoff.html.

http://www.biology.arizona.edu/biochemistry/problem_sets/aa/Dayhoff.html
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Name 3-letter 1-letter Group Surface (Å2)
Alanine Ala A Hydrophobic 118.1
Arginine Arg R Electrically charged (+) 256.0
Asparagine Asn N Polar uncharged 165.5
Aspartic acid Asp D Electrically charged (−) 158.7
Cysteine Cys C Special case 146.1
Glutamic acid Glu E Electrically charged (−) 186.2
Glutamine Gln Q Polar uncharged 193.2
Glycine Gly G Special case 88.1

• Histidine His H Electrically charged (+) 202.5
• Isoleucine Ile I Hydrophobic 181.0
• Leucine Leu L Hydrophobic 193.1
• Lysine Lys K Electrically charged (+) 225.8
• Methionine Met M Hydrophobic 203.4
• Phenylalanine Phe F Hydrophobic 222.8

Proline Pro P Special case 146.8
Serine Ser S Polar uncharged 129.8

• Threonine Thr T Polar uncharged 152.5
• Tryptophan Trp W Hydrophobic 266.3

Tyrosine Tyr Y Hydrophobic 236.8
• Valine Val V Hydrophobic 164.5

Table 3.1: The twenty standard amino acids. Dots mark the essential amino acids
in human being. The surfaces are defined by Rose et al. [107] and expressed in unit of
square ångstroms.

hydrogen atom. This particularity enables the amino acid to fit into hydrophobic as well
as into hydrophilic environments. Usually, hydrophobic residues avoid being in contact
with the solvent. They attempt to be buried into the core of the protein. Proline is one of
the exceptions of the biology. In fact, proline is not a “standard" amino acid because its
side chain forms a loop with the amino group, i.e., its radical R is bound to the nitrogen
N . This particularity introduces a conformational constraint that can play an important
role in the folding process. Cysteine is the unique residue able to form a covalent link
with another cysteine. Therefore, cysteines play a key role in the stabilization of three-
dimensional structures. Cysteines will be discussed more in that context, later on in this
manuscript.

Each amino acid is connected to the next one in the sequence. Indeed, the carboxyl
group of one amino acid and the amino group of another amino acid react together to
form a covalent chemical bond : a peptide bond. This reaction releases a molecule of water.Peptide bond
Figure 3.2 draws the chemical equation of a peptide bond between two amino acids.

3.1.3 Secondary structure

A secondary structure is a local segment of the primary structure that forms a regu-
lar pattern in the three-dimensional space. Secondary structures rely on hydrogen bonds
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Figure 3.2: The peptide bond of two amino acids. R represents the side chains
of the amino acids and Cα represents the central carbon atoms. Left : two non-bonded
amino acid residues. Right : formation of a dipeptide through a peptide bond and a
molecule of water. In red : atoms that form the molecule of water. In green : the peptide
bond.

between amino groups and carboxyl groups. A hydrogen bond is an electromagnetic inter- hydrogen bond
action of a hydrogen atom and an electronegative atom (typically, an oxygen). This kind
of attraction is weaker than covalent bonds and can be easily broken alone. However, the
regularity and the large number of hydrogen bonds make secondary structures stable.

There exist two common secondary structures : α-helices and β-sheets. An α-helix is a α-helices
segment of amino acids in which the conformation of the main chain forms a helix. In this
conformation, the side chains are located on the outside of the helix. Each residue that
composes a helix is stabilized by two hydrogen bonds. In an α-helix, there are 3.6 residues
per turn. There also exist two additional forms of helices : 310-helices, which are more
compact with only 3 residues per turn, and π-helices, which are larger with 4.4 residues
per turn. A β-sheet is a stretch of amino acids connected laterally to another stretch of β-sheets
amino acids by hydrogen bonds. By contrast to helices, β-sheets require partners to exist.
Two β-sheets can be parallel, i.e., amino and carboxyl groups share the same orientation,
or antiparallel. In sheets, the side chains point perpendicularly to the plane and successive
residues usually point to opposite directions.

Figure 3.3 shows the structures of an α-helix and three β-sheets of crystalized protein
fragments. The two proposed views reveal the orientation of the side chains (outside of
the helix or perpendicular to the plane of the sheets).

3.1.4 Tertiary structure

Whereas the secondary structure is the configuration of local regions, the tertiary
structure is the three-dimensional arrangement of the whole protein within the space.
Tertiary structures rarely form long linear spaghettis. Indeed, since the environment of
proteins is aqueous (i.e., mainly composed of polar molecules of water), the tertiary
structure is mainly driven by hydrophobic interactions between its hydrophobic amino
acids (Table 3.1) and the solvent. As a consequence, proteins often have a hydrophobic
core, in which side chains are buried from the solvent. This is typically the case of globular
proteins. In addition to these weak interactions (hydrogen and hydrophobic interactions),
cysteines can sometimes form stronger interactions by forming covalent bonds.

Among the wide variety of ways to fold proteins, it is usually assumed that the native
tertiary structure of a protein is the one that minimizes the Gibbs free energy [59], i.e.,
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Figure 3.3: An example of an α-helix and a β-sheet. The α-helix and β-sheets
structures are fragments from crystal structures : PDB file 3NOU and 2JOX, respectively.
The structures are rendered by the PyMOL Molecular Graphics System. The cartoon
shapes (large green lines) highlight the secondary structures. Sticks represent covalent
bonds.

the energy of a system that can be used to do work at a constant temperature and
pressure. However, there exist studies [112, 37] that claim that the native structure is not
necessarily the minimum one but the one that is kinetically accessible, i.e., the one with
a small energy and with a path in the free energy surface that is reasonably smooth.

3.1.5 Quaternary structure

In order to acquire their function, many proteins aggregate with one or more indepen-
dently folded proteins. The quaternary structure is the arrangement of single polypeptides
into an oligomeric complex. Proteins involved in an oligomer are called subunits. It is of-
ten the case that subunits of an oligomer are replicates of the same protein. Quaternary
structures are mainly stabilized by hydrophobic interactions among the subunits. Namely,
segments of non-polar side chains on the surface (i.e. exposed to the solvent) gather to
form a hydrophobic core. Figure 3.4 shows the example of the human hemoglobin. This is
a tetramer (i.e, a oligomer composed of four subunits) of two distinct proteins (replicated
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Figure 3.4: The structure of human hemoglobin. The structure is depicted using
a cartoon representation. Each subunit of the complex has a distinct color. The PDB
file of the crystal structure is 1A3N. The structure is rendered by the PyMOL Molecular
Graphics System.

twice).

3.2 Structure determination of biological macromolecules

Experimentally determining the three-dimensional structure of a macromolecule is
a slow and expensive process that requires sophisticated instruments. The most popu-
lar methods for experimentally deriving protein structures are briefly described in the
following sub-sections.

3.2.1 X-ray crystallography

The X-ray crystallography is based on the principle of diffraction caused by a beam X-ray crystallogra-
phyof X-ray radiation onto a pure crystal of the protein. Since a crystal is a solid with a very

precise and periodic arrangement of its molecules in all three dimensions, the diffraction
pattern resulting from X-rays that strike it is specific to the molecules that compose the
crystal. From the observation of the diffraction pattern, it is possible to reconstruct the
three-dimensional position of each atom of the molecules.

The main limitation is that only proteins able to form crystals are examinable. A
typical example of proteins unable to form crystals are those that have many hydrophobic
amino acids such as proteins located in the membrane of cells. A second limitation is that
proteins cannot be examined in its cell environment. Moreover, as the formation of the
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crystal needs specific conditions (e.g., solvent, temperature or pressure) to grow, the
reconstructed map of atoms may not represent the native structure of the protein but a
conformation forced by the crystallization conditions.

3.2.2 Nuclear magnetic resonance spectroscopy

The nuclear magnetic resonance (NMR) spectroscopy is based on the principle thatNMR spectroscopy
the spin-moments of nucleons in the nucleus of atoms resonate when a molecule is placed
into a magnetic field. The NMR observes the transitions of the spin-moments by varying
the wavelength of the magnetic field around the average transition energy of the atoms
of interest, such as hydrogen.

The NMR produces a spectrum that describes the chemical shifts of the atoms, i.e.,
the strength of the electromagnetic field needed for ensuring that the spin-moments are
transiting. As chemical shifts directly dependent on nearby atoms and on their distances
from each other, the signals that NMR produces are sets of distances between specific
pairs of atoms. By repeating the experiment on different pairs of atoms, the NMR ge-
nerates several sets of constraints. Mathematically, these constraints can be solved in
different ways leading to multiple possible structures, rather than a single structure.

The major limitation of the approach is the molecular mass of the protein. The higher
the molecular mass is, the less accurate the determination of its structure will be.

3.2.3 Electron microscopy

An electron microscope is basically a microscope that uses a beam of electrons toElectron
microscopy illuminate and image the molecule. Two main techniques are used in molecular electron

microscopy : electron crystallography and single particle analysis. The former crystalizes
the protein in two-dimensions in opposition to X-ray crystallography that need a three-
dimensional crystal. The structure is determined using techniques based on the diffraction
of electrons. The latter technique is an image processing technique used to determine the
structure by averaging several images of the molecules.

The resolution of the method is quite weak but it can yield structural information of
macromolecular complexes.

3.3 The Protein Data Bank

Experimentally determined 3D structures of biological macromolecules are recorded
in a single worldwide repository : the Protein Data Bank (PDB). The PDB archive is
freely and publicly available. The data are maintained by the Worldwide Protein Data
Bank (http://www.wwpdb.org/) and distributed by four centers over the world : RCSB
PDB (http://www.rcsb.org/, USA), PDBe (http://pdbe.org/, Europe), PDBj
(http://www.pdbj.org/, Japan) and BMRB (http://www.bmrb.wisc.edu/, USA).

http://www.wwpdb.org/
http://www.rcsb.org/
http://pdbe.org/
http://www.pdbj.org/
http://www.bmrb.wisc.edu/
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Figure 3.5: Yearly growth of structures experimentally solved. The lowest (in
1980) and highest (in 2012) number of solved structures are 69 and 86 611, respectively.
The histogram derived from the RCSB PDB repository at December 4, 2012.

Method Proteins Others Total
X-ray crystallography 71 175 5 020 76 195
NMR spectroscopy 8 508 1 212 9 720
Electron microscopy 327 152 479
Hybrid & others 144 22 166
Total 80 199 6 406 86 611

Table 3.2: Distribution of structures in PDB. (December, 2012).

3.3.1 Statistics

This section reports some statistics of the PDB repository at the beginning of De-
cember, 2012. Although the repository began on 1972, we have limited our charts to 1980
for clarity reason.

Figure 3.5 shows the growth of the number of PDB structures per experimental tech-
niques over years. There were 69 experimentally determined macromolecular structures
in 1980. From 1992 to 2007, the number of determined structures per year rapidly increa-
sed. Since 2007, ∼ 7500 structures are deposited each year. What we also observe is that
the proportion between the three experimental techniques is roughly identical from year
to year. 88−90% of structures are determined by X-ray crystallography, ∼ 10% by NMR
spectroscopy, while electron microscopy and hybrid methods represent less than 1%.

Table 3.2 reports the distribution of protein and other macromolecule structures in
PDB at the beginning of December, 2012. The remaining macromolecules are RNA frag-
ments, Protein-RNA complexes and other carbohydrates macromolecules. Protein struc-
tures represent 93% of the repository.

Figure 3.6 shows the yearly growth of the number of distinct folds according to SCOP :
a Structure Classification Of Proteins database [93]. The SCOP database classifies protein SCOP classifica-

tionbased on the relationship between structural similarities and evolutionary origins that
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Figure 3.6: Yearly growth of distinct folds (as defined by SCOP). The lowest
(in 1980) and highest (in 2009–2012) number of folds are 20 and 1 393, respectively. The
histogram derived from the RCSB PDB repository at December 4, 2012.
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Figure 3.7: Number of non-redundant sequences. The whole box represents the
set of data available in PDB. Each subset, starting from 0, represents a subset of non-
redundant data in which sequence similarities are below a determined threshold.

a protein shares with others. We observe that the number of new folds per year mostly
increased between 1990 and 2007. More intriguing, we remark that no new fold has been
identified since 2008. In other words, most new protein structures fall into a few common
folds.

Figure 3.7 illustrates the number of proteins available in PDB according to determined
sequence similarity thresholds. The sequence similarity measure defines how identical two
polypeptides are. The complete dataset is composed of 80 199 proteins. By removing all
identical sequences (threshold : 100%), the number ’unique’ structures falls to 48 882.
That means that 39% of the sequences in PDB are identical to others. By varying the
similarity threshold from 100% to 30%, we observe that PDB is indeed highly redundant.
At 30% of sequence identity, considered as an acceptable redundancy threshold in the
literature, there only remain 25% of the original structures.
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3.4 Protein structure-based annotations

Tertiary structures of proteins can be derived into surrogate and simpler representa-
tions, called protein structure-based annotations or structural annotations. In this section, Structural annota-

tionwe introduce the six structure-based annotations treated as supervised learning tasks fur-
ther in this thesis. The section therefore aims at describing the way to determine each
annotation from a three-dimensional structure. These structure-based annotations will
further form the supervision values for machine learning algorithms.

Each annotation is presented in a dedicated section. The first five annotations are
sequence-wise. Namely, to each element of a primary structure, they assign a label des-
cribing a particular structural property of amino acids. The last annotation is a particular
case of contact map description, and focuses on the problem of assigning a label to each
pair of cysteine residues of a protein.

3.4.1 DSSP secondary structure

The secondary structure, previously discussed in Section 3.1.3, is commonly assigned
by the Dictionary of Secondary Structures for Proteins (DSSP). The DSSP program was
designed by Kabsch and Sander [67] to standardize secondary structure assignment given
the three-dimensional structure of proteins. The method relies on eight hydrogen bonding
patterns :

310-helix : at least two consecutive residues forming a 3 turn helix ;
α-helix : at least two consecutive residues forming a 4 turn helix ;
π-helix : at least two consecutive residues forming a 5 turn helix ;
Turn : single residue forming a 3, 4 or 5 turn helix ;
Strand : at least two consecutive residues bridged in parallel or antiparallel ;
Isolated β-bridge : single bridged residues that do not form a turn ;
Bend : the angle formed by residues i, i− 2 and i+ 2 is greater than 70 degrees ;
None : no secondary structure.

3.4.2 Secondary structure

However, the eight conformational states defined by DSSP are commonly reduced to
three states : helix, sheet and coil. We consider the following reduction method :

Helix : 310-helix, α-helix and π-helix ;
Sheet : strand and isolated β-bridge ;
Coil : turn, bend and none.

Namely, helices with a minimum of two residues length form a more general group of
helices. β-sheets, even composed of a single residue, from the group of sheets. The rest
are reduced to coil.

3.4.3 Solvent accessibility

The solvent accessible surface area (SAS) is the surface area that is accessible to a Solvent accessible
surface area
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Figure 3.8: Solvent accessibility of the lysosome structure. The solvent-accessible
surface area is calculated by rolling water molecules on the protein at all possible po-
sitions. The PDB file of the crystal structure is 148L. The structure is rendered by the
PyMOL Molecular Graphics System.

solvent (typically, water). It is measured in unit of square ångstroms (Å2). In addition
to derive the secondary structure, the DSSP program also calculates the SAS. From the
SAS, it is possible to apply a threshold as criterion to determine whether a residue is
buried (inaccessible to the solvent) or not (exposed to the solvent). Figure 3.8 shows the
solvent accessible area of a lysosome.

However, the total surface area varies from one amino acid to another. Depending
on the context, it is recommended to use a normalized value of SAS such as the relative
solvent accessible area (RSA). RSA consists in dividing the SAS by the total surface areaRelative solvent

accessible area of the amino acid. In Table 3.1, we reported the surface area estimated by Rose et al.
[107] for each amino acid X in the tripeptide Glycine-X-Glycine.

In our experiment, we use a threshold of 20% on the RSA to define the two states
(“buried" and “exposed") of the solvent accessibility :

Buried : RSA ≤ 20% ;
Exposed : RSA > 20%.

3.4.4 Disordered regions

Disordered regions refer to regions in proteins that do not adopt a stable three-Disordered regions
dimensional structure when they are not in presence of their partner molecules. Over
the last decade, several experimental studies have shown that proteins with disordered
regions play various and critical functions in many biological processes. The flexibility
of these regions makes it possible for a protein to interact, recognize and bind to many
partners. For example, disordered regions are often involved in regulatory and signaling
interactions [128] such as the regulation of cell division, the transcription of DNA or the
translation of mRNAs. They also play a role in the self-assembly of protein complexes,
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Figure 3.9: NMR structure of disordered regions. This protein has three disordered
regions : the two red and dark-blue terminal parts in the upper-right part, and the light-
blue loop on the left of the figure. The PDB file of the NMR structure is 2ERM. The
structure is rendered by the PyMOL Molecular Graphics System.

and in the storage and/or transportation of small molecules [127, 46]. Figure 3.9 shows
a protein with three disordered regions.

The length of disordered regions ranges from a few consecutive residues to the full
length of the protein. While regions longer than 30 residues clearly differ from well-
structured regions, short regions (usually less than 10 residues length) are sometimes
just considered as loops in well-structured proteins. Many long disordered regions are
not robust against in silico mutation [115]. This observation suggests that disordered
regions are far from meaning random regions and seem to be evolutionarily conserved
[116, 46], in particular, long loopy regions [82] appear to be more conserved than their
flanking regions.

There are many reasons for automatically characterizing disordered regions in pro-
teins. For example, in X-ray crystallography, determining macromolecular structures may
take months and disordered regions may render protein analysis very difficult and often
impossible when long disordered regions exist. An automatic annotation tool can there-
fore save valuable time. Such tools can also be useful to increase the accuracy of sequence
similarity analysis by avoiding aligning unstructured regions with ordered regions. Re-
cently, in disorder-based rational drug design, bioinformatics tools helped researchers
to design some peptides that block interactions between structured and unstructured
partners [32, 45].

The notion of disorder is not uniquely defined. In our studies, we use the definition
of the CASP [94] competition (Critical Assessment of Techniques for Protein Structure
Prediction). Namely, segments longer than three residues but lacking atomic coordinates
in the crystal structure were labeled as “disordered" whereas all other residues were
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labeled as “ordered".

3.4.5 Structural alphabet

The structural alphabet is a discretization of the protein backbone conformation as
a series of overlapping fragments of four residues length. This annotation is less common
in the literature than the previous structural annotations.

Our structural alphabet relies on the study of Camproux et al. [22], which determined
an optimal decomposition of the conformational variability of four residues. According
to their results, they proposed 27 states, denoted as [a,A,B, . . . , Z]. The 27 states are
described based upon four distances :

1. d1 = |C1
α − C3

α| ;
2. d2 = |C1

α − C4
α| ;

3. d3 = |C2
α − C4

α| ;
4. P4, the oriented projection of C4

α to the plane (C1
α, C

2
α, C

3
α),

where Ci
α are the coordinates of the Cα of the i-th residue in the four length segment.

The first three descriptors are the three distances between the non-consecutive Cα atoms.

Table 3.3 reports the average values of the four descriptors of each state. In order
to determine the state that best corresponds to each residue i of a primary structure,
we first calculate (d1, d2, d3, P4) on the segment (i− 1, i, i + 1, i+ 2) and then select the
state s that minimizes the Euclidean distance. In order words,

argmin
s∈[a,A,B,...Z]

√

(d1 − ds
1)

2 + (d2 − ds
2) + (d3 − ds

3)
2 + (P4 − P s

4 )2,

where (ds
1, d

s
2, d

s
3, P

s
4 ) are the expected descriptor values of the state s. Note that, as the

alphabet is based on segments of four residues, the first residue, as well as the last two
residues, of a given protein sequence is not annotated.

3.4.6 Disulfide pattern connectivity

A Disulfide bridge is a covalent link resulting from an oxidation-reduction process ofDisulfide bridge
the thiol group of two cysteine residues. Both experimental studies in protein engineering
[7, 89, 70] and theoretical studies [136, 13] showed that disulfide bridges play a key role
in protein folding and in tertiary structure stabilization. The knowledge of the location of
these bridges adds strong structural constraints to the protein, which enable to drastically
reduce the conformational search space in the context of protein structure prediction.
The disulfide pattern connectivity of a protein is the set of disulfide bridges present in itsDisulfide pattern

connectivity tertiary structure.

There exist two methods to determine whether two cysteines form a bridge from the
tertiary structure. The first one assigns disulfide bonds using the SSBOND records of
the PDB file. These SSBOND records are generated automatically by a PDB processing
program and compared with those of the depositor (if supplied). The second method is
to use the DSSP program, which (i) checks bond distances between cysteines referred
by SSBOND records and (ii) seeks additional bonds. (i) and (ii) are based on a bond
distance of 3Å but they do not take into account the bonding state of cysteines, e.g.,
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State d1 d2 d4 P4

a 5.39 5.09 5.38 2.92
A 5.43 5.09 5.42 2.94
B 5.41 5.23 5.61 2.86
C 5.62 5.25 5.42 2.87
D 5.59 5.49 5.78 2.58
E 5.40 5.58 5.42 3.39
F 5.78 5.68 6.07 1.46
G 5.55 7.74 5.60 -3.31
H 5.60 6.71 5.50 3.69
I 5.69 8.09 5.67 3.09
J 5.66 8.95 6.54 2.09
K 5.66 8.91 6.66 -1.46
L 5.66 8.07 6.70 2.96
M 5.70 7.26 7.02 0.88
N 6.03 6.85 5.64 -0.63
O 6.47 5.92 5.56 0.53
P 6.57 8.96 5.58 -2.19
Q 6.71 8.27 5.47 -3.56
R 6.21 9.21 5.77 0.27
S 6.87 8.28 6.03 -3.44
T 6.89 8.94 6.76 -0.48
U 6.72 9.12 6.41 -3.31
V 6.71 9.64 6.50 -2.60
W 6.39 9.93 6.75 -1.07
X 6.87 10.06 6.51 -1.41
Y 6.48 10.17 7.09 0.66
Z 6.80 10.35 6.85 -0.25

Table 3.3: The 27 states of the structural alphabet. The values derive from the
study of Camproux et al. [22].

DSSP sometimes detects several disulfide bridges that share a common cysteine. In our
implementation, we discard all cysteine-pairs that have a bond distance greater than 3Å.
For conflicting pairs (i.e., sharing a common cysteine), we select the one with the smallest
distance.

In practice, several researchers have focused on two intermediate representations,
which are detailed below.

Chain bonding state. This simple representation consists in discriminating chains
that contain some disulfide bridges from those that do not contain any disulfide bridge. It
exploits the key fact that free cysteines (not involved in any bond) and oxidized cysteines
(involved in a bond but not necessarily an intra-chain disulfide bridge) rarely co-occur
and that theirs sequential environments are different.
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Cysteine bonding state. This second commonly used representation consists in iden-
tifying cysteines that are involved in a disulfide bridge and those that are not.



CHAPITRE 4
Iterative multi-task

sequence labeling

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Notations and problem statement . . . . . . . . . . . . . . . . 64

4.2.2 Iterative black-box multi-task learning . . . . . . . . . . . . . 65

4.2.3 Datasets and annotations . . . . . . . . . . . . . . . . . . . . 68

4.3 Multi-task sequence labeling for protein annotations . . . . . . 68
4.3.1 Base sequence-labeling model . . . . . . . . . . . . . . . . . . 68

4.3.2 Features encoding . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

In the two previous chapters, we introduced relevant background to understand the
thesis, according to two domains : supervised learning and structural biology. We showed
that experimentally determining tertiary structures is time-consuming and cost-expensive
and that ab initio prediction of the protein structures (i.e., computing 3D positions of all
their atoms, from their amino-acid sequences) remains an extremely difficult and largely
unsolved problem.

To progress towards this goal, many research efforts have already been devoted to ad-
dress surrogate (and simpler) problems. In this chapter, we focus on a set of five protein
annotation tasks : secondary structure prediction, DSSP secondary structure prediction,
solvent accessibility prediction, disordered regions prediction and structural alphabet pre-
diction. Since these problems are closely related, we propose to jointly solve them in a
multi-task machine learning based approach.

The following section (Section 4.1) gives an overall view of related works. In Section
4.2, we introduce notation and express the addressed problems as sequence labeling tasks.
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We then present our generic framework for iteratively learning several sequence labeling
tasks in a multi-task context. Section 4.3 describes our experimental protocols and pre-
sents the results of the application of our multi-task algorithm on the set five protein
annotation tasks. Section 4.4 concludes and highlights further research directions.

This chapter is reporting the work published in [84, 85].

Publications related to this chapter

[1] Maes (Francis), Becker (Julien), Wehenkel (Louis)
Iterative multi-task sequence labeling for predicting structural
properties of proteins
19th European Symposium on Artificial Neural Networks (ESANN’11)

[2] Maes (Francis), Becker (Julien), Wehenkel (Louis)
Prédiction structurée multitâche itérative de propriétés structurelles de
proteins
7th Plateforme de l’Association Francaise pour l’Intelligence Artificielle (AFIA’11)

4.1 Introduction

In the bioinformatics literature, the structural annotation problems have mostly been
treated independently : i.e. one designs (e.g. by machine learning) and uses a predictor
for inferring secondary structure and separately designs and uses another predictor for
inferring solvent accessibility. On the other hand, the field of machine learning has in-
vestigated in the recent years so-called multi-task approaches [23], which aim at treating
multiple related prediction tasks simultaneously (both at the learning stage and at the
prediction stage) with the hope to get an improvement on each one of the addressed tasks
with respect to predictors designed and used in a single task fashion.

Since the various protein structure prediction tasks are closely related, it is a natural
idea to explore such multi-task approaches in this context. Although not formulated ex-
plicitly in these terms, one example of such a multi-task approach for protein structure
prediction has already been proposed by [2], by combining solvent accessibility prediction
and secondary structure prediction within a unified system. Recently, after the publica-
tion of our research [84], Qi et al. [103] proposed a unified multi-task architecture for
predicting local protein properties using a deep neural network. Their work was mo-
tivated by a previous application of their architecture in the field of natural language
processing [34]. As our results, their study demonstrates the power of multi-task learning
by achieving a state of art performance on almost all of the protein annotation tasks they
considered : predicting the two versions of secondary structure, the solvent accessibility
and the transmembrane topology, and identifying DNA-binding residues, protein-binding
residues, signal peptides and coiled-coil regions.

However, most multi-task learning approaches rely on the use of an internal represen-
tation shared over all considered tasks, such a shared representation being likely to better
capture the essence of the input data by exploiting commonalities among the different
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tasks. We adopt here another approach to multi-task learning, namely black-box multi-
task learning 1 : we combine the learning of single-task sequence labeling base-models,
where base-models are considered as black boxes and may be of any kind, from simple
classification-based approaches to modern structured prediction approaches [74, 126].

4.1.1 Related works

This section presents a brief review of computational methods for predicting secondary
structure, solvent accessibility and disordered regions.

Secondary structure prediction. In 1988, Qian et al. [104] are the first to propose
an automated secondary structure predictor. They used a simple feed-forward neural
network on the top of a sliding window of amino acids. A decade later, Rost and Sander
[109], and David T. Jones [64] achieved a second breakthrough. The former introduced
the notation of evolutionary profiles, which result from sequence alignments against a
database. The latter used two feed-forward neural networks based on a sliding window
on Position-Specific Scoring Matrices (PSSM). His study makes popular the use of evolu-
tionary profiles. Nowadays, this source of information is very common among predictors
that rely on primary structures.

Among the large number of methods devoted to secondary structure prediction in
the scientific literature, the majority of them are based on neural networks [104, 109,
64, 9, 101, 100]. The other approaches include nearest neighbors [105], hidden Markov
models [20], Bayesian probabilistic models [117], support vector machines [134, 81, 69]
and hybrid methods [96]. According to the critical assessment made by Zhang et al. [144],
the ab initio methods PsiPred and Spinex outperform the other secondary structure
standalone predictors. PsiPred [64] is the simple method based on PSSM introduced
earlier. Rather than directly predicting secondary structures, Spine X [50] prefers to
predict the backbone torsion angles (dihedral angles between each consecutive pair of
residues) and then to discretize them to obtain secondary structure predictions.

For more details, one can refer to one of the multiple existing reviews in secondary
structure prediction [108, 98, 144].

Solvent accessibility prediction. This task consists in distinguishing amino acids
of a given protein that are accessible to the solvent from those that are buried inside
the protein. In the literature, there also exists more complex definitions such as three- or
ten-states of exposure [110], but also regression formulations aiming at the real value of
surface exposure prediction [4, 57].

Several approaches were developed to predict solvent accessibility. Some of them are
similar to those used to predict secondary structure. These methods include neural net-
works [110, 1, 3], support vector machines [142, 68, 143], nearest neighbors [66, 120] and
Bayesian analysis. Usually, the best predictive performances are achieved by artificial
neural networks or support vector machines that use evolutionary profiles. However, the
current state of the art is Real-Spine [49], which predicts the real value surface exposure
based on predicted backbone torsion angles of proteins.

1. See discussion at http://hunch.net/?p=160

http://hunch.net/?p=160
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Disordered regions prediction. Several automatic methodologies have been pro-
posed to predict disordered regions from primary sequences. They range from simple
methods based on the sequence complexity [138] to more sophisticated machine lear-
ning approaches often relying on neural networks or SVMs [65, 38, 97, 141, 146]. For
example, the Poodle tool is based on three adjacent classifiers, which are specialized in
making short [118] or long [61] disordered regions predictions, or unfolded protein pre-
dictions [119], while the Spritz tool [130] uses two specialized SVMs for either short or
long disordered regions. Recently, meta-predictors have also appeared in the literature.
These approaches consist in combining predictions of a large number of existing disorde-
red regions predictors [63, 91], e.g., GSmetaDisorder gathers no less than 12 different
predictors.

Nowadays, there exist more than 50 disordered region predictors. Fortunately, since
2004, a part of the biannual competition “Critical Assessment of Techniques for Protein
Structure Prediction” (CASP) is devoted to the comparison of the participant disordered
regions predictors. For more information about disordered regions predictors, one can
refer to the reports of these assessments [92] or to the recent comprehensive overview of
computational protein disorder prediction methods made by Deng et al. [39].

4.2 Materials and methods

The first section introduces notations and formalizes the multi-task sequence labeling
problem. It then expresses the five structural annotations we consider as sequence labeling
tasks. The second section describes our iterative multi-task black-box algorithms. The last
section details the two datasets further used in our experiments.

4.2.1 Notations and problem statement

The multi-task sequence labeling problem aims to learn a mapping f(·) from input
sequences x ∈ X to target sequences y1, . . . , yT ∈ Y1, . . . ,YT for each task t ∈ [1, . . . , T ].
We adopt a supervised-learning formulation of the problem, where we assume to have
access to a dataset composed of pairs of input sequences associated with some or all of
the target sequences. We denote this dataset D = {(x(i), y

(i)
1 , . . . , y

(i)
T )}i∈[1,n], where n is

the number of training examples.

More concretely, the input space X is the space P of all proteins described by their
primary structure and the output spaces Y1, . . . ,YT are the five structural-related anno-
tations we consider A = {SS3, SS8, SA,DR,StAl} : secondary structure (SS3), DSSP
secondary structure (SS8), solvent accessibility (SA), disordered regions (DR) and struc-
tural alphabet (StAl). Section 3.4 gives a detailed description of each annotation. Note
that the two versions of secondary structure give two different levels of granularity and
seem to be redundant but, in our experiments, we have noted an improvement of both
tasks when both are present. As well, we used the structural alphabet as a third level of
granularity for local 3D structures and this appears to also improve the predictions made
for the other tasks.

We denote by LA the set of labels corresponding to the annotation A ∈ A and by
LA the size of this set. We therefore have : LSS3 = 3, LSS8 = 8, LSA = 2, LDR = 2 and
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LStAl = 27. For a given primary structure of length |P |, where P ∈ P is one particular
protein, a structural-related annotation A is represented as a set yA of labels yA,p ∈ LA

where p ∈ [1, |P |] denotes the residue index.

For the sake of clarity, we arbitrary ordered the set of annotations {SS3, SS8, SA,

DR, StAl} to [SS3, SS8, SA,DR,StAl]. We then denote the dataset D = {(P (i), y
(i)
SS3,

y
(i)
SS8, y

(i)
SA, y

(i)
DR, y

(i)
StAl}i∈[1,n], where P (i) ∈ P is the i-th protein and y(i)

A is the structural-
related annotation A of P (i). Given the dataset D, the aim is to learn a predictor f(·)
that maps proteins P ∈ P to sets of predicted annotations ŷSS3, ŷSS8, ŷSA, ŷDR, ŷStAl

= f(P ).

We consider two performance measures to evaluate the quality of predictions : the
label accuracy (Q) and the Matthews Correlation Coefficient (MCC) [2]. The label accu-
racy Q corresponds to the proportion of correctly predicted labels :

Q =
1

∑n
i=1 |P (i)|

n
∑

i=1

|P (i)|
∑

p=1

1{y(i)
A,p = ŷ

(i)
A,p

}

,

where 1 {Pr} is the indicator function whose value is 1 if Pr is true or 0 otherwise.
The label accuracy is very common in classification. It is often considered as the default
scoring measure. However, when the problem is strongly unbalanced, i.e., one class is
strongly underrepresented in the evaluated set, using label accuracy is not appropriate.
This is typically the case for disordered regions labeling, in which only a few number
of examples are disordered. Instead, we have used a classical evaluation measure for
disordered regions prediction : the Matthews Correlation Coefficient [2]. The MCC can
be calculated by the following formula :

MCCDR =
TP . TN − FP . FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

where TP is the number of true positives, i.e., the number of correctly predicted positive
examples, TN is the number of true negatives, FP is the number of false positives and
FN the number of false negatives.

The MCC varies from −1 to +1. A coefficient of +1 represents prefect predictions,
0 represents predictions that are not better than random and −1 represents the worse
predictions. Hence, when the MMC is less than 0, inverting predictions is enough to
obtain a better classifier.

4.2.2 Iterative black-box multi-task learning

This section describes in a general manner our multi-task approach, which aims at
simultaneously learning several tasks. Our algorithm is based on two unique aspects :

– Black-box multi-task learning : we want to combine the learning of single-task base-
models, where base-models are considered as black boxes and may be of any kind,
from simple classification-based approaches to modern structured prediction ap-
proaches.
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Figure 4.1: Sequential iterative multi-task learning. Each step (circle) is a distinct
base-model, whose inputs are the global input x and the current state s, which is compo-
sed of the last predicted target of each task (or ǫt if the target is not specified). Each pass
is composed of three distinct steps, one per task. The output is directly derived from the
state at the end of the last step.

– Re-estimation of the targets : we want to iteratively re-estimate the targets using the
predictions of the last learned base-models. This is motivated by the fact that the
input-output distribution of the underlying learning problems may slightly change
from one iteration to another.

In order to treat these requirements, we have developed an iterative multi-task lear-
ning approach, in which the core idea is to iteratively re-estimate the targets y1, . . . , yT ,
using at each step the global input x and the last predicted targets of each task as
input of the base-model. We denote the “state space” S of the multi-task problem by
S = (Y1 ∪ {ǫ1}) × · · · × (YT ∪ {ǫT }), where ǫt denotes a special output label used to
represent the fact that the target yt is not specified. The process is initialized with empty
predictions for all targets, i.e., s = (ǫ1, . . . , ǫT ). At the first step, the first target y1 is
predicted with a first base-model. A second base-model is then used to predict y2 given
x and the predicted y1. The third model predicts y3 given x, and the predictions of y1

and y2, and so on. Once all the targets have been estimated once, we have performed one
pass (iteration). The complete model is composed of P × T models used in this way by
performing P passes sequentially (P is a meta-parameter of the algorithm). Predictions
are obtained from the state s at the end of the last pass. Figure 4.1 illustrates a complete
model of P passes and three tasks.

The iterative multi-task learning is a chain of base-models denoted (M1,1, . . . ,M1,T ,
M2,1, . . . ,MP,T ), where Mp,t is the model of the p-th pass and the t-th task. Since targets
are re-estimated at each pass, distinct models are learned at each pass ; this is motivated
by the fact that, for example, estimating a target for the first time (given the input only)
is not the same problem as estimating it for the second time (given the input and the t
initial predictions).

Algorithm 1 and Algorithm 2 respectively describe inference and training in our ite-
rative multi-task learning approach. Given the model chain, inference simply chains the
base-inferences iteratively, by maintaining s ∈ S, the current state of all target, i.e.
s = (ŷ1, . . . , ŷT ). It is initialized with unspecified targets (ǫ1, . . . , ǫT ) (line 1) and each
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step consists in predicting a target sequence ŷt and replacing it in the current state (lines
4–5). The final predictions are given by s at the end of inference (line 8).

Algorithm 1 Iterative black-box multi-task inference
Given an input x ∈ X and a model chain (M1,1, . . . ,M1,T ,M2,1, . . . ,MP,T )

1: s← (ǫ1, . . . , ǫT ) ⊲ initial state
2: for p = 1 to P do ⊲ for each pass
3: for t = 1 to T do ⊲ for each task
4: ŷt ←Mp,t(x, s) ⊲ estimate target t
5: s← (s1, . . . , st−1, ŷt, st+1, . . . , sT ) ⊲ update targets state
6: end for
7: end for
8: return s ⊲ return current state of all targets

Training consists in creating the model chain given the training set. Similarly to
inference, this is performed iteratively and relies on a set of current states {s(1), . . . , s(n)},
one per training sample. These current states are first initialized to unspecified targets
(line 1). Each learning step then adds an element to the model chain. This involves
creating a (single-task) training set (line 4), training a base-model (line 5) and updating
the current state of each example (line 6). Base-model training inputs contain both the
global input x and the current state s = (ŷ1, . . . , ŷT ).

Algorithm 2 Iterative black-box multi-task training

Given a training set D = {(x(i), y
(i)
1 , . . . , y

(i)
T )}i∈[1,n],

Given a learning base-model algorithm M,
Given a number of passes P ,

1: S ← {s(i) = (ǫ1, . . . , ǫT )}i∈[1,n] ⊲ initial state
2: for p = 1 to P do ⊲ for each pass
3: for t = 1 to T do ⊲ for each task
4: Dt ← {((x(i), s(i)), y

(i)
t )}i∈[1,n] ⊲ create training set

5: Mp,t ←M(Dt) ⊲ train a model for task t
6: S ← update S given Dt and Mp,t ⊲ update current state
7: end for
8: end for
9: return (M1,1, . . . ,M1,T ,M2,1, . . . ,MP,T ) ⊲ return model chain

It is important to note that, since the chain of models may potentially be long (up to
40 models in our experiments), particular care must be taken to avoid over-fitting. Indeed,
training examples may quickly be perfectly learned by the first models in the model chain,
hence dangerously biasing the training data for all remaining models of the chain. Since
we used very large training sets and simple linear classifiers in our experiments, we did
not encounter this problem. However, if necessary, such over-fitting problems could be
avoided in at least two ways : either by generating intermediate predictions through
the use of cross-validation as exposed for the stacked learning approach in [33], or by
introducing noise into intermediate predictions as proposed in [86].
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4.2.3 Datasets and annotations

In order to assess our methods, we used two datasets extracted from the Protein Data
Bank (PDB) [12]. We built the first one, Pdb30, by randomly selecting 500 proteins. To
ensure significant differences between training and testing proteins, we based our selection
on a subset of the PDB, which is composed of proteins that contain at least 20 amino
acids and a maximum pairwise identity of 30%. To compare our method with the state of
the art in the field of secondary structure prediction, we used a second dataset, Psipred,
that has been built by David T. Jones [64]. The proteins that compose Psipred are
organized into two subsets : a training set and a test set. The training set is a collection
of 1385 proteins while the test set is composed of 187 highly resolved structures (resolution
< 1.8Å). In order to reduce over-representation of particular protein folds, Psipred was
filtered using a structural similarity criterion. Namely, rather than removing proteins that
share a significant sequence similarity to any member of the testing set, David T. Jones
preferred a more stringent criterion based on fold similarity as defined by the CATH
protein structure classification [95].

We enrich the primary structure by using evolutionary information in the form of a
position-specific scoring matrix (PSSM). We computed the PSSMs by running three itera-
tions of the PSI-BLAST tool [5] on the non-redundant NCBI database [102]. The primary
structure of a protein and its associated PSSM form the input x of our method whereas
the supervision information ySS3, ySS8, ySA, yDR, yStAl are derived from the structure as
described in Section 3.4.

4.3 Multi-task sequence labeling for protein annotations

This section describes our empirical experiments on a set of five protein annotation
tasks. We first present the base-model and detail the way to adapt our iterative black-
box multi-task method into an iterative multi-task sequence labeling method. We then
introduce the feature encoding scheme used in our experiments to make the input data
usable by the base-model. We finally apply our method on the Pdb30 and Psipred

datasets and propose a comparison between “single-task" learned models and “multi-
task" learned models.

4.3.1 Base sequence-labeling model

In order to deal with the large number of base-models to learn, we adopted a simple
classification-based approach : a linear SVM model trained with stochastic gradient des-
cent (Section 2.2). This kind of classifier has the main advantage to handle large amounts
of data in a reasonable manner, e.g., its learning time complexity is linear with respect
to the number of training examples and its evaluation solely consists in performing a dot
product Fθ(x) = 〈θ, x〉.

In our experiments, we used the hinge loss as the loss function ∆. For binary classi-
fication (SA and DR), we used the sign function of Fθ(x) to determine the output class
whereas, for multiclass problems (SS3, SS8 and StAl), we defined one weight vector θy

per class y ∈ Y. The outcome is determined as the class with the highest score Fθy
(x).
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In order to express the uncertainties around predictions made by a model and further
used as inputs of other models, we normalized the predicted values into probabilities.
To achieve this conversion, we relied on the following strict monotonic function σ : R→
[0, 1] :

σ(r) =
1

1 + exp(−r) .

The aim of σ is to scale any real value into the range [0,1]. In the case of binary classi-
fication, the probability of classifying an example x as positive is P(x) = σ(Fθ(x)) and
the probability of classifying x as negative is hence obtained by 1 − P(x). In multiclass
problems, we estimated the probabilities in a similar way :

Pl(x) =
σ(Fθl

(x))
∑

∀y∈Y

σ(Fθy
(x))

,∀l ∈ Y

Namely, we scale each score Fθy
(x) as for the binary case, and then we normalize the

values in order to sum to 1. These probabilities are further used to compute features used
at subsequent passes.

According to preliminary experiments on the training set, we tuned the learning rates
to 5 for SS3, 10 for SS8 and 1 for all other targets, and we limited the number of learning
iterations to 100, which seemed to yield a good bias/variance tradeoff.

Note that, for the moment, the proposed base-model is unable to directly deal with
sequences. To circumvent this difficulty, we slightly adapted the method : each label is
predicted independently of the others. Consequently, the aim of linear SVM is to learn
a function fθ(·) that maps pairs (P,Pi), where Pi is the i-th residue of the protein P , to
predicted labels ŷAi (P ) = fθ((P,Pi)).

4.3.2 Features encoding

The pairs (P,Pi) are encoded in an appropriate form for the classification algorithm.
This encoding is performed through a feature function φ : P × R → R

d that, given a
protein P ∈ P and one of its residues Pi ∈ R, where R is the space of residues, computes
a vector of d real-valued features describing local and global properties of the protein.

Some of our features are annotation-related features and are defined for each type
of annotation A ∈ {AA, PSSM , SS3, SS8, SA, DR, StAl}, where AA is the primary
structure. A predicted annotation A is represented as a set of probabilities αA

p,l ∈ [0, 1]

where p ∈ [1, |P |] denotes the residue index and l ∈ LA is a label. The αA
p,l probabilities

reflect uncertainties about predictions. Note that the primary structure (AA) is always
known perfectly. Therefore, we have αAA

p,l = 1 if l is the residue at position p or 0 otherwise.

Our feature set is similar to those proposed by [64, 145] and is as follows :

– Number of residues : computes one feature which is the number of residues in the
primary structure.

– Labels global histogram : returns one feature per label l ∈ LA, equal to 1
|P |

∑|P |
p=1 α

A
p,l.

These features describe the distribution of labels LA.



68 Chapitre 4. Iterative multi-task sequence labeling

– Labels local histogram : returns one feature per label l ∈ LA, per residue Pi, equal
to 1

W

∑i+W/2
i−W/2 α

A
p,l and one special feature equal to the percentage of out-of-bounds

positions, i.e., position p such that p 6∈ [1, |P |]. These features the distribution of
labels LA among the W residues around Pi.

– Labels local window : returns one feature per label l ∈ LA, per residue Pi and per
relative position δ ∈ [−W

2 ,
W
2 ], equal to αi+δ,l. When the position is out-of-bounds,

i.e., i+ δ 6∈ [1, |P |], the feature is set to 0.

According to the literature [64] and some preliminary experiments, we fixed the window
size W to 15 for both local histograms and local windows.

Note that in the first stage, in which the state s is initialized with empty predictions
for all targets, the annotations SS3, SS8, SA, DR and StAl are not necessary available.
In such a case, the features corresponding to missing annotations are set to 0.

Feature discretization. In order to deal with the non-linear behavior of features,
we enlarged the feature space by independently discretizing each feature described above
into partitions of k equal width. This method, called equal width interval binning [42],
consists in dividing the range of observed values of a variable x ∈ [xmin, xmax] into k new
binary variables [bin1(x), . . . , bink(x)] defined as :

bini(x) =

{

1 if x is inside the i-th interval

0 otherwise.

Formally, the i-th interval is delimited by [xmin + (i− 1).w; xmin + i.w[.

In our experiments, the number of residues was discretize into k = 20 intervals whereas
probability features were discretized into k = 5 partitions.

4.3.3 Results

We have trained iterative multi-task sequence labeling with up to P = 8 passes,
which gives model chains of length P × T = 40. To observe the effect of the iterative
re-estimation of targets, we have evaluated each task by “cutting” the model chain after
a given number of passes Pmax ∈ [1, 8]. Figure 4.2 gives the test scores for each task
as a function of the number of passes on the PsiPred dataset. It is clear that all the
tasks benefit from iterative re-estimation of targets, especially during the first passes.
During the last passes, some scores occasionally degrade, but we do not observe strong
over-fitting in these experiments. Importantly, in all cases, the re-estimated targets after
several passes are significantly better than the initially estimated targets.

To measure to what extend our positive results are due to multi-tasking, we have
performed one baseline experiment per task by using iterative sequence labeling in a
single-task setup. These baselines rely on iterative re-estimation of targets, but do not
use predictions from the other tasks. The comparison between our multi-task model and
its single-task counterparts is given in Table 4.1, for models inferred after 5 passes. We
observe from these results that on both datasets, the multi-task approach systematically
outperforms the single-task approach, e.g. : +2.31% for secondary structure prediction
and +0.114 MCC for disordered regions prediction on the PsiPred testing set. We also
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Figure 4.2: Test scores after growing numbers of passes on the PsiPred da-
taset. Scores are expressed in label accuracy, except for disordered regions, which is
expressed in MCC. The red line shows the state of the art results [64] on the secondary
structure prediction task.

observe that only the multi-task approach outperforms the state-of-the-art results on
PsiPred with +2.1% improvement.

4.4 Conclusion

In this chapter, we have introduced a conceptually simple framework for iterative
multi-task learning, a new multi-task machine learning approach to jointly solve multiple
related tasks, and which can take advantage of any sequence labeling algorithm. We have
made experiments with a set of five protein sequence labeling tasks and by using a linear
SVM base-learner trained by stochastic gradient descent. In this setting, we have shown
that our approach systematically outperforms single-task learning on all tasks and on two
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Pdb30 PsiPred

Task Labels Single-task Multi-task Single-task Multi-task

Secondary structure 3 75.45% 76.35% 76.29% 78.60%
DSSP Sec. structure 8 60.38% 62.69% 62.25% 64.64%
Solvent accessibility 2 71.56% 73.52% 73.51% 73.95%
Disordered regions 2 0.4212 0.4983 0.5611 0.6749
Structural alphabet 27 16.81% 18.14% 24.88% 25.89%

Table 4.1: Single-task vs multi-task. Performance scores are evaluated at the 5-th
pass on the test sets. Scores are expressed in label accuracy, except for disordered regions,
which is expressed in MCC.

datasets of medium and large scale. We have also shown that our approach significantly
outperforms the state-of-the-art (+2.1% improvement) results for secondary structure
prediction.

Since our iterative multi-task approach is - as a matter of fact - not restricted to
predicting sequence labels, we believe that the iterative multi-task framework proposed
in this study may be applied in many other complex application domains (text processing,
image analysis, network monitoring and control, robotics), where data is available about
several related tasks and where synergies could similarly be exploited to enhance machine
learning solutions.
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In the previous chapter, we introduced an iterative multi-task sequence labeling fra-
mework and applied it on a set of five related structural annotation tasks. We now move
on a much more challenging task : prediction of disulfide connectivity patterns. Here,
the outputs are graphs and the aim is to identify disulfide bridges, which can strongly
constrain the native structure of many proteins. Predicting their formation is therefore
a key sub-problem of protein structure and function inference. However, the comparison
of the conclusions of works in the literature is difficult because they often slightly differ
in their experimental protocol.
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In this chapter, we propose an extensive study of the relevance of various structural
annotations and feature encodings. Section 5.1 motivates and explains our main contribu-
tion with respect to the most recent successful methods developed to solve this problem.
Section 5.2 gives an overall view of related work and its multiple sub-problems. Section
5.3 introduces the problem statement and formalizes it as a three step pipeline. It then
details the different steps : the datasets and their annotations, the set of candidate feature
functions, which aim at describing cysteine pairs in an appropriate form for three super-
vised learning algorithms we consider, and a post-processing step based on a maximum
weight graph matching. Finally, the last part of Section 5.3 introduces our forward feature
function selection algorithm, which aims at identifying a set of relevant features functions
among those proposed. Section 5.4 determines the most promising supervised learning
algorithms in the context of disulfide pattern prediction and reports the set of relevant
feature functions obtained by applying our feature selection algorithm. In Section 5.5,
we perform our feature selection approach on two sub-problems : chain classification and
cysteine bonding state prediction. Section 5.6 concludes the chapter.

This chapter is reporting the work published in [11].

Publication related to this chapter

Becker (Julien), Maes (Francis), Wehenkel (Louis)
On the relevance of sophisticated structural annotations for disulfide
connectivity pattern prediction
PLoS One, 2013

Software related to this chapter

From this study, we made available a web-application at

http://m24.giga.ulg.ac.be:81/x3CysBridges.

x3CysBridges is a tool designed for biologists that attempt to determine the three-
dimensional structure of protein molecules. Based on the fact that disulfide bridges add
strong constraints to the native structure, the main function of x3CysBridges is to pre-
dict the disulfide bonding probability of each cysteine-pair of a protein and to propose a
disulfide connectivity pattern that maximizes the sum of these probabilities.

5.1 Introduction

Given an input primary structure, the disulfide pattern prediction problem consists in
predicting the set of disulfide bridges appearing in the tertiary structure of the correspon-
ding protein. This problem can be formalized as an edge prediction problem in a graph
whose nodes are cysteine residues, under the constraint that a given cysteine is linked to
at most to a single other one. Most recent successful methods to solve this problem are
pipelines composed of three steps, which are illustrated in Figure 5.1. First, they enrich
the primary structure using evolutionary information and sometimes structural-related

http://m24.giga.ulg.ac.be:81/x3CysBridges
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predictions. Second, they apply a binary classifier to each pair of cysteines to estimate
disulfide bonding probabilities. Finally, they use a maximum weight graph matching al-
gorithm to extract a valid disulfide pattern maximizing the sum of these probabilities.

The central component of this three step pipeline is the binary classifier that pre-
dicts bonding probabilities for all cysteine pairs. The wide majority of available binary
classification algorithms cannot process complex objects such as cysteine pairs natively,
hence they require the user to encode such objects into vectors of (categorical or nume-
rical) features. Since the way to perform this encoding typically has a major impact on
the classification accuracy, a large body of work has been devoted to studying different
feature representations for cysteines and cysteine-pairs. However, it is often the case that
these different studies rely on different kinds of binary classifiers and slightly differ in
their experimental protocol. Therefore, the comparison of the conclusions of these works
is difficult. In consequence, the relevance of some features is still a subject under heavy
debate. It is for example not clear whether the use of (predicted) secondary structure
or (predicted) solvent accessibility can significantly improve disulfide pattern predictors
[30, 78, 53].

The main contribution of our work reported in this chapter is an extensive study
which aims at establishing the relevance of various structural-related annotations and of
various feature encodings in the context of a disulfide pattern predictor such as the one
presented in Figure 5.1. We consider various structural annotations, some which were
already studied in the context of disulfide pattern prediction – position-specific scoring
matrix, secondary structure and solvent accessibility – and some others which are more
original in this context : 8-class secondary structure, disordered regions and structural
alphabet. For each such annotation, we consider four different procedures in order to
encode it as a feature vector. The combination of annotations with feature encodings
leads to a large set of possible feature functions. In order to identify a minimal subset
of feature functions that are relevant to disulfide pattern prediction, we introduce a
tractable and interpretable feature selection methodology, based on forward selection of
feature functions. We adopt a computational protocol that avoids any risk of overfitting
and apply our approach in combination with two usual classifiers : k-nearest neighbors
(kNN) and support vector machines (SVMs), as well as with one classifier, which was not
yet considered for disulfide pattern prediction : extremely randomized trees (ETs)[58].

As a result of this study, we show that only a very limited number of feature functions
are sufficient to construct a high performance disulfide pattern predictor and that, when
using these features, extremely randomized trees reach a disulfide pattern accuracy of
58.2% on the benchmark dataset SPX+, which corresponds to +3.2% improvement over
the state of the art. However, since SPX+ only contains proteins with at least one in-
trachain disulfide bridge, we further consider the more heterogeneous and less redundant
benchmark dataset SPX− which also contains a significant number of proteins without
any intrachain bridge. We then investigate the behavior of our disulfide pattern predictor
on both datasets by coupling it with filters predicting the presence of intrachain bridges
and the bonding states of individual cysteines. We consider both the case where bon-
ding states are known a priori and the case where bonding states are estimated thanks
to another predictor. We show that predicting the bonding states significantly improves
our disulfide pattern predictor on SPX−, but slightly degrades it on SPX+. When the
bonding states are known a priori, we reach very high accuracies : 89.9% on SPX− and
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Figure 5.1: Three-step approach for disulfide pattern prediction. (A) an input
primary structure, which contains four cysteine residues. (B) The sequence is first enri-
ched using evolutionary information and sometimes structural-related predictions such
as the secondary structure. (C) A bridge classifier, then, predicts disulfide bonding pro-
babilities for each cysteine pair and finally (D) a graph matching algorithm extracts the
disulfide pattern with maximal weight.

75.8% on SPX+.

5.2 Related works

The following two sub-sections give an overall view of related work by first discussing
multiple sub-problems of disulfide pattern prediction and then presenting the kinds of
features that have been proposed to describe cysteines and cysteine pairs in supervised
learning approaches. We refer the reader to [48] for an extensive recent overview of the
field.

5.2.1 Disulfide bridge related prediction problems

While the ultimate goal of disulfide bridge prediction is to infer correctly the whole
connectivity pattern of any protein from its primary sequence, several researchers have
focused on intermediate simpler sub-problems, which are detailed below.

Chain classification. This sub-problem aims at predicting for a given protein, whether
(a) none of its cysteines participate to a disulfide bridge, (b) some of its cysteines are
involved in disulfide bridges or (c) all of its cysteines are involved in disulfide bridges.
Frasconi et al. [55] proposed a support vector machine classifier to solve this task. Fiser
et al. [54] have exploited the key fact that free cysteines (not involved in any bond) and
oxidized cysteines (involved in a bond but not necessarily in a an intra-chain disulfide
bridge) rarely co-occur and they showed that their sequential environments are different.
From those observations, subsequent studies have reduced this sub-problem to a binary
classification task : (a) or (c).

Cysteine bonding state prediction. This second commonly studied sub-problem
consists in classifying cysteines into those that are involved in a disulfide bridge and
those that are not. To solve this binary classification problem, several machine-learning
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algorithms were proposed such as multi-layer neural networks [52], two-stage support vec-
tor machines that exploit chain classification predictions [55] and hidden neural networks
[88].

Disulfide bonding prediction. While chain classification works at the protein level
and cysteine bonding state prediction works at the cysteine level, disulfide bonding pre-
diction works at the level of cysteine pairs and aims at predicting the probability that a
specific pair of cysteines will form a disulfide bridge during protein folding. Depending
on the studies, some authors assume to have an a priori knowledge on the bonding state
of isolated cysteines. This prior knowledge can be the actual state [131, 106, 83] or a
prediction made by a cysteine bonding state predictor [26].

Disulfide pattern prediction. Once one or several of the previous tasks have been
solved, the most challenging step is to predict the disulfide connectivity pattern. Fari-
selli et al. [51] were the first to relate the problem of predicting the disulfide pattern
to a maximal weight graph matching problem. Several authors have since adopted this
approach and proposed disulfide pattern predictors that fit into the three step pipeline
of Figure 5.1. Baldi et al. [10, 30] have used two-dimensional recursive neural networks
to predict bonding probabilities, which are exploited by a weighted graph matching al-
gorithm. Lin et al. [78, 79] used the same graph matching approach while predicting
bonding probabilities with support vector machines.

5.2.2 Features for cysteines and cysteine pairs

Machine learning algorithms are rarely able to process complex objects such as cy-
steine pairs directly, hence it is necessary to define a mapping from these objects to vectors
of features. A large body of research on disulfide bridge prediction has been devoted to
the analysis of such encodings into feature vectors.

In 2004, Vullo et al. [131] suggested to incorporate evolutionary information into fea-
tures describing cysteines. For each primary sequence, they generate a position-specific
scoring matrix (PSSM) from a multiple alignment against a huge non-redundant data-
base of amino-acid sequences. This evolutionary information was shown to significantly
improve the quality of the predicted disulfide bridges, which led the large majority of
authors to use it in their subsequent studies. Generally, the PSI-BLAST program [5] is
used to perform multiple alignments against the SWISS-PROT non-redundant database
[124].

Zhao et al. [147] introduced cysteine separation profiles (CSPs) of proteins. Based on
the assumption that similar disulfide bonding patterns lead to similar protein structures
regardless of sequence identity, CSPs encode sequence separation distances among bonded
cysteine residues. The CSP of a test protein is then compared with all CSPs of a reference
dataset and the prediction is performed by returning the pattern of the protein with
highest CSP similarity. This approach assumes to have an a priori knowledge on the
bonding state of cysteines. In our work, we introduce a slightly different definition of
CSPs based on separation distances among all cysteine residues (see Candidate feature
functions).
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From the earlier observation that there is a bias in the secondary structure preference
of bonded cysteines and non-bonded cysteines, Ferrè et al. [53] have developed a neu-
ral network using predicted secondary structure in addition to evolutionary information.
Cheng et al. [30] proposed to also include predictions about the solvent accessibility of
residues. The predictions of secondary structure and/or solvent accessibility used in their
experiments were however not accurate enough to obtain significant performance impro-
vements. Nevertheless, they observed that using the true values of secondary structure
and solvent accessibility can lead to a small improvement of 1%. More recently, Lin et
al. [78] proposed an approach based on support vector machines with radial basis kernels
combined with an advanced feature selection strategy. They observed a weak positive
influence by using predicted secondary structure descriptors, but their experimental me-
thodology could suffer from overfitting so that this result should be taken with a grain
of salt. Indeed, in this study, the same data is used both for selecting features and for
evaluating the prediction pipeline. As detailed in [6], proceeding in this way often leads
to an overfitting effect and hence to over-optimistic scores. Notice that the three stu-
dies [53, 30, 78] were all based on the secondary structure predicted by the PSIPRED
predictor [64].

More recently, Savojardo et al. [114] reported an improvement of their predictive
performance by taking into consideration the relevance of protein subcellular localization
since the formation of disulfide bonds depends on the ambient redox potential.

5.3 Materials and Methods

5.3.1 Notations and problem statement

This section introduces notations and formalizes the disulfide pattern prediction
problem. Let P be the space of all proteins described by their primary structure and
P ∈ P one particular protein. We denote C(P ) = (C1(P ), . . . , CnC

(P )) the sequence of
nC = |C(P )| cysteine residues belonging to protein P , arranged in the same order as they
appear in the primary sequence. A disulfide bonding connectivity pattern (or disulfide
pattern) is an undirected graph G = (C(P ), B) whose nodes C(P ) are cysteines and
whose edges B are the pairs of cysteines {(Ci, Cj)} that form a disulfide bridge.

Since a given cysteine can physically be bonded to at most one other cysteine, valid
disulfide patterns are those that respect the constraint degree(Ci) ≤ 1,∀i ∈ [1, nC ]. This
constraint enables to trivially derive an upper bound on the number b of disulfide bridges
given the number of cysteines : b ≤ ⌊nC

2 ⌋, where ⌊·⌋ is the floor function. If we know in
advance the number b ≥ 1 of disulfide bridges, we can derive the number of valid disulfide
patterns using the following closed form formula [122] :

C2b
nC

i≤b
∏

i=1

(2i − 1), (5.1)

where C2b
nC

= nC !
(2b)!(nC−2b)! denotes the number of possible subsets of size 2b of the set of

nC cysteines. As an example, a protein with nC = 6 cysteines and b = 3 bridges has 15
possible disulfide patterns and a protein with nC = 11 cysteines and b = 5 bridges has
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11 × 945 = 10 395 possible patterns. Figure 5.2 illustrates the three possible disulfide
connectivity patterns of a protein with four cysteines and two disulfide bridges.
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Figure 5.2: Example of disulfide patterns. A protein with two disulfide bridges and
its three possible disulfide connectivity patterns.

When the number of bridges is unknown, the number of possible disulfide connectivity
patterns for a protein P with nC cysteines becomes

⌊nC/2⌋
∑

b=1

C2b
nC

i≤b
∏

i=1

(2i− 1) + 1. (5.2)

Note that the term +1 represents the case where no cysteine residue is bonded. As an
example, a protein with nC = 10 cysteines has 45× 1 + 210× 3 + 210× 15 + 45× 105 +
1× 945 + 1 = 9 496 possible valid disulfide patterns.

We adopt a supervised-learning formulation of the problem, where we assume to have
access to a dataset of proteins (represented by their primary structure) with associated
disulfide patterns. We denote this dataset D = {(P (i), B(i))}i∈[1,N ], where P (i) ∈ P is the
i-th protein and B(i) is the set of disulfide bridges associated to that protein. We also
denote n(i)

C = |C(P (i))| the number of cysteines belonging to the protein P (i). Given the
dataset D, the aim is to learn a disulfide pattern predictor f(·) : a function that maps
proteins P ∈ P to sets of predicted bridges B̂ = f(P ). Given such a predicted set, we
can define the predicted connectivity pattern as following : Ĝ = (C(P ), B̂).

We consider two performance measures to evaluate the quality of predicted disulfide
patterns : Qp and Q2. Qp is a protein-level performance measure that corresponds to the
proportion of entirely correctly predicted patterns :

Qp =
1

N

N
∑

i=1

1{B(i) = B̂(i)
}

, (5.3)

where 1 {Pr} is the indicator function whose value is 1 if Pr is true or 0 otherwise. Q2 is
a cysteine-pair level performance measure that corresponds to the proportion of cysteine
pairs that were correctly labeled as bonded or non-bonded :

Q2 =
1

∑N
i=1 n

(i)
C (n

(i)
C − 1)/2

N
∑

i=1

n
(i)
C
∑

j=1

n
(i)
C
∑

k=j+1

1{({Cj , Ck} ∈ B(i)
)

=
(

{Cj , Ck} ∈ B̂(i)
)

}

.

(5.4)
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Note that both Qp and Q2 belong to the interval [0, 1] and are equal to 1 in case
of perfectly predicted disulfide patterns. While the ultimate goal of disulfide pattern
prediction is to maximize Qp, we will also often refer to Q2 since, in the pipeline depicted
in Figure 5.1, Q2 is directly related to the quality of the cysteine pair classifier.

5.3.2 Disulfide pattern prediction pipeline

This section first presents the datasets and the five kinds of structural-related predic-
tions we consider. It then details the different steps of our prediction pipeline : the dataset
annotation, the pre-processing step that enriches the primary structure with evolutionary
information and structural-related annotations, the classification step of cysteine pairs
that predicts bridge bonding probabilities and the post-processing step that constructs
a disulfide pattern from these probabilities using maximum weight graph matching.

Dataset and annotations

In order to assess our methods, we use two datasets that have been built by Cheng et
al. [30] and extracted from the Protein Data Bank [12]. The first one, SPX+, is a collection
of 1 018 proteins that contain at least 12 amino acids and at least one intrachain disulfide
bridge. We use this dataset for the problem of pattern prediction. However, since it does
not contain any protein without disulfide bridges it is not adapted to address chain
classification and cysteine bonding state prediction. For these tasks, we use the other
dataset, SPX−, which is made of 1 650 proteins that contain no disulfide bridge and
897 proteins that contain at least one bridge. In order to reduce the over-representation
of particular protein families, both datasets were filtered by UniqueProt [123], a protein
redundancy reduction tool based on the HSSP distance[113]. In SPX−, Cheng et al. used
a HSSP cut-off distance of 0 for proteins without disulfide bridge and a cut-off distance
of 5 for proteins with disulfide bridges. In SPX+, the cut-off distance was set to 10. To
properly compare our experiments with those of Cheng et al., we use the same train/test
splits as they used in their paper. Statistics of the two datasets are given in Table 5.1.

Proteins Cysteines Bonds
All None Mix Total Positive Negative Total per protein

SPX− 757 1 650 140 2 547 4 942 7 844 12 786 0.97 ± 1.78
SPX+ 718 0 300 1 018 5 082 901 5 983 2.50 ± 2.14

Table 5.1: Dataset statistics. All : proteins in which all cysteines are bonded. None :
proteins with no disulfide bridges. Mix : proteins with both bonded cysteines and non-
bonded cysteines. Positive : number of bonded cysteines. Negative : number of non-bonded
cysteines.

We enrich the primary structure (denoted as AA) by using two kinds of annotations :
evolutionary information in the form of a position-specific scoring matrix (PSSM) and
structural-related predictions, such as predicted secondary structure or predicted solvent
accessibility. We computed the PSSMs by running three iterations of the PSI-BLAST
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program [5] on the non-redundant NCBI database. To produce structural-related predic-
tions, we use the iterative multi-task sequence labeling method detailed in the Chapter
4. To our best knowledge, predicted DSSP secondary structure, predicted disordered re-
gions and structural alphabet annotations have never been investigated in the context of
disulfide pattern prediction.

We use the cross-validation methodology proposed in [33] that works as follows. First,
we randomly split the dataset into ten folds. Then, in order to generate “true” predictions
for one fold, we train our system on all data except this fold. This procedure is repeated
for all ten folds and all predictions are concatenated so as to cover to whole dataset.

Table 5.2 reports the cross-validation accuracies that we obtained with this procedure.
The default scoring measure is label accuracy, i.e., the percentage of correctly predicted
labels on the test set. Since disordered regions labeling is a strongly unbalanced problem,
label accuracy is not appropriate for this task. Instead, we used a classical evaluation
measure for disordered regions prediction : the Matthews correlation coefficient [2].

Annotation LA Measure SPX+ SPX−
Secondary structure 3 Accuracy 73.50% ± 0.68% 68.00% ± 2.61%
Secondary structure 8 Accuracy 55.60% ± 0.76% 57.83% ± 2.10%
Solvent accessibility 2 Accuracy 77.45% ± 0.54% 77.82% ± 0.30%
Disorder regions 2 MCC 0.892 ± 0.03 0.352 ± 0.05
Structural alphabet 27 Accuracy 19.01% ± 0.30% 21.32% ± 0.47%

Table 5.2: Cross-validated accuracies of annotations. The scoring measure is label
accuracy, i.e., the percentage of correctly predicted labels on the test set except for
disordered regions that use the Matthews correlation coefficient (MCC).

Candidate feature functions

The feature generation step aims at describing cysteine pairs in an appropriate form
for classification algorithms. This encoding is performed through cysteine-pair feature
functions φ : P × C × C → Rd that, given a protein P and two of its cysteines (Ci, Cj),
computes a vector of d real-valued features. In our experiments, we extracted cysteine-
pairs (Ci, Cj) in such a way that 1 ≤ i < j ≤ nC , where nC is the number of cysteine
residues of P . Consequently, we extract nC×(nC−1)

2 cysteine-pairs from P . The purpose
of the feature selection methodology described in the next section is to identify a subset
of relevant φ functions among a large panel of candidate ones that we describe now.

Our set of candidate feature functions is composed of primary-structure related func-
tions and annotation related functions. The former are directly computed from the pri-
mary structure alone and are the following ones :

– Number of residues : computes one feature which is the number of residues in the
primary structure.

– Number of cysteines : computes one feature which is the number of cysteine residues
in the primary structure.

– Parity of the number of cysteines : computes one feature which indicates whether
the number of cysteines is odd or even.



80 Chapitre 5. Feature selection for disulfide connectivity prediction

– Relative position of cysteines : computes two features which are the residue indices
of cysteines Ci and Cj , denoted pos(Ci) and pos(Cj), divided by the protein length.

– Normalized position difference : returns one feature which corresponds to the num-
ber of residues separating Ci from Cj in the primary structure, i.e., pos(Cj) −
pos(Ci), divided by the protein length. Note that as j > i and therefore pos(Cj) >
pos(Ci), this difference is always greater than zero.

– Relative indices of cysteines : computes two features which are the cysteine indices
i and j divided by the number of cysteines.

– Normalized index difference : computes one feature which corresponds to the num-
ber of cysteines separating Ci from Cj divided by the number of cysteines.

– Cysteine separation profile window : computes one feature per cysteine Ck ∈ {Ci, Cj}
and per relative position δ ∈ [−W

2 ,
W
2 ], δ 6= 0 whose value is the position difference

pos(Ck+δ) − pos(Ck) divided by the protein length, where W > 0 is called the
window size parameter.

Annotation-related feature functions are defined for each type of annotation A ∈ {AA,
PSSM, SS3, SS8, SA, DR, StAl} of the residues of the protein P . We denote by LA
the set of labels corresponding to annotation A and by LA = |LA| the size of this set. For
our annotations, we have : LAA = 20, LPSSM = 21 (the twenty amino acids and the gap),
LSS3 = 3, LSS8 = 8, LSA = 2, LDR = 2 and LStAl = 27. For a given primary structure
of length |P |, an annotation A is represented as a set of probabilities αA

p,l ∈ [0, 1] where
p ∈ [1, |P |] denotes the residue index and l ∈ LA is a label.

Note that in the general case, αA
p,l probabilities may take any value in range [0, 1] to

reflect uncertainty about predictions. Since the primary structure (AA) is always known
perfectly, we have :

αAA
p,l =

{

1 if l is the residue at position p

0 otherwise.

For each annotation A, we have four different feature functions :
– Labels global histogram : returns one feature per label l ∈ LA, equal to 1

|P |

∑|P |
p=1 α

A
p,l.

– Labels interval histogram : returns one feature per label l ∈ LA equal to
Ppos(Cj)

p=pos(Ci)
αA

p,l

pos(Cj)−pos(Ci)+1 .
– Labels local histogram : returns one feature per label l ∈ LA and per cysteine
Ck ∈ {Ci, Cj}, equal to 1

W

∑pos(Ck)+W/2
p=pos(Ck)−W/2 α

A
p,l and one special feature equal to the

percentage of out-of-bounds positions, i.e., positions p such that p /∈ [1, |P |].
– Labels local window : returns one feature per label l ∈ LA, per cysteine Ck ∈
{Ci, Cj} and per relative position δ ∈ [−W

2 ,
W
2 ], equal to αpos(Ck)+δ,l. When the

position is out-of-bounds, i.e., pos(Ck) + δ 6∈ [1, |P |], the feature is set to 0.
Our candidate feature functions are summarized in Table 5.3. Note that three of

them are parameterized by window size parameters. Figure 5.3 shows an illustration of
the three kinds of histograms. We will see how to tune window sizes and how to select a
minimal subset of feature functions in the next section.

Cysteine pair classifiers

Let {φ1, . . . , φm} be a subset of the candidate feature functions described above and
let di denote the dimensionality of the i-th function of this set. A cysteine pair classifier
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Symbol Parameter d Description
|P | - 1 Number of residues
nC - 1 Number of cysteines
nC mod 2 - 1 Parity of the number of cysteines
pos(Ci)/|P |, pos(Cj)/|P | - 2 Relative position of cysteines
(pos(Cj)− pos(Ci))/|P | - 1 Position difference
i/nC , j/nC - 2 Indices of cysteines
(i− j)/nC - 1 Index difference
csp(W ) window size 2(W − 1) Cysteine separation profile window
hglobal(A) - LA + 1 Labels global histogram
hinterval(A) - LA Labels interval histogram
hlocal(A,W ) window size 2LA + 2 Labels local histogram
w(A,W ) window size 2WLA Labels local window

Table 5.3: Feature functions used in our experiments to encode cysteine pairs.
Symbols, parameters, number of features (d) and description of our candidate feature
functions. Top : feature functions that are directly computed from the primary structure.
Bottom : feature functions defined for every kind of annotation A ∈ {AA, PSSM, SS3,
SS8, SA, DR, StAl}.

Primary structure

Secondary structure

Solvent accessibi l i ty

Disordered regions

C2 C3
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Figure 5.3: Example of local, interval and global histograms. C2 and C3 are the
two cysteines of interest. In red, we show the labels local histograms of size 11 of the
secondary structure hlocal(SS3, 11). In yellow, we show the labels interval histogram of
the solvent accessibility annotation hinterval(SA). In green, we show the global histogram
of the disordered regions sequence hglobal(DR).

processes feature vectors of dimension
∑m

i=1 di, in order to predict disulfide bonding
probabilities. In this study, we consider three such binary classifiers :

– K-nearest neighbors (kNN). In order to determine the disulfide bonding probability
of a new example, the algorithm returns the frequency of bonded cysteines among
these neighbors. The distance between two feature vectors A and B is computed
using a normalized version of the l2-norm, which is defined as follows :

dist(A,B) =

√

√

√

√

m
∑

i=1

1

di

di
∑

j=1

(

Aj
i −B

j
i

σj
i

)2

,

where Aj
i and Bj

i denote the j-th components of the i-th feature generator φi, and
where σj

i denotes the empirical standard deviation of this component, computed on



82 Chapitre 5. Feature selection for disulfide connectivity prediction

the training data. Since we are concataining feature functions with very different
dimensionalities (d varies from 1 to O(103)), the effect of the traditional l2-norm
would be largely dominated by high-dimensional feature functions. The term 1

di

enables to avoid this problem. Dividing by the standard deviations σj
i is a classical

strategy to be less dependent on the domain of the different features.
– Support vector machines (SVM). Among the common kernel functions used to

cope with non-linear feature interactions, we use the Gaussian radial basis func-
tion exp(−γ.dist(A,B)2), where γ > 0 is a bandwidth hyper-parameter and where
dist(·, ·) is the same norm as previously. Note that previous studies on disulfide
pattern prediction [78, 80] also relied on the Gaussian radial basis function. In our
experiments, we used the well-known LibSVM implementation [27]. In order to
convert SVM predictions into probabilities, we use the default probability estima-
tion method of LibSVM, which was proposed by Platt [99] and Wu et al. [139].

– Extremely randomized trees (ETs). We use the probabilistic version of ETs, in which
each leaf is associated to a bonding probability, which is the empirical proportion
of bonded cysteine pairs among the training samples associated to that leaf. To our
best knowledge, tree-based ensemble methods, and in particular ETs, were not yet
applied to disulfide connectivity pattern prediction, despite the fact that several
studies have shown that these methods very often outperform other methods such
as support vector machines or neural network [24].

Maximum weight graph matching

Given bonding probabilities for every cysteine pair of a protein, the aim of this last
step of the disulfide pattern prediction pipeline is to select a subset of disulfide bridges
so as to respect the constraint degree(Ci(P )) ≤ 1,∀i ∈ [1, nC ]. As proposed previously,
this problem is formalized as a maximum weight graph matching problem : the weight
of a disulfide pattern is defined as the sum of probabilities attached to its edges and the
aim is to find the valid pattern with maximal weight.

A naive solution to solve the maximum weight graph matching problem is to perform
an exhaustive search over all valid disulfide patterns. The complexity of this procedure is
however exponential in the number of cysteines, which is problematic for large proteins.
This issue is often solved using the maximum weight matching algorithm of Gabow
[56] whose time complexity is cubic w.r.t. the number of cysteines nC and whose space
complexity is linear w.r.t. nC . In our experiments, we used Blossom V, which is a more
recent and optimized implementation proposed by Kolmogorov [72].

Notice that, because this algorithm searches for a full matching, i.e., where each
cysteine is associated to another one, it cannot be directly applied on proteins that have
an odd number nC of cysteines. To deal with such proteins, we run the matching algorithm
on each one of the nC subsets of nC − 1 cysteines and select the solution with maximal
weight.

5.3.3 Forward feature function selection

This section describes our forward feature function selection algorithm, which aims
at determining a subset of relevant feature functions among those described above. Fea-
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ture selection is an old topic in machine learning and a common tool in bioinformatics
[111]. Our feature selection problem departs from traditional feature selection w.r.t. three
unique aspects :

– Feature function selection : we want to select feature functions rather than indivi-
dual features. Given that feature functions can be parameterized by window sizes,
our algorithm has to perform two tasks simultaneously : determining a subset of
feature functions and determining the best setting for associated window sizes.

– Insertion in a pipeline : we want to optimize the performance Qp of the whole
pipeline rather than the accuracy Q2 of the classifier for which we perform feature
selection. Preliminary studies have shown that these two performance measures are
not perfectly correlated : a binary classifier with higher accuracy can lead to worse
disulfide pattern predictions when combined with the graph matching algorithm,
and conversely.

– Interpretability : our approach not only aims at constructing a pipeline maximizing
Qp, but also at drawing more general scientific conclusions on the relevance of
various annotations of the primary structure. We thus require the result of the
feature selection process to be interpretable.

In order to fulfill these requirements, we adopt a wrapper approach that repeatedly
evaluates feature function subsets by cross-validating the whole pipeline and that is di-
rectly driven by the cross-validated Qp scores. In order to obtain interpretable results,
we rely on a rather simple scheme, which consists in constructing the feature function set
greedily in a forward way : starting from an empty set and adding one element to this
set at each iteration.

In order to treat feature functions with parameters and those without parameters in an
unified way, we express the feature functions as a set of parameterized feature functions
Φ = {Φ(1), . . . ,Φ(M)} where each Φ(i) contains a set of alternative feature functions
Φ(i) = {φ(i)

1 , . . . , φ
(i)
ai }. In the case where the feature function has no parameters (e.g.,

number of residues or labels global histogram), this set is a singleton Φ = {φ}. Otherwise,
when the feature function is parameterized by a window size, there is one alternative per
possible window size, e.g., Φcsp

W = {csp(1), csp(3), . . . , csp(19)}.

Our forward feature function selection approach is depicted in Algorithm 3. We denote
by S(·, ·, ·) ∈ R the objective function that evaluates the Qp score associated to a given
set of feature functions, based on a cysteine pair classifier C and a dataset of proteins D.
In our experiments, this objective function is computed by performing a 10-fold cross-
validation of the whole prediction pipeline and by returning the test Qp scores averaged
over the ten folds.

The feature function is first initialized to an empty set ∅ (line 1). Each iteration then
consists in inserting a candidate feature functions φ(i)

j taken in the set Φ into Υ. For

this, we try to add each candidate φ(i)
j to the current feature function set and select the

best feature function w.r.t. the obtained cross-validation Qp scores (line 3). This feature
function is then inserted into Υ (line 4) and the corresponding set of alternatives Φ(i∗) is
removed from Φ. After a given stopping criterion is fulfilled, the constructed function set
Υ is returned (line 7). In our experiments, this stopping criterion is simply a fixed number
of iterations. An alternative consists in stopping the algorithm when no additional feature
functions enable to improve the S score.
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Algorithm 3 Forward feature function selection algorithm.

Given a set of parameterized feature functions Φ = {Φ(1), . . . ,Φ(M)}
Given an objective function S(·, ·, ·) ∈ R
Given a cysteine pair classifier C
Given a dataset D

1: Υ← ∅ ⊲ initial empty feature function set
2: repeat
3: (i∗, j∗)← argmax

i,j
S(Υ ∪ {φ(i)

j }, C,D) ⊲ evaluate candidate φ(i)
j functions

4: Υ← Υ ∪ {φ(i∗)
j∗ } ⊲ add the best feature function

5: Φ← Φ \ φ(i∗) ⊲ remove the best parameterized feature function
6: until some stopping criterion is fulfilled
7: return Υ ⊲ return feature function set

Note that due to its greedy nature, our feature selection may fall into local minima.
However, compared to traditional feature selection, it may be the case that selecting
feature functions instead of individual features significantly reduces the importance of
this problem (the dimensionality of our search problem is much smaller than in the case
of individual feature selection). We show in the next section that this algorithm is a
tractable feature function selection approach that provides interpretable results, from
which we can draw some general conclusions about the relevance of primary structure
annotations.

5.4 Disulfide pattern prediction

This section describes our experimental study on disulfide pattern prediction using
the SPX+ benchmark dataset. We first make an overall comparison of the three binary
classification algorithms described previously and show that extremely randomized trees
lead to significantly better results than the two other algorithms. We then apply our
forward feature function selection approach using this algorithm and show that only a few
feature functions are sufficient to construct a high performance disulfide pattern predictor.
We finally compare this predictor with the state of the art and propose an analysis of the
sensitivity of extremely randomized trees w.r.t. their hyper-parameters. Note that, for
the moment, our prediction pipeline always tries to construct fully connected disulfide
patterns and that it does not enable predicting partially connected disulfide patterns. We
address this issue in the next section, by coupling our predictor with filters based on the
bonding state of individual cysteines.

5.4.1 Comparison of the cysteine pair classifiers

Comparing cysteine pair classifiers in our context is not trivial for two reasons. First,
we are primarily interested in the Qp score of the whole prediction pipeline rather than
in the classification accuracy. Second, we do not have a fixed feature representation
and different classification algorithms may require different feature function sets to work
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optimally. To circumvent these difficulties, we compare cross-validated Qp scores obtained
with the three classifiers on a large number of randomly sampled feature function sets.
To sample a feature function set of size m ∈ [1, 18], we proceed as follows. First, we
draw a subset {Φ(1), . . . ,Φ(m)} from Φ. Then, for each member Φ(i) of this subset, we
select a feature function φ(i)

j , using the following rules : (i) local window sizes are sampled
according to the Gaussian distribution N (15, 152), (ii) local histogram sizes are sampled
according to N (51, 502) and (iii) CSP window sizes are sampled from N (7, 112). These
values were chosen according to preliminary studies using the three classifiers.

We set the hyper-parameters in the following way :
– kNN. By studying the effect of k, we found out that large values of k drastically

decrease the performance of kNN and low values do not enable to distinguish pat-
terns well since the set of possible predicted probabilities is limited to k+ 1 values.
In the following, we use the default value k = 5, which we found to be a generally
good compromise.

– SVM. It turns out that the best setting for γ and C is highly dependent on the
chosen feature function set. For each tested set of feature functions, we thus tuned
these two parameters by testing all combinations of γ ∈ {2−14, 2−7, 20, 27, 214} and
C ∈ {20, 25, 210, 215} and by selecting the values of (γ,C) that led to the best Qp

scores.
– ETs. We use a default setting that corresponds to an ensemble of 1 000 fully

developed trees (T = 1 000, Nmin = 2) and K is set to the square root of the total
number of features

√
d, as proposed by Geurts et al [58].

The results of our comparison on SPX+ are given in Figure 5.4. As a first remark,
note the large range in which the Qp scores lie : from ≃ 15% to ≃ 60%. This shows
that all three classifiers are highly sensitive to the choice of the features used to describe
cysteine pairs, which is a major motivation for our work on feature function selection.
The experiments are color-encoded w.r.t the size m of their feature function set. This
color-encoding enables us to notice that, in general, larger feature function sets lead to
better classifiers.

The mean and standard deviations of these results are 34.23% ± 7.45% for kNN
classifiers, 43.96%± 5.31% for SVM classifiers and 47.85%± 7.17% for ETs classifiers. In
73.25% of the experiments, the best pattern accuracy is given by ETs and in 20.35% of
them by SVMs. In the remaining 6.40% experiments, exactly the same number of disulfide
patterns were correctly predicted by ETs and SVM. kNN was always outperformed by
the other two classifiers. We have used the paired t-test to assess the significance of the
out-performance of ETs. The p-value against kNN is O(10−128) and the p-value against
SVM is O(10−38), which make it clear that ETs significantly outperform kNN and SVM.
Moreover, ETs work well with a default setting contrarily to SVM that required advanced,
highly time-consuming, hyper-parameters tuning.

Given those observations, we proceed in the remainder of this study by restricting to
the ETs method.

5.4.2 Feature functions selection

We now apply our feature function selection approach on top of extremely randomized
trees. We rely on the set of parameterized feature functions Φ described in Table 5.3 and
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Figure 5.4: Qp scores for three binary classification algorithms and randomly
sampled feature function sets. The experiments are performed on the SPX+ dataset.
In bold on the horizontal and vertical axes, the means of the classifiers. The diagonal
lines indicate situations where both classifiers have the same score. The experiments are
color-encoded w.r.t. the size of their feature function set.

consider the following window size values :
– Cysteine separation profile window : 1, 3, 5, 7, 9, 11, 13, 15, 17, 19.
– Local histograms : 10, 20, 30, 40, 50, 60, 70, 80, 90.
– Local windows : 1, 5, 9, 11, 15, 19, 21, 25.

This setting leads to a total of 150 candidate features functions. As cysteine pair classifier,
we use ETs with the same default setting as previously (T = 1 000, K =

√
d, Nmin = 2).

The simplest way to apply our algorithm would be to apply it once on the whole SPX+
dataset. By proceeding in this way, the same data would be used for both selecting the
set of feature functions and assessing the quality of this selected set. It has been shown
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that this approach is biased due to using the same data for selecting and for evaluating
and that it could lead to highly over-estimated performance scores [6].

To avoid this risk of overfitting, we adopted a more evolved approach, which consists in
running the feature selection algorithm once for each of our 10 different train/test splits.
In this setting, the whole feature selection algorithm is executed on a training dataset
composed of 90% of the data and the generalization performance of the selected feature
functions is evaluated using the remainder 10% of data. There are thus two different
objective functions. We call cross-validated score the value returned by S(·, ·, ·), i.e., the
10 cross-validated Qp score using 90% of the data, and we call verification score the Qp

score computed over the remainder 10% of the data.

Figure 5.5 shows the evolution of the cross-validated score and the verification score
for five iterations of the feature selection algorithm on each of the 10 train/test splits.
Note that, since the cross-validated score is the score being optimized, its value increases
at every iteration of each of the 10 runs. The evolution of the verification score, which
represents the true generalization performance, is far from being so clear, as, in most
cases, the optimum is not located after the fifth iteration.
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Figure 5.5: Forward feature function selection with 10 train/test splits of the
SPX+ dataset. Each figure reports the results of five iterations of our forward feature
function selection algorithm on one of ten train/test splits. Solid red lines are the cross-
validated scores and dashed blue lines are the verification scores.

Table 5.4 reports the selected feature functions for each of the 10 runs. We observe
that the first selected feature function is always w(PSSM, ·) with a window size varying
in {9, 11, 15, 19}. This means that, taken alone, the best individual feature function is
always a window over the position-specific scoring matrix. The fact that this results
was observed during each run is very strong, since the selection algorithm has to select
between 150 different functions. Similarly, the second selected feature function is always
csp(·) with a window size varying in {9, 13, 17, 19}.

After the two first iterations, the selected feature functions become more disparate
and only lead to tiny improvements. This probably indicates that the system starts to
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Fold Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

1 w(PSSM,15) csp(17) hinteval(AA) hlocal(SS8,90) w(SS3, 25)
2 w(PSSM,15) csp(19) hlocal(SS8,80) w(AA, 1) hlocal(SA, 80)
3 w(PSSM,19) csp(19) hglobal(SA) hlocal(SS8,60) hlocal(AA, 30)
4 w(PSSM,11) csp(9) hlocal(SA, 90) hlocal(DR, 60) pos(Ck)
5 w(PSSM,9) csp(13) hlocal(DR, 90) w(SA, 19) hlocal(PSSM, 20)
6 w(PSSM,9) csp(19) hlocal(SS8,90) hlocal(SS3, 30) w(SA, 21)
7 w(PSSM,11) csp(13) hlocal(SS8,50) w(SS3, 5) hlocal(PSSM, 50)
8 w(PSSM,19) csp(17) hlocal(AA, 80) hlocal(DR, 50) w(SA, 21)
9 w(PSSM,15) csp(19) hlocal(SS3, 90) hlocal(SS8,90) pos(Ck)
10 w(PSSM,19) csp(17) hlocal(AA, 50) hlocal(SS3, 40) hlocal(SS8, 70)

Mean
CV 51.8% ± 0.64% 56.9% ± 0.63% 58.3% ± 0.67% 58.6% ± 0.84% 58.9% ± 0.75%
Score 51.6% ± 4.19% 57.8% ± 2.83% 57.4% ± 2.22% 58.7% ± 2.83% 58.0% ± 2.72%

Table 5.4: Forward feature functions selection with 10 train/test splits of the
SPX+ dataset. In bold, the most frequent feature function (without consideration of the
window size parameters) of each iteration. Mean : averages over the ten cross-validated
scores and the ten verification scores.

overfit, by selecting feature functions that are specifically tailored to a specific subset
of the training proteins. In iterations 3–4, we note that hlocal(SS8, ·) occurs slightly
more often than the other feature functions (6 times over 20). From the two last rows,
which give the averaged cross-validated scores and the averaged verification scores, we
observe that while the cross-validated score systematically increases, the verification score
becomes unstable after the two first iterations. These observations reinforce the fact that
the selected feature functions become more and more specific to training samples. From
these results, it is clear that the feature functions w(PSSM, ·) and csp(·) bring the major
part of the predictive power that can be obtained by our feature functions.

According to these results, we focus in the following on the feature functions w(PSSM, 15),
csp(17) and hlocal(SS8, 77), where we chose windows sizes by taking the average sizes re-
ported in Table 5.4. Note that, contrarily to the observation of Figure 5.4 that suggested
large feature function sets, our method carefully selected a very small number of relevant
feature functions that led to a more simpler and still very accurate classifier.

5.4.3 Evaluation of the constructed prediction pipeline

We now compare our constructed prediction pipeline with the state of the art. We
consider three baselines that were evaluated using the same experimental protocol as
ours (10 cross-validated Qp). The first baseline is the recursive neural network approach
proposed by Cheng et al.[30]. These authors, who introduced the SPX+ dataset, reached
a pattern accuracy of 51% using the true secondary structure and solvent accessibility
information. Lin et al. [78] proposed to predict the bonding state probabilities using
a fine tuned support vector machine. They obtained a pattern accuracy of 54.5% by
using the same data for feature selection and for evaluation, making this results probably
over-estimated. Vincent et al. [87] proposed a simple approach based on a multiclass
one-nearest neighbor algorithm that relies on the fact that two proteins tend to have the
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same disulfide connectivity pattern if they share a similar cysteine environment. This
method reaches a pattern accuracy of 55%.

Table 5.5 reports the performance obtained by ETs with feature functions w(PSSM, 15),
csp(17) and hlocal(SS8, 77). We observe that using only w(PSSM, 15) already leads to
a pattern accuracy of 51.6%, which is better than the baseline of Cheng et al.[30]. A
significant improvement of +6.6% is achieved by adding the feature function csp(17),
which leads to a model that significantly outperforms the state of the art. The feature
function hlocal(SS8, 77) leads to small further improvement of the Qp score, but due to
the large variance, this improvement cannot be shown to be significant.

Features Qp

{w(PSSM, 15)} 51.6% ± 3.58%
{w(PSSM, 15), csp(17)} 58.2% ± 2.74%
{w(PSSM, 15), csp(17), hlocal (SS8, 77)} 58.3% ± 3.04%
Baseline
Vincent et al. [87] 55.0%
Lin et al. [78] 54.5%
Cheng et al. [30] 51.0%

Table 5.5: Evaluation of the proposed prediction pipeline. We report the mean
and standard deviation of the Qp scores obtained using 10-fold cross-validation on the
SPX+ dataset.

From these results, we conclude that only the following two feature functions are
sufficient for high-quality disulfide pattern prediction in combination with ETs : local
PSSM windows and CSP windows. Note that it might be the case that, by using larger
datasets, feature functions such as medium-size histograms on predicted DSSP secondary
structure could slightly improve the quality of the system.

Table 5.6 reports the pattern accuracy as a function of the true number of disulfide
bridges. By comparing the results with the three baselines, we observe that our method
outperforms the baselines, except for proteins with 4 potential disulfide bonds where the
approach proposed by Vincent et al. [87] obtains a better pattern accuracy.

Number of Cheng et al. Vincent et al. Lin et al. Becker et al.

bridges (2006) (2008) (2009) (2013)
1 59% 59% 60.6% 61.8%
2 59% 63% 65.9% 66.6%
3 55% 64% 59.8% 67.6%
4 34% 48% 36.4% 41.8%
all 51% 55% 54.5% 58.3%

Table 5.6: Comparison of Qp scores on SPX+. Qp scores obtained using 10-fold
cross-validation.
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5.4.4 Sensitivity of ETs to its hyper-parameters

This series of experiments aims at studying the impact of the hyper-parameters (T ,
K and Nmin) when using the feature functions {w(PSSM, 15), csp(17)}. With these two
feature functions, the number of features is d = 662. The default setting is T = 1 000,K =√
d,Nmin = 2 and we study the parameters one by one, by varying their values in ranges

T ∈ [10, 104], K ∈ [1, d] and Nmin ∈ [2, 100].

Figure 5.6 reports the Qp and Q2 scores in function of the three hyper-parameters.
As a matter of comparison, we also reported the Qp scores of the three baseline described
previously. We observe that the Qp score grows (roughly) following a logarithmic law
w.r.t. T . The value of T = 1 000 occurs to be very good tradeoff between performance
and model complexity. Concerning K, we observe that the value maximizing Qp is K ≃
50, which is a bit larger than the default setting K =

√
d. Note that the protein-level

performance measure Qp and the cysteine-pair level performance measure Q2 do not
correlate well in terms of the effect of parameter K, which confirms the interest of directly
optimizing Qp in our feature function selection algorithm. Nmin controls the complexity of
built trees and, hence, the bias-variance tradeoff by averaging output noise. It is usually
expected that a small value of Nmin improves performance. In our case, we observe
that increasing Nmin never improves the performance measures and that Qp has a large
variance.
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Figure 5.6: Sensitivity of ETs w.r.t. hyper-parameters. The experiments are per-
formed on the SPX+ dataset. We used the two feature functions w(PSSM, 15) and
csp(17). (A) Impact of the number of trees T (from 10 to 10 000) with K =

√
d and

Nmin = 1, where d = 662 is the number of features. (B) Impact of K (from 1 to d) with
T = 1 000 and Nmin = 1. (C) Impact of Nmin (from 2 to 101).

5.5 Chain classification and cysteine bonding state

prediction

Until now, our pipeline relies on a perfect graph matching algorithm that always
attempts to predict patterns involving all cysteines. Due to this, our approach is, for the
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moment, unable to deal with partially connected disulfide patterns (except for proteins
with an odd number of cysteines having a single non-bonded cysteine). This can be
harmful, especially on datasets containing many non-bonded cysteines. For example, if
we apply our pipeline to the SPX− dataset, the pattern accuracy Qp is only 22%, since
most proteins of this dataset do not contain any disulfide bridges. We now focus on this
issue by coupling our predictor with filters based on the output of a chain classifier and on
the output of a cysteine bonding state predictor. We first construct a chain classifier and
a cysteine bonding state predictor by applying our feature function selection approach.
We then study combinations of these predictors with our disulfide pattern predictor.

5.5.1 Chain classification

We consider the binary chain classification problem, which consists in classifying
proteins into those that have at least one disulfide bridge and those that have no disulfide
bridge. In order to construct a chain classifier, we apply the same methodology as before :
we perform feature function selection on top of extremely randomized trees. Since chain
classification works at the level of proteins, the set of candidate feature functions is
restricted to labels global histograms. We also include as candidates the simple feature
functions returning the number of residues, the number of cysteines and the parity of the
number of cysteines. We use the following default setting for ETs : T = 1 000,K = d
and Nmin = 2. According to preliminary experiments, we found out K = d to be a good
default setting for this task. This is probably due to the fact that we have far less features
than we had before.

We performed ten runs of the feature function selection algorithm on the SPX−
dataset, which contains both proteins without disulfide bridge and proteins with disulfide
bridges. The performance measure is the accuracy, i.e., the percentage of proteins that
are correctly classified. In every feature function selection run, the first selected feature
function was hglobal(PSSM) and the second one was hglobal(AA). Starting from the third
iteration, the results are more diverse and the system starts to overfit. By keeping the two
first feature functions, we reach a 10 fold cross-validation accuracy of 79.5% on SPX−,
which is not very far from the 82% accuracy obtained by [87].

5.5.2 Cysteine bonding state prediction

Cysteine bonding state prediction consists in classifying cysteines into those that are
involved in a disulfide bridge and those that are not. To address this task, we apply our
feature function selection approach on top of extremely randomized trees (T = 1 000,K =√
d and Nmin = 2). The set of candidate feature functions is composed of those depending

only on the protein (number of residues, number of cysteines, parity of the number
of cysteines, labels global histograms) and those depending on the protein and on a
single cysteine (labels local histograms, labels local windows, cysteine separation profile
window). We consider the same window size values as in previous section. The evaluation
measure is binary accuracy, i.e., the percentage of cysteines that are correctly classified.

We ran the feature selection algorithm once for each of the ten different train/test
splits of SPX−. We observed that the selected feature functions set {w(PSSM, 11),
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hglobal(PSSM), nC} led to a binary accuracy of 87.4%, which outperforms the result of
87% obtained by Vincent et al. [87]. On SPX+, we obtain a similar accuracy of 87.8%.

Note that once we have a cysteine bonding state predictor, we can use it to also solve
the chain classification task as follows. In order to predict whether a protein contains
disulfide bridges or not, we run the cysteine bonding state predictor on each cysteine,
and see if at least one cysteine is predicted as being bonded. By applying this strategy
to SPX−, we obtain a chain classification accuracy of 81.4%, which is comparable to the
score of [87].

Table 5.7 summarizes the feature functions that were selected for the three tasks that
we consider in this study.

Task Features
Chain classification {hglobal(PSSM), hglobal(AA)}
Cysteine bonding state prediction {w(PSSM, 11), hglobal(PSSM), nC}
Disulfide pattern prediction {w(PSSM, 15), csp(17)}

Table 5.7: Selected feature functions of the three tasks. The feature functions
were determined by the application of our selection algorithm on top of extremely rando-
mized trees, using the SPX− dataset for chain classification and cysteine bonding state
prediction and the SPX+ dataset for disulfide pattern prediction.

5.5.3 Impact on pattern prediction

Now that we have constructed a chain classifier and a disulfide bonding state predictor,
we focus on the question of how to exploit the corresponding predictions in order to
improve disulfide pattern prediction. Note that, in some cases, the user may have prior
knowledge of either the chain class (whether the proteins contains any disulfide bridges
or not) or of the cysteine bonding states (which are the cysteines that participate to
disulfide bridges). To take the different possible scenarios into account, we study the
following four settings :

– Chain class known : in this setting, we assume that the chain classes are known a
priori and simply filter out all proteins that are known to not contain any disulfide
bridge. For the proteins that contain disulfide bridges, we run our disulfide pattern
predictor as in previous section.

– Chain class predicted : in this setting, we replace the knowledge of the chain class
by a prediction. We therefore rely on the chain classifier derived from the cysteine
bonding state predictor, which obtained a chain classification accuracy of 81.4%.

– Cysteine states known : we here assume that the bonding states of cysteines is
known a priori. We modify the disulfide pattern predictor by setting a probability
of zero to any cysteine pair containing at least one non-bonded cysteine.

– Cysteine states predicted : in this setting, we first run our cysteine state predictor
and then perform disulfide pattern prediction by only considering cysteine pairs in
which both cysteines where predicted as bonded.

Note that, since the SPX+ dataset is entirely composed of proteins with at least
one bridge, our two first settings based on chain classification are irrelevant for this
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dataset. In these experiments, we learnt models using a 10-fold cross-validation of ETs
(T = 1 000,Nmin = 2 and

√
d).

Table 5.8 summarizes the results of our experiments on chain classification, cysteine
bonding state prediction and disulfide pattern prediction with our four different settings.
When the chain classes are known, we observe a significant improvement of the Qp score :
from 22% to 82.5% on SPX−. When replacing the true chain classes with predicted chain
classes, we still have a relatively high Qp score : 70.9%. This result is detailed in Table
5.9 as a function of the true number of disulfide bridges. We observe that our method
clearly outperforms the method of Vincent et al. [87] on proteins containing one or two
disulfide bonds and performs slightly worst on proteins with three disulfide bonds. Given
that a majority of proteins in SPX− contain less than two bonds, these results leads to
an overall score that is significantly better than that of Vincent et al. When the cysteine
bonding states are known, we obtain impressive disulfide pattern accuracies : more than
75% on SPX+ and almost 90% on SPX−. When using predicted cysteine bonding states,
we still observe an impressive improvement on SPX− : from 22% to 71.4%. However, on
SPX+, the score slightly degrades (−1.4%). This is probably related to the fact that, as
soon as one cysteine is falsely predicted as being non-bonded, it becomes impossible to
recover the correct disulfide pattern.

Filter SPX− SPX+

Chain classification
– 79.5% ± 2.40% –
Cysteine states predicted 81.4% ± 2.66% –
Cysteine bonding state prediction
– 87.4% ± 1.14% 87.8% ± 2.20%
Disulfide pattern prediction (Qp)
– 22.0% ± 2.00% 58.2% ± 2.74%
Chain class known 82.5% ± 2.24% –
Chain class predicted 70.9% ± 3.10% –
Cysteine states known 89.9% ± 1.57% 75.8% ± 2.09%
Cysteine states predicted 71.4% ± 2.76% 56.8% ± 2.52%

Table 5.8: Evaluation of the three tasks. We report the mean and standard deviation
of the binary accuracy for chain classification and cysteine bonding state prediction while
the Qp score is used for disulfide pattern prediction. The symbol – indicates that all
cysteines are used in the experiment.

5.6 Discussion

Disulfide connectivity pattern prediction is a problem of major importance in bioin-
formatics. Recent state of the art disulfide pattern predictors rely on a three step pipeline,
in which the central component is a binary classifier that predicts bridge bonding proba-
bilities given cysteine pair representations. However, the comparison of the conclusions
of these works is difficult because it is often the case that these different studies rely
on different kinds of binary classifiers and slightly differ in their experimental protocol.
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Number of Vincent et al. Becker et al.

bridges (2008) (2013)
1 30% 77.1%
2 49% 63.5%
3 61% 60.4%
4 37% 44.2%
all 39% 70.9%

Table 5.9: Comparison of Qp scores on SPX− when chain classes are predicted.
Qp scores obtained using 10-fold cross-validation.

Therefore, the relevance of some features is still a subject under heavy debate. This work
has proposed an extensive study on the best way to represent cysteine pairs in the form
of features. We considered three classification algorithms : k-nearest neighbors, support
vector machines and extremely randomized trees, and we proposed a forward feature
function selection algorithm that we applied on the standard benchmark dataset SPX+.

Our experiments have shown that extremely randomized trees (ETs) are highly pro-
mising in terms of predicted disulfide pattern accuracy Qp. ETs are easy to tune and
thanks to their use of decision trees, they benefit from good scaling properties, making
them applicable to large sets of training proteins and large sets of features. The result of
our feature selection experiments with ETs is that the primary structure related features
functions w(PSSM, 15) (a local window of size 15 on the evolutionary information) and
csp(17) (a window of size 17 on the cysteine separation profile) are sufficient to reach a
very high performing disulfide pattern predictor : ETs with these two kinds of features
predict correct disulfide connectivity patterns in 58.2% of proteins, which outperforms
the state of the art[87] with a +3.2% improvement. Furthermore, we showed that appen-
ding any other feature function does not lead to significant subsequent improvements or
even decreases the accuracy.

We also investigated the question of how to exploit our disulfide pattern predictor
with filters based on the output of either a chain classifier or of a cysteine bonding state
predictor. Among the four scenarios that we considered, we observed an important poten-
tial for improvement when the cysteine bonding states are known, with scores reaching
75% on SPX+ and almost 90% on SPX−. When using predicted cysteine bonding states,
we still observe an impressive improvement on SPX− (from 22% to 71.4%) but the score
slightly degrades (−1.4%) on SPX+. This degradation is probably due to the fact that,
as soon as one cysteine is falsely predicted as being non-bonded, it becomes impossible
to construct the correct disulfide pattern. Therefore, one direction of future research is
to develop more sophisticated methods to couple the cysteine bonding state prediction
task with the pattern prediction task. One direction for such a better coupling is to apply
the ideas developed in [84] on multi-stage and multi-task prediction, e.g., by iteratively
re-estimating the disulfide bond probabilities.

Note that despite the fact that several studies have shown that tree-based ensemble
methods often reach state of the art results in supervised learning (see e.g. [24]), these
methods were surprisingly few applied to structural bioinformatics problems yet. We
believe that ETs in combination with feature function selection provide a general metho-
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dology that can be applied to a wide range of protein related prediction problems and
more generally to any kind of classification problems involving many different possible
representations.
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In the previous chapter, we proposed a systematic methodology to study the relevance
of various feature encodings in the context of disulfide connectivity pattern prediction. As
a result, we have shown that a very limited number of carefully selected feature functions
are sufficient to construct a high performance disulfide pattern predictor.

In this chapter, we adapt this methodology to the problem of predicting disordered
regions and assess our models on proteins from the 10th CASP competition, as well as on
a very large subset of proteins extracted from PDB. Section 6.1 introduces our work as
the adaptation of the pipeline presented in Chapter 5. Section 6.2 formulates the problem
of predicting disordered regions as a sequence labeling task. It then describes the four
required components needed by the feature function selection algorithm, i.e., the datasets
(Section 6.2.1), the list of candidate feature functions (Section 6.2.3), the base learner
and the criterion to optimize. In Section 6.3, we perform the feature selection process on
the Disorder723 dataset and we analyze the performance obtained by ensembles of ETs
using the selected feature functions on Casp10 and Pdb30 datasets. Finally, Section 6.4
concludes the chapter.
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On the encoding of proteins for disordered regions prediction
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Software related to this chapter

From this study, we made available a web-application at

http://m24.giga.ulg.ac.be:81/x3Disorder.

x3Disorder is a tool designed for biologists that attempt to determine the three-dimensional
structure of protein molecules. The function of x3Disorder is to predict the disorder state
of each residue of a protein.

6.1 Introduction

In the previous chapter, we motivated our work by the fact that the way to encode
cysteine-pairs into vectors of features typically has a major impact on the performance
of predictors. In the context of disordered regions prediction, the situation is similar.
Namely, one key factor of the success of methods developed to automatically predict
disordered regions of proteins is the way in which protein information is encoded into
features.

The main contribution of the present chapter is the adaptation of the systematic
feature function selection methodology presented in Chapter 5 to establish a relevant
representation of residues in the context of disordered regions prediction. For this purpose,
we consider various feature encodings and, in addition to the primary structure, three
in-sillico annotations : position-specific scoring matrices (PSSM), predicted secondary
structures and predicted solvent accessibilities. We apply the feature function selection
pipeline in combination with ETs, a model which gave excellent results in the previous
chapter. In order to avoid any risk of overfitting or over-estimation of our models, we
use three distinct datasets : Disorder723 [31], Casp10 1 and Pdb30. We first apply
feature selection on Disorder723 and then assess the relevance of the selected feature
functions on both Casp10 and on Pdb30.

The main result of our study is to highlight a novel feature function encoding the
proximity along the primary sequence of residues predicted as being accessible (resp.
inaccessible) to the solvent. This feature function is identified as the second most im-
portant for predicting the belonging of a residue to a disordered region, just after evo-
lutionary information derived from the PSSM. To our best knowledge, these features
encoding solvent accessibility have never been highlighted in previous studies of disorde-
red regions prediction. The majority of the remaining relevant feature functions that we
found (e.g., evolutionary information and sequence complexity) were already suggested

1. http://www.predictioncenter.org/casp10/

http://m24.giga.ulg.ac.be:81/x3Disorder
http://www.predictioncenter.org/casp10/
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by other studies of disordered regions [138], and we thus confirm in a fair way their re-
levance. Furthermore, even though our approach treats each residue independently, i.e.,
without explicitly modelling global properties of disordered regions, our predictors are
very competitive in terms of accuracy with respect to Casp10 assessments of competing
methods, as well as on our very large independent test set extracted from Pdb30.

6.2 Materials and Methods

In order to use the forward feature function selection algorithm developed in Chapter
5, the algorithm requires four components : a dataset, a list of candidate feature functions,
a criterion to optimize and a base learner. This section describes how we have adapted
each of the four components to the problem of predicting disordered regions of proteins.

The first part presents the three datasets Disorder723, Casp10 and Pdb30 and
how we enrich the primary structures of each of these datasets with three annotations :
position-specific scoring matrices (PSSM), predicted secondary structures (SS) and
predicted solvent accessibilities (SA). The second part of this section formulates disor-
dered regions prediction as a supervised-learning problem and, more specifically, as a
binary classification problem, which aims at predicting the disorder state (ordered or
disordered) of each protein residue. It also defines five measures to assess the quality of
the predictions, of which the criterion to optimize during the selection process. The third
part enumerates the candidate feature functions that we consider for our experiments.
The fourth component (the base learner) is an ensembles of ETs. We refer the reader to
Section 2.4 for a description of this tree-based ensemble method.

6.2.1 Datasets and annotations

This study relies on three datasets. The first one, Disorder723 2, has been built
by Cheng et al. [31] and was extracted from the Protein Data Bank [12] in May 2004.
The dataset is made of 723 non-redundant chains that contain at least 30 amino acids
in length and that were solved by X-ray diffraction with a resolution of around 2.5 Å.
In order to reduce the over-representation of particular protein families, the dataset has
been filtered by UniqueProt [123], a protein redundancy reduction tool based on the
HSSP distance [113], with a cut-off distance of 10.

The second dataset, Casp10, was the one used during the 10th CASP competition
that took place in 2012. During the competition, the candidate predictors had to make
blind predictions, i.e, they had to predict disordered regions of proteins close to being
solved or close to being published and that have no detectable similarity to available
structures. At the end, the candidate predictors were assessed on 94 experimentally de-
termined proteins available for download on the official CASP website 3. Note that unlike
Disorder723, the way to resolve protein structures is not restricted to X-ray diffraction
and that CASP10 also contains protein structures determined by NMR.

2. http://casp.rnet.missouri.edu/download/disorder.dataset

3. http://predictioncenter.org/download_area/CASP10/targets/casp10.DR_targets.tgz

http://casp.rnet.missouri.edu/download/disorder.dataset
http://predictioncenter.org/download_area/CASP10/targets/casp10.DR_targets.tgz
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The last dataset, that we denote by Pdb30, is far larger than the two previous ones.
We created Pdb30 on one of the clustered versions of the Protein Data Bank (as of
August 31, 2013) 4. The clustering is defined on a protein chain basis with a maximum
pairwise sequence identity of 30%. The authors of this clustered version of PDB used
BLASTClust [40] to perform the clustering and selected the representative structure of
each cluster according to their quality factor. We then filtered out any proteins that were
less than 30 amino acids in length, that had no X-ray structure or that had resolution
coarser than 2.5Å. Next, we discarded the proteins that share a sequence identity of at
least 30% with a protein of Disorder723 (our training set). The final dataset is made
of 12,090 proteins and 2,991,008 residues of which 193,874 (6.5%) are disordered. Figure
6.1 shows a histogram of the protein lengths. The average (± standard deviation) protein
length is 247.4 ± 162.8. Figure 6.2 shows a histogram of the disordered region lengths of
our dataset. The average disordered region length is 12.3 ± 15.6. Our dataset is available
at : http://m24.giga.ulg.ac.be:81/x3Disorder/pdb30.dataset.
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Figure 6.1: Protein length distribution of PDB30. There are 12,090 proteins. The
average protein length is of 247.4 residues.

In our experiments, we mainly use Disorder723 to identify a subset of relevant
feature functions while Casp10 and Pdb30 are used to assess the quality of the selected
feature functions. It is important to note that no protein in the Casp10 or Pdb30

sets share more than 30% sequence identity with one of those of Disorder723. This
therefore makes it possible to fairly evaluate and compare our results with those that
have participated to the 10th CASP competition.

We used the same definition of disorder as Cheng et al. and as the CASP compe-
tition, i.e., segments longer than three residues but lacking atomic coordinates in the
crystal structure are labelled as “disordered" whereas all other residues are labelled as

4. available at http://www.rcsb.org/pdb/statistics/clusterStatistics.do

http://m24.giga.ulg.ac.be:81/x3Disorder/pdb30.dataset
http://www.rcsb.org/pdb/statistics/clusterStatistics.do
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Figure 6.2: Disordered region length distribution of PDB30. There are 15,726
disordered regions. The average length of a disordered region is of 12.3 residues and the
average number of disordered regions per protein is of 1.3.

“ordered". According to this definition, Table 6.1 shows that all three datasets contain
∼ 6% of disordered residues and ∼ 94% of ordered residues. Some residues in Casp10

were not classified by the CASP assessors. These residues were not taken into account in
our experiments.

Proteins Ordered residues Disordered residues Residues
Disorder723 723 201,703 (93.55%) 13,909 (6.45%) 215,612
Casp10 94 22,688 (93.79%) 1502 (6.20%) 24,190
Pdb30 12,090 2,797,134 (93.52%) 193,874 (6.48%) 2,991,008

Table 6.1: Composition of datasets. Number of proteins, number (and portion) of or-
dered/disordered residues and number of residues in Disorder723, Casp10 and Pdb30

datasets. All datasets have roughly the same proportion of disordered residues (∼6%).
Pdb30 contains ∼ 127 times more proteins and ∼ 124 times more residues than Casp10.

We enriched the primary structure (denoted as AA) by using three additional an-
notations : evolutionary information in the form of a position-specific scoring matrix
(PSSM), predicted secondary structure (SS) and predicted solvent accessibility (SA).
We computed the PSSMs by running three iterations of the PSI-BLAST program [5]
on the non-redundant NCBI database [102]. To produce predicted annotations, we used
the SSpro and ACCpro [29] programs for the predicted secondary structure (“helix",
“strand" or “coil") and the predicted solvent accessibility (under or over 25% exposed),
respectively.



102 Chapitre 6. Feature selection for disordered regions prediction

6.2.2 Problem statement

Let P be the space of all proteins and P = (AA,PSSM,SS, SA, Y ) ∈ P one parti-
cular protein described as the 5-tuple containing its primary structure AA, its PSSM ,
its two predicted annotations SS and SA, and its disordered regions Y . Each of these
annotations is described as a sequence of n labels, where n is the number of residues com-
posing P . For example, the primary structure is defined as AA = (AA1, AA2, . . . , AAn),
where AAi is the label corresponding to the amino acid of the i-th residue of P , and the
disordered regions annotation is defined as Y = (y1, y2, . . . , yn), where yi ∈ {ordered,
disordered}. The disordered regions prediction task consists in assigning a label yi to
each residue of P .

In the supervised-learning formulation of the problem, we assume to have access to
a dataset of proteins in which residues are labeled either ordered or disordered. We
denote this dataset D = {P (i)}i∈[1,N ], where P (i) ∈ P is the i-th protein. Given such a
dataset D, the aim is to learn a disordered regions predictor f : P \ Y → Y that maps
a protein P ∈ P to a sequence Ŷ of n predicted labels ŷi ∈ {ordered, disordered},
where n is the length of P .

It is important to note that disordered regions are segments, i.e., consecutive resi-
dues tend to share the same label. More and more machine learning approaches such as
conditional random fields [133], recursive neural networks [31], meta-predictors [140] or
post-filtering steps [73] are able to exploit the structured aspect of the problem.

However, as the goal of this study is to determine a set of relevant feature functions
in general, we do not focus on such advanced prediction approaches here. We instead
simplify the general problem into a standard binary classification problem. The aim is to
learn a predictor f : (P \Y)×N → {ordered, disordered} that maps the i-th residue of
a protein P to the predicted label yi. This formulation is rather simple in the sense that
it treats each residue independently, i.e., regardless with respect to predictions made on
neighboring residues of the same protein.

Evaluation measures

In order to evaluate the quality of the predictions made by our models, we considered
five residue-level performance measures : the balanced accuracy (Acc), the sensitivity,
the specificity, the area under the ROC curve (AUC) and the F-measure. Each of these
measures can be formulated using a tuple of four values : the number of true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN), where a positive
example is a disordered residue and a negative example is an ordered residue. Therefore, a
true positive is a correctly predicted disordered residue and a false negative is an ordered
residue falsely predicted as a disordered one.

According to these notations, the sensitivity [TP ÷ (TP + FN)] is the fraction of
disordered residues that are successfully predicted as disordered, whereas the specificity
[TN ÷ (TN + FP )] is the fraction of ordered residues that are successfully predicted
as ordered. As the problem of disordered regions prediction is strongly imbalanced (only
∼6% of residues are disordered), using the conventional accuracy may inflate performance
estimates and is therefore not appropriate. However, the balanced accuracy, defined as
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the arithmetic mean of sensitivity and specificity, is robust against imbalanced datasets
as well as the F-measure, which is used in recent CASP assessments. The F-measure
is defined as the harmonic mean of the precision – the fraction of predicted disordered
residues that are truly disordered – and the sensitivity (also called recall).

Since, a large number of available binary classifiers produce probabilities rather than
strict classes, these criteria rely on a user-defined decision threshold to discriminate po-
sitive from negative examples. Depending on how users fixed their threshold, a bias
might be introduced, which might lead to an unfair comparison between distinct stu-
dies. To tackle this issue, one can compare the performance of distinct models by their
ROC curve, which is obtained by plotting the sensitivity against the false positive rate
[FP ÷ (FP + TN)] when varying the decision threshold. However, the comparison is
not easy, especially when the curves are similar. A common simplification is therefore to
calculate the area under the ROC curve (AUC). An area of 1.00 corresponds to a perfect
predictor while an area of 0.50 corresponds to a random predictor.

6.2.3 Candidate feature functions

The feature generation is performed through residue feature functions φ : (P \ Y) ×
N→ Rd that, given the residue position i of a protein P , compute a vector of d real-valued
features.

Among the panel of candidate functions φ already described in our previous work,
we adopted i) the number of residues function, ii) the number of cysteines function, iii)
the labels global histogram function, iv) the labels local histogram function and, v) the
labels local window function. In addition to them, we defined three other feature func-
tions directly computed from the primary sequence and four annotation-related feature
functions. We now describe in detail all these feature functions. However, since only few
of these features will effectively be selected, the reader can understand the rest of our
study without considering the detailed descriptions of all candidate feature functions.

– Number of residues : returns the number of residues in the primary sequence.
– Number of cysteines : returns the number of cysteine residues in the primary se-

quence. This feature is made from the intuition that larger the number of cysteines
is, larger the number of disulfide bonds will be, which usually lead to more stable
structures.

– Unnormalized global histogram : computes twenty features, one per standard amino
acid type, which are the numbers of residues of each type in the primary structure.

– Position of residue : returns the position i of the residue in the primary structure.
– Relative position of residue : computes one feature which is the residue position i

divided by the protein length n. Although this feature may seem redundant with
the previous one, the encoded information is different. The previous feature aims at
encoding the absolute position of the residue with respect to the N-terminus. The
intuition behind this feature is that the position of a residue might determine its
disordered state (e.g., the first four residues are prone to be disordered). Whereas,
the relative position, which varies in [0, 1], suggests a position regardless of the
protein length.
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We use the following notations to describe the annotation-related feature functions.
For each type of annotation A ∈ {AA, PSSM, SS, SA}, LA is the set of labels corres-
ponding to A and LA = |LA| is the size of this set. We thus have : LAA = 20, LPSSM = 21
(the twenty amino acids and the gap), LSS = 3, LSA = 2. For a given primary structure
of length n, an annotation A is represented as a set of probabilities αA

i,l ∈ [0, 1] where
i ∈ [1, n] denotes the residue position and l ∈ LA is a label. E.g., αSS

3,helix is the probability
that the third residue of the protein is part of a helix.

In the general case, the αA
i,l probabilities may take any value in range [0, 1] to re-

flect uncertainty about annotations. However, since the predictions made by SSpro and
ACCpro are classes and that primary structures (AA) are always known perfectly, we
have :

α
A∈{AA,SS,SA}
i,l =

{

1 if l is the residue or predicted class of the i-th residue

0 otherwise.

As PSSM elements typically range in [−7, 7], we scale them to [0, 1] by using the
function proposed in [69] and defined as following :

αPSSM
i,l =











0.0 if x ≤ −5

0.5 + 0.1x if −5 < x < 5

1.0 if x ≥ 5

,

where x is the value from the raw profile matrix.

For each annotation A, we have defined seven different feature functions :
– Labels global histogram : computes one feature per label l ∈ LA, equal to 1

n

∑n
p=1 α

A
i,l.

– Labels local histogram : computes one feature per label l ∈ LA equal to 1
W

∑i+W/2
p=i−W/2 α

A
p,l

and one special feature equal to the percentage of out-of-bounds positions, i.e., po-
sitions p such that p /∈ [1, n].

– Labels local window : computes one feature per label l ∈ LA and per relative position
δ ∈ [−W

2 ,
W
2 ], equal to αA

i+δ,l. When the position is out-of-bounds, i.e., i+δ 6∈ [1, n],
the feature is set to 0.

– Separation profile window : this feature function is inspired from the cysteine sepa-
ration profile window function, which focuses on the distances that separate conse-
cutive cysteine residues and encodes the distances around the cysteine residue of
interest into features. According to the results presented in our previous work, this
feature function led to an impressive improvement of our disulfide connectivity pat-
tern predictor. Here, we propose a generalization of this function in order to be able
to tackle any kind of annotation A. Figure 6.3 shows an illustration of a separation
profile window of size 11 over exposed residues.
Given a residue position i, our generalized feature function describes the proximity
of the W

2 closest residues of the N-terminus side to the i-th residue (respectively, the
W
2 closest residues of the T-terminus side) that share a common label l,∀l ∈ LA.

The proximity of a residue at the j-th position is expressed as the distance, in
terms of number of amino acids in the primary structure, that separates the j-th
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Solvent accessibility sequence

Separation profile of exposed residues

Window of size 11 of the separation profile

101113141517

8 7 4 3 1 2 5 6

BEBEEEBEEBEEBBEEBBEEEBBEEBBB

17, 15, 14, 13, 11, 10, 8, 7, 4, 3, 0 , 1, 2, 5, 6

17, 15, 14, 13, 11, 10, 8, 7, 4, 3, 0 ,1, 2, 5, 6, 6

Figure 6.3: Illustration of the separation profile window function on exposed
residues. Top : the functions first computes the amino acid distances that separate
the residue of interest (highlighted by a red square). Middle : the separation profile of
exposed residues. Bottom : the feature function returns the window (highlighted by a
green rectangle) of size 11 centered around the residue of interest. In this example, the
window slightly goes beyond the end of the sequence. As explained in the main text, in
such cases we replace non available features by the maximal possible value, which is the
6 shown in red here.

from the i-th residue, i.e., |j − i|. Note that, when using probabilistic predictors,
the label of a residue is determined as the one with the highest probability αA

i,·.
When the number of residues that share l at the N-terminus side (respectively, at
the T-terminus side) is insufficient, the missing distances are set to the greatest
distance, i.e, the distance with the farthest residue that share l within the same
terminus side.

– Labeled segments window : this is similar to the labels local window function except
that rather than describing neighboring residues at position i + δ, it describes
neighboring segments si+δ. A segment consists in a sub-sequence of consecutive
residues that share a common label l, in the sense of the highest probability αA

·,·.
Therefore, given a segment si, the function returns one description of this segment
(in the form of feature vectors) per relative position δ ∈ [−W

2 ,
W
2 ]. A segment si+δ

is described by LA (one per label l ∈ LA) plus one features. Among the first LA

features, the one corresponding to the label of si+δ is equal to 1 while the other
ones are set to 0. The last feature is the length of si+δ. When the position si+δ is
out-of-bounds the features are all set to 0.

– Dimeric global histogram : this feature function is an extension of labels global
histogram with the difference that instead of calculating the frequency of occurrence
of each single label, it computes the frequency of occurrence of each pairs of labels.
A pair of labels is formed by the labels of two consecutive residues (a word of size 2).
The hope is that the distribution of some pairs of labels are significantly different
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in the case of disordered residues with respect to ordered ones. For example, a
larger proportion of consecutive exposed residues may intuitively involve a larger
disposition to form disordered regions. More formally, it returns one feature per
pair of labels (li, lj) ∈ LA × LA, equal to

1

n− 1

n−1
∑

p=1

1{argmax
l∈LA

αA
p,l = li ∧ argmax

l∈LA

αA
p+1,l = lj

}

.

– Dimeric local histogram : this feature function is identical to the dimeric global
histogram one except that it computes the frequency within a sliding window.
More formally, given a residue position k, it returns one feature per pair of labels
(li, lj) ∈ LA × LA equal to

1

W

k+W/2
∑

p=k−W/2

1{argmax
l∈LA

αA
p,l = li ∧ argmax

l∈LA

αA
p+1,l = lj

}

.

Our candidate feature functions are summarized in Table 6.2. Note that five of them
are parameterized by window size parameters. To apply the feature function selection
algorithm, we consider the following discrete sets of window sizes :

– Local windows, separation profile window, labeled segments window and dimeric
local histogram : 1, 5, 11, 15, 21.

– Local histograms : 10, 20, 30, 40, 50, 60, 70, 80, 90.
This setting leads to a total of 109 candidate features functions.

Symbol Parameter d Description
n - 1 Number of residues
nC - 1 Number of cysteines
nAA - 20 Unnormalized global histogram
i - 1 Position of residue
i/n - 1 Relative position of residue

hglobal(A) - LA Labels global histogram
hlocal(A,W ) window size LA + 1 Labels local histogram
w(A,W ) window size W.LA Labels local window
sep(A,W ) window size W − 1 Separation profile window
seg(A,W ) window size W.(LA + 1) Labeled segments window
diglobal(A) - L2

A Dimeric global histogram
dilocal(A,W ) window size L2

A Dimeric local histogram

Table 6.2: Feature functions used in our experiments to encode residues. Sym-
bols, parameters, number of features (d) and description of our candidate feature func-
tions. Top : feature functions that are directly computed from the primary structure.
Bottom : feature functions defined for every kind of annotation A ∈ {AA, PSSM, SS,
SA}.

6.3 Results

This section describes our experimental study on disordered regions prediction. The
first part presents the results of the main contribution of our work, which aims at determi-
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ning a relevant representation on Disorder723. The second part aims at constructing a
model based on this relevant representation and ETs, and assessing this model on Casp10

and Pdb30. In the third part, we investigate the novel feature function and attempt to
interpret its role in the prediction of disordered regions.

6.3.1 Identification of a set of relevant feature functions

We now apply the feature function selection approach on top of ETs with the candi-
date feature functions of Table 6.2. We use a default setting of hyper-parameters of ETs
that corresponds to an ensemble of 1 000 fully developed trees (T = 1 000, Nmin = 2)
and K is set to the square root of the total number of features

√
d, as proposed by Geurts

et al [58].

To avoid any risk of overfitting, we performed the selection on 10 different train/test
splits of Disorder723 and the performance measure being maximized by each run is
the cross-validated AUC score of the training set. Table 6.3 reports the selected fea-
ture functions for each of the 10 independent runs. For the five iterations we consider,
we observe that the selected feature functions on each of the 10 train/test splits are al-
ways w(PSSM, 21), sep(SA, 21), hlocal(AA, ·) with a window size varying in {50, 60, 70},
w(SS, ·) with a sliding window size in {11, 15} and w(AA, ·) with a window size in
{1, 5, 11, 15}. Regardless to window size parameters, the fact that we observed these fea-
ture functions during each run is very strong, since the selection algorithm has to select
between 109 different candidate feature functions.

Fold Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

1 w(PSSM, 21) sep(SA, 21) hlocal(AA, 60) w(SS, 11) w(AA, 1)
2 w(PSSM, 21) sep(SA, 21) hlocal(AA, 60) w(SS, 11) w(AA, 11)
3 w(PSSM, 21) sep(SA, 21) hlocal(AA, 60) w(SS, 11) w(AA, 5)
4 w(PSSM, 21) sep(SA, 21) hlocal(AA, 50) w(SS, 11) w(AA, 1)
5 w(PSSM, 21) sep(SA, 21) hlocal(AA, 50) w(SS, 15) w(AA, 15)
6 w(PSSM, 21) sep(SA, 21) hlocal(AA, 60) w(SS, 15) w(AA, 5)
7 w(PSSM, 21) sep(SA, 21) hlocal(AA, 70) w(SS, 15) w(AA, 15)
8 w(PSSM, 21) sep(SA, 21) hlocal(AA, 50) w(SS, 11) w(AA, 5)
9 w(PSSM, 21) sep(SA, 21) hlocal(AA, 50) w(SS, 11) w(AA, 1)
10 w(PSSM, 21) sep(SA, 21) hlocal(AA, 60) w(SS, 11) w(AA, 1)

Mean
CV Score 0.852 ± 0.003 0.876 ± 0.003 0.884 ± 0.003 0.890 ± 0.003 0.894 ± 0.003
V Score 0.850 ± 0.029 0.874 ± 0.021 0.883 ± 0.022 0.888 ± 0.022 0.892 ± 0.22

Table 6.3: Forward feature functions selection with 10 train/test splits. Mean :
averages over the ten cross-validated scores and the ten validation scores. The cross-
validated score is calculated as the mean of the AUC score of each fold. The AUC score
of a fold is calculated by sub-dividing the fold into 10 train/test splits and by averaging
the AUC score of each of the 10 train/test splits. The validation score is the AUC score
obtained when evaluating on the test set.

Note that, among the selected feature functions, two of them (the second and the
fourth) rely on predicted structural annotations (the predicted solvent accessibility and
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the predicted secondary structure, respectively), which tend to show that predicted struc-
tural annotations contribute to make better disordered regions predictors.

Not surprisingly, the most important feature function detected by the selection is a
sliding window of evolutionary information, which confirms that disordered regions differ
from ordered regions in terms of their conservation profile. This feature function is also
important for many other protein structure prediction tasks (e.g., [11]).

On the other hand, the second most important feature function highlighted by our
algorithm, namely sep(SA, ·), has - to our best knowledge - never been proposed in pre-
vious studies. Its discovery at a very early iteration was unexpected. It suggests that the
proximities of a residue r (in terms of amino acid positions in the primary sequence) to
its nearest exposed or to its nearest buried residues are correlated with the fact that r
belongs to a disordered region. It is important to note the difference with w(SA, ·). In-
deed, w(SA, ·) describes the solvent accessibility label of the flanking residues of r. The
proximity is fixed and limited by the number of flanking residues to take into considera-
tion. Whereas, sep(SA, ·) describes the inverse. Namely, it describes the proximity of the
nearest residues to r that correspond to fixed labels.

One way to explain the usefulness of this feature function is to look at the distributions
of the distances that separate disordered (resp. ordered) residues to their nearest buried
residue. Figure 6.4 shows the probability of a residue of being disordered (resp. ordered)
according to the distance to its nearest buried residue, over the pdb30 dataset. We remark
that the probability of a residue being disordered increases quickly when its distance to
the next buried residue increases, and is above 0.5 as soon as the closest buried residue
is at least 5 residues away.

Another important aspect of this discovery is that the sep(SA, 21) feature function is
systematically detected just before the local amino acid composition hlocal(AA, ·) and far
before w(AA, ·). Indeed, these other two feature functions describe in different ways the
sequence complexity, which is well-known to be low within disordered regions [138]. This
therefore reinforces the fact that sep(SA, 21) may be a key-aspect in our understanding
of protein disordered regions and, consequently, protein structure-function relationships.

The fourth selected feature function is a short sliding window over predicted secon-
dary structures w(SS, ·). The usefulness of these features may be related to the strong
difference between the distributions of predicted secondary structures within disordered
regions with respect to ordered ones. For example, Table 6.4 shows that 70.98% of disor-
dered residues are predicted as coils against 40.57% as it is the case with ordered residues
and that solely 5.76% are predicted as sheets against 20.76% for ordered regions.

According to these results, we focus in the following on assessing the relevance of the
feature functions w(PSSM, 21), sep(SA, 21), hlocal(AA, 60), w(SS, 11) and w(AA, 1),
where we chose windows sizes by taking the most frequent sizes reported in Table 6.3.
Indeed, contrarily to the observation made in [11] that suggested a very small number
of relevant feature functions in the context of disulfide bridge prediction, the selection
algorithm identified here a larger set of interesting feature functions.
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Figure 6.4: Probability of being (dis)ordered w.r.t. the distance to the nearest
buried residue. For a given distance d, the probability p[Disorder|d] of being disordered
is calculated as the portion of disordered residues among the residues that have their
nearest buried residue located at a distance d. We computed these curves on the actual
values of the solvent accessibility of Pdb30.

Ordered Disordered Total
Predicted helices 77,989 38.67% 3,235 23.26% 81,224 37.67%
Predicted sheets 41,874 20.76% 801 5.76% 42,675 19.79%
Predicted coils 81,840 40.57% 9,873 70.98% 91,713 42.54%
Total 201,703 13,909 215,612

Table 6.4: Distribution of predicted secondary structure. Distribution of the num-
ber of ordered/disordered residues and the total number of residues for each secondary
structure class on Disorder723.

6.3.2 Evaluation of the selected feature functions

We now compare our models in terms of accuracy against a number of state-of-the-
art methods on Disorder723, Casp10 and Pdb30. As previously, we use ETs with a
default setting of its hyper-parameters. For each run, we use 80% of the training set to
build an ensemble of trees predicting the probability to belong to a disordered region for a
residue, and the remaining 20% to fix an ‘optimal’ decision threshold on this probability.

For Disorder723, we consider two baselines. Both evaluated their predictive per-
formance using a 10-fold cross-validation on Disorder723. The first baseline is Cheng
et al. [31], the authors of the Disorder723 dataset. They proposed an ensemble of 1D-
recursive neural networks that reached an area under the ROC curve of 0.878. The second
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baseline is Eickholt et al. [47], who used boosted ensembles of deep networks to make
predictions. They obtained a very high balanced accuracy (82.2%) and AUC (0.899).

The top of Table 6.5 reports our predictive performances when including successively
the feature functions w(PSSM, 21), sep(SA, 21), hlocal(AA, 60), w(SS, 11) and w(AA, 1),
while the bottom of the Table 6.5 reports the scores of the two baselines from the lite-
rature. We observe that using only w(PSSM, 21) leads to a balanced accuracy (Acc) of
77.5%, an AUC of 0.853 and a F-measure of 49.6, which already outperforms the state
of the art (46.3).

Features Balanced Acc Sensitivity Specificity AUC F-measure

10-fold cross validation of our algorithm over DISORDER723

{w(PSSM, 21)}
77.5 ± 2.43 74.1 ± 5.95 80.8 ± 3.13 0.853 ± 0.028 49.6 ± 3.38

{w(PSSM, 21), sep(SA, 21)}
79.0 ± 1.95 76.5 ± 4.14 81.6 ± 2.59 0.875 ± 0.019 51.7 ± 4.20

{w(PSSM, 21), sep(SA, 21), hlocal(AA, 60)}
80.3 ± 2.17 78.2 ± 4.90 82.4 ± 2.47 0.884 ± 0.019 52.7 ± 3.85

{w(PSSM, 21), sep(SA, 21), hlocal(AA, 60), w(SS, 11)}
80.6 ± 1.69 79.0 ± 4.64 82.2 ± 2.11 0.891 ± 0.020 53.4 ± 3.55

{w(PSSM, 21), sep(SA, 21), hlocal(AA, 60), w(SS, 11), w(AA, 1)}
81.1 ± 1.83 78.6 ± 4.69 83.5 ± 2.08 0.894 ± 0.021 55.3 ± 3.27

{w(PSSM, 21), hlocal(AA, 60), w(SS, 11), w(AA, 1)}
80.4 ± 1.94 76.8 ± 5.30 83.9 ± 2.37 0.883 ± 0.026 54.5 ± 2.70

Baselines tested on DISORDER723

Cheng et al. (2005) [31] - - - 0.878 -
Eickholt et al. (2013) [47] 82.21 ± 0.49 74.60 ± 1.10 89.84 ± 0.18 0.899 ± 0.002 46.34 ± 4.5

Table 6.5: Accuracy evaluation on the DISORDER723 dataset. Top : the mean
and standard deviation of the scores obtained when 10-folds cross-validating Disor-

der723 through the relevant feature functions. Bottom : baselines using Disorder723

to assess their model.

Moreover, we remark that by incrementally adding the remaining selected feature
functions to the set systematically leads to significant improvements on Acc, AUC and
F-measure. We have used the paired t-test on the AUC scores to statistically assess
the significance of each increment. We noted that the corresponding p-values (2.6e−3,
5.4e−4, 2.2e−4 and 4.6e−3) are well below the classical null hypothesis threshold (0.05).
This observation reinforces the fact that the selected feature functions are relevant. When
comparing our model based on all five selected feature functions to the state-of-the-art, we
obtain a disordered regions predictor, which is very competitive in term of Acc (81.1%),
equivalent in term of AUC (0.894) and clearly better in term of F-measure of 55.3. The
middle of Table 6.5 shows the impact on the predictive performance of our model when we
do not consider sep(SA, 21) among the input feature functions. As expected, the scores
significantly deteriorate with a p-value of 1.9e−2 with respect to the model that comprise
sep(SA, 21). This observation reinforces the fact that this kind of feature function should
be taken into account when predicting disordered regions.

To assess our models on Casp10, we compare our results against several baselines
such as DNdisorder and PreDNdisroder, which were developed by Eickholt et al. [47].
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Among the baselines, a number of them participated in the 10th CASP experiment. In
order to make the comparison in a fair way, we construct our models on Disorder723

using feature functions that were selected according to Disorder723. Moreover, since
Disorder723 does not contain any overlapping sequences with Caps10 and that Di-

sorder723 was formed well before Casp10, we are in the same blind prediction setting
than the participants of the competition.

The top part of Table 6.6 reports our results with the different sets of relevant feature
functions while the bottom part of Table 6.6 reports the scores obtained by the base-
lines considered in [47]. Once again, we observe that enlarging the feature functions set
systematically leads to significant improvements except for w(AA, 1). Two reasons may
explain this phenomena, either the Casp10 dataset is too small and, consequently, prone
to larger variances than big datasets, or the fifth iteration of the selection procedure starts
to overfit Disorder723, which means that w(AA, 1) is not portable to other datasets.
We believe that the second reason is more likely to be the true explanation, because the
function w(AA, 1) consists in discriminating disordered residues from ordered ones based
on their amino acid type, which may be too dataset specific. As mentioned, the p-value
of 4.6e−3 determined when including this feature set was indeed quite larger than those
resulting from the inclusion of the other feature sets.

According to Table 6.6, we remark that our model based on {w(PSSM, 21), sep(SA, 21),
hlocal(AA, 60), w(SS, 11)} achieves excellent performances with respect to the state-of-
the-art. We even slightly improve the state-of-the-art with a balanced accuracy of 77.29%
against 77.06%, however, according to the variations, this improvement is not significant.
We nevertheless outperformed the method of Eickholt et al. [47] (DNdisorder), which
presented similar performances than our model on Disopred723.

Although Casp10 is an entirely independent test set that had no detectable similarity
to available structures at this time, its very limited size does not enable it to capture the
universe of protein disorder. This is why we also evaluated our model on the far larger
dataset Pdb30. Table 6.7 compares the predictive performances obtained by three freely
and easily downloadable methods(DISOPRED2[135], IUPred[41] and ESpritz[132]) with
respect to our model. We observe that our approach outperforms the three baselines
with a balanced accuracy of 80.3% and presents a comparable area under the ROC curve
(0.883) to ESpritz, even though our approach treats each residue independently, i.e.,
without explicitly exploiting the key-fact that disordered regions are made of contiguous
residues. Figure 6.5 shows the ROC curves for DISORDER2, ESpritz and IUpred on
PDB30. We observe that our method and ESpritz are very close to each other and that
ESpritz is slightly better in the low false positive rate regime.

Note that since Pdb30 and Disorder723 are independent, the evaluation of our
model is fair. However, we do not have access to the learning stage of the compared
methods, which has possibly used sequences similar to the ones present in Pdb30. This
may lead to an over-estimation of the predictive performance of those methods.

6.4 Discussion

Predicting and understanding the nature of disordered regions is a key sub-problem of
protein structure and function inference. In this chapter, we have adapted the algorithm
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Features Balanced Acc Sensitivity Specificity AUC F-measure

Models learnt on DISORDER723 by our algorithm and tested on CASP10

{w(PSSM, 21)}
71.94 ± 0.71 70.71 ± 1.3 73.16 ± 0.32 0.795 ± 0.007 39.47 ± 0.73

{w(PSSM, 21), sep(SA, 21)}
74.95 ± 0.69 70.31 ± 1.4 79.59 ± 0.29 0.834 ± 0.006 38.51 ± 0.81

{w(PSSM, 21), sep(SA, 21), hlocal(AA, 60)}
77.17 ± 0.67 71.64 ± 1.3 82.69 ± 0.28 0.847 ± 0.006 39.95 ± 0.88

{w(PSSM, 21), sep(SA, 21), hlocal(AA, 60), w(SS, 11)}
77.29 ± 0.66 74.17 ± 1.3 80.41 ± 0.29 0.851 ± 0.006 40.24 ± 0.84

{w(PSSM, 21), sep(SA, 21), hlocal(AA, 60), w(SS, 11), w(AA, 1)}
77.35 ± 0.65 72.84 ± 1.3 81.85 ± 0.29 0.850 ± 0.006 39.82 ± 0.87

Baseline performances on CASP10 as published by the CASP10 competition

metaprdos2 (340) 77.06 ± 0.92 64.73 ± 1.4 89.40 ± 0.98 0.8727 ± 0.006 41.24 ± 2.9
PreDisorder (125) 76.86 ± 0.67 67.19 ± 1.7 86.34 ± 0.94 0.839 ± 0.006 37.50 ± 1.5
POODLE (216) 76.84 ± 0.78 62.74 ± 1.6 90.94 ± 0.26 0.866 ± 0.006 43.06 ± 1.0
PreDNdisorder [47] 76.55 ± 0.75 61.74 ± 1.8 91.36 ± 0.61 0.864 ± 0.006 43.42 ± 1.5
ZHOU-SPARKS-X (413) 75.68 ± 0.76 64.81 ± 1.4 86.55 ± 0.96 0.859 ± 0.006 36.43 ± 1.9
DNdisorder (424) 75.19 ± 0.71 61.92 ± 1.4 88.46 ± 0.29 0.848 ± 0.006 38.02 ± 1.1
CSpritz (484) 75.13 ± 1.4 66.31 ± 1.3 83.94 ± 2.4 0.822 ± 0.007 33.64 ± 3.7
Espritz (380) 73.16 ± 1.6 59.24 ± 1.4 87.08 ± 2.6 0.846 ± 0.006 34.58 ± 4.7
espritz_nopsi_X 71.98 ± 0.97 53.10 ± 1.5 90.87 ± 0.77 0.815 ± 0.007 37.56 ± 2.4
PrDOS-CNF (369) 70.35 ± 0.88 41.95 ± 1.8 98.74 ± 0.14 0.896 ± 0.005 52.50 ± 1.4

biomine_dr_mixed (478) 69.17 ± 0.68 39.95 ± 1.4 98.40 ± 0.11 0.884 ± 0.006 49.40 ± 1.3
biomine_dr_pdb_c (228) 67.81 ± 1.2 36.88 ± 2.6 98.74 ± 0.15 0.882 ± 0.006 47.65 ± 2.1
iupred_short 63.26 ± 0.70 30.68 ± 1.5 95.84 ± 0.25 0.664 ± 0.007 32.34 ± 1.2

Table 6.6: Accuracy evaluation on the CASP10 dataset. Top : the scores obtained
when evaluating Casp10 on models learnt on Disorder723 through the relevant feature
functions found on Disorder723. Bottom : comparison of a number of predictors, which
participated in or evaluated their model to the 10th CASP experiment. These results were
reported by [47]. In parenthesis : the group number of the methods that participated in
the CASP10 experiment. The standard deviations were calculated by a bootstrapping
procedure in which 80% of the dataset was sampled 1000 times, as it was done by [47].

presented in Chapter 5 on disulfide bridge prediction in order to identify the best way to
represent protein residues in order to be usable by disordered region predictors. To this
end, we used extremely randomized tree ensembles as an ‘off-the-shelf’ base learner in
our feature function selection pipeline. We applied our approach to the Disorder723

dataset from the literature, so as to select relevant subsets of feature functions and to
build simple residue-wise disorder prediction models.

Our experiments have shown that the combination of the feature functions w(PSSM, 21)
(a local window of size 21 of evolutionary information), sep(SA, 21) (a window of 21 of
the separation profile of predicted solvent accessibility), hlocal(AA, 60) (a local histogram
of size 60 of primary structure) and w(SS, 11) (a local window of size 11 of predicted
secondary structure) is a relevant representation of protein residues in the context of
disordered regions prediction.

From a biological point of view, the major contribution of this paper is the discovery of
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Method Balanced Acc Sensitivity Specificity AUC F-measure

Our method 80.36 ± 4.8e−2 82.67 ± 9.3e−2 78.06 ± 2.3e−2 0.8835 ± 4.5e−4 33.12 ± 6.3e−2

At 94.7% of specificity 76.73 ± 5.1e−2 58.79 ± 10.1e−2 94.67 ± 1.3e−2 0.8835 ± 4.5e−4 49.89 ± 8.4e−2

DISOPRED2 [135] 76.96 ± 5.7e−2 60.01 ± 11.3e−2 93.90 ± 1.3e−2 0.8658 ± 4.9e−4 48.40 ± 8.8e−2

ESpritz [132] 78.49 ± 5.6e−2 62.26 ± 11.3e−2 94.71 ± 1.3e−2 0.8856 ± 4.4e−4 52.20 ± 9.2e−2

IUPred [41] 74.99 ± 5.8e−2 55.98 ± 11.4e−2 93.99 ± 1.4e−2 0.8363 ± 5.6e−4 46.13 ± 8.9e−2

Table 6.7: Evaluation on the PDB30 dataset. Predictive performances of three
freely and easily downloadable methods on Pdb30. The standard deviations were calcu-
lated over the same 100 bootstrap copies of the whole dataset. Given the huge size of
the dataset, all differences (even if they are sometimes tiny) are statistically significant.
Notice that (except for the AUC calculation), our method uses a classification threshold
that was selected on the training dataset (Disorder723) so as to maximize the balanced
accuracy, which explains its difference in (sensitivity, specificity) pattern, as compared to
the other methods. Changing the threshold so as to yield a 94.7% specificity on Pdb30,
would reduce its sensitivity to 58.8%.
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Figure 6.5: ROC curves on PDB30 dataset. ROC curve of our method (Becker
et al.) and three freely downloadable predictors : DISPRED2 [135], ESpritz [132] and
IUPred [41].

the sep(SA, ·) feature function, which has - to our best knowledge - never been highlighted
as important in this context. This observation suggests that the proximities (in terms of
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amino acid distances) between consecutive exposed (and consecutive buried) residues
should play a role in the formation of disordered regions and, consequently, in protein
structure-function relationships.

To validate these observations with respect to the state-of-the-art in disorder predic-
tion, we also evaluated our model on the set of proteins used in the Casp10 competition.
On Casp10, our model constructed on the Disorder723 dataset turned out to obtain a
very competitive assessment in terms of various predictive accuracy indicators, in spite of
the fact that our work was focusing on feature identification rather than accuracy maxi-
mization. Since Casp10 is a small dataset that does not capture the whole universe of
protein disorder, we further assessed our model on the independent and very large Pdb30

dataset, which contains 12,090 proteins and 2,991,008 residues. On Pdb30, our model
obtained as well very competitive results with respect to three state-of-the-art methods,
by clearly beating two of them and being at a tie with the third one.

From a methodological point of view, our paper also shows that the systematic fea-
ture family selection pipeline proposed in [11] and adapted here, is a viable and robust
approach to yield interpretable information about relevant representations for protein
structure inference and allows at the same time to build predictors with state-of-the-art
accuracy. Still, it might be the case that extremely randomized tree ensembles with their
defaults settings are not the best classifiers for disordered regions prediction. Also, in
our predictors we treated each residue independently, i.e., without taking advantage of
the structured nature of the problem. Therefore, a main direction for future research is
to evaluate more sophisticated classifiers using the feature functions highlighted by the
present study.



CHAPITRE 7
Perspectives and Conclusions

Contents

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.1.1 Multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.2 Feature function selection . . . . . . . . . . . . . . . . . . . . 118

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.1 A unified architecture for protein structure prediction . . . . 120

7.2.2 A semi-unified architecture for protein structure prediction . 124

In this manuscript, we have tackled several surrogate problems related to protein
structure prediction either by solving them together in a multi-task context or by iden-
tifying relevant representations of the information for machine learning approaches.

In the first part of our research (Chapter 4), we noted a gap between the methods
used in the bioinformatics literature, which mostly treated these problems independently,
and the field of machine learning, which has investigated multi-task methods in the recent
years. To fill this gap, we have developed a framework called iterative multi-task learning
sequence labeling for jointly solving a group of five sequence labeling problems derived
from protein structures.

In the second part of our research (Chapters 5 and 6), we focused on an old topic
in machine learning : the feature generation and selection problem. Indeed, the way to
encode complex and structured objects, such as sequences or graphs, into vectors of
features typically has a major impact on the predictions. To determine the best way
to perform this encoding, we have developed a pipeline, called forward feature function
selection, for identifying the minimal set of relevant feature functions among a large list
of candidate ones.

Section 7.1 of this chapter provides a discussion around our contributions and our
results. We subsequently discuss some directions and perspectives of future researches in
Section 7.2.
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7.1 Conclusions

Section 7.1.1 provides a conclusion of the first part of our research while Section 7.1.2
provides a conclusion of the second part of our research.

7.1.1 Multi-task learning

Secondary structure prediction, solvent accessibility prediction and disordered regions
prediction are all surrogate annotation problems derived from protein structure predic-
tion. Although these prediction tasks are closely related, they have mostly been treated
independently, i.e., none of the tasks took advantage of the predictions made on the other
tasks.

From a methodological point of view. Our major contribution has been to in-
troduce a conceptually simple but powerful framework to jointly solve multiple related
tasks, which can take advantage of any sequence labeling algorithm (called base-model),
from simple classification-based approaches to modern structured prediction approaches.
Indeed, the concept of our multi-task approach consists in iteratively re-estimating each
target using the predictions of the last learned base-models. Moreover, as a matter of
fact, our iterative multi-task approach is not restricted to predicting sequence labels. It
may be extended to many other complex application domains (text processing, image
analysis, network monitoring and control, robotics), where data is available about seve-
ral related tasks and where synergies could similarly be exploited to enhance machine
learning solutions.

From a biological point of view. Our empirical experiments have shown that our
methodology is very powerful. When considering a set of five protein annotation tasks
and a linear SVM trained by stochastic gradient descent as base-learner, our approach si-
gnificantly outperformed the state-of-the-art accuracy by +2.1% for secondary structure
prediction. More importantly, we demonstrated that our multi-task approach systemati-
cally outperformed models learnt in single-tasks fashion, i.e., models that treat each task
independently.

7.1.2 Feature function selection

In bioinformatics, it is often the case that the comparison of the conclusions of different
works is difficult because these studies rely on different learning algorithms and slightly
differ in their experimental protocol. For example, it is common to see authors that
build and evaluate a predictor on a recent dataset and then compare their predictive
performance with a study that used a different dataset and even sometimes that used
different evaluation criteria.

From a methodological point of view. Our major contribution has been to de-
velop a forward feature function selection algorithm to identify a set of relevant feature
encoding functions among an extensive set of candidate ones. We applied this methodo-
logy to the problems of disulfide connectivity pattern prediction (in Chapter 5) and of
disordered regions prediction (in Chapter 6).
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Our selection method departs from traditional feature selection with respect to three
unique aspects :

– Feature function selection : At each iteration, it selects feature functions rather
than individual features. By proceeding in this way, the resulting features are more
consistent and less prone to overfitting.

– Insertion in a pipeline : It optimizes the scoring measure of the whole pipeline
rather than the predictive performance of the model alone. It is typically the case
in disulfide pattern prediction, where a disulfide bonding predictor with higher
accuracy can lead to worse disulfide pattern predictions when combined with the
graph matching algorithm, and conversely.

– Interpretability : It not only aims at constructing a pipeline maximizing scoring
function, but also at drawing more general scientific conclusions on the relevance
of various annotations of the primary structure.

As a minor contribution, we have shown, particularly in Chapter 5, that tree-based
ensemble methods are very promising to structural bioinformatics problems despite the
fact that they were surprisingly rarely applied in this context.

From a biological point of view. The interpretability of our approach highlighted
several important key-aspects in our understanding of both disulfide connectivity patterns
and protein disordered regions.

In Chapter 5, we have shown that a very limited number of carefully selected fea-
ture functions are sufficient to reach a very high performing disulfide pattern predictor :
w(PSSM, 15) (a local window of size 15 on the evolutionary information) and csp(17) (a
window of size 17 on the cysteine separation profile). Indeed, our model using ETs with
these two feature functions outperforms the state of the art with a +3.2% improvement
of correctly predicted patterns on the SPX+ dataset. In this study, we also investigated
the questions of how to couple a disulfide pattern predictor with a pre-filtering step based
on either disulfide chain classifications or cysteine bonding state predictions. However,
we believe that one direction of research to strongly improve the number of correctly pre-
dicted patterns is to develop more sophisticated approaches to better couple the cysteine
bonding state prediction task with the pattern prediction task.

In Chapter 6, the major contribution is undoubtedly the discovery of the sep(SA, ·)
feature function, which suggests that the proximities (in terms of amino acid distances)
between consecutive exposed (and consecutive buried) residues should play a role in the
formation of disordered regions and, consequently, in protein structure-function relation-
ships. The assessment of our selected feature functions coupled with ETs on the set of
proteins used in the Casp10 competition confirmed their relevance for disordered regions
prediction and also showed that our model is very competitive and performs similar pre-
dictive performance than the state-of-the-art.

Table 7.1 summarizes the feature functions that were selected for the four tasks that
we considered in our studies.

According to these results, we conclude this section by affirming that our systematic
feature family selection pipeline is a viable and robust approach to yield interpretable
information about relevant representations for protein structure inference and allows at
the same time to build predictors with state-of-the-art accuracy.
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Task Selected feature functions

Disulfide chain classification {hglobal(PSSM), hglobal(AA)}
Cysteine bonding state prediction {w(PSSM, 11), hglobal(PSSM), nC}
Disulfide pattern prediction {w(PSSM, 15), csp(17)}
Disordered regions {w(PSSM, 21), sep(SA, 21), hlocal(AA, 60), w(SS, 11)}

Table 7.1: Selected feature functions of the four tasks. The feature functions were
determined by the application of our selection algorithm on top of extremely randomized
trees, using the SPX− dataset for chain classification and cysteine bonding state predic-
tion, the SPX+ dataset for disulfide pattern prediction and the Disorder723 dataset
for disordered regions prediciton.

7.2 Perspectives

Protein structure prediction is one of the most venerable holy grails in bioinformatics.
In this manuscript, we believe that there exists an extremely complex function that given
an amino acid sequence determines a unique structure with respect to their environmental
conditions. We also believe that this function cannot be solely resumed to a search of
lowest energy.

To progress towards the prediction of tertiary structures, our long-term direction of
research is to design and apply a unified iterative multi-task architecture using annotation-
specific set of feature functions. The first section presents the unified architecture as
an extension of our iterative multi-task sequence labeling framework in which tertiary
structure is treated as any other of its surrogate annotation tasks. However, we believe
that to better encompass the physical constraints exerted on tertiary structure, we have
to introduce a refinement step, which should be based on physical force-field models.
The second section presents how this extra level should be coupled with the unified
architecture.

7.2.1 A unified architecture for protein structure prediction

The aim of the unified architecture is to share and re-estimate the predicted infor-
mation of considered tasks regardless of their structured nature. For example, Figure
7.1 illustrates this unified architecture for 10 protein annotation problems. Each of these
tasks is represented by a predictor, whose inputs are the primary structure, the predic-
tions made by the predictor of the other tasks or its own previous predictions. According
to the structured nature of the problems, we can group the prediction tasks into four
groups : global property prediction (e.g., the function of the protein and its cell localisa-
tion within the cell), sequence labeling (e.g., secondary structure, solvent accessibility and
disordered regions prediction), contact map prediction (e.g. disulfide pattern, β-bridge
alignment and residue-residue contact prediction) and tertiary structure prediction (e.g.,
conformational angles prediction or atom-coordinates prediction).

Although this architecture is very similar to our iterative multi-task sequence labeling
algorithm proposed in Chapter 4, the main difference resides in the ability to treat several
kinds of structured objects (single values, sequences, graphs, matrices, 3D structure).
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Figure 7.1: A unified architecture for protein structure prediction. Each circle
is a protein annotation predictor, whose inputs are the primary structure and the pre-
dictions made by the others tasks. The tasks are grouped according to their structured
nature.

We now detail the key-aspects that this unified architecture should satisfy.

Feature function engineering. The most important point to successfully deal with
structured objects is undoubtedly the feature generation, i.e., the manner to encode the
structured information into vector of features in order to be usable by machine learning
algorithms. In the studies presented in this manuscript, we developed a number of fea-
ture functions to describe : global properties of proteins (e.g., global label histograms and
length of proteins), residue environments (e.g., local label histograms and sliding win-
dows), residue-pair environment (e.g., interval label histograms and position difference
of residues) and cysteine-pair specific environment (e.g., cysteine separation profile).

Distinct kinds of structured objects require specific feature functions and the higher is
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the dimensionality of the structured objects, the larger is the number of possible manners
to project them into one dimensional feature vectors. Indeed, we remark that usually
objects of dimensionality d+ 1 can re-use feature functions of objects of dimensionality
d. For example, in disulfide bond prediction, a feature function that aims at describing the
cysteine-pair environment may be constructed by concatenating the residue environment
the two cysteines.

In addition to the feature functions presented in this manuscript, the development
of the unified architecture requires a new collection of feature functions able to encode
graphs, matrices, 3D coordinates or angles, and any other structures that are considered
suitable for future experiments.

Feature function selection. The second most important point to achieve an ef-
ficient unified architecture is certainly to determine the best annotation-specific set of
feature functions. Indeed, according to the results on feature function selection obtained
in Chapters 5 and 6, we now strongly believe that the inputs of each annotation problem
must be encoded using a set of feature functions, which is specific to the problem.

Note that this opinion is in contrasts with what we did in our multi-task investiga-
tions (Chapter 4), which exploited the same feature encoding scheme regardless of the
annotation problem. In this study, we have shown that learning several protein anno-
tation tasks in a multi-task context systematically outperforms single-task learning. We
therefore guess that, by carefully selecting the feature representation, the unified archi-
tecture will lead to significant improvements, in terms of predictive accuracy, on each one
of the considered tasks.

We recommend future experiments to progress towards the mapping of relevant fea-
ture functions to annotations and hence to complete Table 7.1. For this purpose, we sug-
gest to further exploit our forward feature function selection algorithm as it demonstrated
to be a viable and robust approach to yield interpretable information about relevant re-
presentations.

Two-stage feature function selection. Without using sophisticated structured
learning algorithm, the forward feature function selection method is not capable to take
advantage of the structured nature of the problem. It was typically the case in our study
about disordered regions prediction. We did not take into account the key fact that
disordered regions are segments and hence that consecutive residues tend to share the
same label.

In fact, it is important to note that the unified iterative multi-task architecture should
need two sets of feature functions per annotation task. Indeed, due to the iterative nature
of the algorithm, the joint distribution P (X ,Y) of input-output spaces of models at
first iteration and those at next iterations is different. Therefore, the feature functions
selected for a model at a first iteration, which only benefits of the primary structure and
the predictions (if they exist) made by the other predictors, and the feature functions
selected for a model at subsequent iterations, which benefits of the primary structure and
the predictions made by predictors of the previous iterations (including its own task),
may/should be different.

Until now, we have determined the feature function sets for predicting disordered
regions and disulfide bridges at the first iteration of an iterative multi-task approach. A
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Figure 7.2: Parallel iterative multi-task learning. Each step (circle) is a distinct
base-model, whose inputs are the global input x. Each pass is composed of three distinct
steps, one per task. The output is directly derived from the state at the end of the last
step.

direction for future research is therefore to establish relevant feature functions using the
predictions made by our current models with the hope to improve the predictive accuracy.

To tackle this problem, we propose the following two-stage feature function selection
protocol :

1. Apply the feature function selection algorithm on primary structure and predictions
made by the other predictors ;

2. Construct a model using the selected feature function ;
3. Make predictions ;
4. Apply the selection algorithm using additional feature function devoted to describe

the predictions made in step (3).

Another direction of future research is to evaluate more sophisticated classifiers using
the feature functions highlighted by our algorithm such as conditional random fields,
recursive neural networks or post-filtering steps.

Speed-up the multi-task algorithm. As a small improvement of our iterative
multi-task algorithm, depicted in Figure 4.1, which consists in sequentially learning base-
models one-by-one in a predefined order, we propose to parallelize each iteration (or
pass). According to the number C of cores of the computer, the number P of iterations
and the number T of tasks that the user wants to treat at each iteration, this extension
could drastically reduce the computational time from O(T.P ) to O(⌈T/C⌉.P )

Figure 7.2 illustrated a model of P iterations and three tasks in a parallel context. In
this view of the algorithm, the tasks of a same pass are independent and can be learnt
simultaneously. In few of our preliminary experiments, we did not observe significant
predictive performance differences with respect to the sequential version of the algorithm
after the two first iterations.

ETs as base-models. Note that despite the fact that several studies have shown that
tree-based ensemble methods often reach state-of-the-art results in supervised learning
(see e.g. [24]), these methods were surprisingly rarely applied to structural bioinformatics
problems yet. According to the results obtained in Chapters 5 and 6, we believe that ETs
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provide a general supervised learning approach that can be applied to a wide range
of protein related prediction problems, in particular, as a base-model for the unified
architecture.

Moreover, ETs are easy to tune (the default value of their hyper-parameters are
usually sufficient) and thanks to their use of decision trees, they benefit from good scaling
properties, making them applicable to large sets of training proteins and large sets of
features.

7.2.2 A semi-unified architecture for protein structure prediction

In the previous section, we presented the general guidelines that the unified itera-
tive multi-task architecture should satisfy to progress towards the prediction of tertiary
structures. In this perspective, the prediction of the tertiary structures of proteins is im-
plemented as any other tasks, i.e., as an iterative process that makes predictions solely
based on the primary structure and outcomes of the previous iterations.

However, this unified architecture solely relies on base-models trained by machine
learning algorithms without consideration for our knowledge of the laws of physics, in
particular the principles of thermodynamics, which mainly drive the protein folding pro-
cess. To better encompass the physical constraints exerted on tertiary structure, we the-
refore suggest a semi-unified architecture similar to what we now call the fully-unified
architecture.

Figure 7.3 illustrates a semi-unified architecture issuing from the adaptation of the
fully-unified architecture presented by Figure 7.1. The semi-unified architecture should
be composed of three key-components :

– A fully-unified architecture : An iterative multi-task architecture that tackles a
number of surrogate protein structure prediction problems.

– A protein structure predictor : A machine learning approach that creates a rough
structure from the predictions made by the fully-unified architecture.

– A refinement stage : A physical model that applies a force-field on the coarse
macromolecule structure provided by the protein structure predictor.

Since the knowledge of the tertiary structure implies the knowledge of each of its
surrogate annotations, we believe that the refined structure may strongly help to better
predict each of the surrogate problems considered in the fully-unified architecture, and
thus, lead to a more accurate seed for the refinement step. We therefore suggest to
iteratively re-inject the refined structure into the whole pipeline.
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