Sequence Alignment Practical

Presented by
Kirill Bessonov
Nov 12, 2013

Talk Structure

- Introduction to sequence alignments
- Methods / Logistics
 - Global Alignment: Needleman-Wunsch
 - Local Alignment: Smith-Waterman
- Illustrations of two types of alignments
 - step by step local alignment
- Computational implementation of alignment
 - Retrieval of sequences using R
 - Alignment of sequences using R
- Homework HW2

Sequence Alignments

Comparing two objects is intuitive. Likewise sequence pairwise alignments provide info on:

- evolutionary distance between species (e.g. homology)
- new functional motifs / regions
- genetic manipulation (e.g. alternative splicing)
- new functional roles of unknown sequence
- identification of binding sites of primers / TFs
- de novo genome assembly
 - alignment of the short "reads" from high-throughput sequencer (e.g. Illumina or Roche platforms)

Comparing two sequences

- There are two ways of pairwise comparison
 - Global using Needleman-Wunsch algorithm (NW)
 - Local using Smith-Waterman algorithm (SW)
- Both approaches use similar methodology, but have completely different objectives
 - Global alignment (NW)
 - tries to align the "whole" sequence
 - more restrictive than local alignment
 - Local alignment (SW)
 - tries to align portions (e.g. motifs) of given sequences
 - more flexible as considers "parts" of the sequence
 - works well on highly divergent sequences

Global alignment (NW)

- Sequences are aligned end-to-end along their entire length
- Many possible alignments are produced
 - The alignment with the highest score is chosen
- Naïve algorithm is very inefficient (O^{exp})
 - To align sequence of length 15, need to consider
 - Possibilities # = (insertion, deletion, gap) 15 = 3^{15} = $1.4*10^7$
 - Impractical for sequences of length >20 nt
- Used to analyze homology/similarity of entire:
 - genes and proteins
 - assess gene/protein overall homology between species

Methodology of global alignment (1 of 4)

- Define scoring scheme for each event
 - mismatch between a_i and b_i
 - $s(a_i, b_j) = -1 \text{ if } a_i \neq b_j$
 - gap (insertion or deletion)
 - $s(a_i, -) = s(-, b_i) = -2$
 - match between a_i and b_i
 - $s(a_i,b_j) = +2 \text{ if } a_i = b_j$
- Provide no restrictions on minimal score
- Start completing the alignment MxN matrix

Methodology of global alignment (2 of 4)

- The matrix should have extra column and row
 - M+1 columns , where M is the length sequence M
 - N+1 rows, where N is the length of sequence N
- Initialize the matrix by introducing gap penalty at every initial position along rows and columns
- Scores at each cell are cumulative

		W	H	Α	T
	0	-2 -2	-2 -4	-2 -6	-2 -8
W	-2				
Н	-2 v -4				
Y	- 2				

Methodology of global alignment (3 of 4)

For each cell consider all three possibilities

1)Gap (horiz/vert)

2)Match (W-W diag.) 3)Mismatch(W-H diag)

		W	/	Н		
	0	-7	2	-4		
W	-2	3 -4	2			

		W	Н
	0	-2	-4
W	-2	+2+2	

		8	Η
	0	-2.	-4
W	-2	+2	-3

 Select the maximum score for each cell and fill the matrix

		W	Н	А	Т
	0	-2	-4	-6	-8
W	-2	2	0	-2	-4
H	-4	0	4	2	0
Y	-6	-2	2	3	1

Methodology of global alignment (4 of 4)

- Select the most very bottom right cell
- Consider different path(s) going to very top left cell
 - Path is constructed by finding <u>the source cell</u> w.r.t. the current cell
 - How the current cell value was generated? From where?

		W	H	Α	Т
	0	-2	-4	-6	-8
W	-2	2	0	-2	-4
Н	-4	0	4	2	0
Y	-6	-2	2	3	— 1

		W	H	Α	Т
	0	-2	-4	-6	-8
W	-2	2	0	-2	-4
Н	-4	0	4	← 2	0
Y	-6	-2	2	3	1

WHAT
WHYOverall score = 1

WHAT
WH-Y
Overall score = 1

Select the best alignment(s)

Local alignment (SW)

- Sequences are aligned to find <u>regions</u> where the best alignment occurs (i.e. highest score)
- Assumes a local context (aligning parts of seq.)
- Ideal for finding short motifs, DNA binding sites
 - helix-loop-helix (bHLH) motif
 - TATAAT box (a famous promoter region) DNA binding site
- Works well on <u>highly divergent</u> sequences
 - Sequences with highly variable introns but highly conserved and sparse exons

Methodology of local alignment (1 of 4)

- The scoring system is similar with one exception
 - The minimum possible score in the matrix is zero
 - There are no negative scores in the matrix
- Let's define the same scoring system as in global

```
1) mismatch between a_i and b_j 2) gap (insertion or deletion) s(a_i,b_j) = -\mathbf{1} \text{ if } a_i \neq b_j \qquad s(a_i,-) = s(-,b_j) = -\mathbf{2} 3) match between a_i and b_j s(a_i,b_j) = +\mathbf{2} \text{ if } a_i = b_j
```

Methodology of local alignment (2 of 4)

- Construct the MxN alignment matrix with M+1 columns and N+1 rows
- Initialize the matrix by introducing gap penalty at 1st row and 1st column

		W	Н	А	Т
	0	→ 0	→ 0	→ 0	→ 0
W	0				
Н	Q				
Y	0				

Methodology of local alignment (3 of 4)

- For each subsequent cell consider all possibilities (i.e. motions)
 - 1) Vertical 2)Horizontal 3)Diagonal
- For each cell select the highest score
 - If score is negative → assign zero

		W	Н	Α	Т
	0	0	0	0	0
W	0	2	0	0	0
Н	0	0	4	2	0
Y	0	0	2	3	1

Methodology of local alignment (4 of 4)

- Select the <u>initial</u> cell with the <u>highest score(s)</u>
- Consider different path(s) leading to score of zero
 - Trace-back the cell values

- Look how the values were originated (i.e. path)

- Mathematically $M(A,B) = \max\{S(I,J) : I \subset A, J \subset B\}$
 - where S(I, J) is the score for sub-sequences I and J

Local alignment illustration (1 of 2)

- Determine the best local alignment and the maximum alignment score for
- Sequence A: ACCTAAGG
- Sequence B: GGCTCAATCA
- Scoring conditions:

$$-s(a_i, b_j) = +2 \text{ if } a_i = b_j,$$

 $-s(a_i, b_j) = -1 \text{ if } a_i \neq b_j \text{ and}$
 $-s(a_i, -) = s(-, b_i) = -2$

Local alignment illustration (2 of 2)

		G	G	С	Т	С	А	А	Т	С	Α
	0	0	0	0	0	0	0	0	0	0	0
A	0	0	0	0	0	0	2	2	0	0	2
C	0	0	0	2	0	2	0	1	1	2	0
С	0	0	0	2	1	2	1	0	0	2	1
Т	0	0	0	0	4	2	1	0	2	0	1
A	0	0	0	0	2	3	4	3	1	1	2
A	0	0	0	0	0	1	5	6	4	2	3
G	0	2	2	0	0	0	3	4	5	3	1
G	0	2	4	1	0	0	1	2	3	4	2

Local alignment illustration (3 of 3)

		G	G	С	Т	С	Α	Α	Т	C	Α
	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	0	0	0	0	2	2	0	0	2
C	0	0	0	2	0	2	0	1	1	2	0
C	0	0	0	* 2	1	2	1	0	0	2	1
Т	0	0	0	0	4 4	* 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	0	2	0	1
Α	0	0	0	0	2	3	4	ω	1	1	2
Α	0	0	0	0	0	1	5	*/ 0	4	2	3
G	0	2	2	0	0	0	3	4	5	3	1
G	0	2	4	1	0	0	1	2	3	4	2

CTCAA

GGCTCAATCA

CT-AA

ACCT-AAGG

Best score:

in the whole seq. context

Aligning proteins Globally and Locally

Protein Alignment

- Protein local and global alignment follows the same rules as we saw with DNA/RNA
- Differences
 - alphabet of proteins is 22 residues long
 - special scoring/substitution matrices used
 - conservation and protein proprieties are taken into account
 - E.g. residues that are totally different due to charge such as polar Lysine and apolar Glycine are given a low score

Substitution matrices

- Since protein sequences are more complex, matrices are collection of scoring rules
- These are 2D matrices reflecting comparison between sequence A and B
- Cover events such as
 - mismatch and perfect match
- Need to define gap penalty separately
- Popular BLOcks SUbstitution Matrix (BLOSUM)

BLOSUM-x matrices

- Constructed from aligned sequences with specific x% similarity
 - matrix built using sequences with no more then
 50% similarity is called **BLOSUM-50**

- For highly mutating / dissimilar sequences use
 - BLOSUM-45 and lower
- For highly conserved / similar sequences use
 - BLOSUM -62 and higher

BLOSUM 62

- What diagonal represents? perfect match between a.a.
- What is the score for substitution E→D (acid a.a.)? Score = 2
- More drastic substitution K→I (basic to non-polar)? Score = -3

Kirill Bessonov

Practical problem:

Align following sequences both globally and locally using BLOSUM 62 matrix with gap penalty of -8

Sequence A: AAEEKKLAAA

Sequence B: AARRIA

slide 24

Aligning globally using BLOSUM 62

		Α	Α	E	E	K	K	L	Α	Α	Α
	0	-8	-16	-24	-32	-40	-48	-56	-64	-72	-80
A	-8	4	-4	-12	-20	-28	-36	-44	-52	-60	-68
A	-16	-4	8	← 0	← -8	-16	-24	-32	-40	-48	-56
R	-24	-12	0	8	0	-6	-14	-22	-30	-38	-46
R	-32	-20	-8	0	8	2	4	-12	-20	-28	-36
	-40	-28	-16	-8	0	5	-1	-2	-10	-18	-26
A	-48	-36	-24	-16	-8	-1	4	-2	2	← -6	- -14

AAEEKKLAAA

AA--RRIA--

Score: -14

Other alignment options? Yes

Aligning locally using BLOSUM 62

		А	А	E	E	K	K	L	А	Α	Α
	0	0	0	0	0	0	0	0	0	0	0
Α	0	4	4	0	0	0	0	0	4	4	4
Α	0	4	8	3	0	0	0	0	4	8	8
R	0	0	3	8	3	2	2	0	0	3	7
R	0	0	0	3	8	5	4	0	0	0	2
	0	0	0	0	0	5	2	6	0	0	0
Α	0	4	4	0	0	0	4	1	10	4	4

KKLA

RRIA

Score: 10

Using R for:

Sequence Retrieval and Analysis

Protein database UniProt

- UniProt database (http://www.uniprot.org/) has high quality protein data manually curated
- It is manually curated

Protein Knowledgebase (UniProtKB) V

• Each protein is assigned UniProt ID

UniProt

Search Blast Align Retrieve ID Mapping

Search in Query

Q9CD83

Kirill Bessonov slide 27

Search

Clear

Advanced Search »

Retrieving data from UniProt

- In search field one can enter either use <u>UniProt ID</u> or <u>common protein name</u>
 - example: myelin basic protein

• We will use retrieve data for P02686

Understanding UniProt fields

Information is divided into categories

Click on 'Sequences' category and then FASTA

FASTA format

- FASTA format is widely used and has the following parameters
 - Sequence name start with > sign
 - The fist line corresponds to protein name

>sp|P02686|MBP_HUMAN Myelin basic protein OS=Homo sapiens GN=MBP PE=1 SV=3

MGNHAGKRELNAEKASTNSETNRGESEKKRNLGELSRTTSEDNEVFGEADANQNNGTSSQ
DTAVTDSKRTADPKNAWQDAHPADPGSRPHLIRLFSRDAPGREDNTFKDRPSESDELQTI
QEDSAATSESLDVMASQKRPSQRHGSKYLATASTMDHARHGFLPRHRDTGILDSIGRFFG
GDRGAPKRGSGKDSHHPARTAHYGSLPQKSHGRTQDENPVVHFFKNIVTPRTPPPSQGKG
RGLSLSRFSWGAEGQRPGFGYGGRASDYKSAHKGFKGVDAQGTLSKIFKLGGRDSRSGSP
MARR

Retrieving protein data with R and SeqinR

- Can "talk" programmatically to UniProt database using R and seqinR library
 - seqinR library is suitable for
 - "Biological Sequences Retrieval and Analysis"
 - Detailed manual could be found <u>here</u>
 - Install this library in your R environment install.packages("seqinr") library("seqinr")
 - Choose database to retrieve data from choosebank ("swissprot")
 - Download data object for target protein (P02686) query ("MBP HUMAN", "AC=P02686")
 - See sequence of the object MBP_HUMAN

 MBP HUMAN seq = getSequence (MBP HUMAN); MBP HUMAN seq

Dot Plot (comparison of 2 sequences) (1of2)

- 2D way to find regions of similarity between two sequences
 - Each sequence plotted on either vertical or horizontal dimension
 - If two a.a. from two sequnces at given positions are identical the dot is plotted
 - matching sequence segments appear as diagonal lines (that could be parallel to the absolute diagonal line if insertion or gap is present)

Dot Plot (comparison of 2 sequences) (2of2)

INSERTION in MBP-Human or GAP in MBP-Mous

- Let's compare two protein sequences
 - Human MBP (Uniprot ID: P02686)
 - Mouse MBP (Uniprot ID: P04370)
- Download 2nd mouse sequence

```
query("MBP_MOUSE", "AC=P04370");
MBP_MOUSE_seq = getSequence(MBP_MOUSE);
```

Breaks in diagonal line = regions of dissimilarity \checkmark

Shift in diagonal line (identical regions)

Visualize dot plot
dotPlot(MBP_HUMAN_seq[[1]], MBP_MOUSE_seq[[1]], xlab="MBP - Human", ylab = "MBP - Mouse")

- Is there similarity between human and mouse form of MBP protein?
- Where is the difference in the sequence between the two isoforms?

Using R and Biostrings library for:

Pairwise global and local alignments

Installing Biostrings library

Install library from Bioconductor

```
source("http://bioconductor.org/biocLite.R")
biocLite("Biostrings")
library(Biostrings)
```

Define substitution martix (e.g. for DNA)

```
DNA_subst_matrix = nucleotideSubstitutionMatrix (match = 2, mismatch = -1, baseOnly = TRUE)
```

The scoring rules

- Match: $s(a_i, b_j) = 2$ if $a_i = b_j$
- Mismatch : $s(a_i, b_j)$ = -1 if $a_i \neq b_j$
- Gap: $s(a_i, -) = -2 \text{ or } s(-, b_i) = -2$

DNA_subst_matrix

Global alignment using R and Biostrings

Create two sting vectors (i.e. sequences)

```
seqA = "GATTA"
seqB = "GTTA"
```

Use pairwiseAlignment() and the defined rules

Visualize best paths (i.e. alignments)

```
globalAlignAB
```

```
Global PairwiseAlignedFixedSubject (1 of 1)
pattern: [1] GATTA
subject: [1] G-TTA
score: 2
```

Local alignment using R and Biostrings

Input two sequences

```
seqA = "AGGATTTTAAAA"
seqB = "TTTT"
```

 The scoring rules will be the same as we used for global alignment

Visualize alignment

```
globalAlignAB
Local PairwiseAlignedFixedSubject (1 of 1)
pattern: [5] TTTT
subject: [1] TTTT
score: 8
```

Aligning protein sequences

Protein sequences alignments are very similar except the substitution matrix is specified

```
data(BLOSUM62)
BLOSUM62
```

Will align sequences

```
seqA = "PAWHEAE"
seqB = "HEAGAWGHEE"
```

Execute the global alignment

Summary

- We had touched on practical aspects of
 - Global and local alignments
- Thoroughly understood both algorithms
- Applied them both on DNA and protein seq.
- Learned on how to retrieve sequence data
- Learned on how to retrieve sequences both with R and using UniProt
- Learned how to align sequences using R

Resources

- Online Tutorial on Sequence Alignment
 - http://a-little-book-of-r-forbioinformatics.readthedocs.org/en/latest/src/chapter4.html
- Graphical alignment of proteins
 - http://www.itu.dk/~sestoft/bsa/graphalign.html
- Pairwise alignment of DNA and proteins using your rules:
 - http://www.bioinformatics.org/sms2/pairwise_align_dna.html
- Documentation on libraries
 - Biostings: http://www.bioconductor.org/packages/2.10/bioc/manuals/Biostrings/man/Biostrings.pdf
 - SeqinR: http://seqinr.r-forge.r-project.org/seqinr 2 0-7.pdf

Homework – HW2

Homework 2 – literature style (type 1)

You are asked to **analyze critically** by writing a report and **present** one of the following papers in a group:

- 1. Day-Williams AG, Zeggini E **The effect of next-generation sequencing technology on complex trait research**. Eur J Clin Invest. 2011 May;41(5):561-7
 - A review paper on popular NGS under the context of genetics of complex diseases
- 2. Do R, Exome sequencing and complex disease: practical aspects of rare variant association studies. Hum Mol Genet. 2012 Oct 15;21(R1):R1-9
 - A more technical paper on how deep sequencing can help in association studies of rare variants to disease phenotypes under context of statistical genetics
- 3. Hurd PJ, Nelson CJ. **Advantages of next-generation sequencing versus the microarray in epigenetic research**. Brief Funct Genomic Proteomic. 2009 May;8(3):174-83
 - An overview paper describing on how NGS technology can be used in the context of epigenetic research. NGS technology described in detail
- 4. Goldstein DB. **Sequencing studies in human genetics: design and interpretation. Nat Rev Genet**. 2013 Jul;14(7):460-70 (password protected)
 - This paper describes on how NGS could be interpreted and contrasted to GWAS. The paper focuses on functional interpretation of genetic variants found in the data

Homework 2 – computer style (type 2)

- You would implement the Needleman— Wunsch global alignment algorithm in R
 - Follow the pseudo-code provided
 - Will translate it into R
 - Will understand alignment in-depth
 - Provide copy of your code and write a short report
 - Report should contain information on scoring matrix and rules used
 - Example sequences used for alignment
 - In code use comments (# comment)

Homework 2 – Q&A style (type 3)

- Here you would need to answer questions
 - Complete the local and global alignment of DNA and protein sequences graphically
 - Use seqinR library to retrieve protein sequences
 - Use Biostrings library to do alignment of sequences
 - Complete missing R code
 - Copy output from R as a proof
 - Calculate alignment scores

Feedback on HW1

HW 1a feedback

- Some almost confused the name of the disease abbreviation with the disease associated genes (e.g. HDL syndromes has no HDL1 gene but PRNP gene is associated with HDL1)
- Some printed the whole genome sequence around the disease gene, but your were asked to print only the protein coding region (CDS)
- Would be nice to get more screen snapshots and see the search query used to find articles
 - From HW1a: "Provide below the search key words used to obtain the results"

HW 2b feedback

- Computer style (type 2):
 - Good analysis on gene level with literature searches
 - Could of addressed results variation before and after cleaning data. What is overlap in results before and after QC?
 - Would be nice to have top 10 SNPs and corresponding p-values before and after cleaning
 - Overall, well done
- Q&A style (type 2)
 - The issue of loading *.phe and *.raw files
 - Set working directory in R where these files are located via
 setwd()
 - Check current location by getwd()