
University of Liège

Faculty of Applied Sciences

Montefiore Institute

Thesis for the Degree of Master in
Computer Engineering

Imitative learning for designing

intelligent agents for video games

Author:
Quentin Gemine

Supervisor:
Prof. Damien Ernst

Academic Year 2011-2012

Acknowledgements

I would like to acknowledge my supervisor Prof. Damien Ernst who
let me pursue one of my main interests by approving the topic of this
master’s thesis and who gave me crucial advice.

I wish to thank Firas Safadi, PhD student in computer science at the
University of Liège, who has been very helpful and assisted me in
many ways. His work on the scientific paper resulting of this master’s
thesis has been very decisive.

I am also grateful to Raphael Fonteneau, postdoctoral researcher at
Inria Lille - Nord Europe, for his help with the scientific.

Abstract

Over the past decades, video games have become increasingly popular
and complex. Virtual worlds have gone a long way since the first
arcades and so have the artificial intelligence (AI) techniques used
to control agents in these growing environments. Tasks such as world
exploration, constrained pathfinding or team tactics and coordination
just to name a few are now default requirements for contemporary
video games. However, despite its recent advances, video game AI
still lacks the ability to learn. In this work, we attempt to break
the barrier between video game AI and machine learning and propose
a generic method allowing real-time strategy (RTS) agents to learn
production strategies from a set of recorded games using supervised
learning. We test this imitative learning approach on the popular
RTS title StarCraft II R© and successfully teach a Terran agent facing
a Protoss opponent new production strategies.

Contents

Contents iii

1 Introduction 1
1.1 Video Games . 1
1.2 RTS Games . 1
1.3 Bots in RTS Games . 2
1.4 Goal . 3
1.5 Related Work . 4
1.6 Structure of the Thesis . 5

2 Theory 7
2.1 Problem Statement . 7

2.1.1 State Vector . 7
2.1.2 Production Variables . 8
2.1.3 Variables Relating to Opponents 8
2.1.4 Other Variables . 10
2.1.5 Action Vector . 10
2.1.6 Problem Formalization . 10

2.2 Learning Architecture . 11
2.2.1 Hypothesis . 11
2.2.2 Imitative Learning . 11

2.3 Prediction Process . 12
2.3.1 Consistency . 13
2.3.2 Predictability and Resource Constraints 13
2.3.3 Distinct Development Paths 13

3 Application 15
3.1 StarCraft II . 15
3.2 Game Configuration . 16
3.3 State Vector . 17

3.3.1 Production Variables . 17

iii

CONTENTS CONTENTS

3.3.2 Opponent’s Technological Tree 18
3.3.3 Other Relevant Variables 18

3.4 Recording States . 19
3.4.1 State Update . 20
3.4.2 Log Files . 21

3.5 Dataset Generation . 21
3.5.1 Ideal Dataset . 21
3.5.2 Chosen Dataset . 22

3.6 Learning Algorithm . 23
3.6.1 Requirements . 23
3.6.2 Neural Networks . 24
3.6.3 Learning Parameters . 25

3.6.3.1 Scaling . 26
3.6.3.2 Weight Updating 26

3.6.4 Model Performance . 27
3.7 Strategy Classification . 27

3.7.1 Build Order . 28
3.7.2 Clustering Space . 29
3.7.3 Clustering Algorithm . 29
3.7.4 Clustering Procedure . 30

4 Results 32
4.1 Experimental Protocol . 32
4.2 Win Rate Comparison . 32
4.3 Strategy Comparison . 33

5 Conclusion and Future Work 38

A Implementation Details 40
A.1 Automatization . 40
A.2 Galaxy Editor . 41
A.3 Statistical Models . 42

A.3.1 Importation . 42
A.3.2 Prediction . 44

A.4 Production Management . 45
A.5 Combat Management . 48

B Screenshots 49

C Scientific Paper 53

Bibliography 60

iv

Chapter 1

Introduction

1.1 Video Games

Video games started emerging about 40 years ago. Their purpose is to bring
entertainment to the people by immersing them in virtual worlds. The rules
governing a virtual world and dictating how players can interact with objects or
with one another are referred to as game mechanics.

The first video games were very simple because they were limited to small 2-
dimensional discrete spaces and to only a few mechanics with one or two players at
most. Developing agents capable of autonomously playing these games required
thus no more than some simple scripted procedures. However, recent video games
feature large 3-dimensional spaces, hundreds of mechanics and allow many players
and agents to play together. These games seem therefore to be useful for assessing
the performance of autonomous agents in complex environments.

1.2 RTS Games

Real-time strategy (RTS) is one of the most complex genre of video games. The
game area is a battlefield where - to achieve victory - players have to develop in
parallel their economy, military power and technology advancement. A player’s
economy dictates the gathering rate of his resources which are required for every
production or upgrade. A player does not have an infinite amount of resources and
he thus has to make compromises to spend them. Investing in economy leads to
an increase in the future production capacity but improving the army is required

1

1.3. BOTS IN RTS GAMES CHAPTER 1. INTRODUCTION

too to be able to face opponents’ attacks and to destroy their bases. Technological
development cannot be forgotten because it provides key advantages against less
evolved opponents.

Even if the final goal is the military superiority, neglecting either of these three
sectors would induce lacks that are often decisive in the race to victory. Players
usually try to gain a substantial advantage in military power and technology
during a short time window to beat their opponents. As it requires a lot of
investment, a player that would not have made enough damage during his time
window would most probably fall behind and be overwhelmed in the following of
the game. The management of the production and the strategical decisions are
part of what is called macromanagement in RTS terminology.

On the other hand, micromanagement refers to operational needs relating to
individual units or to small squads. While some units are very strong against
others, they can be weak when they have to face specific counters. Positioning
units on the battlefield during a fight is therefore a key component of the mi-
cromanagement. A player has to move his units precisely and quickly to save
damaged ones in order to benefit for as long as possible from their firepower.
A lack of focus on unit management could result in a defeat despite a numeric
superiority.

As the game evolves in real-time, decisions and executions have to be per-
formed as quickly as possible to avoid wasting precious time. It is one of the
more challenging genres because elaborate skills such as multitasking, obser-
vation, decision-making and dexterity are required. Recent RTS games are so
complex that scientists have acknowledged them as a new tool for the study of
cognitive processes [1].

1.3 Bots in RTS Games

When developing agents for RTS games (bots), the common way to deal with
the complexity of the environment is to restrict the number of behaviors that
the artificial agent can have. Indeed, as each situation and action has to be
scripted, limiting the number of possible situations in which the agent can be in is
inevitable. Early game is usually handled by choosing randomly between a small
set of sequences of production orders that are known to have a decent efficiency
against a significant number of strategies. However, some key events cannot be
neglected by the agents and a trigger-based approach has to be used in parallel
to the sequence of production orders. Some thresholds are defined on measures of
relevant game elements in order to trigger a reaction in the agent’s behavior. As

2

1.4. GOAL CHAPTER 1. INTRODUCTION

every game situation cannot be considered in advance, a lot of information specific
to the game has to be discarded to enable a generic processing of these events.
As a result, all these abstractions lead to strongly game-dependent mechanisms
and a lack of efficiency.

Developing agents in a fully scripted way restricts them to follow only a small
subset of possible strategies. As experienced human players can easily recognize
which strategy is followed by an opponent if it does not change often enough,
the behavior of bots is therefore quite deterministic. Furthermore, new counters
are often discovered in such complex games and some strategies become obsolete
while others are found. Agents with static behavior are thus quickly outdated
and even less challenging over time.

Artificial agents in RTS games are outperformed by the human cognitive abili-
ties. While human players cannot compete with the impressive multi-tasking and
dexterity skills of the agents, they still defeat computer players thanks to their
strong strategic capacities. In addition to the limited challenge that such agents
offer, their consistency is also quite limited as a lot of elements are not taken into
account.

1.4 Goal

This work suggests and tests a generic design able of learning to handle all the
production orders of an artificial agent for RTS games. A production order can
target a building, a unit or a technology which means that the production man-
ager significantly influences the behavior of the agent. Indeed, the production
of workers and harvesting structures determines its economy while the construc-
tion of production buildings determines its production capacity. Moreover, the
production of units defines the size of the army and its composition.

While micromanagement can efficiently be handled by scripted agents with
a sufficient number of rules, strategic aspects have still not been efficiently ad-
dressed by current bots. This lack is probably due to the absence of any substitute
to the human cognitive abilities. Imitative learning based on supervised learning
is attempted as such a substitute for production decisions.

For testing purposes, the designed agent is then implemented for the popular
RTS title StarCraft II R© and the results are discussed.

3

1.5. RELATED WORK CHAPTER 1. INTRODUCTION

1.5 Related Work

Lately, the video game industry has attracted substantial research work for the
purpose of developing new technologies to boost entertainment and replay value
or simply because modern video games have become an alternate, low-cost yet
rich environment for assessing machine learning algorithms.

We could distinguish two main goals in video game AI research. Some work
aims at creating agents with properties that make them more fun to play with
such as human-like behavior. This is usually attempted on games for which agents
capable of challenging skilled human players already exist. This is necessary be-
cause agents usually manage to rival human players due to unfair advantages such
as instant reaction time or perfect aim. These features increase performance at
the cost of frustrating human opponents. For more complicated games, agents
do not have any chance against skilled human players and improving their per-
formance is the priority. Performance similar to what humans can achieve can
therefore be seen as a prerequisite to entertainment. Indeed, facing a too weak
or too strong opponent is not usually diverting. This concept is illustrated in
Figure 1.1. In both cases, video game AI research advances towards the ulti-
mate goal of mimicking human intelligence. It has actually been suggested that
human-level AI can be pursued directly in these new virtual environments [2].

ultimate goal of mimicking human intelligence. It was in
fact suggested that human-level AI can be pursued directly
in these new virtual environments [1].

GE

GP

G

Fig. 1. Agent set structure for a video game; GE ⇢ GP ⇢ G where GE

is the set of agents the player finds entertaining, GP is the set of agents
that can rival the player’s performance and G is the set of all agents.

The problem of human-like agent behavior has been
tackled in first-person shooter (FPS) games, most notably
the popular and now open-source game Quake II R�, using
imitative learning. Using clustering by vector quantization to
organize recorded game data and several neural networks,
more natural movement behavior as well as switching be-
tween movement and aim was achieved in Quake II [2].
Human-like behavior was also approached using dedicated
neural networks for handling weapon switching, aiming and
firing [3]. Further work discussed the possibility of learning
from humans at all levels of the game, including strategy,
tactics and reactions [4].

While human-like agent behavior was being pursued,
others were more concerned with performance issues in
genres like real-time strategy (RTS) where the action space
is too large to be thoroughly exploited by generic triggers.
Classifiers based on neural networks, Bayesian networks and
action trees assisted by quality threshold clustering were
successfully used to predict enemy strategies in StarCraft
[5]. Case-based reasoning has also been employed to identify
strategic situations in Wargus, an open-source Warcraft II R�

clone [6, 7, 8]. Other works resorted to data mining and
evolutionary methods for strategy planning and generation
[9, 10]. Non-learning agents were also proposed [11]. By
clearly identifying and organizing tasks, architectures allow-
ing incremental learning integration at different levels were
developed [12].

Although several different learning algorithms were ap-
plied in RTS environments, none were actually used to
dictate agent behavior directly. In this paper, we use imitative
learning to teach a StarCraft II agent to autonomously pass
production orders. The created agent building, unit and
technology production is entirely governed by the learning
algorithm and does not involve any scripting.

III. REAL-TIME STRATEGY

In a typical RTS game, players confront each other on a
specific map. The map is essentially defined by a combina-
tion of terrain configuration and resource fields. Once the

game starts, players must simultaneously and continuously
acquire resources and build units in order to destroy their
opponents. Depending on the technologies they choose to
develop, players gain access to different unit types each
with specific attributes and abilities. Because units can be
very effective against others based on their type, players
have to constantly monitor their opponents and determine
the combination of units which can best counter the enemy’s
composition. This reconnaissance task is referred to as scout-
ing and is necessary because of the “fog of war”, which
denies visibility to players over areas where they have no
units deployed.

Often, several races are available for the players to choose
from. Each race possesses its own units and technologies and
is characterized by a unique play style. This further adds to
the richness of the environment and multiplies mechanics.
For example, in StarCraft II players can choose between
the Terrans, masters of survivability, the Zerg, an alien race
with massive swarms, or the Protoss, a psychically advanced
humanoid species.

Clearly, players are constantly faced with a multitude of
decisions to make. They must manage economy, production,
reconnaissance and combat all at the same time. They must
decide whether the current income is sufficient or new
resource fields should be claimed, they must continuously
gather information on the enemy and produce units and
develop technologies that best match their strategies. Ad-
ditionally, they must swiftly and efficiently handle units in
combat.

When more than two players are involved, new diplomacy
mechanics are introduced. Players may form and break
alliances as they see fit. Allies have the ability to share
resources and even control over units, bringing additional
management elements to the game.

Finally, modern RTS games take the complexity a step
further by mixing in role-playing game (RPG) mechanics.
Warcraft III R�, an RTS title also developed by Blizzard
Entertainment, implements this concept. Besides regular unit
types, heroes can be produced. Heroes are similar to RPG
characters in that they can gain experience points by killing
critters or enemy units to level up. Leveling up improves
their base attributes and grants them skill points which can
be used to upgrade their special abilities.

With hundreds of units to control and dozens of different
unit types and special abilities, it becomes obvious why the
RTS genre stands on top in terms of overall complexity.

IV. PROBLEM STATEMENT

The problem of learning production strategies in an RTS
game can be formalized as follows.

Consider a fixed player u. A world vector w 2 W is a
vector describing the entire world at a particular time in the
game. An observation vector o 2 O is the projection of w
over an observation space O describing the part of the world
perceivable by player u. We define a state vector s 2 S
as the projection of o over a space S by selecting variables
deemed relevant to the task of learning production strategies.

Figure 1.1: Agent set structure for a video games : GE ⊂
GP ⊂ G where GE is the set of agents the player finds
entertaining, GP is the set of agents that can rival the
player’s performance and G is the set of all agents.

Developing an agent with a human-like behavior has been attempted in first-
person shooter (FPS) games, most notably the popular and now open-source game
Quake II R©, using imitative learning. Using clustering by vector quantization to

4

1.6. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

organize recorded game data and several neural networks, more natural movement
behavior as well as switching between movement and aim was achieved in Quake
II [3]. Human-like behavior was also approached using dedicated neural networks
for handling weapon switching, aiming and firing [4]. Further work discussed the
possibility of learning from humans at all levels of the game, including strategy,
tactics and reactions [5].

While human-like agent behavior was being pursued, others were more con-
cerned with performance issues in genres like real-time strategy (RTS) where the
action space is too large to be thoroughly exploited by generic triggers. Classi-
fiers based on neural networks, Bayesian networks and action trees assisted by
quality threshold clustering were successfully used to predict enemy strategies in
StarCraft [6]. Case-based reasoning has also been employed to identify strate-
gic situations in Wargus, an open-source Warcraft II R© clone [7, 8, 9]. Other
works resorted to data mining and evolutionary methods for strategy planning
and generation [10, 11]. Non-learning agents were also proposed [12]. By clearly
identifying and organizing tasks, architectures allowing incremental learning in-
tegration at different levels were developed [13].

Although several different learning algorithms were applied in RTS environ-
ments, none were actually used to dictate agent behavior directly. In this work,
we use imitative learning to teach a StarCraft II agent to autonomously pass
production orders. The created agent building, unit and technology production
is entirely governed by the learning algorithm.

1.6 Structure of the Thesis

This thesis is structured as follows. Chapter 2 (Theory) describes how to model
the environment of the agent and how to benefit of this representation to use a
supervised learning algorithm. The application of the proposed design to Star-
Craft II is then detailed in Chapter 3 where the chosen learning procedure is
also specified. In Chapter 4 (Results), the performance of the agent is analyzed
and the similarity between the strategies in the dataset and those that have been
performed by the trained agent is measured thanks to clustering. We finally con-
clude and discuss future work that could enhance the design and its applications
(Chapter 5).

Moreover, an appendix describes the implementation details of the agent for
Stracraft II and another collects screenshots of the agent playing a game. An
archive containing the Matlab R© code, the data files used for learning purposes

5

1.6. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

and the source code of the developed agent can be found at http://www.gemine.
net/tfe.zip.

Given the innovative aspect of this work and the quite interesting results that
were achieved with the proposed design, a scientific paper has been written to
present the generic design developed in this work. The paper has been submitted
to CIG 2012, a IEEE conference in Computational Intelligence in the video games
environment. This paper is joined as an appendix at the end of this document.

6

http://www.gemine.net/tfe.zip
http://www.gemine.net/tfe.zip

Chapter 2

Theory

2.1 Problem Statement

This section presents a way to model as a vector the agent’s environment in
a RTS game. Starting from the whole game state, this vector is incrementally
refined to limit information to that which is interesting for a production manager.
The problem of learning production strategies is finally formalized thanks to the
modeling that has been established.

2.1.1 State Vector

At a given time, the state of a game can be described by a vector with enough
components to contain all the information about the game. We call it a world
vector w ∈ W withW the entire game space in which every possible state can be
represented. In other words, it should be possible to resume a game at any time
considering only the world vector recorded at this time. Given the complexity of
current RTS games, such a space is likely to be very large.

However, a player does not usually have access to the entire game state be-
cause some information is exclusive to each player. The observation space O
representing the observable information for a player is therefore a subspace of
W . We thus define an observation vector o ∈ O with O ⊂ W . Futhermore,
a player cannot always observe all the information he has potentially access to.
The current knowledge of a player is actually limited by his vision of the field
provided by his units given their limited area of view. Some components of an

7

2.1. PROBLEM STATEMENT CHAPTER 2. THEORY

observation vector specific to a player may therefore no longer be up to date with
the actual game state according to his current knowledge.

Considering the whole observation space does not seem relevant for learning
production orders because all the components of this vector are not correlated
with production. As we focus on the production management, the state space S
taken into account to learn and predict can therefore be limited to a subspace of
the observation space deemed relevant to production. We define the state vector

s = (s1, s2, ..., sn)

as the projection of o in S.

2.1.2 Production Variables

Some components of the state vector must necessarily relate directly to the build-
ings and units the player has to produce and to the technologies he has to research.
We define these components as natural numbers that indicate the current number
of every building type that the player currently has and the cumulative number
of each unit type he has produced since the beginning of the game. Components
dedicated to technologies are binary variables that indicate whether they have
been researched or not.

If the cumulative number is chosen concerning units, it is because the current
number would be too much correlated to events unrelated to production. The
battles that occur during a game have indeed a high impact on the current number
of units. Having only a few units of a given type can be due to a small production
or to many losses in battle.

We called these variables production variables and we denote them by spi to
distinguish them among the components si of s. Considering a state vector that
contains m ∈ N production variables, we have

spi ∈ N and spi ∈ {sk}

with i ∈ {1, 2, ...,m} and {sk} the set of the components of s.

2.1.3 Variables Relating to Opponents

A number of components of the state vector have to relate to the opponent. As
mentioned earlier, some of these components could be inconsistent with the real

8

2.1. PROBLEM STATEMENT CHAPTER 2. THEORY

state of the game if their value changed since it was last observed by the player.
That is why this information should be represented in a robust way.

To reach this goal, the information should be restricted to abstract measures
of the opponent state. In this matter, a technological tree seems to be a suitable
representation of the knowledge referring to the opponent. Nodes of a techno-
logical tree represent a building, unit or technology of the player and it enables
to highlight his technological development (Figure 2.1). Indeed, some buildings,
units and technologies are usually only available if some other requirements have
been built, produced or researched. As there can be several requirements to
unlock one node, technological trees are actually directed acyclic graphs.

Figure 2.1: Technological tree restrained
to buildings for the Protoss race in Star-
Craft 2.

Such a representation can be stored in a vector by using a component for each
node. If a node has been reached by a player, it can be represented by 1 or else
by 0. The structure of the acyclic graph does not have to be stored in the state
vector because this information does not change during a game.

9

2.1. PROBLEM STATEMENT CHAPTER 2. THEORY

The technological tree will therefore be updated every time that the player
observes a new building, unit or technology belonging to his opponent. As de-
velopment is all about compromise, knowing the current technological tree gives
a good estimation of the strategy followed by the opponent. The time at which
a node has been reached is a crucial information because it shows how much a
player has spent of his resources in that direction of development. Given that,
it is in the agent’s interest to collect as frequently as possible information on his
opponent.

2.1.4 Other Variables

The remaining components of s correspond to relevant player information. Be-
sides production variables, knowing what is the current gathering rate of each
resource is obviously interesting to choose what has to be produced or researched.
The time elapsed since the beginning of the game is a crucial information too.
Other variables will depend on the specific game for which the agent is designed.

2.1.5 Action Vector

As production variables are the amount of every object in the game relating to
production strategy, they are the components of s that have to be modified by
the agent’s production manager. If the agent wants to produce a new building
or unit for which its current amount is the value of spk , it will therefore have to
perform an action to increment spk . If it wants to research a new technology, it
will have to set the corresponding production variable to 1.

Considering m ∈ N production variables, the production orders can thus be
represented by an action vector

a = (a1, a2, ..., am)

defined in an action space A which has as many dimensions as there are pro-
duction variables. Every component ak of the action vector is actually a natural
number that indicates by how much spk needs to be increased.

2.1.6 Problem Formalization

The problem of learning production strategies in a RTS game can be formalized
as finding a relation

P : S → A

10

2.2. LEARNING ARCHITECTURE CHAPTER 2. THEORY

that determines an action vector given the state vector of the game. Indeed, if
the agent can determine a = P (s), it knows how many buildings and units of
each type it has to produce and which technologies it has to research. This action
vector has to be transformed in actual game actions that result in an update of
the production variables within the state vector as follows

spk ← spk + ak

with k ∈ {1, 2, ...,m}.

2.2 Learning Architecture

2.2.1 Hypothesis

We will assume that a set of recorded games is available for the learning process.
Each recorded game has to contain state vectors recorded at many different times.
These state vectors can result from a state dump at a fixed and short interval
which is the same for every recorded game.

2.2.2 Imitative Learning

For the learning of production strategies, we consider that the available games
have been played by an expert. No further assumptions are made about the
quality of this dataset. The objective is therefore to learn a relation P : S → A
that fits at best the production strategies used in the games.

During a game, a player has to manage consistently every aspect of the game
to carry out a strategy. This creates correlation between components of s be-
cause fixing the value of some si will restrain the possible values of other ones.
Knowing this, it might be possible to determine - or at least to estimate - the
value of some si thanks to {sk|k 6= i}. We thus propose a procedure based on
supervised learning with only the state vectors to perform imitative learning on
the production strategies.

Given a vector
s−pj = (s1, s2, ..., spj−1, spj+1, ..., sn)

which is the state vector without the component spj , we define a function Pj such
that

Pj(s−pj) = spj

11

2.3. PREDICTION PROCESS CHAPTER 2. THEORY

for every production variable (j ∈ {1, ...,m}). The mapping P can therefore be
expressed as

P (s) = a = (a1, a2, ..., aj, ..., am)

= (P1(s−p1)− sp1 , P2(s−p2)− sp2 , ...,
Pj(s−pj)− spj , ..., Pm(s−pm − spm))

Using this approach, we learn the production strategy of the dataset by learning
m Pj functions to estimate the production variables given the remaining state
variables. As described in Figure 2.2, each Pj is learned separately using super-
vised learning.

s1 s2 ... sp
j
−1 sp

j
sp

j
+1 ... sn−1 sn

sp
j

Learning algorithm

s

s1 s2 ... sp
j
−1 sp

j
+1 ... sn-1 sns

-pj

Figure 2.2: Learning the j th model

2.3 Prediction Process

As the value of each aj indicates how many production orders targeting the jth
element are required for the production variable spj to become consistent with

the remainder of the state vector, non null components of â = P̂ (s) correspond
to buildings or units that have to be produced and to technologies that have to
be researched.

12

2.3. PREDICTION PROCESS CHAPTER 2. THEORY

However, the use of statistical models to represent the learned production
strategy P̂ means that the computed action vectors are actually estimations.
Of course, errors can occur as â is an estimation and they can sometimes induce
some inconsistencies that have to be handled by the agent. The following sections
describe these inconsistencies and how to manage them.

2.3.1 Consistency

Some of the incorrect components of â can indicate to produce or to research
something that is not available given the current development of the agent’s
technological tree. To make the prediction more robust, â is filtered by setting
to zero every non null component relating to an inaccessible target.

2.3.2 Predictability and Resource Constraints

Ideally, if the production strategy was learned perfectly, the amount of resources
that the agent owns would always be sufficient to perform every requested produc-
tion order. Indeed, the dataset was recorded within the same resource constraints
than those applied to the agent. In practice, due to errors that occur on some
components of â, the cost of all the requested productions can exceed available
resources. This sometimes leads to production orders that can not be performed.

As the behavior of the agent should not be too predictable, the components of
â should not be treated in the same order for every game. Indeed, if the necessity
to build a building A is always computed before a building B, it would favor
building A every time the available resources would be insufficient to build both
buildings. Of course, the same applies to the units and technologies. A solution
to avoid this problem is to randomize the computation order of the components
of â every time the agent starts a new game.

2.3.3 Distinct Development Paths

Sometimes, when the game state s is not consistent with any strategy from the
dataset, there could be several candidate strategies that could be chosen in order
to get the state consistent. Since some of these strategies can imply different
production orders, the action vector predicted for s might request production
orders for several strategies at once. This is why s has to be updated every time
a Pj(s) is computed and after its value has been translated into a production

13

2.3. PREDICTION PROCESS CHAPTER 2. THEORY

order if needed. By doing that, a production order will be taken into account for
future predictions as soon as it is computed.

As mentioned earlier, computing the components of the action vector in a
fixed order would cause the agent to be quite predictive. Indeed, every time
several strategies are available, the production manager would choose the same
one. Here again, randomization of the computation order of the components of
â allows each strategy to be potentially chosen.

14

Chapter 3

Application

3.1 StarCraft II

Today, StarCraft II R©, Blizzard Entertainment’s successor to genre patriarch
StarCraft R©, is one of the top selling RTS games. Featuring a full-fledged game
editor, it indisputably is the ideal platform to assess this new learning breed of
agents.

Players start at a given location on a map with a main building and six workers.
They have to develop and to expand (Figure 3.1) on the map in order to gather
more resources in several locations. However, they also must be able to defend
their bases and to pressure the opponent to limit his own expansion (Figure 3.2).
The usual development of a player is to increase his number of production facilities
when his economy grows to be able to spend the harvesting rate of the resources.
Indeed, a production capacity greater than the opponent is often a key to victory.

Two resources are available in the game. The first one is mineral, it is the main
resource in StarCraft II and it can be harvested as soon as a game starts. Mineral
is required for almost every production from the most basic unit up to the most
technologically advanced research. The second resource available is vespene gas,
it is required for more advanced buildings, units and technologies. In order to
gather vespene gas, a player has to build a refinery on a vespene geyser.

There are three different races in StarCraft II, each involving a unique play
style with exclusive units and technologies. The Terrans are masters of adaptation
and have learned to survive in the most hostile environments. The Zerg is an alien
race and can overwhelm its enemies with massive swarms. Finally, the Protoss
are a humanoid species with unmatched individual fighting prowess.

15

3.2. GAME CONFIGURATION CHAPTER 3. APPLICATION

Figure 3.1: A Protoss player just taking a new expansion
on the map to harvest more resources.

Figure 3.2: A Terran player (red) using dropships to send
units behind enemy lines and hurt the economy of his
opponent.

3.2 Game Configuration

In an effort to avoid unnecessary complexity, the agent will be limited to the
particular scenario of a one-on-one, Terran versus Protoss matchup type. The
matchup is also restricted to the Metalopolis map (Figure 3.3) and the starting
locations of the players are fixed in order to limit the amount of data required
for learning purposes.

16

3.3. STATE VECTOR CHAPTER 3. APPLICATION

Figure 3.3: Top view of the Metalopolis map of StarCraft II.

3.3 State Vector

In Chapter 2, some instructions were given in order to define a relevant modeling
to manage production in an RTS game. This chapter follows these recommenda-
tions to build an adequate state vector s for a Terran agent in StarCraft II.

3.3.1 Production Variables

Production variables have to relate to all buildings, units and technologies avail-
able for a Terran player. A component defined as a natural number is thus
dedicated to every building and unit type. Here are the production variables for
a Terran player :

1. sp1→19 ∈ N : current number of each building type in the game belonging to
the agent.

2. sp20→31 ∈ N : cumulative number of units produced since the beginning of
the game for every unit type.

17

3.3. STATE VECTOR CHAPTER 3. APPLICATION

3. sp32 ∈ N : current number of Space Construction Vehicles (SCV) belonging
to the player. An SCV is used as a worker for a Terran player, it handles
the construction of buildings and the harvest of resources. We chose to
represent this unit with its current number instead of its cumulative one
because it is the main contributor to the agent’s economy. If some SCVs
were killed by the opponent, they would have to be replaced as quickly as
possible and independently of the number produced since the beginning of
the game.

4. sp33→59 ∈ {0, 1} : indicates for each technology if it is researched (1) or not
(0).

There are therefore 59 production variables and the action vector must have
the same number of components. These production variables are those that will
be learned individually given the remainder of the state.

3.3.2 Opponent’s Technological Tree

The technological tree of a Protoss player is shown in Figure 3.4. Dotted nodes
represent buildings and units that obviously belong to the opponent and that do
not need to be in the state vector. There are thus 45 nodes in the tree that require
a component in the state vector. It is the number of components relating to the
opponent. When a node is reached by a player, the corresponding component will
be set to 1. Otherwise the value will stay 0. As specified in the design section,
the structure of the tree does not need to be stored in the state vector because it
will always remain the same as in Figure 3.4.

3.3.3 Other Relevant Variables

Now that we have defined the variables of the state vector that was clearly spec-
ified in the design section, we still need to determine those that we believe are
relevant for the production manager. Here is a list of those four variables :

1. time ∈ N : time expressed in seconds since the start of the game.

2. population ∈ N : population is a measure provided by the game of the
amount of units belonging to a player. Typically, basic units have a value
of 1 and this value increases when the unit is more powerful and more
expensive. The population value of a Terran unit varies from 1 to 6.

18

3.4. RECORDING STATES CHAPTER 3. APPLICATION

Figure 3.4: Protoss technological tree, large nodes are buildings and small ones
are units and technologies.

3. mineral harvest rate ∈ N : amount of mineral harvested by minute by the
player.

4. gas harvest rate ∈ N : amount of vespene gas harvested by minute by the
player.

3.4 Recording States

The 108-component state vector s has to be updated and recorded frequently in
order to gather enough information about games played by an expert. We must

19

3.4. RECORDING STATES CHAPTER 3. APPLICATION

first decide when and how often the variables of the state must be updated. After
that, a convenient process to gather the state vectors from the game has to be
set up.

3.4.1 State Update

The update frequency of the state vector has to be a compromise between pre-
cision, which requires as many updates as possible, and performance. A small
break is indeed needed between two refreshes otherwise the game would be slowed
down by this process.

Furthermore, a too high update frequency would generate - even for a few
games - a huge dataset and require a lot of computational resources to train the
agent. We chose a frequency of one refresh every 5 seconds. It is slow enough
to allow the game to run smoothly and fast enough to account - on a strategical
point of view - for any change in the game.

In addition to update frequency, we have to determine when a change in the
game effectively affects the production variables of the state vector. Indeed, when
a player gives the order leading to a production or research, it starts a process
that will sequentially set the request in several states before reaching its final
creation. Those states are the following :

1. Queued : a request is queued if its production has not yet started. This
happens when an SCV has not yet reached the location where it must build a
building but it is moving towards this goal. A unit or a technology request
is queued when it is waiting in the queue of a building to be processed
because the building is busy producing something else.

2. In Progress : state of a request that is being produced. The state of a
building request is in progress when an SVC is handling its construction.
On the other hand, a unit or a technology is in progress when its dedicated
facility is producing it.

3. Complete : state of any request once its production is over.

To choose since which state a production order must imply a modification of
the state vector, we have to remember that the agent will request a production
once the learned production strategy P̂ computes an action vector with a non
null component. Since an agent’s production request has to follow the same steps
than a human player’s one, the agent must be notified of a production necessity
as soon as a human player decides to take such a decision. A unit, building or

20

3.5. DATASET GENERATION CHAPTER 3. APPLICATION

technology has therefore to be included in the count of its dedicated production
variable as soon as it is in a queued state.

3.4.2 Log Files

Unfortunately, StarCraft II does not provide any straightforward way to export
data collected during a game. The few mechanisms that are available to store
data are provided only to save a few variables and are limited by the size of the
saved file, their number and the structure of the data. None of these mechanisms
are suited to export state vectors in a convenient way.

However, it is possible to write any string that we want into a freely named
log file for debugging purposes. We therefore abuse this service to create a log
file for each game and to write the state vectors in it. A line is dedicated for each
state vector and components are separated by a space :

sa1 sa2 . . . sa108
sb1 sb2 . . . sb108
. . .

. . .

. . .

Such a file format has been chosen because it is very simple and it can easily
be imported into Matlab R© which will be used for learning purposes.

3.5 Dataset Generation

Of course, there is no dataset already available respecting our requirements. This
section describes what the dataset should be in an ideal way and what it really
is, due to some unavoidable constraints.

3.5.1 Ideal Dataset

It has already been stated that experienced human players are by far the best
StarCraft II players among human and artificial existing players. The dataset
should therefore be generated by recording from an expert - or some of them -
that is an experienced human player. Ideally, he should even be one of the best

21

3.5. DATASET GENERATION CHAPTER 3. APPLICATION

StarCraft II players in the world. Such an expert would indeed be ideal for our
two criteria : human-like behavior and amazing skills.

Each time a Stracraft II game is played, a replay file is recorded by the game
engine. Thanks to the e-sport community, a huge database of recorded games is
available on the Internet. Unfortunately, the only purpose of these files is to be
played in StarCraft II. They thus only store a sequence of events while ignoring
any state information.

Even worse, the file format is proprietary and there is no service provided by
Blizzard or tool currently available that lets a third-party developer to be aware
of what is actually the game state at a given time. Performing a full reverse
engineering of the file format and developing a tool able to compute the game
state would be equivalent to rewriting the whole game engine of StarCraft II.
This amount of work is inaccessible within the limits of this work, an alternative
solution has therefore to be found.

3.5.2 Chosen Dataset

The chosen dataset has to be available or not too hard to generate and relevant to
evaluate the level of the agent at the same time. Recording game logs from human
players would need a significant amount of time to plan interesting electronic sport
events in order to involve enough people to gather a dataset of decent size. Such
an organization would require a financial and organizational support that is not
accessible for this work.

Our solution to gather a dataset is to use the built-in artificial intelligence
of StarCraft II by configuring computer players to generate the data for us. Of
course, the level of those agents does not reach our criteria concerning human-like
behavior and efficiency but it still allows us to measure the ability of the design
to learn production strategies. Moreover, the level of the agents of StarCraft II
remains approximately the same for every game which means that it will be easier
to evaluate the impact of the learning on the agent’s performances.

As the expert should still be better than the average, we will test the design on
a dataset of 372 games (64571 state vectors) generated by letting a “very hard”
Terran player play against a “hard” Protoss player. The goal of the learned agent
will therefore be to beat the “hard” Protoss computer player as much as the “very
hard” Terran computer player while following its strategies as closely as possible.

Details concerning the procedure that has been set up to generate the games
can be found in Section A.1.

22

3.6. LEARNING ALGORITHM CHAPTER 3. APPLICATION

Figure 3.5: Fight opposing a “very hard” Terran computer player (in red)
against a “hard” Protoss computer player (in blue).

3.6 Learning Algorithm

This section is about the learning algorithm used to learn the function P . Re-
quirements for learning and predicting production strategies are presented and
the chosen solution is discussed on several aspects.

3.6.1 Requirements

For a Terran player in StarCraft II, 59 production variables have to be learned.
This number is quite high and we want therefore to avoid the necessity to spend
a lot of time on each variable to improve the quality of the learned model. This
is why the learning algorithm has to be flexible enough to be able to train decent
models for the fifty nine different production variables without requiring specific
configuration for each one.

The scripting language of the StarCraft II editor is quite limited. While these
limitations will be described in the appendix, we can already state that it will
not provide us enough flexibility to allocate and to modify dynamically a data
structure. This constraint led us to look for a learning algorithm that computes
models as static as possible in their structure. The structure of the model should
always be the same and only some parameters should change from one model to

23

3.6. LEARNING ALGORITHM CHAPTER 3. APPLICATION

another one. Decision trees, for example, should be avoided because the shape of
the tree is not always the same.

The last requirement is of course the computational cost induced by the learn-
ing algorithm, both to learn and to predict. The learning should be fast enough
to allow us train a lot of different models but it is not the main preoccupation as
it has only to be done once. On the other hand, predicting has to be performed
in real time during games which is far more crucial. Indeed, the prediction of
fifty nine different models have to be computed in a few milliseconds only to
avoid slowing down the game which requires most of the available computational
resources on its own. Nearest-neighbors approaches are therefore prohibited.

3.6.2 Neural Networks

Given these requirements, going for feedforward neural networks seems quite
reasonable. Neural networks are composed of many interconnected units called
neurons (Figure 3.6). Every neuron computes a dot product between its own
weight vector and an input vector. The result is then used as input of an activation
function σ and the final value is sent forward in the network to be one of the inputs
of another neuron.

�(x•w)

x
1

x
2

…

x
n

1

Figure 3.6: An artificial neuron. A bias com-
ponent is typically added to the input vector, it
is the role played by the “1” component in the
figure.

Considering a single hidden-layer network (Figure 3.7), the complexity of the

24

3.6. LEARNING ALGORITHM CHAPTER 3. APPLICATION

model can easily be adjusted by changing the number of neurons in this layer only.
As a static structure is required, the size of this layer should be the same for every
model. This size must first be determined to be appropriate with respect to the
considered problem. The solution will necessarily be a compromise between all
the components of P .

H1 H2 ... Hm

x1 x2 x3 ... xn

Y
Output
Layer

Hidden
Layer

Input
Layer

Figure 3.7: Feedforward neural network with a single hidden layer.

By fixing the size of the networks, we fulfill the objective of a static structure.
The only variations between two models will indeed be restrained to the weight
values. It will thus be possible to implement a unique prediction procedure and
to switch between network weights.

The training process minimizes mean square error between predictions and
the dataset. As long as the activation functions are all differentiable, the training
process can benefit from non-linear optimization techniques. The time dedicated
to the learning process is therefore a compromise between the speed and the
quality of the solution of the optimization problem.

Concerning computational cost, feedforward neural networks are very fast
when performing a prediction as they only compute dot products and the ac-
tivation function. Of course, the computation time of the activation function has
to be reasonable.

3.6.3 Learning Parameters

To train neural networks, we used Matlab R© with its Neural Network ToolboxTM.
The considered neural networks have a 15-neuron hidden layer. This number

25

3.6. LEARNING ALGORITHM CHAPTER 3. APPLICATION

is a compromise between the model’s complexity, the time required for training
purposes and the amount of data to import into the game due to the number of
weights.

The activation function used in hidden layer is a typical tangent sigmoid func-
tion. This function is defined as

tansig(x) =
2

(1 + e−2x)
− 1

and it is plotted in Figure 3.8. The identity function is used for the single neuron
of the output layer as it is a good choice for regression problems [14].

Feuille1

Page 1

-5 -0,9999092

-4,9 -0,999889103

-4,8 -0,99986455

-4,7 -0,99983457

-4,6 -0,99979794

-4,5 -0,99975321

-4,4 -0,99969858

-4,3 -0,99963186

-4,2 -0,99955037

-4,1 -0,99945084

-4 -0,9993293

-3,9 -0,99918087

-3,8 -0,9989996

-3,7 -0,99877824

-3,6 -0,99850794

-3,5 -0,9981779

-3,4 -0,99777493

-3,3 -0,99728296

-3,2 -0,9966824

-3,1 -0,99594936

-3 -0,99505475

-2,9 -0,99396317

-2,8 -0,99263152

-2,7 -0,99100745

-2,6 -0,9890274

-2,5 -0,9866143

-2,4 -0,98367486

-2,3 -0,9800964

-2,2 -0,97574313

-2,1 -0,97045194

-2 -0,96402758

-1,9 -0,95623746

-1,8 -0,94680601

-1,7 -0,93540907

-1,6 -0,92166855

-1,5 -0,90514825

-1,4 -0,88535165

-1,3 -0,86172316

-1,2 -0,833654607

-1,1 -0,80049902

-1 -0,761594156

-0,9 -0,71629787

-0,8 -0,66403677

-0,7 -0,60436778

-0,6 -0,537049567

-0,5 -0,46211716

-0,4 -0,37994896

-0,3 -0,29131261

-0,2 -0,19737532

-0,1 -0,09966799

0 0

0,1 0,099667995

0,2 0,19737532

0,3 0,291312612

0,4 0,379948962

0,5 0,462117157

-5 -3 -1 1 3 5

-1.5

-1

-0.5

0

0.5

1

1.5

x

ta
ns

ig
(x

)

Figure 3.8: Tangent-sigmoid activation function.

3.6.3.1 Scaling

The necessity of scaling inputs of a neural network is theoretically not required.
Indeed, bias and weights can scale inputs on their own. However, in some practical
situations, scaling can decrease the training time and improve the initialization
of the network in order to reduce the probability to be stuck in a local minimum
[15]. We thus chose to scale inputs and output to the range [-1;1].

3.6.3.2 Weight Updating

Training a feedforward neural network consists in finding weights and bias values
that minimize the mean-square error on the dataset. Non-linear optimization

26

3.7. STRATEGY CLASSIFICATION CHAPTER 3. APPLICATION

theory provides many algorithms for that purpose. Choosing one of them is a
compromise between convergence speed and solution quality. Indeed, a fast con-
vergence is often associated with a higher probability to stop on a local minimum.

We chose the Levenberg-Marquardt algorithm which adaptively switches be-
tween a gradient descent and a Gauss-Newton method. The gradient descent
updates weights in the direction that decreases the most the mean square error.
Its convergence rate is only linear but it is a good choice if the current iterate
is far from the optimum [16]. On the other hand, the Gauss-Newton method
assumes that the function to minimize is approximately quadratic. It can give
almost a quadratic convergence rate when the iterate is close to the solution
[17]. Therefore, the Levenberg-Marquardt algorithm relies on a gradient-descent
behavior when far from the solution or on the Gauss-Newton method otherwise.

3.6.4 Model Performance

Errors when predicting can be cause by the limited complexity of the model or
by a lack of information within the state vector. Of course, every production
variable does not require the same complexity or the same information and some
of them may be harder to fit than others. Therefore, the magnitude of the errors
varies with the considered production variable. In order to demonstrate this
fluctuation, Figure 3.9 counts - for 3 different models - the state vectors from the
dataset given the magnitude of the error that is made when predicting.

We can see that the models are very accurate at predicting the number of
command centers and the number of barracks required to reach a consistent game
state. However, the percentage of wrong predictions is higher for the number of
marines and the magnitude of the errors is also greater. It has to be taken
into account that the number of marines is quite different than the two previous
variables because its value is usually much higher. Moreover, players themselves
are often less accurate at producing marines than barracks or command centers
because it is not crucial to be as much precise.

3.7 Strategy Classification

In this section, we present a procedure that clusters games given the strategy
of a player. It is therefore required to define a similarity measure between two
games. It must be taken into account that each game usually does not last the

27

3.7. STRATEGY CLASSIFICATION CHAPTER 3. APPLICATION

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

25

50

75

100

Error

N
u
m

b
e
r

o
f

st
a
te

v
e
c
to

rs
o
f

th
e

d
a
ta

se
t

(%
)

Barracks

Command cente rs

Marine s

Figure 3.9: Histogram of the number of state vectors of the dataset (%)
as a function of the prediction error.

same time than others. Moreover, some of the components of the state vectors in
the dataset might not be relevant to determine the similarity between two states.

3.7.1 Build Order

It has been stated that players usually follow in early-game a sequence of pro-
duction orders known to be efficient for reaching military superiority during a
brief time window. Such a sequence of productions is called a build order in RTS
terminology. Choosing a build order determines the strategy in the beginning
of a game but it also restrains what kind of strategies can be followed later in
the game. Indeed, every build order favors only some development paths in the
technological tree of a player. This limits the player to go later for alternative
technologies because corresponding development paths have been neglected.

Therefore, we try to distinguish build orders to be able to cluster games given
the overall strategy. By doing so, the problem of the game time variation is solved
as build orders relate to early-game only. We chose the first eight minutes of play
to distinguish build orders. Indeed, build orders in Stracraft II rarely last longer

28

3.7. STRATEGY CLASSIFICATION CHAPTER 3. APPLICATION

than 8 minutes and all the games in the dataset have been played during more
than that.

3.7.2 Clustering Space

In order to compute a distance between two states, we need to consider a subspace
of the state space S. Indeed, build orders relate only to production orders. We
can therefore restrict the state vectors to a subset of the production variables. All
the production variables are not required because some of them do not concern
early game. We selected 29 relevant variables within a state vector.

Of course, a state space only concerns a game at a fixed time. As build orders
are sequences of productions, it seems reasonable to compare games based on the
state records of the first eight minutes. To reach this goal, we define a clustering
space C to represent the possible successions of all the state records of the early
game. A state vector is recorded every 5 seconds and we select 29 components
among every vector during 8 minutes. The dimensionality of the clustering space
C thus amounts to

(
8× 60

5
− 1)× 29 = 2755

and each game is represented by a 2755-component vector.

3.7.3 Clustering Algorithm

We went for a hierarchical clustering approach because we do not know the rele-
vant number of clusters in order to distinguish efficiently strategies within a set
of games. Ward’s linkage has been used to agglomerate clusters : the two merged
clusters at each step are those that give the cluster with the smallest inner square
distance to its centroid. Therefore, this algorithm consists in minimizing the vari-
ance within each cluster which is the objective here. Indeed, if a set of games have
a small variance, each clustering vector is close to the mean of all the clustering
vectors within the set and we can approximate the build order as being this mean
vector.

As we chose to go with Ward’s algorithm, the only distance that can be used
is the Euclidean distance. However, as we do not want any component of the
clustering vectors to have a higher impact than other ones, it is required to
standardize components of the clustering vectors on the whole dataset. Every
component of the vectors finally used to compute distances between build orders
has therefore a zero mean and a standard deviation of 1.

29

3.7. STRATEGY CLASSIFICATION CHAPTER 3. APPLICATION

3.7.4 Clustering Procedure

The whole clustering procedure is summarized in the following steps :

1. Each game is loaded as a matrix where lines are the state vectors.

2. The 29 relevant components are selected by keeping the corresponding
columns only.

3. Each resulting matrix M is reshaped into a clustering vector c given

c(i−1)×29+j = Mi,j

4. The clustering vectors are then standardized for their components to have
a zero mean and a standard deviation of 1.

5. The resulting vectors are those finally used to perform clustering thanks to
Ward’s hierarchical clustering method.

The dendrogram resulting of this procedure applied to the generated dataset
is showed in Figure 3.10. Thanks to the observation of figures plotting the mean
value and the standard deviation of relevant components of the state vector as
function of the time, we chose a threshold corresponding to 2 clusters. This choice
is a compromise between clusters with a moderate variance and each cluster
representing a significantly different strategy.

This small number of strategies was expected as the dataset was generated
by scripted agents that are quite predictive. However, the clustering procedure
that has been used only distinguishes strategies and it does not mean that all the
games within a cluster are strongly similar. They instead share some important
characteristics such as the production facilities that have been built and the army
composition.

The two sets of games resulting of this clustering procedure are further dis-
cussed in Section 4.3.

30

3.7. STRATEGY CLASSIFICATION CHAPTER 3. APPLICATION

50

100

150

200

250

300

350

Cluste rs

In
n
e
r

sq
u
a
re

d
d
is

ta
n
c
e

Thre sold

Figure 3.10: Dendrogram computed with the clustering procedure on the
set of 372 games.

31

Chapter 4

Results

4.1 Experimental Protocol

As previously discussed, we chose the “very hard” Terran computer player of
StarCraft II to be the expert. As the expert is supposed to be better than
an average player, its opponent was the “hard” computer player. To remove
unnecessary complexity, the map and the starting locations were fixed. The
expert played 372 games with these settings and the training set is therefore
composed of the corresponding state vectors.

For comparison purposes, the imitative learning trained agent (IML agent)
played 50 games against the same opponent : the “hard” Protoss computer player.
The resulting state vectors are the test set.

The performance of both the expert and IML agent are discussed first. The
production strategies used by both agents are then measured and compared to
determine if the IML agent correctly learned from the expert’s games.

4.2 Win Rate Comparison

Errors when predicting from learned statistical models induce definitely a varia-
tion of the production strategies. Even without knowing the magnitude of this
variation, it seems appropriate to expect a loss in efficiency resulting from the
learning process. Indeed, strategies in the dataset are those deemed relevant by
the expert and any barrier to a perfect imitation is likely to decrease the efficiency
of the strategies.

32

4.3. STRATEGY COMPARISON CHAPTER 4. RESULTS

The results are summarized in Table 4.1. It is straightforward that the perfor-
mance loss of the IML agent against the “hard” Protoss player is fairly limited.
Indeed, the decrease in efficiency is measured to 6.5% for our test settings. Com-
pared to the initial win rate of 96.5%, the moderate performance loss allows the
IML agent to still be much better than the opponent common to both the expert
and IML agent. The table contains the results of the “hard” Terran computer
player too in order to verify that the good win rate does not come from an im-
balance between the Protoss and Terran races. As this last agent always lost, we
can thus conclude that the good performances of the IML agent come from the
knowledge he learned from the expert.

Terran win rate Total games

Very hard Terran 96.5% 372
IML agent 90% 50
Hard Terran 0% 50

Table 4.1: Terran performance against hard Protoss

4.3 Strategy Comparison

The procedure presented in Section 3.7 is used to distinguish different strategies
within the expert’s dataset thanks to clustering. It allows to determine that
the expert performs two main strategies. The first one (A) favors infantry at
the expense of anything else while the second one (B) tends to go for a faster
technological development. In order to support this statement, Figure 4.1 presents
the mean number of three building types as a function of the time for both
strategies. Strategy A is faster at building barracks but it does not build factories
and starports in the first eight minutes of the games. On the other hand, strategy
B dedicates some resources to build factories and then starports while it slows
down the construction of barracks.

Afterwards, games played by the IML agent are classified within the two ex-
isting clusters. The centroid of both clusters is computed to perform this classi-
fication. Every new game is classified in the cluster that has the nearest centroid
with respect to the Euclidean distance. Figure 4.2 shows - as for the initial clus-
ters - the mean number of barracks, factories and starports as a function of the
time for the two sets of games resulting of the classification. Those figures are
quite similar to those of the “very hard” Terran computer player (Figure 4.1).

33

4.3. STRATEGY COMPARISON CHAPTER 4. RESULTS
Feuille2

Page 1

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

a
n

ti
ty

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

an
ti

ty

Strategy (A)

Feuille3

Page 1

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

a
n

ti
ty

Strategy (B)

Figure 4.1: Average number of barracks, factories and starports built over time
for each strategy.

34

4.3. STRATEGY COMPARISON CHAPTER 4. RESULTS

This demonstrates that, in addition to maintaining a good level of efficiency, the
design learned both strategies.

The observed variations between strategies of both agents were expected be-
cause of the use of statistical models. However, they are rather limited and we
have seen that it does not much affect the performances of the agent. If the de-
sign is most likely to be a source of differences between strategies, the simplified
combat manager (see Section A.5) might be partially responsible too. Indeed, it
can differ by the amount of opponent information gathered and by the issues of
battles which are both used to predict production orders.

In addition to evaluating the similarity of the strategies, we measured their
frequency. In the Figure 4.3, we can see that the distribution of strategies is more
equitable in the set of games played by the “very hard” computer player (training
set) than in the one played by the IML agent (test set).

Here again, the combat manager can be a reason of this difference but the
learned models have their part of responsibility too. Indeed, neural networks
are limited to 15 neurons in their hidden layer for computational considerations
and to expect a decent generalization performance when predicting. It means
that the complexity of the models might not be sufficient to distinguish different
production strategies from quite similar states. Moreover, equal states might be
followed by distinct production orders in the dataset because the expert does not
always go for the same strategy. When such a situation occurs, the models always
favor the most frequent choice because the learning process minimizes the mean
square error which is a maximum likelihood estimator [14].

35

4.3. STRATEGY COMPARISON CHAPTER 4. RESULTS
Feuille2

Page 1

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

a
n

ti
ty

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

an
ti

ty

Strategy (A)

Feuille3

Page 1

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

a
n

ti
ty

Strategy (B)

Figure 4.2: Average number of barracks, factories and starports built over time
for the two sets of games resulting of the classification.

36

4.3. STRATEGY COMPARISON CHAPTER 4. RESULTS

Feuille1

Page 1

Strategy A Strategy B

0

10

20

30

40

50

60

70

80

90

100

Training set

Test set

G
am

es
 (

%
)

Figure 4.3: Frequency of the two strategies for both agents.

37

Chapter 5

Conclusion and Future Work

In this work, we proposed a generic design that uses imitative learning to handle
the production orders of an autonomous agent for an RTS game. The design
has been successfully applied to StarCraft II, one of the most popular and recent
RTS game. Indeed, we showed that the agent resulting of the learning process has
almost fully inherited the good performance of the expert and that the strategies
observed in the dataset were those replicated by the new agent.

Therefore, splitting the complexity of the production manager to train statis-
tical models that each focus on a specific target seems to be a decent solution
to learn production strategies in an RTS game. If defining a relevant state for a
given game is of course game-dependant, the approach consists mainly in select-
ing the production variables and defining the opponent’s technological tree. Both
of these tasks are quite straightforward and the only work that is really specific
to the game is to determine the few remaining variables that are important for
the production manager.

Once a state vector has been defined, the design provides to game developers
the capacity to continuously change the production strategies performed by the
computer agents by learning on more recent datasets. They can therefore keep
them up to date despite the constant evolution of the strategies in recent RTS
titles. By avoiding the necessity to script all the production sequences of the
agents, a lot of time can be spared in favor of other managers such as those
responsible for scouting and battles.

However, the diversity of the dataset that we used was rather limited because
of the weaknesses of the expert. Moreover, even if the agent learns the production
strategies of the expert, the most common one in the dataset was over represented
in the test set at the expense of the less frequent production strategy. In order to

38

CHAPTER 5. CONCLUSION AND FUTURE WORK

efficiently learn from richer sets collected from various sources, we suspect clus-
tering would be required to organize records and maintain manageable datasets.
Indeed, the dataset could be partitioned into several subsets corresponding to
the different strategies in order to train statistical models individually for each
cluster. By choosing randomly the models to load with respect to their frequency
of appearance in the dataset, less frequent strategies should be better represented
in the test set. Furthermore, the production strategies should be learned more
precisely as the variance of the different production variables would be reduced.

39

Appendix A

Implementation Details

This appendix is about the implementation of the agent designed for StarCraft II
thanks to the StarCraft II Editor, called Galaxy EditorTM. This tool is provided
to allow map creation and edition by third-party developers.

A map defines not only the visual battlefield on which players fight but also
any specific mechanisms for the players to interact with the game. Map files allow
third-party developers to integrate their scripts in order to take control over most
of the game aspects.

The scripting language - called Galaxy - is syntactically based on C but lacks
numerous features.

A.1 Automatization

The StarCraft II Editor is used to set up the games of the dataset but it is
not conceivable to start manually every game. An automatic process has to be
implemented to start a new game as soon as the previous one is over. As no
script can be executed once a game is over, we define a criterion to determine
when the game state guarantees that a player is too far behind and to state that
its opponent has won the game. Thanks to a careful observation of several games,
it was quite straightforward to see - in our game settings - that a player always
wins once he has more than four times the population of his opponent.

To speed up as much as possible the generation of the dataset, two StarCraft II
instances were launched at the same time. Using sandboxes was required to enable
several instances to run on the same computer. In addition, the speed of the

40

A.2. GALAXY EDITOR A. IMPLEMENTATION DETAILS

game was artificially increased by forcing the value of some variables directly in
the memory allocated by the game. All these mechanisms allowed us to generate
372 games in about twelve hours even if it actually represents more than 90 hours
of game time.

A.2 Galaxy Editor

The main weakness of this language is probably the lack of dynamic allocation.
In addition, there are no pointers or any similar concept and only the primitive
types are allowed as argument to functions or return value. These limitations
are obviously quite restrictive. One of the consequences is that user-defined vari-
able types (restrained to C-like structures) and arrays can not be conveniently
exchanged between two functions or code sections. The only way to share data
between functions is therefore to use global variables.

Furthermore, there is no way to easily import data into the map file. Several
mechanisms are provided to store data but they are restricted to
StarCraft-II-related content such as unit or building properties. Moreover, all
script files together can not exceed a size of about 2 MB within a map. This
bound has to be compared to the amount of variables required for the agent.
There are 59 neural networks and they thus require

59× (15× 108 + 16) = 96 524

weight and bias values. This means that it is hard to generate enough code
to initialize all the variables, if only for the neural network weights. Indeed,
considering that a character in a script file is encoded over one byte, this limit does
not allow more than about 20 characters by variable initialization. Shortening
variable names and rounding values would barely be sufficient given that the
whole script has still to be written.

Those are the main technical obstacles to develop an agent in StarCraft II but
the following sections show how to circumvent them. On a less technical aspect,
some difficulties have been encountered concerning API documentation. Indeed,
a lot of functions are available to manage the game and to gather information
about it but the documentation is often missing or incomplete. Some analysis
of native script files has even been required to determine which functions were
required for some specific tasks.

41

A.3. STATISTICAL MODELS A. IMPLEMENTATION DETAILS

A.3 Statistical Models

A.3.1 Importation

The importation of parameters characterizing learned models has been realized
by abusing a StarCraft-2-related file format. This file format is actually defined to
store what is called conversion states. A conversation state defines an interactive
dialogue concerning an in-game character and allows a player to answer from a
list of predefined replies.

Fortunately, this file format relies on XML and it is possible to store
2-dimension arrays by encapsulating tags appropriately. The Listing A.1 presents
an example of such a file. Moreover, the only restriction with predefined data files
is not to exceed a size of 10 MB for the whole map file once it has been compressed
by the Galaxy Editor thanks to a Lempel-Ziv-Markov chain algorithm.

<CConversationState id="Array1">

<Indices >

<Id value="Index1"/>

<InfoValue Id="Value1" Value="15.1"/>

<InfoValue Id="Value2" Value="10.4"/>

<!-- {...} -->

<InfoValue Id="ValueN" Value="35.0"/>

</Indices >

<Indices >

<Id value="Index2"/>

<InfoValue Id="Value1" Value="20.5"/>

<InfoValue Id="Value2" Value="8.7"/>

<!-- {...} -->

<InfoValue Id="ValueN" Value="3.82"/>

</Indices >

<!-- {...} -->

<Indices >

<Id value="IndexN"/>

<InfoValue Id="Value1" Value="52.5"/>

<InfoValue Id="Value2" Value="75.6"/>

<InfoValue Id="Value3" Value="1.9"/>

<!-- {...} -->

<InfoValue Id="ValueN" Value="7.98"/>

</Indices >

</CConversationState >

Listing A.1: Conversation-states file for StarCraft 2.

A simple script command is required to access those values from the StarCraft

42

A.3. STATISTICAL MODELS A. IMPLEMENTATION DETAILS

II Editor. For example, the following script line loads the J th value of the Kth

index from the array number L :

fixed value = ConversationDataStateFixedValue ("L|K", "J");

An array is therefore stored for every statistical model. The initial range in
the dataset of every input variable and the output must be provided to be able
to scale components of the state vector during a game with the same parameters
as in the training process. Of course, weights and bias for each neuron of the
neural network are required in order to compute predictions. The structure of
the resulting array is presented in Listing A.2.

<CConversationState id="modelID">

<Indices >

<!-- Lower bounds in dataset -->

<Id value="xMin"/>

<InfoValue Id="0" Value="..."/>

<InfoValue Id="1" Value="..."/>

<!-- {...} -->

<InfoValue Id="106" Value="..."/>

<InfoValue Id="out" Value="..."/>

</Indices >

<Indices >

<!-- Upper bounds in dataset -->

<Id value="xMax"/>

<!-- {...} -->

</Indices >

<Indices >

<!-- Output neuron -->

<Id value="output"/>

<InfoValue Id="0" Value=" -..."/>

<InfoValue Id="1" Value="..."/>

<!-- {...} -->

<InfoValue Id="14" Value=" -..."/>

<InfoValue Id="bias" Value=" -..."/>

</Indices >

<!-- {...} -->

<!-- Hidden neurons -->

<Indices >

<Id value="0"/>

<InfoValue Id="0" Value="..."/>

<InfoValue Id="1" Value="..."/>

<!-- {...} -->

<InfoValue Id="106" Value="..."/>

<InfoValue Id="bias" Value="..."/>

</Indices >

<Indices >

43

A.3. STATISTICAL MODELS A. IMPLEMENTATION DETAILS

<Id value="1"/>

<!-- {...} -->

</Indices >

<!-- {...} -->

<Indices >

<Id value="14"/>

<!-- {...} -->

</Indices >

</CConversationState >

Listing A.2: Structure of the arrays used to store learned parameters.

In addition to storing these parameters, another array is used to specify the
identifier of the model (modelID) within the XML file of each neural network and
the index of the associated production variable within the state vector. A flag is
used too to know if the production variable refers to a research or not. Indeed,
technologies sometimes require different Galaxy functions.

The resulting XML file has a raw size of 2.29 MB but this size is reduced to
369 KB when compressed. The limit of 10 MB is thus not a problem.

A.3.2 Prediction

In order to compute the predictions of the statistical models, a sequence of simple
steps is followed. First of all, components of the state vector have to be scaled and
then the dot products between the scaled input vector and each neuron weight
vector is computed. Then, the addition of the bias values of every neuron and the
computation of the activation function follow. This sequence is repeated for the
neuron of the output layer using outputs of previous neurons as inputs and the
resulting value is unscaled. The implementation in Galaxy code of the function
dedicated to this task is shown in Listing A.3.

int predictAmount (int nn , int toPred ic t Indx)
{

fixed [HIDDENS] f e a t u r e s ; // Outputs o f the hidden l a y e r .
fixed output = 0 . 0 ; // Output o f the output l a y e r .
int f e a t = 0 ; // Neuron be ing processed
int in = 0 ; // Input be ing processed
int de l t a = 0 ; // Used to s h i f t input index when

// the t a r g e t e d v a r i a b l e has to be sk ipped

// Compute the output f o r the neurons in the hidden l a y e r .
while (f e a t < HIDDENS)
{

44

A.4. PRODUCTION MANAGEMENT A. IMPLEMENTATION DETAILS

in = 0 ;
de l t a = 0 ;
// Compute the dot product between the s t a t e v e c t o r
// and the we igh t v e c t o r .
while (in < INPUTS)
{

i f (in == toPred ic t Indx)
{

de l t a = 1 ;
}
f e a t u r e s [f e a t]

+= getSca ledInput (nn , in , s t a t e [in+de l t a])
∗ getHiddenWeight (nn , f ea t , in) ;

in += 1 ;
}
// Add the b i a s to the dot product
f e a t u r e s [f e a t] += getHiddenBias (nn , f e a t) ;
// Compute the a c t i v a t i o n func t i on ’ s output
// (= tan s i g (f e a t u r e s [f e a t]))
f e a t u r e s [f e a t] = (2/(1+Pow(E,−2∗ f e a t u r e s [f e a t]))) −1 ;
// Compute inc r emen ta l l y the output
// o f the whole network .
output += f e a t u r e s [f e a t] ∗ getOutputWeight (nn , f e a t) ;
f e a t += 1 ;

}
// Add the b i a s to the dot product o f the output neuron
output += getOutputBias (nn) ;
// Pred ic ted va lue i s rounded because product ion
// v a r i a b l e s are na tura l numbers .
return RoundI (getScaledOutput (nn , output)) ;

}

Listing A.3: Function that computes the prediction of the nnth neural network.

A.4 Production Management

The goal of the production manager is to translate predictions from the statistical
models to production orders in the game. However, we do not want to have to
script a whole new agent. The objective is therefore to benefit from the computer
agent of StarCraft II and to take control over production only. For this purpose,
an existing function provided by the Galaxy Editor is particularly useful :

void AIMakeAlways (int player , int p r i o r i t y ,
int town , string objectType , int count) ;

45

A.4. PRODUCTION MANAGEMENT A. IMPLEMENTATION DETAILS

Indeed, this function handles all the operational needs in order to start the
construction of a building or the production of a unit or research for a given
player. The string objectType identifies the building, unit or technology (object)
to produce or to research while the integer player specifies the targeted computer
player. The count and town parameters indicate respectively the number of times
that the object has to be produced and the town that has to be responsible of
the production. We will always use the value −1 for town which means that it
does not matter. In order to have an agent that is robust against punctual errors
of the statistical models, the production manager asks - for each object type -
one production at most by prediction and the value of count is therefore fixed
to 1. The effect of the priority parameter is not obvious and its usage is not
documented, we will thus not make use of it and we fix its value to 0.

Some conditions have to be respected for this function to have an effect. In-
deed, the request will be accepted only if the agent has enough resources and if
its current technological tree allows the production of the required object. When
these conditions are satisfied, the request goes into a waiting queue dedicated to
the production orders of the agent. The effective production starts as soon as
there is an available worker (SCV) or an available production facility suited for
the request.

As stated in Section 2.3, the randomization of the order in which production
variables are processed prevents the emergence of predictive behaviors. However,
some mechanisms of the game engine of StarCraft II seem to induce an unequal
priority to different object types. For example, a production order asking for
the construction of a Tech Lab (building add-on) for a barracks will always be
neglected in favor of a request to produce a Marine (infantry unit) if this latter is
made within about the same second and that there is only one barracks available.

In order to avoid this favoritism, the production manager waits for two succes-
sive predictions to be greater than a current production variable before effectively
asking the agent to produce the concerned object. By doing so, the requests for
the different object types are sometimes alternated and the predictive behavior
induced by the game engine is decreased.

While taking this precaution, the production manager iterates on the produc-
tion variables and checks if the technological tree allows the production of a new
object. If so, the associated neural network is used to predict the number of ob-
jects of this type that should be currently in the game. If the prediction is greater
than the actual number and if the agent has enough resources, the production
manager requests a new production for this object.

46

A.4. PRODUCTION MANAGEMENT A. IMPLEMENTATION DETAILS

Sometimes, there may not be enough workers or suited production facilities to
process all the requests. When such a situation occurs, the remaining requests
stay in the processing queue of the agent and wait to be produced. If these
requests were still pending before the next iteration of this procedure, the pro-
duction manager would delete them from the queue. Indeed, time has elapsed
since the last iteration and the choice that has been made might no longer be
relevant given the current situation. Therefore, instead of considering pending
requests as mandatory, the predictions are computed again for the new state and
new production orders are given if the state is judged inconsistent.

Finally, the whole procedure is summarized in Listing A.4. During a game, this
procedure is always restarted 1 second after its previous execution. This small
break allows the requests to be processed by the game engine and releases enough
computational resources for the game to run smoothly. Another small break is
also required (about 50 ms) after the processing of each production variable to
avoid short game freezes. The whole prediction procedure lasts therefore at most
1 + 59 ∗ 0.05 + computations ≈ 4 seconds. However, all the production variables
have not been used by the expert and some of them do not need to be predicted.
Practically, this procedure lasts about 3 seconds in our learning configuration. As
a threshold of 2 successive greater predictions is set, a request is therefore sent
to the agent 6 seconds at worst after it should have been started with respect to
the corresponding statistical model, to the amount of resources available and to
the technological tree.

c learPendingRequests (bot)
minera l s ← getMinera l s (bot)
gas ← getGas (bot)
s t a t e = getGameState ()

for var in product i onVar iab l e s
i f al lowed (var , techTree (bot))

p r ed i c t i on ← p r ed i c t (var . model , s t a t e) ;
i f p r ed i c t i on > var . va lue

var . consec ← var . consec + 1
i f var . consec ≥ 2

var . consec ← 0
i f var . mineralCost ≤ minera l s and var . gasCost ≤ gas

minera l s ← minera l s − var . mineralCost
gas ← minera l s − var . gasCost
AIMakeAlways(bot , 0 , −1 , var , 1)
s t a t e [var] ← s t a t e [var] + 1

end
end

end

47

A.5. COMBAT MANAGEMENT A. IMPLEMENTATION DETAILS

end
end

Listing A.4: Production procedure

A.5 Combat Management

Developing a combat manager is not the objective of this work. Therefore, our
agent inherits most of its combat mechanisms from the computer agent of Star-
Craft II. However, as we want to take care of the production orders, we have to
disable the native production manager and the one that is responsible for when
and where to attack is necessarily disabled too.

To handle high level decisions responsible for launching attack waves, a simple
trigger-based approach is used. The agent observes continuously the time elapsed
since the start of the game, the population value of its army and the number of
opposing units it has killed. If these figures suggest that the agent could have a
substantial military advantage, an attack wave is launched against the opponent.
The checks performed by this combat manager have the structure showed in
Listing A.5, each check handling a different time window.

i f t i ≤ gameTime () < t i+1

i f (armyPopulation () ≥ thresia and nbUnit sKi l l ed () ≥ thresib)
or armyPopulation () ≥ thresic

attack ()
end

end

Listing A.5: Combat manager.

48

Appendix B

Screenshots

This appendix contains some screenshots of the learned agent during a game.

Figure B.1: The agent building barracks in the beginning of a game.

49

APPENDIX B. SCREENSHOTS

Figure B.2: Extractors have been built to harvest vespene gas, more buildings
are in construction and a substantial army has already been produced.

Figure B.3: The agent takes an expansion that will boost its resource harvesting
rate once finished.

50

APPENDIX B. SCREENSHOTS

Figure B.4: The opponent retreating against the stronger army of the agent after
suffering heavy losses.

Figure B.5: The agent taking advantage of its lead to push forward the opponent’s
base.

51

APPENDIX B. SCREENSHOTS

Figure B.6: The agent ending the game by destroying its opponent’s base.

52

Appendix C

Scientific Paper

The following paper is based upon the material published in this thesis. It has
been submitted to CIG 2012, a IEEE conference in Computational Intelligence
in the video games environment (http://www.ieee-cig.org/).

53

http://www.ieee-cig.org/

Imitative Learning for Real-Time Strategy Games

Quentin Gemine, Firas Safadi, Raphaël Fonteneau and Damien Ernst

Abstract—Over the past decades, video games have become
increasingly popular and complex. Virtual worlds have gone
a long way since the first arcades and so have the artificial
intelligence (AI) techniques used to control agents in these
growing environments. Tasks such as world exploration, con-
strained pathfinding or team tactics and coordination just to
name a few are now default requirements for contemporary
video games. However, despite its recent advances, video game
AI still lacks the ability to learn. In this paper, we attempt
to break the barrier between video game AI and machine
learning and propose a generic method allowing real-time
strategy (RTS) agents to learn production strategies from a
set of recorded games using supervised learning. We test this
imitative learning approach on the popular RTS title StarCraft
II R© and successfully teach a Terran agent facing a Protoss
opponent new production strategies.

I. INTRODUCTION

Video games started emerging roughly 40 years ago. Their
purpose is to bring entertainment to the people by immersing
them in virtual worlds. The rules governing a virtual world
and dictating how players can interact with objects or with
one another are referred to as game mechanics. The first
video games were very simple: small 2-dimensional discrete
space, less than a dozen mechanics and one or two players
at most. Coding agents capable of autonomously playing
these games required no longer than a few lines. Today,
video games feature large 3-dimensional spaces, hundreds
of mechanics and allow numerous players and agents to
play together. Among the wide variety of genres, real-
time strategy (RTS) provides one of the most complex
environments overall. The multitude of tasks and objects
involved as well as the highly dynamic environment result in
extremely large and diverging state and action spaces. This
renders the design of autonomous agents difficult. Currently,
most approaches largely rely on generic triggers. Generic
triggers aim at catching general situations such as being
under attack with no consideration to the details of the attack
(i.e., location, number of enemies, ...). These methods are
easy to implement and allow agents to adopt a robust albeit
non-optimal behavior in the sense that agents will not fall into
a state for which no trigger is activated, or in other words
a state where no action is taken. Unfortunately, this type
of agent will often discard crucial context elements and fail
to display the natural and intuitive behavior we may expect.
Additionally, while players grow more familiar with the game
mechanics and improve their skills and devise new strategies,
agents do not change and eventually become obsolete. This
evolutionary requirement is critical for performance in RTS
games where the pool of possible strategies is so large that
it is impossible to estimate optimal behavior at the time of

development. Although it is common to increase difficulty
by granting agents an unfair advantage, this approach seldom
results in entertainment and either fails to deliver the sought-
after challenge or ultimately leads to player frustration.

Because the various facets of the RTS genre constitute very
distinct problems, several learning technologies would be
required to grant agents the ability to learn on all aspects of
the game. In this work, we focus on the production problem
and propose a generic method to teach an agent production
strategies from a set of recorded games using supervised
learning. We chose StarCraft II R© as our testing environment.
Today, StarCraft II, Blizzard Entertainment’s successor to
genre patriarch StarCraft R©, is one of the top selling RTS
games. Featuring a full-fledged game editor, it is the ideal
platform to assess this new breed of learning agents. Our
approach is validated on the particular scenario of a one-on-
one, Terran versus Protoss matchup type. The created agent
architecture comprises both a dynamically learned production
model based on multiple neural networks as well as a simple
scripted combat handler.

The paper is structured as follows. Section 2 briefly covers
some related work. Section 3 details the core mechanics
characterizing the RTS genre. Section 4 and 5 present the
learning problem and the proposed solution, respectively.
Section 6 discusses experimental results and, finally, Section
7 concludes.

II. RELATED WORK

Lately, the video game industry has attracted substantial
research work, be it for the purpose of developing new tech-
nologies to boost entertainment and replay value or simply
because modern video games have become an alternate, low-
cost yet rich environment for assessing machine learning
algorithms.

Roughly, we could distinguish 2 goals in video game AI
research. Some work aims at creating agents with properties
that make them more fun to play with such as human-
like behavior. This is usually attempted on games for which
agents capable of challenging skilled human players already
exist. This is necessary because, often in this case, agents
manage to rival human players due to unfair advantages:
instant reaction time, perfect aim, etc. These features increase
performance at the cost of frustrating human opponents. For
more complicated games, agents stand no chance against
skilled human players and improving their performance takes
priority. Hence, performance similar to what humans can
achieve can be seen as a prerequisite to entertainment.
Indeed, facing a too weak or too strong opponent is not
usually diverting. This concept is illustrated in Figure 1. In
either case, video game AI research advances towards the

APPENDIX C. SCIENTIFIC PAPER

54

ultimate goal of mimicking human intelligence. It was in
fact suggested that human-level AI can be pursued directly
in these new virtual environments [1].

GE
GP
G

Fig. 1. Agent set structure for a video game; GE ⊂ GP ⊂ G where GE
is the set of agents the player finds entertaining, GP is the set of agents
that can rival the player’s performance and G is the set of all agents.

The problem of human-like agent behavior has been
tackled in first-person shooter (FPS) games, most notably
the popular and now open-source game Quake II R©, using
imitative learning. Using clustering by vector quantization to
organize recorded game data and several neural networks,
more natural movement behavior as well as switching be-
tween movement and aim was achieved in Quake II [2].
Human-like behavior was also approached using dedicated
neural networks for handling weapon switching, aiming and
firing [3]. Further work discussed the possibility of learning
from humans at all levels of the game, including strategy,
tactics and reactions [4].

While human-like agent behavior was being pursued,
others were more concerned with performance issues in
genres like real-time strategy (RTS) where the action space
is too large to be thoroughly exploited by generic triggers.
Classifiers based on neural networks, Bayesian networks and
action trees assisted by quality threshold clustering were
successfully used to predict enemy strategies in StarCraft
[5]. Case-based reasoning has also been employed to identify
strategic situations in Wargus, an open-source Warcraft II R©

clone [6, 7, 8]. Other works resorted to data mining and
evolutionary methods for strategy planning and generation
[9, 10]. Non-learning agents were also proposed [11]. By
clearly identifying and organizing tasks, architectures allow-
ing incremental learning integration at different levels were
developed [12].

Although several different learning algorithms were ap-
plied in RTS environments, none were actually used to
dictate agent behavior directly. In this paper, we use imitative
learning to teach a StarCraft II agent to autonomously pass
production orders. The created agent building, unit and
technology production is entirely governed by the learning
algorithm and does not involve any scripting.

III. REAL-TIME STRATEGY

In a typical RTS game, players confront each other on a
specific map. The map is essentially defined by a combina-
tion of terrain configuration and resource fields. Once the

game starts, players must simultaneously and continuously
acquire resources and build units in order to destroy their
opponents. Depending on the technologies they choose to
develop, players gain access to different unit types each
with specific attributes and abilities. Because units can be
very effective against others based on their type, players
have to constantly monitor their opponents and determine
the combination of units which can best counter the enemy’s
composition. This reconnaissance task is referred to as scout-
ing and is necessary because of the “fog of war”, which
denies visibility to players over areas where they have no
units deployed.

Often, several races are available for the players to choose
from. Each race possesses its own units and technologies and
is characterized by a unique play style. This further adds to
the richness of the environment and multiplies mechanics.
For example, in StarCraft II players can choose between
the Terrans, masters of survivability, the Zerg, an alien race
with massive swarms, or the Protoss, a psychically advanced
humanoid species.

Clearly, players are constantly faced with a multitude of
decisions to make. They must manage economy, production,
reconnaissance and combat all at the same time. They must
decide whether the current income is sufficient or new
resource fields should be claimed, they must continuously
gather information on the enemy and produce units and
develop technologies that best match their strategies. Ad-
ditionally, they must swiftly and efficiently handle units in
combat.

When more than two players are involved, new diplomacy
mechanics are introduced. Players may form and break
alliances as they see fit. Allies have the ability to share
resources and even control over units, bringing additional
management elements to the game.

Finally, modern RTS games take the complexity a step
further by mixing in role-playing game (RPG) mechanics.
Warcraft III R©, an RTS title also developed by Blizzard
Entertainment, implements this concept. Besides regular unit
types, heroes can be produced. Heroes are similar to RPG
characters in that they can gain experience points by killing
critters or enemy units to level up. Leveling up improves
their base attributes and grants them skill points which can
be used to upgrade their special abilities.

With hundreds of units to control and dozens of different
unit types and special abilities, it becomes obvious why the
RTS genre stands on top in terms of overall complexity.

IV. PROBLEM STATEMENT

The problem of learning production strategies in an RTS
game can be formalized as follows.

Consider a fixed player u. A world vector w ∈ W is a
vector describing the entire world at a particular time in the
game. An observation vector o ∈ O is the projection of w
over an observation space O describing the part of the world
perceivable by player u. We define a state vector s ∈ S
as the projection of o over a space S by selecting variables
deemed relevant to the task of learning production strategies.

APPENDIX C. SCIENTIFIC PAPER

55

Let n ∈ N be the number of variables chosen to describe the
state. We have:

s = (s1, s2, ..., sn),∀i ∈ {1, ..., n} : si ∈ R

Several components of s are variables that can be directly
influenced by production orders. Those are the variables that
describe the number of buildings of each type available or
planned, the cumulative number of units of each type pro-
duced or planned and whether each technology is researched
or planned. If a technology is researched or planned, the
corresponding variable is equal to 1, otherwise, it is equal
to 0. Let m be the number of these variables and let sp1 ,
sp2

, ..., spm
be the components of s that correspond to these

variables.
When in state s, a player u can select an action vector

a ∈ A of size m that gathers the “production orders”. The
jth component of this vector corresponds to the production
variable spj

. When an action a is taken, the production
variables of s are immediately modified according to:

∀j ∈ {1, ...,m} : spj ← spj + aj

We define a production strategy for player u as a mapping
P : S → A which selects an action vector a for any given
state vector s:

a = P (s)

V. LEARNING ARCHITECTURE

We assume that a set of recorded games is provided.
Each recorded game consists of a set of state vectors of
player u. Our objective is to learn a production strategy P as
close as possible to the production strategy used by player
u. To achieve this, we use supervised learning to learn to
predict each production variable spj based on the remaining
state s−pj

defined below. We then use the predicted spj

values to deduce a production order a. Since there are
m production variables, we solve m supervised learning
problems. Formally, our approach works as follows.

For each production variable spj
, we define the remaining

state as s−pj
:

∀j ∈ {1, ...,m} : s−pj = (s1, s2, ..., spj−1, spj+1, ..., sn)

For each production variable spj , we also define a function
Pj which maps each remaining state to spj :

∀j ∈ {1, ...,m} : Pj(s−pj) = spj

Knowing each Pj , we can deduce the mapping P and
estimate a production order a for any given state vector s:

a = P (s) = (P1(s−p1
)− sp1

,

P2(s−p2
)− sp2

, ..., Pm(s−pm
)− spm

)

Using this approach, we learn the production strategy
used by player u by learning m Pj functions to estimate

production variables given the remaining state variables.
Each Pj is learned separately using supervised learning. In
other words, we learn m models. For each model, the input
for the learning algorithm is the state vector s stripped from
the component the model must predict, which becomes the
output. This process is illustrated in Figure 2.

s1 s2 ... sp
j
−1 sp

j
sp

j
+1 ... sn−1 sn

sp
j

Learning algorithm

s

s1 s2 ... sp
j
−1 sp

j
+1 ... sn-1 sns

-pj

Fig. 2. Learning the kth model

It is worth stressing that the action vector a computed
by the mapping P learned may not correspond to, due to
the constraints imposed by the game, an action that can be
taken. For example, a may send among others an order for
a new type of unit while the technology it requires is not
yet available. In our implementation, every component of a
which is inconsistent with the state of the game is simply set
to zero before the action vector is applied.

VI. EXPERIMENTAL RESULTS

The proposed method was tested in StarCraft II by teach-
ing a Terran agent facing a Protoss opponent production
strategies.

A total of n = 108 variables were selected to describe a
state vector. These state variables are:

• s1 ∈ N is the time elapsed since the beginning of the
game in seconds

• s2 ∈ N is the total number of units owned by the agent
• s3 ∈ N is the number of SCVs (Space Construction

Vehicles)
• s4 ∈ N is the average mineral harvest rate in minerals

per minute
• s5 ∈ N is the average gas harvest rate in gas per minute
• su ∈ N, u ∈ {6, ..., 17} is the cumulative number of

units produced of each type
• sb ∈ N, b ∈ {18, ..., 36} is the number of buildings of

each type
• st ∈ {0, 1}, t ∈ {37, ..., 63} indicates whether each

technology has been researched
• se ∈ {0, 1}, e ∈ {64, ..., 108} indicates whether an

enemy unit type, building type or technology has been
encountered

APPENDIX C. SCIENTIFIC PAPER

56

Among these, there are m = 58 variables which corre-
spond to direct production orders: 12 su unit variables, 19 sb
building variables and 27 st technology variables. Therefore,
an action vector is composed of 58 variables. These action
variables are:

• au ∈ N, u ∈ {1, ..., 12} corresponds to the number of
additional units of each type the agent should produce

• ab ∈ N, b ∈ {13, ..., 31} corresponds to the number of
additional buildings of each type the agent should build

• at ∈ {0, 1}, t ∈ {32, ..., 58} corresponds to the tech-
nologies the agent should research

The Terran agent learned production strategies from a
set of 372 game logs generated by letting a Very Hard
Terran computer player play against a Hard Protoss computer
player on the Metalopolis map. State vectors were dumped
every 5 seconds in game time. Each Pj was learned using
a feedforward neural network with a 15-neuron hidden layer
and the Levenberg-Marquardt backpropagation algorithm to
update weights. Inputs and outputs were mapped to the
[−1, 1] range. A tan-sigmoid activation function was used
for hidden layers.

These 58 neural networks were combined with a simple
scripted combat manager. During a game, the agent periodi-
cally predicts production orders. For any given building type,
unit type or technology, if the predicted target value Pj(s−pj)
is greater than the current number spj , a production order aj
is passed to reach the target value. This behavior is illustrated
in Figure 3.

sp
j

Learned model

>

produce more pj

yes

s1 s2 ... sp
j
−1 sp

j
sp

j
+1 ... s107 s108

s
-pj

s

 Pj (s-pj
)

s1 s2 ... sp
j
−1 sp

j
+1 ... s107 s108

Fig. 3. Agent production behavior

The final agent was tested in a total of 50 games using
the same settings used to generate the training set. The
results are summarized in Table 1. With a less sophisticated
combat handler, the imitative learning trained agent (IML
agent) managed to beat the Hard Protoss computer player 9
times out of 10 on average while the Hard Terran computer

player lost every game. This performance is not far below
that of the Very Hard Terran computer player the agent
learned from, which achieved an average win rate of 96.5%.
In addition to counting victories, we have attempted to verify
that the agent indeed replicates to some extent the same
production strategies as those from the training set. Roughly,
two different strategies were used by the Very Hard Terran
computer player. The first one (A) primarily focuses on
infantry while the second one (B) aims at faster technological
development. Formally, a game is given the label Strategy A
if no factories or starports are built during the first 5 minutes
of the game. Otherwise it is labeled Strategy B. Figure 4
shows, for the training set, the average number of barracks,
factories and starports built over time for each strategy. Two
corresponding strategies were also observed for the learning
agent over the 50 test games, as shown in Figure 5. For each
strategy, the frequency of appearance is shown in Figure 6.

TABLE I
TERRAN PERFORMANCE AGAINST HARD PROTOSS

Terran win rate Total games

Very Hard Terran 96.5% 372
Hard Terran 0% 50

Learning agent 90% 50

The frequency at which each strategy is used was not
faithfully reproduced on the test set. This can be partly
explained by the more limited combat handler, which may
fail to acquire the same information on the enemy than was
available in the training set. Moreover, Strategy B seems to
be less accurately replicated than Strategy A. This may be
caused by the lower frequency of appearance in the training
set. Nevertheless, the results obtained indicate that the agent
learned both production strategies from the Very Hard Terran
computer player. Subsequently, we may rightly attribute the
agent’s high performance to the fact that it managed to
imitate the efficient production strategies used by the Very
Hard Terran computer player.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a method for integrating
imitative learning in real-time strategy agents. The proposed
solution allowed the creation of an agent for StarCraft II
capable of learning production strategies from recorded game
data and applying them in full one-on-one games.

Although we managed to create a learning agent for
StarCraft II, the training set was relatively small and the
data diversity rather limited. In order to efficiently learn
from richer sets collected from various sources, we suspect
clustering will be required to organize records and maintain
manageable data sets. Furthermore, the manually generated
training data only contained desirable production strategies.
When training data is automatically collected from various
sources, selection techniques will be required to filter out
undesirable production strategies. Besides production-related
improvements, there are other areas worth investing in to

APPENDIX C. SCIENTIFIC PAPER

57

Feuille2

Page 1

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

a
n

ti
ty

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

an
ti

ty

(a) Strategy A

Feuille3

Page 1

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

a
n

ti
ty

(b) Strategy B

Fig. 4. Training set strategies

increase agent performance such as information management
or combat management. Enhanced information management
can allow an agent to better estimate the state of its opponents
and for example predict the location of unit groups that could
be killed before they can retreat or be joined by backup
forces. As for combat management, it may lead to much more
efficient unit handling in battle and for example maximize
unit life spans.

ACKNOWLEDGMENTS

Raphael Fonteneau is a postdoctoral researcher of the FRS-
FNRS from which he acknowledges the financial support.
This paper presents research results of the European Network
of Excellence PASCAL2 and the Belgian Network DYSCO
funded by the Interuniversity Attraction Poles Programme,
initiated by the Belgian State, Science Policy Office.

REFERENCES

[1] J. E. Laird and van Michale Lent, “Human-level ai’s
killer application: Interactive computer games,” in Pro-
ceedings of the 17th National Conference on Artificial
Intelligence, 2000.

Feuille2

Page 1

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

a
n

ti
ty

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

an
ti

ty

(a) Strategy A

Feuille3

Page 1

5 55 105 155 205 255 305 355 405 455
0

0,5

1

1,5

2

2,5

3

3,5

Barracks

Factories

Starports

Time (s)

Q
u

a
n

ti
ty

(b) Strategy B

Fig. 5. Test set strategies
Feuille1

Page 1

Strategy A Strategy B

0

10

20

30

40

50

60

70

80

90

100

Training set

Test set

G
am

es
 (

%
)

Fig. 6. Strategy frequencies

[2] C. Bauckhage, C. Thurau, and G. Sagerer, “Learning
human-like opponent behavior for interactive computer
games,” Pattern Recognition, pp. 148–155, 2003.

[3] B. Gorman and M. Humphrys, “Imitative learning of
combat behaviours in first-person computer games,” in
Proceedings of the 10th International Conference on
Computer Games: AI, Mobile, Educational and Serious

APPENDIX C. SCIENTIFIC PAPER

58

Games, 2007.
[4] C. Thurau, G. Sagerer, and C. Bauckhage, “Imitation

learning at all levels of game ai,” in Proceedings
of the International Conference on Computer Games,
Artificial Intelligence, Design and Education, 2004.

[5] F. Frandsen, M. Hansen, H. Sørensen, P. Sørensen, J. G.
Nielsen, and J. S. Knudsen, “Predicting player strategies
in real time strategy games,” Master’s thesis, 2010.

[6] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram,
“Case-based planning and execution for real-time strat-
egy games,” in Proceedings of the 7th International
Conference on Case-Based Reasoning (ICCBR-07),
2007, pp. 164–178.

[7] D. W. Aha, M. Molineaux, and M. J. V. Ponsen,
“Learning to win: case-based plan selection in a real-
time strategy game,” in Proceedings of the 6th Interna-
tional Conference on Case-Based Reasoning (ICCBR-
05), 2005, pp. 5–20.

[8] B. Weber and M. Mateas, “Case-based reasoning for
build order in real-time strategy games,” in Proceedings
of the 5th Artificial Intelligence for Interactive Digital
Entertainment Conference (AIIDE-09), 2009.

[9] B. G. Weber and M. Mateas, “A data mining approach
to strategy prediction,” in Proceedings of the 5th IEEE
Symposium on Computational Intelligence and Games
(CIG-09). IEEE Press, 2009, pp. 140–147.

[10] M. Ponsen, H. Muñoz-Avila, P. Spronck, and D. Aha,

“Automatically generating game tactics via evolutionary
learning,” AI Magazine, vol. 27, no. 3, pp. 75–84, 2006.

[11] J. McCoy and M. Mateas, “An integrated agent for
playing real-time strategy games,” in Proceedings of the
23rd AAAI Conference on Artificial Intelligence (AAAI-
08), 2008, pp. 1313–1318.

[12] F. Safadi, R. Fonteneau, and D. Ernst, “Artificial in-
telligence design for real-time strategy games,” in Pro-
ceedings of the 2nd International Workshop on Decision
Making with Multiple Imperfect Decision Makers, 2011.

[13] D. C. Cheng and R. Thawonmas, “Case-based plan
recognition for real-time strategy games,” in Proceed-
ings of the 5th International Conference on Computer
Games: Artificial Intelligence, Design and Education
(CGAIDE-04), 2004, pp. 36–40.

[14] M. Chung, M. Buro, and J. Schaeffer, “Monte-carlo
planning in real-time strategy games,” in Proceedings of
the 1st IEEE Symposium on Computational Intelligence
and Games (CIG-05), 2005.

[15] A. Kovarsky and M. Buro, “A first look at build-order
optimization in real-time strategy games,” in Proceed-
ings of the 2006 GameOn Conference, 2006, pp. 18–22.

[16] B. G. Weber and M. Mateas, “Conceptual neighbor-
hoods for retrieval in case-based reasoning,” in Pro-
ceedings of the 8th International Conference on Case-
Based Reasoning (ICCBR-09), 2009, pp. 343–357.

APPENDIX C. SCIENTIFIC PAPER

59

Bibliography

[1] Sandra Upson. How a computer game is reinventing the science of
expertise. Scientific American Blog Network, 2011.
http://blogs.scientificamerican.com/observations/2011/12/01/

how-a-computer-game-is-reinventing-the-science-of-expertise-video/.
2

[2] John E. Laird and van Michale Lent. Human-level ai’s killer application:
Interactive computer games. In Proceedings of the 17th National
Conference on Artificial Intelligence, 2000. 4

[3] Christian Bauckhage, Christian Thurau, and Gerhard Sagerer. Learning
human-like opponent behavior for interactive computer games. Pattern
Recognition, pages 148–155, 2003. 5

[4] Bernard Gorman and Mark Humphrys. Imitative learning of combat
behaviours in first-person computer games. In Proceedings of the 10th
International Conference on Computer Games: AI, Mobile, Educational
and Serious Games, 2007. 5

[5] Christian Thurau, Gerhard Sagerer, and Christian Bauckhage. Imitation
learning at all levels of game ai. In Proceedings of the International
Conference on Computer Games, Artificial Intelligence, Design and
Education, 2004. 5

[6] Frederik Frandsen, Mikkel Hansen, Henrik Sørensen, Peder Sørensen,
Johannes Garm Nielsen, and Jakob Svane Knudsen. Predicting player
strategies in real time strategy games. Master’s thesis, 2010. 5

[7] Santiago Ontañón, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram.
Case-based planning and execution for real-time strategy games. In
Proceedings of the 7th International Conference on Case-Based Reasoning
(ICCBR-07), pages 164–178, 2007. 5

60

http://blogs.scientificamerican.com/observations/2011/12/01/how-a-computer-game-is-reinventing-the-science-of-expertise-video/
http://blogs.scientificamerican.com/observations/2011/12/01/how-a-computer-game-is-reinventing-the-science-of-expertise-video/

BIBLIOGRAPHY BIBLIOGRAPHY

[8] David W. Aha, Matthew Molineaux, and Marc J. V. Ponsen. Learning to
win: case-based plan selection in a real-time strategy game. In Proceedings
of the 6th International Conference on Case-Based Reasoning (ICCBR-05),
pages 5–20, 2005. 5

[9] Ben Weber and Michael Mateas. Case-based reasoning for build order in
real-time strategy games. In Proceedings of the 5th Artificial Intelligence
for Interactive Digital Entertainment Conference (AIIDE-09), 2009. 5

[10] Ben G. Weber and Michael Mateas. A data mining approach to strategy
prediction. In Proceedings of the 5th IEEE Symposium on Computational
Intelligence and Games (CIG-09), pages 140–147. IEEE Press, 2009. 5

[11] Marc Ponsen, Héctor Muñoz-Avila, Pieter Spronck, and David Aha.
Automatically generating game tactics via evolutionary learning. AI
Magazine, 27(3):75–84, 2006. 5

[12] Josh McCoy and Michael Mateas. An integrated agent for playing real-time
strategy games. In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI-08), pages 1313–1318, 2008. 5

[13] Firas Safadi, Raphael Fonteneau, and Damien Ernst. Artificial intelligence
design for real-time strategy games. In Proceedings of the 2nd International
Workshop on Decision Making with Multiple Imperfect Decision Makers,
2011. 5

[14] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer New York Inc.,
New York, NY, USA, 2001. 26, 35

[15] Warren S. Sarle. Neural network faq, 1997.
ftp://ftp.sas.com/pub/neural/FAQ.html. 26

[16] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for non-linear least
squares problems (2nd ed.), 2004. 27

[17] Henri Gavin. The levenberg-marquardt method for nonlinear least squares
curve-fitting problems. Environmental Engineering, pages 1–15, 2011. 27

61

ftp://ftp.sas.com/pub/neural/FAQ.html

	Contents
	1 Introduction
	1.1 Video Games
	1.2 RTS Games
	1.3 Bots in RTS Games
	1.4 Goal
	1.5 Related Work
	1.6 Structure of the Thesis

	2 Theory
	2.1 Problem Statement
	2.1.1 State Vector
	2.1.2 Production Variables
	2.1.3 Variables Relating to Opponents
	2.1.4 Other Variables
	2.1.5 Action Vector
	2.1.6 Problem Formalization

	2.2 Learning Architecture
	2.2.1 Hypothesis
	2.2.2 Imitative Learning

	2.3 Prediction Process
	2.3.1 Consistency
	2.3.2 Predictability and Resource Constraints
	2.3.3 Distinct Development Paths

	3 Application
	3.1 StarCraft II
	3.2 Game Configuration
	3.3 State Vector
	3.3.1 Production Variables
	3.3.2 Opponent's Technological Tree
	3.3.3 Other Relevant Variables

	3.4 Recording States
	3.4.1 State Update
	3.4.2 Log Files

	3.5 Dataset Generation
	3.5.1 Ideal Dataset
	3.5.2 Chosen Dataset

	3.6 Learning Algorithm
	3.6.1 Requirements
	3.6.2 Neural Networks
	3.6.3 Learning Parameters
	3.6.3.1 Scaling
	3.6.3.2 Weight Updating

	3.6.4 Model Performance

	3.7 Strategy Classification
	3.7.1 Build Order
	3.7.2 Clustering Space
	3.7.3 Clustering Algorithm
	3.7.4 Clustering Procedure

	4 Results
	4.1 Experimental Protocol
	4.2 Win Rate Comparison
	4.3 Strategy Comparison

	5 Conclusion and Future Work
	A Implementation Details
	A.1 Automatization
	A.2 Galaxy Editor
	A.3 Statistical Models
	A.3.1 Importation
	A.3.2 Prediction

	A.4 Production Management
	A.5 Combat Management

	B Screenshots
	C Scientific Paper
	Bibliography

