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Extension of the Liège Intra Nuclear Cascade model

to light ion-induced collisions for medical and space

applications

S. Leray1, D. Mancusi1, P. Kaitaniemi1,3, J.C. David1, A. Boudard1,
B. Braunn1, J. Cugnon2

1CEA/Saclay, Irfu/SPhN, 91191 Gif-sur-Yvette, Cedex, France
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Abstract. The Liège Intranuclear Cascade model, INCL4, has been developed to describe
spallation reactions, i.e. nucleon and light charged particle induced collisions in the 100 MeV
– 3 GeV energy range. Extensive comparisons with experimental data covering all possible
reaction channels have shown that, coupled to the ABLA07 de-excitation code from GSI, it is
presently one of the most reliable models in its domain. Recently, the treatment of composite
particle as projectlies has been revisited mainly to improve predictions related to secondary
reactions in spallation targets. An example regarding astatine production in LBE targets will
be shown. Also, the model has been extended to light ion (up to oxygen) induced reactions,
mostly for medical and space application purposes. This version is available in GEANT4. The
first results indicate that the model agrees at least as well as other models with experimental
data. In this paper, the different assumptions and ingredients of the model will be presented and
comparisons with relevant experimental data will be shown. The sensitivity to the de-excitation
stage is also discussed.

1. Introduction
The Liège Intranuclear Cascade model, INCL4 [1], has originally been developed to describe
spallation reactions, i.e. nucleon and light charged particle induced collisions in the 100
MeV – 3 GeV energy range. Coupled to the ABLA de-excitation code from GSI [2], it has
been extensively compared with experimental data covering all possible reaction channels and
continuously improved during the last ten years, part of the work being done in the framework
of the HINDAS [3] FP5 and EUROTRANS/NUDATRA [4] FP6 EC projects, whose objective
was to provide improved simulation tools for the design of ADS transmuters. The combination
of versions developed in this framework, INCL4.5 [5] and ABLA07 [6], has been shown [7] to be
one of the models giving the best overall agreement with experimental data in the benchmark of
spallation models organized recently under the auspices of IAEA [8]. Different versions of INCL4,
alone or coupled to ABLA, have been provided for implementation into various high-energy
transport codes : MCNPX [9], GEANT4 [10] and more recently PHITS [11] and MARS [12].

The main motivations for the work on spallation reaction models were the development
of spallation neutron sources and projects of accelerator-driven sub-critical reactors and of
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radioactive ion beam facilities. However, other applications of high energy reactions involving
light-ion induced reactions are nowadays raising a lot of interest: for instance hadrontherapy,
radioprotection of astronauts and radiation damage to microelectronics circuits near accelerators
or in space missions, and simulation of detector set-ups in nuclear and particle physics
experiments.

There is an increasing number of hadrontherapy facilities in Asia and in Europe that use
or plan to use carbon beams around a few hundreds of MeV/u to irradiate deep-seated radio-
resistant cancerous tumors. The fragmentation of the carbon ion along its path to the tumour
produces secondary neutrons and charged particles. This is a subject of concern because of
potential and undesirable long-term effects which may restrain the development of this therapy,
up to now used only when other techniques fail. Also, the application of positron emission
tomography (PET) techniques for in-vivo range verification [13] relies on an accurate estimate of
the production and of the stopping-site distribution of the β+ emitters, 10C and 11C. Only high-
precision Monte-Carlo calculations can provide a reliable relation between the dose-deposition
and the β+-activity distributions. There is therefore a need for transport codes able to predict
reliably carbon fragmentation and to provide correlations among different observables — which
is beyond the applicability of deterministic models.

In space, irradiation is due galactic cosmic radiation composed of ions from protons to iron
with an energy distribution peaking around 1 GeV per nucleon. As shown in [14], although
heavy ions are far less frequent in cosmic radiation than protons, they are responsible for the
major part of the dose received by the space crew. Damage to electronic devices in space is
also becoming an important issue. In order to accurately simulate these effects, models for the
reactions occurring in the vessel structure and in biological tissues (for instance Fe+C reactions)
should obviously be reliable since they produce secondary nuclei.

Because of the growing interest in these types of applications, most of the high-energy
transport code are being extended to heavy-ion transport or, if this option was already
available, more attention is paid to the quality of the implemented nuclear reaction models.
For instance, the MCNPX team has recently begun to upgrade it to heavy-ion transport [15]
and a benchmarking of GEANT4 for medical applications is regularly organized. This is why the
extension of the INCL4 model to light-ion (up to 18O) has recently been undertaken. This work
has actually begun with the possibility of handling composite projectiles in the standard model.
The treatment of projectiles up to alphas have been revisited [16], especially at low incident
energies, in order to correctly predict secondary reactions in spallation targets. Examples
of results that can be obtained [17] are given in the first part of this paper. In the second
part, we briefly describe how the INCL4 model is being extended to light-ion induced reactions
and compare it with some available experimental data. Finally, examples of simulation of
experimental data relevant for hadrontherapy are given using the model, in its C++ version,
implemented in GEANT4.

2. Composite particle induced reactions
Although from the origin, the INCL4 model was designed to handle reactions with light-charged
particles up to alpha, little attention had been paid to those up to recently. However, in nucleon-
induced reactions high-energy composite nuclei are produced, which are responsible for secondary
reactions in a spallation target. Since some of the isotopes produced in secondary reactions can
be of concern for radioprotection issues, it is important to have a model able to correctly predict
both composite particle production in spallation reactions and low-energy secondary reactions.

2.1. Cluster production in INCL
As regards composite particle production, only models having a specific mechanism to
produce high-energy clusters of nucleons during the cascade stage can aspire reproducing the

11th International Conference on Nucleus-Nucleus Collisions (NN2012) IOP Publishing
Journal of Physics: Conference Series 420 (2013) 012065 doi:10.1088/1742-6596/420/1/012065

2



experimentally observed high-energy tail in composite particle spectra, which cannot be ascribed
to the evaporation stage. In INCL4 a mechanism based on surface coalescence in phase space
has been introduced in Ref. [18]. It assumes that a cascade nucleon ready to escape at the
nuclear surface can coalesce with other nucleons close enough in phase space and form a cluster
that will be emitted if its energy is sufficient to overcome the Coulomb barrier. All possible
clusters are formed and the priority is given to the one with the lowest excitation energy per
nucleon. In later versions of the models, the mechanism, originally limited to A ≤ 4, has been
extended to clusters up to mass 8 and the phenomenological parameters of the model, which
include the volume of the phase space cell in which nucleons should be to form a cluster and the
distance from the surface at which the clusters are built, have been revisited. Generally, a very
good agreement is obtained with experimental data [19]. It should be stressed however that,
like all the ingredients and parameters of INCL4, once chosen, the coalescence parameters are
kept constant whatever the system studied.

2.2. Treatment of composite particle induced reactions
Secondary reactions occur at low energies, generally below the alleged theoretical limit of validity
of INC models. However, when models are implemented into transport codes and used for a large
variety of applications, since no better solution exists (data libraries are not available for helium-
induced reactions), it is necessary to ensure that the model predicts at least the gross features
of all possible interactions. This is why an effort has been devoted to improve the treatment of
low-energy composite particle induced reactions in INCL4. Details of the modifications brought
to the model are discussed in [16].

In the original version, an incident cluster was considered as a collection of independent
on-shell nucleons with internal Fermi motion superimposed to the collective motion. This
approximation is justified at high energy, but it is not really appropriate for reactions at
low incident energy, when binding energy and Fermi energy are not small quantities compared
with the incident kinetic energy. Therefore, the model has been modified adding the following
ingredients:

(a) the composite projectile is described as a collection of off-shell independent nucleons with
Fermi motion, ensuring full energy and momentum conservation;

(b) geometrical spectators, i.e. nucleons not passing through the target volume, are put on-shell
and the energy needed to preserve a correct balance is taken from the participant nucleons;

(c) if one of the nucleons tries to enter into the target below the Fermi level, all nucleons are
absorbed leading to a complete fusion reaction as detailed below;

(d) the projectile Coulomb deviation is now explicitely taken into account;

(e) experimental mass tables instead of average values, which were sufficient at high energies
but were problematic close to reaction thresholds, are used, ensuring correct Q-values for
the different reaction channels.

At very low energy, the nuclear reaction proceeds by a total absorption of the projectile
and the formation of a compound nucleus which will then decay. To account for this, we have
introduced a smooth empirical description of the transition between the full absorption and the
usual intra nuclear cascade regime (actually only for projectiles with A ≤ 4) in the following
way: The projectile content in terms of nucleons and the Coulomb deviation is treated as before,
but the energy of individual nucleons can be negative and sometimes even below the Fermi level
in the target nucleus (see Fig. 1), a situation hardly acceptable in the cascade picture. Nucleons
missing the sphere of calculation are kept as individual nucleons and put on shell. The necessary
energy for this is equally taken from all nucleons entering in the sphere (”participants”). If a
participant has an energy lower than the target Fermi level and crosses the core of the target
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Figure 1: Scheme of the absorption mechanism in composite particle induced reactions.

density, a compound nucleus is produced and treated by the de-excitation has the usual remnant
nucleus of the cascade. There is no more ”cascade” calculation in that case.
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Figure 2: Total reaction cross sections as a function of incident energy for alphas (solid lines)
and 3He (dashed lines) on Bi calculated with INCL4.6-ABLA07 (red curves) and the older
version INCL4.2-ABLA (green curves) compared to experimental data on Pb and Bi targets
from [20, 21, 22]

With these modifications, the model is able to predict rather well helium-induced total
reaction cross-sections [16], as can be seen in Fig. 2, in which it is compared to available
experimental data [20, 21, 22] and to the predictions of the original version. It also reproduces
reasonably well the different reaction channels that opens with increasing incident energy. This is
illustrated in Fig. 3, which shows experimental cross sections, found in the EXFOR experimental
nuclear reaction database [23], regarding 209Bi(α, xn) for different x values, as a function of the
incident particle kinetic energy, compared with the model.

This success may seem surprising since INC models are not supposed to be used to describe
reactions below ∼ 150 MeV and even less fusion reactions. Actually, this can be understood
if one realizes that the model has by construction correct macroscopic properties, thanks to
the realistic phase-space densities and to the Coulomb deviation, and that, once nucleons have
entered into the target nucleus, they are mostly trapped within the nuclear potential (especially
thanks to our absorption procedure) and not sensitive to the detail of the intranuclear cascade.
Our model obviously contains some phenomenology but probably not more than many fusion
models available on the market, with the advantage that, when the incident energy increases,
the model can naturally describe the transition from complete to incomplete fusion.
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Figure 3: 209Bi(α, xn) cross sections for x = 1 to 6 as functions of the α incident kinetic energy.
The red curves correspond to the predictions of the INCL4.6+ABLA07 model. The experimental
data were compiled using the experimental nuclear reaction database, EXFOR [23]

It should be mentioned however that, although still acceptable, the agreement is less good in
the case of 3He (not seen here), in particular for 1n and 2n channels. This is ascribed in [16] to
the fact that 3He is less bound and its possible dissociation is not well handled by the model.
In addition, our fusion criteria may be less appropriate in this case.

2.3. Application to astatine production in liquid lead-bismuth targets
An example of possible application of our model is the prediction of astatine production in a
liquid lead-bismuth(LBE) target. In [17], the model, implemented in MCNPX [24], has been
used to simulate the results measured by the ISOLDE IS419 experiment in Ref. [25]. The atomic
charge (Z = 85) of astatine is larger than that of bismuth by two units. This means that it can be
produced only through (Z = 1, π−) reactions on bismuth or via secondary reactions involving
Z ≥ 2 particles. Fig. 4 shows the global production rate of the different astatine isotopes
and the contributions from the different possible mechanisms. It appears that the heaviest
isotopes are produced only through secondary helium-induced reactions. On the other hand,
both mechanisms populate the other isotopes, the very lightest ones preferentially originating
from double charge exchange reactions.

Fig. 5 shows total production yields of astatine isotopes measured in the ISOLDE target
compared with the result of INCL4.6-ABLA07 (solid red line) and the former version of the
model (blue line) included in MCNPX. The isotopes produced in the target by MCNPX have
been passed through CINDER’90 evolution code [26] in order to take into account the actual
irradiation and measurement history. For the normalization, a complete release of astatine is
assumed. A remarkable agreement between the new calculation and the experiment is observed,
regarding not only the shape of the isotopic distribution but also the absolute release rates.
Clearly all the new features discussed in the preceding sections, in particular the better handling
of low energy helium-induced reactions, have considerably improved the predictive capability of
our model.
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Figure 4: The different reaction channels contributing due to production of astatine isotopes
as predicted by INCL4.6-ABLA07 implemented into MCNPX for the ISOLDE LBE target
irradiated by 1.4 GeV protons: black total production, green: production through (p, π−)
reactions; red and blue: through secondary reactions induced by alphas and 3He respectively.
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Figure 5: Astatine release rates measured by Tall et al. [25] at 1.4 GeV compared to MCNPX
simulations, taking into account the actual irradiation and measurement history through the
CINDER’90 evolution code, using INCL4.6-ABLA07 (red line) or INCL4.5-ABLA07 (dashed
blue line).

3. Light-ion induced reactions
As already said in the introduction, the idea to extend our model to heavy-ion reactions has
arisen from the need of predictive transport codes for applications such as hadrontherapy and
space radiation protection. Since the model is very successful in nucleon and composite particle
induced reactions, it seemed natural to try to extend it to heavier projectiles. It is clear that our
model cannot aspire to describe collisions of two very heavy nuclei since it does not have physics
ingredients allowing for instance the prediction of important collective effects. Therefore, we
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have limited the extension to 18O projectiles. The goal is to provide an event-generator for
high-energy transport codes, able to calculate the characteristics of all particles and nuclei
generated in a particular application, with a main focus on hadrontherapy.

3.1. The model
The first INCL light ion extension [27, 28], based on the INCL4.2 version of the nucleon-
induced reaction model, consisted of two main parts: handling of the projectile as a collection
of individual nucleons and de-excitation of the projectile fragments after the reaction. The
main cascade in the target nucleus is treated following the standard INCL cascade procedure
as described in Ref. [1]. This version, translated to C++ and coupled with ABLA, has been
included in GEANT4 [29]. In this approach, clearly the target and projectile are not treated
symmetrically. If we try to interpret the reaction in the framework of a participant-spectator
picture, the treatment of the target spectator and participant zone (where NN collisions happen)
is satisfactory while the projectile spectator is obviously not correctly handled. When one is
interested in fragments of the projectile, this deficiency is circumvented by reversing the reaction
(i.e. the target impinging on the projectile) and then boosting it back to the laboratory frame.

Recently, the model has been revisited on the basis of the INCL4.6 version and totally
rewritten in C++. This light-ion extended version is denoted as INCL++. The version shown
in this paper is v5.1 and has been distributed with the latest GEANT4 beta release (v9.6β).

ρ(
r)
p)

ρ(

b

Coulomb deviation

a Beam

A Target

Global motion
before interactions

Projectile
spectator

Figure 6: Scheme of a Nucleus-Nucleus collision in INCL++ v5.1.

Let us briefly describe its main features. The ion comes from infinity at a random impact
parameter (see Fig. 6). It is described as a bulk of (N, Z) nucleons in the ion rest frame whose
positions and momenta are randomly chosen in a realistic r and p space density (gaussian).
A constraint is applied to have the vectorial sum equal to zero in both spaces. For each
configuration the depth of a binding potential is determined so that the sum of the nucleon
energies is equal to the tabulated mass of the projectile nucleus. A Lorentz boost with the
projectile velocity is applied to the nucleon quadrivectors to define them in the laboratory
system (target at rest). The nucleons are no more on mass shell but the sum of energies and
vector momenta are correct. The ion follows globally a classical Coulomb trajectory until one
of its nucleon impinges on a sphere of calculation around the target nucleus, large enough to
marginally neglect nuclear interactions. Considering the collective cluster velocity, some of the
nucleons will never interact with this sphere and will be combined together in the ”projectile
spectator”. All other nucleons are entering the calculation sphere. They move globally (with
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the beam velocity) until one of them interacts, being close enough to a target nucleon. The
NN interaction is then computed with the individual momenta, and Pauli blocking is tested.
Nucleons crossing the sphere of calculation without any NN interaction are also combined in
the ”projectile spectator” at the end of the cascade.

The projectile spectator nucleus is kinematically defined by its nucleon content and its
excitation energy obtained by an empirical particle-hole model based on the energy configuration
of the current projectile and the removed nucleons (interacting with the target). This nucleus
is then given to a de-excitation model. It is quite clear that this ”projectile spectator” has not
received any explicit contribution from the zone of interaction which is entirely contained in the
target remnant with two consequences: the calculation is not symmetric and the residue of the
target should be more realistic than the ”projectile spectator” at this stage of the model. In
this model, energy and momentum are always conserved.

3.2. Comparison with experimental data
In order to compare with experimental data, the INC model has to be coupled to a de-excitation
model. Our standalone version has been coupled to the ABLA07 model [6], as the INCL4.6
fortran model. In GEANT4, it is linked with the native de-excitation handler [30]. This
handler, depending on the mass and the excitation energy of the excited nuclei provided by
the cascade, chooses between three different statistical de-excitation models (a Fermi break-
up model, an evaporation model or a multifragmentation model) to bring back the nuclei to
their fundamental state. This allows comparing the respective merits of ABLA07 and GEANT4
de-excitation.

The calculation is still not symmetric although the projectile spectator is better treated than
in the first version of our model. This means that, depending on the observable that one is
interested in, the calculation should be done either in direct or in inverse kinematics. In the
following section, in which we compare the model with some experimental data, we show both
choices of kinematics in the case of the symmetric system 12C +12 C to emphasize the resulting
differences.

Comparisons are also done with other models available in GEANT4: the binary cascade
(BIC) from Folger et al. [31] and in some cases the GEANT4 Quantum Molecular Dynamic
model (QMD) developed by Koi [32]. Both are linked to the GEANT4 de-excitation handler.

3.2.1. Neutron production The first results that we compared are neutron production cross-
sections measured in the 12C +12 C system at 135 and 290 MeV by Sato et al. [33] and Iwata
et al. [34], respectively. In Fig. 7, calculations done using either inverse or direct kinematics are
plotted. High energy neutrons in direct kinematics are mostly arising from NN collisions in
the INC model plus neutrons from the de-excitation of the projectile spectator, while in inverse
kinematics they result from the de-excitation of the target remnant or are the low energy partner
in NN collisions. Globally the inverse kinematics gives a better agreement except at 135 MeV
at very forward angles.

Fig. 8 shows the comparison of the data with the present model, the former version INCL4.2,
both in inverse kinematics, and BIC, all models being coupled to the GEANT4 de-excitation
handler. It can be observed that the new version of our model better reproduces the data than
the former version and that BIC is definitely less good.

Finally, in Fig. 9 we present results using two different de-excitation models, ABLA07 and
the GEANT4 de-excitation, coupled to INCL++, here in the direct kinematics case. The results
are not very different except at low neutron energies, corresponding to neutrons from the de-
excitation of the target remnant, where ABLA07 seems better.
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Figure 7: Neutron production double differential cross sections in the 12C +12 C system at 135
MeV/u [33] and 290 MeV/u] [33] compared to INCL++ in GEANT4 in direct and inverse
kinematics.
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Figure 8: Same as Fig. 7 but the data are compared to INCL++ and INCL4.2, both in inverse
kinematics, and BIC, all INC coupled to the GEANT4 de-excitation handler.

3.2.2. Charge changing cross-sections Results on residue production are generally more
sensitive to details of the models. In Fig. 10 several sets of data concerning charge changing
cross-sections from Ref. [35] are compared to our model, present and former versions, and to
BIC. The experiment was devoted to the study of projectile fragmentation on a carbon target.
Since the model is available only up to oxygen projectiles, the calculations have been performed
in inverse kinematics. As said before, we expect our model to be better for the target remnant,
i.e precisely for projectile fragments in inverse kinematics. Generally, our model gives a better
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Figure 9: Same as Fig. 7 but the data are compared to INCL++ coupled to two different
de-excitation models, ABLA07 and GEANT4 de-excitation handler.
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(a) 56Fe +12 C 500 MeV/u
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(b) 56Fe +12 C 3000 MeV/u
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(c) 35Cl +12 C 500 MeV/u

Figure 10: Charge changing cross-sections from Ref. [35] compared with INCL++, INCL4.2 and
BIC.

agreement with the data than BIC. However, some significant discrepancies can be noticed,
especially for the lightest residues.

We have also compared the effect of the choice of the de-excitation model. This can be seen
in Fig. 10. Clearly the results are largely dependent on the choice: the GEANT4 de-excitation
gives the best fit to the experimental data while ABLA07 has a problem in predicting light
nuclei. This may be due to the fact that the model was up to now mainly tested, and therefore
adjusted, on systems with excitation energies much smaller than the values reached in the cases
studied here.

3.3. Simulations of thick targets
With the model implemented into GEANT4, it is possible to perform simulations of experiments
done with thick targets. In Fig. 12, double-differential cross sections of different charged particles
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(b) 56Fe +12 C 3000 MeV/u
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(c) 35Cl +12 C 500 MeV/u

Figure 11: Charge changing cross-sections from Ref. [35] compared with INCL++ coupled to
two different de-excitation models, ABLA07 and GEANT4 de-excitation handler.

produced by a 200 MeV/u 12C beam stopped in 12.78 cm of water (from Gunzert-Marx et al.
[36]) are compared to calculations done with GEANT4 using either INCL++ or QMD. Our
model agrees very well with the proton data, both in shape and level of cross-sections. QMD is
slightly less good. For deuterons and alphas, the data could not be reproduced without a global
renormalization, whatever the model. Once renormalized, our model satisfactorily reproduces
the data.
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Figure 12: Double-differential cross sections of protons (a), deuterons (b) and alphas (c)
produced by a 200 MeV/u 12C beam stopped in 12.78 cm of water (from Gunzert-Marx et
al.[36])

Other thick target simulations have been done. They concern the data presented at this
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conference by B. Braunn et al. [37], in which nuclear charge distributions from the fragmentation
of a 12C beam at 95 MeV/u as projectile have been measured with different thicknesses of PMMA
targets [38]. We here only show the comparison of production rates for the 5 mm target at three
different angles. It can be observed that our model reproduces rather well the light ion cross-
sections (up to Z = 4) but tends to underestimates higher charges at forward angles while BIC
overestimates these elements at 10◦ and 20◦. QMD seems to give globally a slightly better
agreement with the data.

(a) 7 degrees (b) 10 degrees (c) 20 degrees

Figure 13: Nuclear charge distributions at different angles from a 12C beam at 95 MeV/u
interacting with a 5 mm PMMA target. The results from the three different models: INCL++
(blue crosses), BIC (blue circles) and QMD (blue squares), are compared to the experimental
data (red triangles) from Braunn et al.[38].

4. Conclusion
We have presented in this paper recent extensions of the Liège Intranuclear Cascade model,
INCL4, which was originally developed to describe nucleon and light charged particle induced
reactions in the 100 MeV – 3 GeV energy range. They regard first a revisiting of reactions
involving composite particles at low incident energies motivated mainly by the need to correctly
account for secondary reactions in spallation targets. Second, the model has been extended to
light ion induced collisions with projectiles up to 18O keeping its main features. Although the
treatment of target and projectile is not fully symmetric, but provided that the model is used
with the kinematics (direct or inverse) most appropriate to the considered observables, it gives
very satisfactory results when compared to different sets of experimental data. Being included
in GEANT4, it can be used to simulate thick target problem and gives results generally better
than BIC and comparable or only slightly less good than QMD, but with a much shorter CPU
time. Further improvements, in particular to make the model symmetrical for projectile and
target, are under progress.
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