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I. INTRODUCTIONThe most popular explanation for the observed smallness of neutrino masses is 
ertainlythe seesaw me
hanism [1�4℄. Literally hundreds of theoreti
al papers based on �the seesaw�have been published sin
e the dis
overy of neutrino os
illations [5℄. The seesaw 
an beimplemented at tree-level in exa
tly three realizations [6℄: ex
hange of a fermioni
 singlet,a.k.a. the right-handed neutrino (type-I) [1, 2℄; of a s
alar triplet (type-II) [2�4℄; or of afermioni
 triplet (type-III) [7℄. In any of these �seesaw me
hanisms� neutrino masses aregiven by mν ∼ v2/Λ, where v is the Higgs va
uum expe
tation value (vev) and Λ the s
aleof the seesaw. For 
oe�
ients O(1) and Λ ∼ (1014 − 1015) GeV one �nds neutrinos withsub-eV masses, just as experimental data demands. Unfortunately, attra
tive as this ideamight appear from the theoreti
al point of view, this estimate also implies that �the seesaw�will never be dire
tly tested.This situation might 
hange slightly, if supersymmetry (SUSY) is found at the LHC,essentially be
ause s
alar leptons provide potentially additional information about seesawparameters. Assuming SUSY gets broken at a high energy s
ale, the seesaw parameters leavetheir imprint on the soft parameters in the Renormalization Group Equation (RGE) running.Then, at least in prin
iple, indire
t tests of the seesaw be
ome possible1. Indeed, this hasbeen pointed out already in [8℄, where it was shown that lepton �avour violating (LFV)o�-diagonal mass terms for sleptons are automati
ally generated in seesaw (type-I), evenif SUSY breaking is 
ompletely �avour blind at the GUT s
ale as in minimal supergravity(mSugra)2.Motivated by the above arguments, many authors have then studied LFV in SUSY mod-els. For the seesaw type-I, low energy LFV de
ays su
h as li → ljγ and li → 3lj have been
al
ulated in [9�18℄; µ − e 
onversion in nu
lei has been studied in [19, 20℄. The type-IIseesaw has re
eived mu
h less attention, although it has a
tually fewer free parameters thantype-I. The latter implies that ratios of LFV de
ays of leptons 
an a
tually be predi
tedas a fun
tion of neutrino angles in mSugra, as has been shown in [21, 22℄. Finally, for
ompleteness we mention that LFV in SUSY seesaw type-III has been studied in [23℄.Measurements at 
olliders, on
e SUSY is dis
overed, 
an provide additional information.LFV de
ays of left sleptons within mSugra have been studied for type-I in [24℄ and for type-II in [22, 25℄. Pre
ise mass measurements might also show indire
t e�e
ts of the seesaw[26�28℄. Most prominently, type-II and type-III seesaw 
ontain non-singlet super�elds, sogauge 
ouplings run di�erently from pure MSSM. One then expe
ts that sparti
le spe
trashow a 
hara
teristi
 �deformation� with respe
t to mSugra predi
tions. From di�erent
ombinations of masses one 
an form �invariants�, i.e. numbers whi
h to leading order depend1 In the general minimal supersymmetri
 extension of the standard model (MSSM) all soft terms are freeparameters, �xed at the ele
troweak s
ale and nothing 
an be learned about the high energy world.2 It might be te
hni
ally more 
orre
t to 
all this setup the �
onstrained MSSM� (CMSSM). We will sti
kto the terminology mSugra. 2



only on the seesaw s
ale [29℄, although there are important 
orre
tions at 2-loop [22, 23℄,whi
h have to be in
luded before any quantitative analysis 
an be done. Experimentallyinteresting is also that at the LHC the mass splitting between sele
trons and smuons maybe 
onstrained down to O(10−4) for 30 fb−1 of integrated luminosity [30℄. In mSugra, oneexpe
ts this splitting to be unmeasurably tiny, whereas in mSugra plus seesaw signi�
antlydi�erent masses 
an be generated, as has been shown for type-I in [31℄.Interestingly, in pure seesaw models with �avour blind SUSY boundary 
onditions all ofthe e�e
ts dis
ussed above show up only in the left slepton se
tor. Naturally one expe
tsthat in a supersymmetri
 model with an intermediate left-right symmetri
 stage, also theright sleptons should 
ontain some indire
t information about the high energy parameters.This simple observation forms the main motivation for the 
urrent paper. Before enteringin the details of our 
al
ulation, let us �rst brie�y dis
uss left-right symmetri
 models.Quite a large number of di�erent left-right (LR) symmetri
 models have been dis
ussed inthe literature. Originally LR models were introdu
ed to explain the observed left-handednessof the weak intera
tion as a 
onsequen
e of symmetry breaking [32�34℄. However, LR modelso�er other advantages as well. First, the parti
le 
ontent of LR models 
ontains automat-i
ally the right-handed neutrino and thus the ingredients for generating a (type-I) seesawme
hanism 3. Se
ond, the gauge group SU(3)c × SU(2)L × SU(2)R ×U(1)B−L is one of thepossible 
hains through whi
h SO(10) [35, 36℄ 
an be broken to the standard model gaugegroup 4. In addition, it has been shown that they provide te
hni
al solutions to the SUSYCP and strong CP problems [37℄ and they give an understanding of the U(1) 
harges of thestandard model fermions. Interesting only for the supersymmetri
 versions of LR models,(B-L) is gauged and thus, potentially, the low energy theory 
onserves R-parity [38, 39℄.This last argument requires possibly some elaboration. R-parity, de�ned as RP =

(−1)3(B−L)+2s (where B and L stand for baryon and lepton numbers and s for the spin of theparti
le), is imposed in the MSSM to avoid dangerous baryon and lepton number violatingoperators. However, the origin of RP is not explained within the MSSM. In early LR models
SU(2)R doublets were used to break the gauge symmetry. The non-supersymmetri
 modelproposed in referen
es [33, 34℄ introdu
ed two additional s
alar doublets χL and χR, where
χL ≡ χL(1, 2, 1, 1) and χR ≡ χR(1, 1, 2,−1) under SU(3)c × SU(2)L × SU(2)R × U(1)B−L.Parity 
onservation implies that both, χL and χR, are needed. When the neutral 
ompo-nent of χR gets a vev, 〈χ0

R〉 6= 0, the gauge symmetry is broken down to the SM gaugegroup. However, χR is odd under U(1)B−L and thus, in the SUSY versions of this setup,
RP is broken at the same time 5. A possible solution to this problem is to break the gaugesymmetry by SU(2)R �elds with even 
harge under U(1)B−L, i.e. by triplets. For a SUSY3 Breaking the LR symmetry with triplets 
an generate also a type-II [2℄.4 Not all SO(10) breaking 
hains 
ontain a seesaw. Neither does SU(5). It is, of 
ourse, straightforward toadd a seesaw to SU(5).5 This 
ould be solved by imposing additional dis
rete symmetries on the model that forbid the dangerous
Rp/ operators [40℄, but this 
annot be regarded as automati
 R-parity 
onservation.3



LR model, this was in fa
t proposed in referen
e [41℄, where four triplets were added to theMSSM spe
trum: ∆(1, 3, 1, 2), ∆c(1, 1, 3,−2), ∆̄(1, 3, 1,−2) and ∆̄c(1, 1, 3, 2). Breaking thesymmetry by the vev of ∆c produ
es at the same time a right-handed neutrino mass via theoperator Lc∆cLc, leading to a type-I seesaw me
hanism. Depending on whether or not ∆gets a vev, also a type-II seesaw 
an be generated [42℄.However, whether R-parity is 
onserved in this setup is not 
lear. The reason is thatthe minimum of the potential might prefer a solution in whi
h also the right-handed s
alarneutrino gets a vev, thus breaking RP , as has been 
laimed to be the 
ase in [43℄. Later [44℄
al
ulated some 1-loop 
orre
tions to the s
alar potential, 
on
luding that RP 
onservingminima 
an be found. On the other hand, as �rst noted in [45℄ and later showed by Aulakhand 
ollaborators [46, 47℄, by the addition of two more triplets, Ω(1, 3, 1, 0) and Ωc(1, 1, 3, 0),with zero lepton number one 
an a
hieve LR breaking with 
onserved RP guaranteed alreadyat tree-level. La
king a general proof that the model [41℄ 
onserves RP we will follow [46, 47℄as the setup for our numeri
al 
al
ulations.Finally, for 
ompleteness we mention the existen
e of left-right models with R-parityviolation. For example, if the left-right symmetry is broken with the vevs of right-handedsneutrinos R-parity gets broken as well and the resulting phenomenology is totally di�erent,as shown in [48, 49℄.Compared to the long list of papers about indire
t tests of the seesaw, surprisingly littlework on the �low-energy� phenomenology of SUSY LR models has been done. One loopRGEs for two left-right SUSY models have been 
al
ulated in [50℄. These two models are(with one additional singlet): (a) breaking LR by doublets a la [33, 34℄ and (b) by tripletsfollowing [41℄, but no numeri
al work at all was done in this paper. The possibility thatright sleptons might have �avour violating de
ays in the left-right symmetri
 SUSY modelof [41℄ was mentioned in [51℄. A systemati
 study of all the possible signals dis
ussed abovefor the seesaw 
ase is la
king and to our knowledge there is no publi
ation of any 
al
ulationof these signals for the model of [46, 47℄. (For 
ompleteness we would like to mention that inGUTs based on SU(5) one 
an have the situation the LFV o

urs only in the right sleptonse
tor, as pointed out in [52℄. However, this model [52℄ is in a di�erent 
lass from all themodels dis
ussed above, sin
e it does not 
ontain non-zero neutrino masses.)The rest of this paper is organized as follows. In the next se
tion we de�ne the model[46, 47℄ and dis
uss its parti
le 
ontent and main features at ea
h symmetry breaking s
ale.We have 
al
ulated the RGEs for ea
h step 
omplete at the 2-loop level following the generaldes
ription by [53℄ using the Mathemati
a pa
kage SARAH [54�56℄. A summary is givenin the appendix, the 
omplete set of equations and the SARAH model �les 
an be foundat [57℄. Neutrino masses 
an be �tted to experimental data via a type-I seesaw me
hanismand we dis
uss di�erent ways to implement the �t. We then turn to the numeri
al results.The output of SARAH has been passed to the program pa
kage SPheno [58℄ for numeri
alevaluation. We 
al
ulate the SUSY spe
tra and LFV slepton de
ays, su
h as τ̃L/R → µχ̃0
1and τ̃L/R → eχ̃0

1 and χ̃0
2 → eµχ̃0

1, as well as low-energy de
ays li → ljγ for some samplepoints as a fun
tion of the LR and (B-L) s
ales. Potentially measurable signals are found4



Super�eld generations SU(3)c SU(2)L SU(2)R U(1)B−L

Q 3 3 2 1 1
3

Qc 3 3̄ 1 2 −1
3

L 3 1 2 1 -1
Lc 3 1 1 2 1
Φ 2 1 2 2 0
∆ 1 1 3 1 2
∆̄ 1 1 3 1 -2
∆c 1 1 1 3 -2
∆̄c 1 1 1 3 2
Ω 1 1 3 1 0
Ωc 1 1 1 3 0TABLE I. Matter 
ontent between the GUT s
ale and the SU(2)R breaking s
ale.in both, left and right slepton se
tors, if (a) the seesaw s
ale is above (very roughly) 1013GeV and (b) if the s
ale of LR breaking is signi�
antly below the GUT s
ale. Sin
e we �ndsizable LFV soft masses in both slepton se
tors, also the polarization in µ → eγ is di�erentfrom the pure seesaw expe
tation. We then 
lose with a short summary and outlook.II. LEFT-RIGHT SUPERSYMMETRIC MODELIn this se
tion we de�ne the model, its parti
le 
ontent and give a des
ription of thedi�erent symmetry breaking steps. The �t to neutrino masses and its 
onne
tion to LFVviolation in the slepton se
tor is dis
ussed in some detail, to prepare for the numeri
al resultsgiven in the next se
tion. We summarize brie�y the free parameters of the theory.The model essentially follows [46, 47℄. We have not attempted to �nd a GUT 
ompletion.We will, however, assume that gauge 
ouplings and soft SUSY parameters 
an be uni�ed,i.e. impli
itly assume that su
h a GUT model 
an indeed be 
onstru
ted.A. Step 1: From GUT s
ale to SU(2)R breaking s
aleJust below the GUT s
ale the gauge group of the model is SU(3)c×SU(2)L ×SU(2)R ×

U(1)B−L. In addition it is assumed that parity is 
onserved, see below. The matter 
ontentof the model is given in table I. Here Q, Qc, L and Lc are the quark and lepton super�eldsof the MSSM with the addition of (three) right-handed neutrino(s) νc.Two Φ super�elds, bidoublets under SU(2)L × SU(2)R, are introdu
ed. They 
ontainthe standard Hd and Hu MSSM Higgs doublets. In this model, two 
opies are needed for anon-trivial CKM matrix. Although there are known attempts to build a realisti
 LR modelwith only one bidoublet generating the quark mixing angles at the loop level [59℄, we will5



not rely on su
h a me
hanism. Finally, the rest of the super�elds in table I are introdu
edto break the LR symmetry, as explained above.Table I shows also the gauge 
harges for the matter 
ontent in the model. In parti
ular,the last 
olumn shows the B − L value for the di�erent super�elds. However, the followingde�nition for the ele
tri
 
harge operator will be used throughout this paper
Q = I3L + I3R +

B − L

2
(1)and thus the U(1)B−L 
harge is a
tually B−L

2
.With the representations in table I, the most general superpotential 
ompatible with thegauge symmetry and parity is

W = YQQΦQc + YLLΦL
c − µ

2
ΦΦ + fL∆L+ f ∗Lc∆cLc

+ a∆Ω∆̄ + a∗∆cΩc∆̄c + αΩΦΦ + α∗ΩcΦΦ

+ M∆∆∆̄ +M∗
∆∆

c∆̄c +MΩΩΩ +M∗
ΩΩ

cΩc . (2)Note that this superpotential is invariant under the parity transformations Q ↔ (Qc)∗,
L ↔ (Lc)∗, Φ ↔ Φ†, ∆ ↔ (∆c)∗, ∆̄ ↔ (∆̄c)∗, Ω ↔ (Ωc)∗. This dis
rete symmetry �xes, forexample, the Lc∆cLc 
oupling to be f ∗, the 
omplex 
onjugate of the L∆L 
oupling, thusredu
ing the number of free parameters of the model.Family and gauge indi
es have been omitted in eq. (2), more detailed expressions 
anbe found in [46℄. YQ and YL are quark and lepton Yukawa 
ouplings. However, with twobidoublets there are two 
opies of them, and thus there are four 3 × 3 Yukawa matri
es.Conservation of parity implies that they must be hermitian. µ is a 2× 2 symmetri
 matrix,whose entries have dimensions of mass, f is a 3 × 3 (dimensionless) 
omplex symmetri
matrix, and α is a 2×2 antisymmetri
 matrix, and thus it only 
ontains one (dimensionless)
omplex parameter, α12. The mass parameters MΩ and M∆ 
an be ex
hanged for vR and
vBL, the va
uum expe
tation values of the s
alar �elds that break the LR symmetry, seebelow.The soft terms of the model are

−Lsoft = m2
QQ̃

†Q̃ +m2
QcQ̃c

†
Q̃c +m2

LL̃
†L̃+m2

LcL̃c
†
L̃c

+ m2
ΦΦ

†Φ +m2
∆∆

†∆+m2
∆̄∆̄

†∆̄ +m2
∆c∆c†∆c +m2

∆̄c∆̄
c †∆̄c

+ m2
ΩΩ

†Ω +m2
ΩcΩc†Ωc +

1

2

[

M1B̃
0B̃0 +M2(W̃LW̃L + W̃RW̃R) +M3g̃g̃ + h.c.

]

+
[

TQQ̃ΦQ̃c + TLL̃ΦL̃c + Tf L̃∆L̃+ T ∗
f L̃

c∆cL̃c

+ Ta∆Ω∆̄ + T ∗
a∆

cΩc∆̄c + TαΩΦΦ + T ∗
αΩ

cΦΦ + h.c.
]

+
[

BµΦΦ +BM∆
∆∆̄ +BM∆

∗∆c∆̄c +BMΩ
ΩΩ +BMΩ

∗ΩcΩc + h.c.
]

. (3)Again, family and gauge indi
es have been omitted for the sake of simpli
ity. The LRmodel itself does not, of 
ourse, �x the values of the soft SUSY breaking terms. In thenumeri
al evaluation of the RGEs we will resort to mSugra-like boundary 
onditions, i.e.6



m2
0I3×3 = m2

Q = m2
Qc = m2

L = m2
Lc , m2

0I2×2 = m2
Φ, m2

0 = m2
∆ = m2

∆̄
= m2

∆c = m2
∆̄c = m2

Ω =

m2
Ωc , M1/2 = M1 = M2 = M3, TQ = A0YQ, TL = A0YL, Tf = A0f, Ta = A0a, Tα = A0α,

Bµ = B0, BM∆
= B0M∆, BMΩ

= B0MΩ. The superpotential 
ouplings f , YQ and YL are�xed by the low-s
ale fermion masses and mixing angles. Their values at the GUT s
ale areobtained by RGE running. This will be dis
ussed in more detail in se
tion IID.The breaking of the LR gauge group to the MSSM gauge group takes pla
e in two steps:
SU(2)R × U(1)B−L → U(1)R × U(1)B−L → U(1)Y . In the �rst step the neutral 
omponentof the triplet Ω takes a vev:

〈Ωc 0〉 = vR√
2

(4)whi
h breaks SU(2)R. However, sin
e I3R(Ω
c 0) = 0 there is a U(1)R symmetry left over.Next, the group U(1)R × U(1)B−L is broken by

〈∆c 0〉 = vBL√
2
, 〈∆̄c 0〉 = v̄BL√

2
. (5)The remaining symmetry is now U(1)Y with hyper
harge de�ned as Y = I3R + B−L

2
.The tadpole equations do not link Ωc, ∆c and ∆̄c with their left-handed 
ounterparts,due to supersymmetry. Thus, the left-handed triplets 
an have vanishing vevs [46℄ and themodel produ
es only a type-I seesaw.Although a �hierar
hy� between the two breaking s
ales may exist, vBL ≪ vR, one 
annotnegle
t the e�e
ts of the se
ond breaking stage on the �rst one, sin
e mass terms of Ω and

∆ enter in both tadpole equations. If we assume v̄BL = vBL the tadpole equations of themodel 
an be written
∂V

∂vR
= 4|MΩ|2vR +

1

2
|a|2v2BLvR − 1

2
v2BL [a

∗(M∆ +MΩ) + c.c] = 0 , (6)
∂V

∂vBL

= |M∆|2vBL +
1

4
|a|2(v2BL + v2R)vBL − 1

2
vBLvR [a∗(M∆ +MΩ) + c.c] = 0 . (7)In these equations (small) soft SUSY breaking terms have been negle
ted. Similarly, atthis stage there are no ele
troweak symmetry breaking vevs vd and vu. From equations(6) and (7) one sees that, in fa
t, there is an inverse hierar
hy between the vevs and thesuperpotential masses M∆, MΩ, given by

vR =
2M∆

a
, vBL =

2

a
(2M∆MΩ)

1/2 . (8)And so, vBL ≪ vR requires M∆ ≫ MΩ, as has already been dis
ussed in [46℄.B. Step 2: From SU(2)R breaking s
ale to U(1)B−L breaking s
aleAt this step the gauge group is SU(3)c×SU(2)L×U(1)R×U(1)B−L. The parti
le 
ontentof the model from the SU(2)R breaking s
ale to the U(1)B−L breaking s
ale is given in tableII. 7



Super�eld generations SU(3)c SU(2)L U(1)R U(1)B−L

Q 3 3 2 0 1
3

dc 3 3̄ 1 1
2 −1

3

uc 3 3̄ 1 −1
2 −1

3

L 3 1 2 0 −1

ec 3 1 1 1
2 1

νc 3 1 1 −1
2 1

Hd 1 1 2 −1
2 0

Hu 1 1 2 1
2 0

∆c 0 1 1 1 1 -2
∆̄c 0 1 1 1 -1 2
Ω 1 1 3 0 0
Ωc 0 1 1 1 0 0TABLE II. Matter 
ontent from the SU(2)R breaking s
ale to the U(1)B−L breaking s
ale.Some 
omments might be in order. Despite M∆ being of the order of vR (or larger), seeeq.(8), not all 
omponents of the ∆ super�elds re
eive large masses. The neutral 
omponentsof ∆c and ∆̄c lie at the vBL s
ale. One 
an easily 
he
k that the F-term 
ontributions totheir masses vanish in the minimum of the s
alar potential eq. (8). Moreover, Ωc does notgenerate D-terms 
ontributions to their masses. Therefore, 
ontrary to the other 
omponentsof the ∆ triplets, they only get masses at the vBL s
ale. On the other hand, one might guessthat all 
omponents in the Ω,Ωc super�elds should be retained at this stage, sin
e theirsuperpotential mass MΩ is required to be below vBL. However, some of their 
omponents get
ontributions from SU(2)R breaking, and thus they be
ome heavy. The 
harged 
omponentsof Ωc do develop large masses, in the 
ase of the s
alars through D-terms, while in the 
aseof the fermions due to their mixing with the 
harged gauginos W̃±

R , whi
h have massesproportional to vR. However, the neutral 
omponents of Ωc do not get SU(2)R breaking
ontributions, sin
e they have I3R(Ω
c 0) = 0, and then they must be in
luded in this energyregime. See referen
e [47℄ for a more quantitative dis
ussion.After SU(2)R breaking the two bidoublets Φ1 and Φ2 get split into four SU(2)L dou-blets. Two of them must remain light, identi�ed with the two Higgs doublets of the MSSM,responsible for EW symmetry breaking, while, at the same time, the other two get massesof the order of vR. This strong hierar
hy 
an be only obtained by imposing a �ne-tuning
ondition on the parameters involved in the bidoublet se
tor.The superpotential terms mixing the four SU(2)L doublets 
an be rewritten as
WM = (Hf

d )
TMHH

f
u (9)where Hf

d = (H1
d , H

2
d) and Hf

u = (H1
u, H

2
u) are the �avour eigenstates. In this basis reads

8



the matrix
MH =

(

µ11 µ12 + α12MR

µ12 − α12MR µ22

)

, (10)where the relations µij = µji and αij = −αji have been used and MR = vR
2
has been de�ned.In order to get two light doublets we impose the �ne-tuning 
ondition [47℄

Det(MH) = µ11µ22 − (µ2
12 − α2

12M
2
R) = 0 . (11)The result of eq. (11) is to split the two Higgs bidoublets into two pairs of doublets (Hd, Hu)Land (Hd, Hu)R, where (Hd, Hu)L is the light pair that appears in table II, and (Hd, Hu)Ra heavy pair with mass of order of vR. In pra
ti
e, equation (11) implies that one of thesuperpotential parameters must be 
hosen in terms of the others. Sin
e this �ne-tuning
ondition is not prote
ted by any symmetry, the RGEs do not preserve it, and one mustimpose it at the SU(2)R breaking s
ale. In our 
omputation we 
hose to 
ompute µ11 interms of the free parameters µ12, µ22, α12 and vR.In order to 
ompute the resulting 
ouplings for the light Higgs doublets one must rotatethe original �elds into their mass basis. Sin
eMH is not a symmetri
 matrix (unless α12 = 0)one has to rotate independently Hf

d and Hf
u , i.e. Hf

d = DHm
d , Hf

u = UHm
u , where D and Uare orthogonal matri
es and Hm

d = (HL
d , H

R
d ) and Hm

u = (HL
u , H

R
u ) are the mass eigenstates.This way one �nds

WM = (Hf
d )

TMHH
f
u = (Hm

d )TDTMHUHm
u = (Hm

d )TM̂HH
m
u (12)where M̂H is a diagonal matrix, with eigenvalues

M̂2
H,1 = 0 ,

M̂2
H,2 =

1

µ2
22

(

α4
12M

4
R + 2α2

12M
2
R(µ

2
22 − µ2

12) + (µ2
22 + µ2

12)
2
)

. (13)The D and U rotations are, in general, di�erent and we parametrize them as
D =

(

cos θ1 sin θ1
− sin θ1 cos θ1

)

, U =

(

cos θ2 sin θ2
− sin θ2 cos θ2

) (14)and get
H1

d = cos θ1H
L
d + sin θ1H

R
d ,

H2
d = − sin θ1H

L
d + cos θ1H

R
d , (15)and similar forHu. In general the angles θ1 and θ2 are di�erent. However, they are 
onne
tedto the same matrix MH and 
an be 
al
ulated by diagonalizing MH(MH)

T or (MH)
TMHand one �nds

tan θ1,2 =
µ12 ± α12MR

µ22
. (16)9



In these expressions Det(MH) = 0 has been used to simplify the result. Exa
t Det(MH) = 0implies that the µ-term of the MSSM is zero, so this 
ondition 
an only be true up to small
orre
tions, see the dis
ussion below. Note that there are two interesting limits. First,
µ12 ≫ α12MR : this implies tan θ1 = tan θ2 and therefore D = U . This is as expe
ted, sin
ethat limit makes MH symmetri
. And, se
ond, µ12 ≪ α12MR : this implies tan θ1 = − tan θ2and therefore D = UT .The superpotential at this stage is

W = YuQHuu
c + YdQHdd

c + YeLHde
c + YνLHuν

c + µHuHd

+ f 1
c ν

cνc∆c 0 +M1
∆c∆c 0∆̄c 0 + a1c∆

c 0∆̄c 0Ωc 0

+ bΩHdHu + bcΩ
c 0HdHu +MΩΩΩ +MΩcΩc 0Ωc 0. (17)Parti
les belonging to the same SU(2)R gauge multiplets split due to their di�erent U(1)R
harges. At this stage both the LR group, that symmetrizes the SU(2)L and SU(2)R gaugeintera
tions, and the dis
rete parity symmetry that we imposed on the 
ouplings are broken.The soft terms are

−Lsoft = m2
QQ̃

†Q̃+m2
uc ũc†ũc +m2

dc d̃
c
†
d̃c +m2

LL̃
†L̃+m2

ec ẽ
c†ẽc +m2

νc ν̃
c†ν̃c

+ m2
Hu

H†
uHu +m2

Hd
H†

dHd +m2
∆c 0∆c 0†∆c 0 +m2

∆̄c 0∆̄
c 0 †∆̄c 0

+ m2
ΩΩ

†Ω+m2
Ωc 0Ωc 0 †Ωc 0 +

1

2

[

M1B̃
0B̃0 +MLW̃LW̃L +MRW̃ 0

RW̃
0
R +M3g̃g̃ + h.c.

]

+
[

TuQ̃Huũc + TdQ̃Hdd̃c + TeL̃Hdẽc + TνL̃Huν̃c (18)
+ T 1

fc ν̃
cν̃c∆c 0 + T 1

ac∆
c 0Ωc 0∆̄c 0 + TbΩHdHu + TbcΩ

c 0HdHu + h.c.
]

+
[

BµHuHd +BM1
∆c
∆c 0∆̄c 0 +BMΩ

ΩΩ +BMc
Ω
Ωc 0Ωc 0 + h.c.

]

.Again we suppress gauge and family indi
es.We must impose mat
hing 
onditions at the SU(2)R breaking s
ale. These are for super-potential parameters given by
Yd = Y 1

Q cos θ1 − Y 2
Q sin θ1 , Yu = −Y 1

Q cos θ2 + Y 2
Q sin θ2 ,

Ye = Y 1
L cos θ1 − Y 2

L sin θ1 , Yν = −Y 1
L cos θ2 + Y 2

L sin θ2 ,

f 1
c = −f ∗ , a1c = − a∗√

2
,

M1
∆c = M∗

∆ , MΩc = M∗
Ω ,

b = 2αR , bc =
√
2α∗R , (19)where R = sin(θ1 − θ2). For the soft masses we have

m2
uc = m2

dc = m2
Qc , (20)

m2
ec = m2

νc = m2
Lc ,

m2
∆c 0 = m2

∆c ,

m2
∆̄c 0 = m2

∆̄c ,

m2
Ωc 0 = m2

Ωc ,

ML = MR = M2 .10



Soft trilinears mat
hing follow 
orresponding 
onditions. In addition, one has
m2

Hd
= cos2 θ1(m

2
Φ)11 + sin2 θ1(m

2
Φ)22 − sin θ1 cos θ1

[

(m2
Φ)12 + (m2

Φ)21
]

,

m2
Hu

= cos2 θ2(m
2
Φ)11 + sin2 θ2(m

2
Φ)22 − sin θ2 cos θ2

[

(m2
Φ)12 + (m2

Φ)21
]

,as obtained when the operator m2
ΦΦ

†Φ is proje
ted into the light Higgs doublets operators
(HL

d )
†HL

d and (HL
u )

†HL
u . Gauge 
ouplings are mat
hed as gL = gR = g2.C. Step 3: From U(1)B−L breaking s
ale to EW/SUSY s
aleWemention this stage only for 
ompleteness, sin
e the last regime is just the usual MSSM.We need mat
hing 
onditions in the gauge se
tor. Sin
e U(1)R ×U(1)B−L breaks to U(1)Y ,the MSSM gauge 
oupling g1 will be a 
ombination of gR and gBL. The resulting relationshipis

g1 =

√
5gRgBL

√

2g2R + 3g2BL

. (21)Analogously, the following 
ondition holds for gaugino masses
M1(MSSM) =

2g2RM1 + 3g2BLMR

2g2R + 3g2BL

. (22)Note that in the last two equations the gauge 
ouplings are GUT-normalized. Ele
troweaksymmetry breaking o

urs as in the MSSM. We take the Higgs doublet vevs
〈H0

d〉 =
vd√
2
, 〈H0

u〉 =
vu√
2
, (23)as free parameters and then solve the tadpole equations to �nd µMSSM and Bµ. µMSSM mustbe di�erent from zero, that is Det(MH) 
an not be exa
tly zero. Instead the tuning must beexa
t up to Det(MH) = O(µ2

MSSM). As usual tanβ = vu
vd

is used as a free parameter. Alsothe sign of µMSSM is not 
onstrained as usual.D. Neutrino masses, LFV and Yukawa 
ouplingsNeutrino masses are generated after U(1)B−L breaking through a type-I seesaw me
ha-nism. The matrix f 1
c leads to Majorana masses for the right-handed neutrinos on
e ∆c 0gets a vev. We de�ne the seesaw s
ale as the lightest eigenvalue of

MS ≡ f 1
c vBL . (24)As usual, we 
an always rotate the �elds to a basis where MS is diagonal. However,this will introdu
e lepton �avour violating entries in the YLi

Yukawas, see dis
ussion below.As mentioned above, 
ontrary to non-supersymmetri
 LR models [2℄, there is no type-II
ontribution to neutrino masses. 11



parameter best �t 2-σ
∆m2

21[10
−5eV2] 7.59+0.23

−0.18 7.22 − 8.03

|∆m2
31|[10−3eV2] 2.40+0.12

−0.11 2.18 − 2.64

sin2 θ12 0.318+0.019
−0.016 0.29 − 0.36

sin2 θ23 0.50+0.07
−0.06 0.39 − 0.63

sin2 θ13 0.013+0.013
−0.009 ≤ 0.039TABLE III. Best-�t values with 1-σ errors and 2-σ intervals (1 d.o.f.) taken from the referen
e [60℄,whi
h is updated 
ontinuously on the web.Global �ts to all available experimental data provide values for the parameters involvedin neutrino os
illations, see table III for updated results and ref. [61, 62℄ for experimentalresults. As �rst observed in [63℄, these data imply that the neutrino mass matrix 
an bediagonalized to a good approximation by the so-
alled tri-bimaximal mixing pattern:

UTBM =









√

2
3

√

1
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2









. (25)The matrix produ
t Yν · (f 1
c )

−1 · Y T
ν is 
onstrained by this parti
ular stru
ture. LFV entries
an be present in both Yν and f 1

c , see also the dis
ussion about parameter 
ounting in thenext subse
tion. However, in the numeri
al se
tion we will 
onsider only two spe
i�
 kindsof �ts:
• Yν-�t: �avour stru
ture in Yν and diagonal f 1

c .
• f -�t: �avour stru
ture in f 1

c and diagonal Yν .While at �rst it may seem either way of doing the �t is equivalent, f 1
c and Yν in our setup 
anleave di�erent tra
es in the soft slepton mass parameters if vBL ≪ vR. This last 
onditionis essential to distinguish between both possibilities, be
ause otherwise one obtains thestraightforward predi
tion that LFV entries in left and right slepton are equal, due to theassumed LR symmetry above vR.These two types of �t were already dis
ussed in referen
e [64℄, whi
h investigates lowenergy LFV signatures in a supersymmetri
 seesaw model where the right-handed neutrinomass is generated from a term of the form f∆cνcνc. When the s
alar 
omponent of ∆ca
quires a vev a type-I seesaw is obtained, generating masses for the light neutrinos. There-fore, this model has the ingredients to a

ommodate a Yν-�t, named as Dira
 LFV in [64℄,or a f -�t, named as Majorana LFV. Note, however, that the left-right symmetry, 
entral inour work, is missing in this referen
e, thus implying di�erent signatures at the ele
troweaks
ale.The di�eren
e in phenomenology of the two �ts 
an be easily understood 
onsideringapproximated expressions for the RGEs for m2

L and m2
ec . In the �rst step, from the GUT12



s
ale to the vR s
ale RGEs at 1-loop order 
an be written in leading-log approximation as[51℄
∆m2

L = − 1

4π2

(

3ff † + Y
(k)
L Y

(k) †
L

)

(3m2
0 + A2

0) ln

(

mGUT

vR

)

,

∆m2
Lc = − 1

4π2

(

3f †f + Y
(k) †
L Y

(k)
L

)

(3m2
0 + A2

0) ln

(

mGUT

vR

)

. (26)Of 
ourse, also the A parameters develop LFV o�-diagonals in the running. We do not givethe 
orresponding approximated equations for brevity. After parity breaking at the vR s
alethe Yukawa 
oupling YL splits into Ye, the 
harged lepton Yukawa, and Yν , the neutrinoYukawa. The later 
ontributes to LFV entries in the running down to the vBL s
ale. Thus,
∆m2

L ∼ − 1

8π2
YνY

†
ν

(

3m2
L|vR + A2

e|vR
)

ln

(

vR
vBL

)

,

∆m2
ec ∼ 0 , (27)where m2

L|vR is the matrix m2
L at the s
ale vR and A2

e|vR is de�ned as Te = YeAe and also hasto be taken at vR. In order to understand the main di�eren
e between the two �ts, let us �rst
onsider the f -�t. This assumes that Yν is diagonal at the seesaw s
ale and thus the observedlow energy mismat
h between the neutrino and 
harged lepton se
tors is due to a non-trivial�avour stru
ture in f 1
c . Of 
ourse, non-diagonal entries in f generate in the running alsonon-diagonal entries in Yν and Ye, but these 
an be negle
ted in �rst approximation. In this
ase, equations (26) and (27) show that the LR symmetry makes m2

L and m2
ec run with thesame �avour stru
ture and the magnitudes of their o�-diagonal entries at the SUSY s
aleare similar. If, on the other hand, Yν is non-trivial (Yν-�t), while f is diagonal, the runningfrom the GUT s
ale to the vR s
ale indu
es again the same o�-diagonal entries in m2

L and
m2

Lc . However, from vR to vBL the o�-diagonals entries in m2
L 
ontinue to run, while thosein m2

ec do not. This e�e
t, generated by the right-handed neutrinos via the Yν Yukawas,indu
es additional �avour violating e�e
ts in the L se
tor 
ompared to the R se
tor. SeeingLFV in both left and right slepton se
tors thus allows us to indire
tly learn about the highenergy theory. We will study this in some detail in the numeri
al se
tion below.E. Parameter 
ountingLet us brie�y summarize the free parameters of the model. With the assumption ofmSugra (or better: mSugra-like) boundary 
onditions, in the SUSY breaking se
tor weonly have the standard parameters m0, M1/2, A0, tan β, sign(µMSSM). Thus, we 
ount 4+1parameters in the soft terms. We note in passing that the soft terms of the heavy se
tor,of 
ourse, do not have to follow stri
tly the 
onditions outlined in equation (3), as long asthese parameters are small 
ompared to vBL there are no 
hanges 
ompared to the abovedis
ussion.In the superpotential we have a, α, µ,M∆ andMΩ. This leaves, at �rst sight, 7 parametersfree. However, we 
an redu
e them to 4+2 parameters as follows. Sin
e αij = −αji, α only13




ontains one free parameter: α12. The matrix µ has 3 entries, but one of them, µ11, is �xedby the �ne-tuning 
ondition Det(MH) = O(µ2
MSSM). This leaves two free parameters, µ12,

µ22. We have traded M∆ and MΩ for the vevs vR, vBL, sin
e ln( vR
vBL

) and ln(vGUT

vR
) enterinto the RGEs and thus 
an, at least in prin
iple, be determined from low-energy spe
tra.There are then in summary 6 parameters, four independent of low-energy 
onstraints andtwo whi
h 
ould be �xed from LFV data, see below.In addition, in the superpotential we have the Yukawa matri
es YQi

, YLi
and f . Let's
onsider the quark se
tor �rst. Sin
e we 
an always go to a basis in whi
h one of the YQi

isdiagonal with only real entries, there are 12 parameters. Ten of them are �xed by six quarkmasses, three CKM angles and the CKM phase, leaving two phases undetermined.In the lepton se
tor we have the symmetri
 matri
es, YL1
and YL2

. As with the quarkse
tor, a basis 
hange shows that there are only 12 free parameters. f is symmetri
 and thus
ounts as another 9 parameters. Going to a basis in whi
h f is diagonal does not redu
e thenumber of free parameters, sin
e in this basis we 
an no longer assume one of the YLi
to bediagonal. In summary there are thus free 21 parameters in these three matri
es.In the simple, pure seesaw type-I with three generations of right-handed neutrinos thenumber of free parameters is 21. Only 12 of them 
an be �xed from low-energy data: threeneutrino and three 
harged lepton masses, three leptoni
 mixing angles and three phases (twoMajorana and one Dira
 phase). However, as pointed out in [11℄, in prin
iple, m2

L 
ontains9 observable entries and thus, if the normalization (i.e. m0, A0, tanβ et
.) is known fromother sfermion measurements, one 
ould re-
onstru
t the type-I seesaw parameters 6.How does the SUSY LR model 
ompare to this? We have, as dis
ussed above, also21 parameters in the three 
oupling matri
es, but neutrino masses depend also on vBL.However, in prin
iple, we have 9 more observables in m2
ec , assuming again that the softSUSY breaking terms 
an be extra
ted from other measurements. Sin
e in the RGEs also

vR appears we have in total 23 parameters whi
h need to be determined. The number ofobservables, on the other hand is �xed to 30 in total, as we have 12 (low-energy leptonse
tor) plus 9 (left sleptons) plus 9 (right sleptons) possible measurements.III. NUMERICAL RESULTSA. Pro
edure for numeri
sAll ne
essary, analyti
al expressions were 
al
ulated with SARAH. For this purpose, twodi�erent model �les for the model above the two threshold s
ales were 
reated and usedto 
al
ulate the full set of 2-loop RGEs. SARAH 
al
ulates the RGEs using the generi
expressions of [53℄ in the most general form respe
ting the 
omplete �avour stru
ture. TheseRGEs were afterwards exported to Fortran 
ode and implemented in SPheno. As starting6 Of 
ourse, this dis
ussion is slightly a
ademi
, sin
e at least one of the Majorana phases will never bemeasured in praxis. 14



point for the RGE running, the gauge and Yukawa 
ouplings at the ele
troweak s
ale areused. In the 
al
ulation of the gauge and Yukawa 
ouplings we follow 
losely the pro
eduredes
ribed in ref. [58℄: the values for the Yukawa 
ouplings giving mass to the SM fermionsand the gauge 
ouplings are determined at the s
ale MZ based on the measured values forthe quark, lepton and ve
tor boson masses as well as for the gauge 
ouplings. Here, wehave in
luded the 1-loop 
orre
tions to the mass of W- and Z-boson as well as the SUSY
ontributions to δV B for 
al
ulating the gauge 
ouplings. Similarly, we have in
luded the
omplete 1-loop 
orre
tions to the self-energies of SM fermions [65℄. Moreover, we haveresummed the tan β enhan
ed terms for the 
al
ulation of the Yukawa 
ouplings of the b-quark and the τ -lepton as in [58℄. The va
uum expe
tation values vd and vu are 
al
ulatedwith respe
t to the given value of tanβ at MZ . Sin
e we are working with two distin
tthreshold s
ales, not all heavy �elds are integrated out at their mass and the 
orresponding 1-loop boundary 
onditions at the threshold s
ales are needed. It is known that these parti
les
ause a �nite shift in the gauge 
ouplings and gaugino masses. The general expressions are[66℄
gi → gi

(

1± 1

16π2
g2i I

i
2(r) ln

(

M2

M2
T

))

, (28)
Mi → Mi

(

1± 1

16π2
g2i I

i
2(r) ln

(

M2

M2
T

))

. (29)
I i2(r) is the Dynkin index of a �eld transforming as representation r with respe
t to thegauge group belonging to the gauge 
oupling gi, M is the mass of this parti
le and MT is thethreshold s
ale. When evaluating the RGEs from the low to the high s
ale, the 
ontributionis positive, when running down, it is negative. The di�erent masses used for 
al
ulatingthe �nite shifts are the eigenvalues of the full tree-level mass matrix of the 
harged, heavyparti
les removed from the spe
trum. The 
orre
t mass spe
trum is 
al
ulated in an iterativeway. The GUT s
ale is de�ned as the s
ale at whi
h gBL = g2 = gGUT holds. Generally,there is di�eren
e with g3 to gGUT in the per
ent range, the a
tual numeri
al mismat
hdepending on the s
ales vBL and vR and being larger for lower values of vBL and vR. Ithas been stressed in parti
ular in [67℄ that within supersymmetri
 LR models, the LRsymmetry breaking s
ale has to be 
lose to the GUT s
ale, otherwise this mismat
h willgrow too large. However, several solutions are known. In [68℄ it was pointed out that GUTthresholds - unknown unless the GUT model, in
luding the 
omplete Higgs se
tor used tobreak the GUT symmetry, is spe
i�ed - 
an lead to important 
orre
tions, a

ounting for thisapparent non-uni�
ation (for a dis
ussion of these e�e
ts in the 
ontext of SU(5) see [69℄).Another possibility is the addition of new parti
les to the spe
trum. For example, referen
e[70℄ pointed out that new 
oloured super�elds, 
harged under SU(3)c but singlet underthe other gauge subgroups, 
an easily lead to gauge 
oupling uni�
ation. Nevertheless,we simply use gBL = g2 = gGUT and attribute departures from 
omplete uni�
ation to(unknown) thresholds and/or the existen
e of additional 
oloured parti
les below mGUT .After applying the GUT s
ale boundary 
onditions, the RGEs are evaluated down to thelow s
ale and the mass spe
trum of the MSSM is 
al
ulated. The MSSM masses are, in15
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vR [GeV]FIG. 1. Example of spe
tra at the SUSY s
ale and its dependen
e on vBL (left side) and vR (rightside). The masses of four states are shown: χ̃0
1 (blue line), χ̃0

2 (blue dashed line), µ̃R (red line)and µ̃L (red dashed line). In both panels the mSugra parameters have been taken as in the SPS3ben
hmark point.general, 
al
ulated at the 1-loop level in the DR s
heme using on-shell external momenta.For the Higgs �elds also the most important 2-loop 
ontributions are taken into a

ount.We note that the 
orresponding Fortran routines are also written by SARAH but they areequivalent to the routines in
luded in the publi
 version of SPheno based on [65℄. Theiteration stops when the largest 
hange in the 
al
ulation of the SUSY and Higgs bosonmasses at mSUSY is below one per-mille between two iterations.B. Mass spe
trumThe appearan
e of 
harged parti
les at s
ales between the ele
troweak s
ale and the GUTs
ale leads to 
hanges in the beta fun
tions of the gauge 
ouplings [21, 29℄. This does notonly 
hange the evolution of the gauge 
ouplings but also the evolution of the gaugino ands
alar mass parameters [22, 29℄. The LR model 
ontains additional triplets, and similar towhat is observed in the seesaw models [23℄ the mass spe
trum at low energies is shifted withrespe
t to mSugra expe
tations. Two examples of this behaviour are shown in �gure 1. Inthis �gure we show the two lightest neutralino masses and the masses of the left and rightsmuons versus vBL (left side) and vR (right side). We note that also all other sfermion andgaugino masses show the same dependen
e and in general smaller values are obtained forlower values of vBL and vR. One �nds that gaugino masses depend stronger on vBL and vRthan sfermion masses and that right sleptons are the sfermions for whi
h the sensitivity tothese vevs is smallest.The 
hange in the low energy spe
trum, however, maintains to a good degree the standard16
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vBL [GeV]FIG. 2. Gaugino mass ratios as a fun
tion of vBL for the �xed value vR = 1015 GeV. To the left,
M1/M2, whereas to the right M2/M3. In both �gures the three 
oloured lines 
orrespond to threemSugra ben
hmark points: SPS1a' (blue), SPS3 (green) and SPS5 (red). Note the small variationin the numbers on the Y axis.mSugra expe
tation for the ratios of gaugino asses, as shown in �gures 2 and 3. Here, �gure2 shows the ratios M1/M2 and M2/M3 versus vBL, while �gure 3 shows the same ratiosversus vR. Shown are the results for three di�erent SUSY points, whi
h in the limit of
vR, vBL → mGUT approa
h the standard SPS points SPS1a' [71℄, SPS3 and SPS5 [72℄. Forexample, the ratio M1/M2 is expe
ted to be (5/3) tan2 θW ≃ 0.5 at 1-loop order in mSugra.The exa
t ratio, however, depends on higher order 
orre
tions, and thus on the SUSYspe
trum. The LR model will thus appear rather mSugra like, if these ratios are measured.Only with very high pre
ision on mass measurements, possible only at a linear 
ollider, 
anone hope to �nd any (indire
t) dependen
e on vBL and vR.C. LFV of leptonsLepton �avour violation in 
harged lepton de
ays has attra
ted a lot of attention forde
ades. Pro
esses like µ → eγ are highly suppressed in the standard model (plus non-zeroneutrino masses) due to the GIM me
hanism [73℄, and thus the observation of these rarede
ays would imply new physi
s. The MEG experiment [74℄ is 
urrently the most advan
edexperimental setup in the sear
h for µ+ → e+γ. This rare de
ay will be observed if itsbran
hing ratio is above the MEG expe
ted sensitivity, around Br(µ → eγ) ∼ 10−13.LFV de
ays like li → ljγ are indu
ed by 1-loop diagrams with the ex
hange of neutralinosand sleptons. They 
an be des
ribed by the e�e
tive Lagrangian, see for example the review[75℄,

Leff = e
mi

2
l̄iσµνF

µν(Aij
LPL + Aij

RPR)lj + h.c. . (30)17
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2
(1 ∓ γ5) are the usual 
hirality proje
tors and therefore the 
ouplings ALand AR are generated by loops with left and right sleptons, respe
tively. In our numeri
al
al
ulation we use exa
t expressions for AL and AR. However, for an easier understandingof the numeri
al results, we note that the relation between these 
ouplings and the sleptonsoft masses is very approximately given by

Aij
L ∼ (m2

L)ij
m4

SUSY

, Aij
R ∼ (m2

ec)ij
m4

SUSY

, (31)where mSUSY is a typi
al supersymmetri
 mass. Here it has been assumed that (a)
hargino/neutralino masses are similar to slepton masses and (b) A-terms mixing left-right transitions are negligible. Therefore, due to the negligible o�-diagonal entries in m2
ec ,a pure seesaw model predi
ts AR ≃ 0.The bran
hing ratio for li → ljγ 
an be 
al
ulated from the previous formulas. The resultis

Br(li → ljγ) =
48π3α

G2
F

(

|Aij
L |2 + |Aij

R|2
)

Br(li → ljνiν̄j) . (32)Figure 4 shows two examples for Br(µ → eγ) in the m0,M1/2 plane. Here, we have �xed
vBL = 1014 GeV and vR = 1015 GeV and show to the left MS = 1012 GeV, whereas to theright MS = 1013 GeV. Here we have assumed a degenerate spe
trum right-handed neutrinoswhi
h we denote by MS = MRi. On
e Yukawas are �tted to explain the observed neutrinomasses, the bran
hing ratio shows an approximately quadrati
 dependen
e on the seesaws
ale, with lower MS giving smaller Br(µ → eγ). As expe
ted, the bran
hing ratio alsostrongly de
reases as m0 and/or M1/2 in
rease. This is be
ause the superparti
les in the18
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FIG. 4. Contours of Br(µ → eγ) in the m0,M1/2 plane for vBL = 1014 GeV and vR = 1015 GeV.To the left MS = 1012 GeV, whereas to the right MS = 1013 GeV. Neutrino os
illation data havebeen �tted with the Yν �t.loops leading to µ → eγ be
ome heavier in these dire
tions, suppressing the de
ay rate. Infa
t, from equations (31) and (32) one easily �nds the dependen
e

Br(µ → eγ) ∼ 48π3α

G2
F

(m2
L,ẽc)

2
ij

m8
SUSY

, (33)whi
h shows that Br(µ → eγ) de
reases as m−8
SUSY .It is also remarkable that for a given seesaw s
ale, Br(µ → eγ) is sizeably larger in theLR model than in a pure seesaw type-I model, see for example [25℄. The explanation of thisis that right sleptons 
ontribute signi�
antly in the LR model to Br(µ → eγ) and these
ontributions are absent in seesaw models.As already dis
ussed, a pure seesaw model predi
ts simply AR ≃ 0. However, in the LRmodel we expe
t a more 
ompli
ated pi
ture. Left-right symmetry implies that, above theparity breaking s
ale, non-negligible �avour violating entries are generated inm2

ec . Therefore,
AR 6= 0 is obtained at low energy. The angular distribution of the outgoing positron at, forexample, the MEG experiment 
ould be used to dis
riminate between left- and right-handedpolarized states [76, 77℄. If MEG is able to measure the positron polarization asymmetry,de�ned as

A(µ+ → e+γ) =
|AL|2 − |AR|2
|AL|2 + |AR|2

, (34)there will be an additional observable to distinguish from minimal seesaw models. In a pureseesaw model one expe
ts A ≃ +1 to a very good a

ura
y. However, the LR model typi
ally19
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FIG. 5. Contours of A(µ+ → e+γ) in the m0,M1/2 plane. To the left MS = 1012 GeV, whereas tothe right MS = 1013 GeV. The parameters have been 
hosen as in �gure 4.leads to signi�
ant departures from this expe
tation, giving an interesting signature of thehigh energy restoration of parity.Figure 5 shows 
ontours for A(µ+ → e+γ) in the m0,M1/2 plane. For the 
orrespondingbran
hing ratios see �gure 4. Note the rather strong dependen
e on m0. The latter 
an beunderstood as follows. Sin
e vBL in these examples is one order of magnitude smaller than
vR, and the Yν �t has been used, the LFV mixing angles in the left slepton se
tor are largerthan the 
orresponding LFV entries in the right sleptons. At very large values of m0, werethe masses of right and left sleptons are of 
omparable magnitude, therefore �left� LFV ismore important and the model approa
hes the pure seesaw expe
tation. At smaller valuesof m0, right sleptons are lighter than left sleptons, and due to the strong dependen
e of
µ → eγ on the sfermion masses entering the loop 
al
ulation, see eq. (31), AR and AL 
anbe
ome 
omparable, despite the smaller LFV entries in right slepton mass matri
es. In thelimit of very small right slepton masses the model then approa
hes A ∼ 0. We have notexpli
itly sear
hed for regions of parameter spa
e with A < 0, but one expe
ts that negativevalues for A are possible if vBL is not mu
h below vR and sleptons are light at the sametime, i.e. small values of m0 and M1/2. Note that, again due to the LR symmetry above to
vR, the model 
an never approa
h the limit A = −1 exa
tly.The positron polarization asymmetry is very sensitive to the high energy s
ales. Figure6 shows A as a fun
tion of vR for MS = 1013 GeV, vBL = 1014 GeV and the mSugraparameters as in the SPS3 ben
hmark point. The plot has been obtained using the Yν �t.This example shows that as vR approa
hesmGUT the positron polarizationA approa
hes +1,whi
h means AL dominates the 
al
ulation. This is be
ause, in the Yν �t, the right-handedLFV soft slepton masses, and thus the 
orresponding AR 
oupling, only run from mGUT to20
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A(µ+ → e+γ) also has an important dependen
e on the seesaw s
ale. This is shownin �gure 7, where A is plotted as a fun
tion of the lightest right-handed neutrino mass.This dependen
e 
an be easily understood from the seesaw formula for neutrino masses. Itimplies that larger MS requires larger Yukawa parameters in order to �t neutrino masseswhi
h, in turn, leads to larger �avour violating soft terms due to RGE running. However,note that, for very small seesaw s
ales all lepton �avour violating e�e
ts are negligible andno asymmetry is produ
ed, sin
e AL ∼ AR ∼ 0.In addition, �gure 7 shows again the relevan
e of vR, whi
h determines the parity breakings
ale at whi
h the LFV entries in the right-handed slepton se
tor essentially stop running.Lighter 
olours indi
ate larger vR. As shown already in �gure 6 for a parti
ular point, thepositron polarization approa
hes +1 as vR is in
reased.Below the SU(2)R breaking s
ale parity is broken and left and right slepton soft massesevolve di�erently. The approximate solutions to the RGEs in equations (26) and (27) showthat, if neutrino data is �tted a

ording to the Yν �t, the left-handed ones keep runningfrom the SU(2)R breaking s
ale to the U(1)B−L s
ale. In this 
ase one expe
ts larger �avourviolating e�e
ts in the left-handed slepton se
tor and a 
orrelation with the ratio vBL/vR,whi
h measures the di�eren
e between the breaking s
ales. This 
orrelation, only present inthe Yν �t, is shown in �gure 8. On the one hand, one �nds that as vBL and vR be
ome verydi�erent, vBL/vR ≪ 1, the positron asymmetry approa
hes A = +1. On the other hand,when the two breaking s
ales are 
lose, vBL/vR ∼ 1, this e�e
t disappears and the positronpolarization asymmetry approa
hes A = 0. Note that the Yν �t does not usually produ
e a21
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MS [GeV]FIG. 7. Positron polarization asymmetry A(µ+ → e+γ) as a fun
tion of the seesaw s
ale, de�nedas the mass of the lightest right-handed neutrino, for the parameter 
hoi
e vBL = 1015 GeV and
vR ∈ [1015, 1016] GeV. Lighter 
olours mean higher values of vR. The mSugra parameters have beentaken as in the SPS3 ben
hmark point and neutrino os
illation data have been �tted with the Yν�t, assuming degenerate right-handed neutrinos.negative value for A sin
e the LFV terms in the right slepton se
tor never run more than the
orresponding terms in the left-handed se
tor. The only possible ex
eption to this generalrule is, as dis
ussed above, in the limit of very small m0 and vBL/vR ∼ 1.The determination of the ratio vBL/vR from �gure 8 is shown to be very ina

urate.This is due to the fa
t that other parameters, most importantly mGUT (whi
h itself has animportant dependen
e on the values of vBL and vR), have a strong impa
t on the results.Therefore, although it would be possible to 
onstrain the high energy stru
ture of the theory,a pre
ise determination of the ratio vBL/vR will require additional input. Figure 9, on theother hand, shows that the polarization asymmetry A(µ+ → e+γ) is mu
h better 
orrelatedwith the quantity log(vR/mGUT )/ log(vBL/mGUT ). This is as expe
ted from equations (26)and (27) and 
on�rms the validity of this approximation.We 
lose our dis
ussion on the positron polarization asymmetry with some 
omments onthe f �t. Sin
e this type of �t leads to ∆m2

L ∼ ∆m2
ec ∼ 0 in the vBL − vR energy region,there is little dependen
e on these symmetry breaking s
ales. This is illustrated in �gure 10,where the asymmetry A is plotted as a fun
tion of vR for three di�erent mSugra ben
hmarkpoints: SPS1a' (blue line), SPS3 (green line) and SPS5 (red line). One 
learly sees that thedependen
e on vR is quite weak 
ompared to the Yν �t. In fa
t, the variations in this �gureare mostly due to the 
hanges in the low energy supersymmetri
 spe
trum due to di�erent

vR values. In the 
ase of the f -�t one then typi
ally �nds A ∈ [0.0− 0.3].
22
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vRFIG. 8. Positron polarization asymmetry A(µ+ → e+γ) as a fun
tion of the ratio vBL/vR. Theseesaw s
ale MS has been �xed to 1013 GeV, whereas vBL and vR take values in the ranges vBL ∈
[1014, 1015] GeV and vR ∈ [1015, 1016] GeV. Lighter 
olours indi
ate larger vBL. The mSugraparameters have been taken as in the SPS3 ben
hmark point and neutrino os
illation data havebeen �tted with the Yν �t, assuming degenerate right-handed neutrinos.D. LFV at LHC/ILCLepton �avour violation might show up at 
ollider experiments as well. Although thefollowing dis
ussion is fo
used on the LHC dis
overy potential for LFV signatures, let usemphasize that a future linear 
ollider will be able to determine the relevant observableswith mu
h higher pre
ision.Figure 11 shows Br(τ̃i → χ̃0

1 e) and Br(τ̃i → χ̃0
1 µ) as a fun
tion of the seesaw s
ale. Thedashed lines 
orrespond to τ1 ≃ τR and the solid ones to τ2 ≃ τL. As in the 
ase of µ → eγ,see �gure 4, lower seesaw s
ales imply less �avour violating e�e
ts due to smaller Yukawa
ouplings. Moreover, �gure 11 presents the same results for two di�erent ben
hmark points,SPS1a' and SPS3. As already shown in �gure 4, µ → eγ is strongly dependent on the SUSYspe
trum. For lighter supersymmetri
 parti
les, as in the ben
hmark point SPS1a', µ → eγis large, setting strong limits on the seesaw s
ale and thus on the possibility to observe LFVat 
olliders. In the 
ase of heavier spe
trums, as in SPS3, µ → eγ is still the most stringent
onstraint, but larger values of the seesaw s
ale and thus LFV violating bran
hing ratiosbe
ome allowed. Whether de
ays su
h as Br(τ̃i → χ̃0

1 e) and Br(τ̃i → χ̃0
1 µ) are observableat the LHC or not, thus depends very sensitively on the unknown m0, M1/2 and MS.Furthermore, the right panel of �gure 11 also shows that right staus 
an also have LFVde
ays with sizable rates. Of 
ourse, as emphasized already above, this is the main noveltyof the LR model 
ompared to pure seesaw models. This is dire
t 
onsequen
e of parityrestoration at high energies. 23
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ts to �ndthat if the di�eren
e between vR and vBL is in
reased, the di�eren
e between the LFVentries in the L and R se
tors gets in
reased as well. This property of the Yν �t is shown in�gure 12, whi
h shows bran
hing ratios for the LFV de
ays of the staus as a fun
tion of vBLfor vR ∈ [1015, 5 · 1015] GeV. As the �gure shows, the theoreti
al expe
tation is 
on�rmednumeri
ally: the di�eren
e between Br(τ̃L) and Br(τ̃R) strongly depends on the di�eren
e24
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1 e) and Br(τ̃i → χ̃0

1 µ) as a fun
tion of the seesaw s
ale, de�ned as the massof the lightest right-handed neutrino, for the parameter 
hoi
e vBL = 1015 GeV and vR = 5 · 1015GeV. The dashed lines 
orrespond to τ1 ≃ τR and the solid ones to τ2 ≃ τL. To the left, the mSugraparameters have been taken as in the SPS1a' ben
hmark point, whereas to the right as in the SPS3ben
hmark point. In both �gures neutrino os
illation data have been �tted a

ording to the f �t,with non-degenerate right-handed neutrinos. The blue shaded regions are ex
luded by µ → eγ.between vR and vBL.The question arises whether one 
an determine the ratio vBL/vR by measuring both
Br(τ̃L) and Br(τ̃R) at 
olliders. Figure 13 attempts to answer this. Here the ratio Br(τ̃R →
χ̃0
1 e)/Br(τ̃L → χ̃0

1 e) is plotted as a fun
tion of vBL/vR. A measurement of both bran
hingratios would allow to 
onstrain the ratio vBL/vR and in
rease our knowledge on the highenergy regimes. For the sake of brevity we do not present here the analogous plots forother LFV slepton de
ays and/or other lepton �nal states, sin
e they show very similar
orrelations with vBL/vR. For example, in prin
iple, one 
ould also use the ratio Br(µ̃R →
χ̃0
1 τ)/Br(µ̃L → χ̃0

1 τ) to determine the ratio between the two high s
ales.However, as observed also in the polarization asymmetry for µ → eγ there is an importantdependen
e on other parameters of the model, espe
ially the exa
t value of mGUT . Thisimplies a theoreti
al un
ertainty in the determination of vBL/vR. Again, as for A, a mu
hbetter 
orrelation with log(vR/mGUT )/ log(vBL/mGUT ) is found, see �gure 14.In 
on
lusion, to the determine vBL and vR individually more theoreti
al input is needed,su
h as the GUT s
ale thresholds, whi
h are needed to �x the value ofmGUT . Re
all, that wedid not spe
ify the exa
t values of these thresholds in our numeri
al 
al
ulation. This leadsto a ��oating� value of mGUT when vR and vBL are varied. Also more experimental data isneeded to make more de�nite predi
tions. Espe
ially SUSY mass spe
trum measurements,whi
h may or may not be very pre
ise at the LHC, depending on the SUSY point realizedin nature, will be of great importan
e. Re
all that, if in rea
h of a linear 
ollider, slepton25
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tion of log(vR/mGUT )/ log(vBL/mGUT ). Theparameters have been 
hosen as in �gure 13.mass and bran
hing ratio measurements 
an be highly pre
ise.So far only slepton de
ays have been dis
ussed. This served to illustrate the most inter-esting signatures of the model, namely, lepton �avour violation in the right slepton se
tor.However, LHC sear
hes for lepton �avour violation usually 
on
entrate on the de
ay 
hain[78�80℄
χ̃0
2 → l̃±l∓ → χ̃0

1l
±l∓ .This well known signature has been widely studied due to the a

urate information it 
anprovide about the parti
le spe
trum [81�85℄. Note that in this de
ay one assumes usually thatthe χ̃0

2 themselves stem from the de
ay 
hain q̃L → qχ̃0
2. If the mass orderingmχ̃0

2
> ml̃ > mχ̃0

1is realized, the dilepton invariant mass [83, 86℄, de�ned as m2(l+l−) = (pl+ + pl−)
2, has anedge stru
ture with a prominent kinemati
al endpoint at

[

m2(l+l−)
]

max
≡ m2

ll =
(m2

χ̃0
2

−m2
l̃
)(m2

l̃
−m2

χ̃0
1

)

m2
l̃

, (35)where the masses of the 
harged leptons have been negle
ted. The position of this edge 
anbe measured with impressively high pre
ision at the LHC [81�83℄, implying also an a

uratedetermination of the intermediate slepton masses.In fa
t, if two di�erent sleptons l̃1,2 have su�
iently high event rates for χ̃0
2 → l̃±1,2l

∓
j →

χ̃0
1l

±
i l

∓
j and their masses allow these 
hains to be on-shell, two di�erent dilepton edge dis-tributions are expe
ted [30, 87℄. This presents a powerful tool to measure slepton masssplittings, whi
h in turn allows to dis
riminate between the standard mSugra expe
tation,with usually negligible mass splittings for the �rst two generations, and extended modelswith additional sour
es of �avour violation.27
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hoi
e vBL = 1015 GeV and

vR ∈ [1015, 1016] GeV. Blue dots 
orrespond to the mass distribution generated by intermediate leftsleptons whereas red dots 
orrespond to the mass distribution generated by the right ones. ThemSugra parameters have been taken as in the SPS3 ben
hmark point and neutrino os
illation datahave been �tted a

ording to the Yν �t, with degenerate right-handed neutrinos.The relation between the slepton mass splitting and the variation in the position of thekinemati
al is edge is found to be [30℄
∆mll

m̄ll
=

∆ml̃

m̄l̃

m2
χ̃0
1

m2
χ̃0
2

− m̄4
l̃

(m̄2
l̃
−m2

χ̃0
1

)(m̄2
l̃
−m2

χ̃0
2

)
. (36)Here ∆mll(i, j) = mlili −mlj lj is the di�eren
e between two edge positions, ∆ml̃ = ml̃i

−ml̃jthe di�eren
e between slepton masses and m̄ll and m̄l̃ average values of the 
orrespondingquantities. Note that higher order 
ontributions of ∆m
l̃

m̄
l̃

have been negle
ted in equation(36).A number of studies about the dilepton mass distribution have been performed [81�83℄,
on
luding that the position of the edges 
an be measured at the LHC with an a

ura
y upto 10−3. Moreover, as shown in referen
e [30℄, this 
an be generally translated into a similarpre
ision for the relative ẽ − µ̃ mass splitting, with some regions of parameter spa
e wherevalues as small as 10−4 might be measurable. Sin
e this mass splitting is usually negligiblein a pure mSugra s
enario, it is regarded as an interesting signature of either lepton �avourviolation or non-universality in the soft terms. Furthermore, in the 
ontext of this paper, itis important to emphasize that pure seesaw models 
an have this signature only in the leftslepton se
tor [31℄.Figure 15 shows our results for the observables ∆mll

m̄ll
and ∆m

l̃

m̄
l̃

as a fun
tion of the seesaws
ale. Large values for MS lead to sizable deviations from the mSugra expe
tation, with a28
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RFIG. 16. Br(µ → eγ) as a fun
tion of (∆mll

m̄ll

)

L
(left-hand side) and (∆mll

m̄ll

)

R
(right-hand side).The parameters are 
hosen as in �gure 15.distin
tive multi-edge stru
ture in the dilepton mass distribution. Moreover, this e�e
t isfound in both left- and right- mediated de
ays. Observing this a�e
t would 
learly pointtowards a non-minimal seesaw model, su
h as the LR model we dis
uss.As expe
ted, these observables are 
orrelated with other LFV signals [31, 88℄. Figure16 shows Br(µ → eγ) as a fun
tion of (∆mll

m̄ll

)

L
(mass distribution with intermediate Lsleptons) and (∆mll

m̄ll

)

R
(mass distribution with intermediate R sleptons). Again, the mainnovelty with respe
t to the usual seesaw implementations is the 
orrelation in the rightse
tor, not present in the minimal 
ase [31℄.Furthermore, the pro
ess χ̃0

2 → χ̃0
1l

+
i l

−
j might provide additional LFV signatures if therate for de
ays with li 6= lj is su�
iently high. Referen
e [89℄ has investigated this possibilityin great detail, performing a 
omplete simulation of the CMS dete
tor in the LHC for thede
ay χ̃0

2 → χ̃0
1eµ. The result is given in terms of the quantity

Keµ =
Br(χ̃0

2 → χ̃0
1eµ)

Br(χ̃0
2 → χ̃0

1ee) +Br(χ̃0
2 → χ̃0

1µµ)
, (37)whi
h parametrizes the amount of �avour violation in χ̃0

2 de
ays. The study, fo
used onthe CMS test point LM1 (m0 = 60 GeV, M1/2 = 250 GeV, A0 = 0 GeV, tanβ = 10,
sign(µ) = +) [84℄, 
on
ludes that LFV 
an be dis
overed at the LHC at 5σ level with anintegrated luminosity of 10fb−1 if Keµ ≥ Kmin

eµ = 0.04.Figure 17 shows our 
omputation ofKeµ as a fun
tion of the lightest right-handed neutrinomass, for the parameter 
hoi
e vBL = 1015 GeV and vR = 5 · 1015 GeV. The results areshown splitting the 
ontributions from intermediate left (blue) and right (red) sleptons.Although the sele
ted mSugra parameters belong to the SPS3 point, and not to LM1 as in29
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FIG. 17. Keµ as a fun
tion of the lightest right-handed neutrino mass, for the parameter 
hoi
e
vBL = 1015 GeV and vR = 5·1015 GeV. The blue 
urve 
orresponds to 
ontributions from intermedi-ate L sleptons, whereas the red one 
orresponds to intermediate R sleptons. The mSugra parametershave been taken as in the SPS3 ben
hmark point, whi
h satis�es m(χ̃0

2) > m(l̃i) > m(χ̃0
1), and thusthe intermediate L and R sleptons 
an be produ
ed on-shell. Neutrino os
illation data have been�tted a

ording to the f �t, with non-degenerate right-handed neutrinos. The blue shaded regionis ex
luded by µ → eγ.referen
e [89℄, a similar sensitivity for Kmin

eµ is expe
ted7. This is be
ause the redu
tion inthe 
ross-se
tion due to the slightly heavier supersymmetri
 spe
trum is possibly partially
ompensated by the 
orresponding redu
tion in the SM ba
kground and thus a limiting value
Kmin

eµ of a similar order is expe
ted. Moreover, [89℄ uses 10 fb−1 and with larger integratedluminosities even smaller Kmin
eµ should be
ome a

essible at the LHC.The main result in �gure 17 is that for large MS values the rates for LFV χ̃0

2 de
aysare measurable for both left and right intermediate sleptons. In fa
t, for MS & 1012 GeVthe parameter Keµ is above its minimum value for the 5σ dis
overy of χ̃0
2 → χ̃0

1eµ. Seereferen
es [89, 90℄ for more details on the LHC dis
overy potential in the sear
h for LFV inthis 
hannel.7 Moreover, the LM1 point, being very similar to SPS1a', is strongly 
onstrained by µ → eγ.
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IV. CONCLUSIONSWe have studied a supersymmetri
 left-right symmetri
 model. Our motivation for study-ing this setup was twofold. First, LR models are theoreti
ally attra
tive, sin
e they 
ontainall the ne
essary ingredients to generate a seesaw me
hanism, instead of adding it by handas is so often done. And, se
ond, in a setup where the SUSY LR is supplemented by �avourblind supersymmetry breaking boundary 
onditions, di�erent from all pure seesaw setups,lepton �avour violation o

urs in both, the left and the right slepton se
tors.We have 
al
ulated possible low-energy signals of this SUSY LR model, using full 2-loopRGEs for all parameters. We have found that low-energy lepton �avour violating de
ays,su
h as µ → eγ are (a) expe
ted to be larger than for the 
orresponding mSugra pointsin parameter spa
e of seesaw type-I models and (b) the polarization asymmetry A of theoutgoing positron is found to di�er signi�
antly from the pure seesaw predi
tion of A = +1in large regions of parameter spa
e. We have also dis
ussed possible 
ollider signatures of theSUSY LR model for LHC and a possible ILC. Mass splittings between smuons and sele
tronsand LFV violating slepton de
ays should o

ur in both the left and the right slepton se
tor,again di�erent from the pure seesaw expe
tations.We think therefore that the SUSY LR model is a good example of a �beyond� minimal,pure seesaw and o�ers many interesting novelties. For example, the impa
t of the interme-diate s
ales on dark matter reli
 density and on 
ertain mass 
ombinations and the in�uen
eof the right-handed neutrino spe
trum on low energy observables, are topi
s that 
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h training group GRK1147.Appendix A: RGEsWe present in the following appendi
es our results for the RGEs of the model above the
U(1)B−L breaking s
ale. We will only show the β-fun
tions for the gauge 
ouplings and the31



anomalous dimensions of all 
hiral super�elds. We brie�y dis
uss in this se
tion how theseresults were 
al
ulated. Furthermore, we show how they 
an be used to 
al
ulate the other
β-fun
tions of the models and give as example the 1-loop results for the soft SUSY breakingmasses of the sleptons. The 
omplete results are given online on this sitehttp://theorie.physik.uni-wuerzburg.de/~fnstaub/supplementary.htmlIn addition, the 
orresponding model �les for SARAH are also given on this web page.1. Cal
ulation of supersymmetri
 RGEsFor a general N = 1 supersymmetri
 gauge theory with superpotential

W (φ) =
1

2
µijφiφj +

1

6
Y ijkφiφjφk (A1)the soft SUSY-breaking s
alar terms are given by

Vsoft = (1

2
bijφiφj +

1

6
hijkφiφjφk + 
.
.)+ (m2)ijφiφ

∗
j . (A2)The anomalous dimensions are given by [53℄

γ
(1)j
i =

1

2
YipqY

jpq − 2δji g
2C2(i) , (A3)

γ
(2)j
i =− 1

2
YimnY

npqYpqrY
mrj + g2YipqY

jpq[2C2(p)− C2(i)]

+ 2δji g
4[C2(i)S(R) + 2C2(i)

2 − 3C2(G)C2(i)] , (A4)and the β-fun
tions for the gauge 
ouplings are given by
β(1)
g =g3 [S(R)− 3C2(G)] , (A5)

β(2)
g =g5

{

−6[C2(G)]2 + 2C2(G)S(R) + 4S(R)C2(R)
}

− g3Y ijkYijkC2(k)/d(G) . (A6)Here, C2(i) is the quadrati
 Casimir for a spe
i�
 super�eld and C2(R), C2(G) are thequadrati
 Casimirs for the matter and adjoint representations, respe
tively. d(G) is thedimension of the adjoint representation.The β-fun
tions for the superpotential parameters 
an be obtained by using super�eld te
h-nique. The obtained expressions are [91, 92℄.
βijk
Y = Y p(ijγp

k) , (A7)
βij
µ = µp(iγp

j) . (A8)The (..) in the supers
ripts denote symmetrization. Most of the β-fun
tions of the models
an be derived from these results using the pro
edure given in [93℄ based on the spurionformalism [94℄. In the following, we brie�y summarize the basi
 ideas of this 
al
ulation for32




ompleteness.The exa
t results for the soft β-fun
tions are given by [93℄:
βM = 2O

[

βg

g

]

, (A9)
βijk
h = hl(jkγi)

l − 2Y l(jkγ1
i)
l ,

βij
b = bl(iγj)

l − 2µl(iγ1
j)
l ,

(βm2) i
j = ∆γi

j . (A10)where we de�ned
O = Mg2

∂

∂g2
− hlmn ∂

∂Y lmn
, (A11)

(γ1)
i
j = Oγi

j , (A12)
∆ = 2OO∗ + 2MM∗g2

∂

∂g2
+

[

Ỹ lmn ∂

∂Y lmn
+ 
.
.]+X

∂

∂g
. (A13)Here, M is the gaugino mass and Ỹ ijk = (m2)ilY

jkl + (m2)j lY
ikl + (m2)klY

ijl. Eqs. (A9)-(A10) hold in a 
lass of renormalization s
hemes that in
ludes the DRED′-one [95℄. We takethe known 
ontributions of X from [96℄:
XDRED′(1) = −2g3S , (A14)
XDRED′(2) = (2r)−1g3tr[WC2(R)]− 4g5C2(G)S − 2g5C2(G)QMM∗ , (A15)where

S = r−1tr[m2C2(R)]−MM∗C2(G) , (A16)
W j

i =
1

2
YipqY

pqn(m2)jn +
1

2
Y jpqYpqn(m

2)ni + 2YipqY
jpr(m2)qr + hipqh

jpq − 8g2MM∗C2(R)j i .(A17)With Q = T (R)− 3C2(G), and T (R) = tr [C2(R)], r being the number of group generators.2. From GUT s
ale to SU(2)R breaking s
aleIn the following se
tions we will use the de�nitions
Y ij
Qk

= Y ijk
Q , Y ij

Lk
= Y ijk

L (A18)and in the same way T ij
Qk

and T ij
Lk
. We will also assume summation of repeated indi
es.
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a. Anomalous Dimensions
γ
(1)

Q̂
= 2Y ∗

Qk
Y T
Qk

− 1

12

(

18g22 + 32g23 + g2BL

)

1 (A19)
γ
(2)

Q̂
= +

1

144

(

− 128g43 + 2052g42 + 289g4BL + 36g22

(

32g23 + g2BL

)

+ 64g23g
2
BL

)

1

+ Y ∗
Qm

(

6g22δmn +
27

4
Tr(αα∗

)

δmn − 2Tr(Y ∗
Ln
Y T
Lm

)

− 6Tr(Y ∗
Qn

Y T
Qm

))

Y T
Qn

− 32Y ∗
Qm

Y †
Qn

YQn
Y T
Qm

(A20)
γ
(1)

Q̂c
= 2Y †

Qk
YQk

− 1

12

(

18g22 + 32g23 + g2BL

)

1 (A21)
γ
(2)

Q̂c
= +

1

144

(

− 128g43 + 2052g42 + 289g4BL + 36g22

(

32g23 + g2BL

)

+ 64g23g
2
BL

)

1

+ Y †
Qm

(

6g22δmn +
27

4
Tr(αα∗

)

δmn − 2Tr(Y ∗
Ln
Y T
Lm

)

− 6Tr(Y ∗
Qn

Y T
Qm

))

YQn

− 32Y †
Qm

YQn
Y T
Qm

Y ∗
Qn

(A22)
γ
(1)

L̂
= 2
(

3f †f + Y ∗
Lk
Y T
Lk

)

− 3

4

(

2g22 + g2BL

)

1 (A23)
γ
(2)

L̂
=

3

16

(

12g22g
2
BL + 76g42 + 99g4BL

)

1 + 3f †f
(

− 3|a|2 − 4Tr(ff †
)

+ 6g2BL + 8g22

)

+ Y ∗
Lm

(

6g22δmn +
27

4
Tr(αα∗

)

δmn − 2Tr(Y ∗
Ln
Y T
Lm

)

− 6Tr(Y ∗
Qn

Y T
Qm

)

− 11f †fδmn

)

Y T
Ln

− 4Y ∗
Lm

Y †
Ln
YLn

Y T
Lm

− 2f †
(

17ff † + 3YLk
Y †
Lk

)

f

− 6f †YLk
fY ∗

Lk
(A24)

γ
(1)

L̂c
= 2
(

3ff † + Y †
Lk
YLk

)

− 3

4

(

2g22 + g2BL

)

1 (A25)
γ
(2)

L̂c
=

3

16

(

12g22g
2
BL + 76g42 + 99g4BL

)

1 + 3ff †
(

− 3|a|2 − 4Tr(ff †
)

+ 6g2BL + 8g22

)

+ Y †
Lm

(

6g22δmn +
27

4
Tr(αα∗

)

δmn − 2Tr(Y ∗
Ln
Y T
Lm

)

− 6Tr(Y ∗
Qn

Y T
Qm

)

− 11ff †δmn

)

YLn
− 4Y †

Lm
YLn

Y T
Lm

Y ∗
Ln

− 2f
(

17f †f + 3Y T
Lk
Y ∗
Lk

)

f †

− 6Y †
Lk
YLk

ff † (A26)
(γ

(1)

Φ̂
)ij = −3g221− 3

2

(

αα∗ + α∗α
)

+ δimδjn

(

3Tr(Y ∗
Qm

Y T
Qn

)

+ Tr(Y ∗
Lm

Y T
Ln

)) (A27)
(γ

(2)

Φ̂
)ij = 33g421− 9

(

2(ααα∗α∗ + α∗α∗αα) + 3(αα∗αα∗ + α∗αα∗α)
)

− 24(αα∗ + α∗α)
(

2g22 + 2Tr(αα∗
)

− |a|2
)

− 3

2

(

αjmα
∗
in + α∗

jmαin

)(

3Tr(Y ∗
Qm

Y T
Qn

)

+ Tr(Y ∗
Lm

Y T
Ln

))

− 1

2
δimδin

(

− 3g2BLTr(Y ∗
Lm

Y T
Ln

)

− (32g23 + g2BL)Tr(Y ∗
Qm

Y T
Qn

)
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+ 2
(

5Tr(ff †YLn
Y †
Lm

)

+ Tr(fY ∗
Ln
Y T
Lm

f †
)

+ 6Tr(fY ∗
Lm

Y T
Ln
f †
))

+ 4
(

2Tr(Y †
Lm

YLn
Y T
Ln
Y ∗
Ln

)

+ Tr(Y †
Lm

YLm
Y T
Ln
Y ∗
Lm

)

+ Tr(Y †
Lm

YLn
Y T
Lm

Y ∗
Lm

))

+ 12
(

2Tr(Y †
Qm

YQn
Y T
Qn

Y ∗
Qn

)

+ Tr(Y †
Qm

YQm
Y T
Qn

Y ∗
Qm

)

+ Tr(Y †
Qm

YQn
Y T
Qm

Y ∗
Qm

))) (A28)
γ
(1)

∆̂
= 2Tr(ff †

)

− 3g2BL − 4g22 +
3

2
|a|2 (A29)

γ
(2)

∆̂
= 48g42 + 24g22g

2
BL + 81g4BL

+
3

2
|a|2
(

4g22 + Tr(αα∗
)

− 7

2
|a|2
)

−
(

2g22 + 3g2BL

)Tr(ff †
)

− 24Tr(ff †ff †
)

− 6Tr(ff †YLk
Y †
Lk

)

− 2Tr(fY ∗
Lk
Y T
Lk
f †
) (A30)

γ
(1)
ˆ̄∆

= −3g2BL − 4g22 +
3

2
|a|2 (A31)

γ
(2)
ˆ̄∆

=
3

4

(

4
(

16g42 + 27g4BL + 8g22g
2
BL

)

+ |a|2
(

2Tr(αα∗
)

− 3Tr(ff †
)

− 7|a|2 + 8g22

)) (A32)
γ
(1)

∆̂c
= 2Tr(ff †

)

− 3g2BL − 4g22 +
3

2
|a|2 (A33)

γ
(2)

∆̂c
= 48g42 + 24g22g

2
BL + 81g4BL

+
3

2
|a|2
(

4g22 + Tr(αα∗
)

− 7

2
|a|2
)

−
(

2g22 + 3g2BL

)Tr(ff †
)

− 24Tr(ff †ff †
)

− 8Tr(fY T
Lk
Y ∗
Lk
f †
) (A34)

γ
(1)
ˆ̄∆c

= −3g2BL − 4g22 +
3

2
|a|2 (A35)

γ
(2)
ˆ̄∆c

=
3

4

(

4
(

16g42 + 27g4BL + 8g22g
2
BL

)

+ |a|2
(

2Tr(αα∗
)

− 3Tr(ff †
)

− 7|a|2 + 8g22

)) (A36)
γ
(1)

Ω̂
= 2|a|2 − 4g22 (A37)

γ
(2)

Ω̂
= 3Tr(α(αα∗ − α∗α)α∗

)

+ 48g42 + |a|2
(

12g2BL − 3Tr(ff †
)

− 6|a|2 + 8g22

) (A38)
γ
(1)

Ω̂c
= 2|a|2 − 4g22 (A39)

γ
(2)

Ω̂c
= 3Tr(α(αα∗ − α∗α)α∗

)

+ 48g42 + |a|2
(

12g2BL − 3Tr(ff †
)

− 6|a|2 + 8g22

) (A40)Note that the previous formulas are totally general and 
an be applied with any num-ber of bidoublets. Nevertheless, if two bidoublets are 
onsidered αα∗ = α∗α and furthersimpli�
ations are possible.
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b. Beta fun
tions for soft breaking masses of sleptonsUsing the pro
edure explained in se
. A 1, we 
an 
al
ulate the soft breaking masses forthe sleptons. The results are
16π2 d

dt
m2

L = 6ff †m2
L + 12fm2

Lf
† + 6m2

Lff
† + 12m2

∆ff
†

+2YLk
Y †
Lk
m2

L + 2m2
LYLk

Y †
Lk

+ 4YLk
m2

LcY
†
Lk

+4(m2
Φ)mnY

(m)
L Y

(n) †
L + 12TfT

†
f + 4TLk

T †
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−(3g2BL|M1|2 + 6g22|M2|2 +
3

2
g2BLS1)1 (A41)
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S1 = 3(m2
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∆̄c)

+
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[
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. Beta fun
tions for gauge 
ouplings
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gBL

= 24g3BL (A44)
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3. From SU(2)R breaking s
ale to U(1)B−L breaking s
alea. Anomalous Dimensions
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Ĥu
= 3Tr(YuY

†
u

)

− 1

2
g2R +

3

2
|b|2 − 3

2
g2L + |bc|2 + Tr(YνY

†
ν

) (A64)
γ
(2)

Ĥu
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c (A74)b. Beta fun
tions for soft breaking masses of sleptonsAgain, the results for the slepton soft SUSY breaking masses at 1-loop are shown. Thebeta fun
tions read
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