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I. INTRODUCTIONThe most popular explanation for the observed smallness of neutrino masses is ertainlythe seesaw mehanism [1�4℄. Literally hundreds of theoretial papers based on �the seesaw�have been published sine the disovery of neutrino osillations [5℄. The seesaw an beimplemented at tree-level in exatly three realizations [6℄: exhange of a fermioni singlet,a.k.a. the right-handed neutrino (type-I) [1, 2℄; of a salar triplet (type-II) [2�4℄; or of afermioni triplet (type-III) [7℄. In any of these �seesaw mehanisms� neutrino masses aregiven by mν ∼ v2/Λ, where v is the Higgs vauum expetation value (vev) and Λ the saleof the seesaw. For oe�ients O(1) and Λ ∼ (1014 − 1015) GeV one �nds neutrinos withsub-eV masses, just as experimental data demands. Unfortunately, attrative as this ideamight appear from the theoretial point of view, this estimate also implies that �the seesaw�will never be diretly tested.This situation might hange slightly, if supersymmetry (SUSY) is found at the LHC,essentially beause salar leptons provide potentially additional information about seesawparameters. Assuming SUSY gets broken at a high energy sale, the seesaw parameters leavetheir imprint on the soft parameters in the Renormalization Group Equation (RGE) running.Then, at least in priniple, indiret tests of the seesaw beome possible1. Indeed, this hasbeen pointed out already in [8℄, where it was shown that lepton �avour violating (LFV)o�-diagonal mass terms for sleptons are automatially generated in seesaw (type-I), evenif SUSY breaking is ompletely �avour blind at the GUT sale as in minimal supergravity(mSugra)2.Motivated by the above arguments, many authors have then studied LFV in SUSY mod-els. For the seesaw type-I, low energy LFV deays suh as li → ljγ and li → 3lj have beenalulated in [9�18℄; µ − e onversion in nulei has been studied in [19, 20℄. The type-IIseesaw has reeived muh less attention, although it has atually fewer free parameters thantype-I. The latter implies that ratios of LFV deays of leptons an atually be preditedas a funtion of neutrino angles in mSugra, as has been shown in [21, 22℄. Finally, forompleteness we mention that LFV in SUSY seesaw type-III has been studied in [23℄.Measurements at olliders, one SUSY is disovered, an provide additional information.LFV deays of left sleptons within mSugra have been studied for type-I in [24℄ and for type-II in [22, 25℄. Preise mass measurements might also show indiret e�ets of the seesaw[26�28℄. Most prominently, type-II and type-III seesaw ontain non-singlet super�elds, sogauge ouplings run di�erently from pure MSSM. One then expets that spartile spetrashow a harateristi �deformation� with respet to mSugra preditions. From di�erentombinations of masses one an form �invariants�, i.e. numbers whih to leading order depend1 In the general minimal supersymmetri extension of the standard model (MSSM) all soft terms are freeparameters, �xed at the eletroweak sale and nothing an be learned about the high energy world.2 It might be tehnially more orret to all this setup the �onstrained MSSM� (CMSSM). We will stikto the terminology mSugra. 2



only on the seesaw sale [29℄, although there are important orretions at 2-loop [22, 23℄,whih have to be inluded before any quantitative analysis an be done. Experimentallyinteresting is also that at the LHC the mass splitting between seletrons and smuons maybe onstrained down to O(10−4) for 30 fb−1 of integrated luminosity [30℄. In mSugra, oneexpets this splitting to be unmeasurably tiny, whereas in mSugra plus seesaw signi�antlydi�erent masses an be generated, as has been shown for type-I in [31℄.Interestingly, in pure seesaw models with �avour blind SUSY boundary onditions all ofthe e�ets disussed above show up only in the left slepton setor. Naturally one expetsthat in a supersymmetri model with an intermediate left-right symmetri stage, also theright sleptons should ontain some indiret information about the high energy parameters.This simple observation forms the main motivation for the urrent paper. Before enteringin the details of our alulation, let us �rst brie�y disuss left-right symmetri models.Quite a large number of di�erent left-right (LR) symmetri models have been disussed inthe literature. Originally LR models were introdued to explain the observed left-handednessof the weak interation as a onsequene of symmetry breaking [32�34℄. However, LR modelso�er other advantages as well. First, the partile ontent of LR models ontains automat-ially the right-handed neutrino and thus the ingredients for generating a (type-I) seesawmehanism 3. Seond, the gauge group SU(3)c × SU(2)L × SU(2)R ×U(1)B−L is one of thepossible hains through whih SO(10) [35, 36℄ an be broken to the standard model gaugegroup 4. In addition, it has been shown that they provide tehnial solutions to the SUSYCP and strong CP problems [37℄ and they give an understanding of the U(1) harges of thestandard model fermions. Interesting only for the supersymmetri versions of LR models,(B-L) is gauged and thus, potentially, the low energy theory onserves R-parity [38, 39℄.This last argument requires possibly some elaboration. R-parity, de�ned as RP =

(−1)3(B−L)+2s (where B and L stand for baryon and lepton numbers and s for the spin of thepartile), is imposed in the MSSM to avoid dangerous baryon and lepton number violatingoperators. However, the origin of RP is not explained within the MSSM. In early LR models
SU(2)R doublets were used to break the gauge symmetry. The non-supersymmetri modelproposed in referenes [33, 34℄ introdued two additional salar doublets χL and χR, where
χL ≡ χL(1, 2, 1, 1) and χR ≡ χR(1, 1, 2,−1) under SU(3)c × SU(2)L × SU(2)R × U(1)B−L.Parity onservation implies that both, χL and χR, are needed. When the neutral ompo-nent of χR gets a vev, 〈χ0

R〉 6= 0, the gauge symmetry is broken down to the SM gaugegroup. However, χR is odd under U(1)B−L and thus, in the SUSY versions of this setup,
RP is broken at the same time 5. A possible solution to this problem is to break the gaugesymmetry by SU(2)R �elds with even harge under U(1)B−L, i.e. by triplets. For a SUSY3 Breaking the LR symmetry with triplets an generate also a type-II [2℄.4 Not all SO(10) breaking hains ontain a seesaw. Neither does SU(5). It is, of ourse, straightforward toadd a seesaw to SU(5).5 This ould be solved by imposing additional disrete symmetries on the model that forbid the dangerous
Rp/ operators [40℄, but this annot be regarded as automati R-parity onservation.3



LR model, this was in fat proposed in referene [41℄, where four triplets were added to theMSSM spetrum: ∆(1, 3, 1, 2), ∆c(1, 1, 3,−2), ∆̄(1, 3, 1,−2) and ∆̄c(1, 1, 3, 2). Breaking thesymmetry by the vev of ∆c produes at the same time a right-handed neutrino mass via theoperator Lc∆cLc, leading to a type-I seesaw mehanism. Depending on whether or not ∆gets a vev, also a type-II seesaw an be generated [42℄.However, whether R-parity is onserved in this setup is not lear. The reason is thatthe minimum of the potential might prefer a solution in whih also the right-handed salarneutrino gets a vev, thus breaking RP , as has been laimed to be the ase in [43℄. Later [44℄alulated some 1-loop orretions to the salar potential, onluding that RP onservingminima an be found. On the other hand, as �rst noted in [45℄ and later showed by Aulakhand ollaborators [46, 47℄, by the addition of two more triplets, Ω(1, 3, 1, 0) and Ωc(1, 1, 3, 0),with zero lepton number one an ahieve LR breaking with onserved RP guaranteed alreadyat tree-level. Laking a general proof that the model [41℄ onserves RP we will follow [46, 47℄as the setup for our numerial alulations.Finally, for ompleteness we mention the existene of left-right models with R-parityviolation. For example, if the left-right symmetry is broken with the vevs of right-handedsneutrinos R-parity gets broken as well and the resulting phenomenology is totally di�erent,as shown in [48, 49℄.Compared to the long list of papers about indiret tests of the seesaw, surprisingly littlework on the �low-energy� phenomenology of SUSY LR models has been done. One loopRGEs for two left-right SUSY models have been alulated in [50℄. These two models are(with one additional singlet): (a) breaking LR by doublets a la [33, 34℄ and (b) by tripletsfollowing [41℄, but no numerial work at all was done in this paper. The possibility thatright sleptons might have �avour violating deays in the left-right symmetri SUSY modelof [41℄ was mentioned in [51℄. A systemati study of all the possible signals disussed abovefor the seesaw ase is laking and to our knowledge there is no publiation of any alulationof these signals for the model of [46, 47℄. (For ompleteness we would like to mention that inGUTs based on SU(5) one an have the situation the LFV ours only in the right sleptonsetor, as pointed out in [52℄. However, this model [52℄ is in a di�erent lass from all themodels disussed above, sine it does not ontain non-zero neutrino masses.)The rest of this paper is organized as follows. In the next setion we de�ne the model[46, 47℄ and disuss its partile ontent and main features at eah symmetry breaking sale.We have alulated the RGEs for eah step omplete at the 2-loop level following the generaldesription by [53℄ using the Mathematia pakage SARAH [54�56℄. A summary is givenin the appendix, the omplete set of equations and the SARAH model �les an be foundat [57℄. Neutrino masses an be �tted to experimental data via a type-I seesaw mehanismand we disuss di�erent ways to implement the �t. We then turn to the numerial results.The output of SARAH has been passed to the program pakage SPheno [58℄ for numerialevaluation. We alulate the SUSY spetra and LFV slepton deays, suh as τ̃L/R → µχ̃0
1and τ̃L/R → eχ̃0

1 and χ̃0
2 → eµχ̃0

1, as well as low-energy deays li → ljγ for some samplepoints as a funtion of the LR and (B-L) sales. Potentially measurable signals are found4



Super�eld generations SU(3)c SU(2)L SU(2)R U(1)B−L

Q 3 3 2 1 1
3

Qc 3 3̄ 1 2 −1
3

L 3 1 2 1 -1
Lc 3 1 1 2 1
Φ 2 1 2 2 0
∆ 1 1 3 1 2
∆̄ 1 1 3 1 -2
∆c 1 1 1 3 -2
∆̄c 1 1 1 3 2
Ω 1 1 3 1 0
Ωc 1 1 1 3 0TABLE I. Matter ontent between the GUT sale and the SU(2)R breaking sale.in both, left and right slepton setors, if (a) the seesaw sale is above (very roughly) 1013GeV and (b) if the sale of LR breaking is signi�antly below the GUT sale. Sine we �ndsizable LFV soft masses in both slepton setors, also the polarization in µ → eγ is di�erentfrom the pure seesaw expetation. We then lose with a short summary and outlook.II. LEFT-RIGHT SUPERSYMMETRIC MODELIn this setion we de�ne the model, its partile ontent and give a desription of thedi�erent symmetry breaking steps. The �t to neutrino masses and its onnetion to LFVviolation in the slepton setor is disussed in some detail, to prepare for the numerial resultsgiven in the next setion. We summarize brie�y the free parameters of the theory.The model essentially follows [46, 47℄. We have not attempted to �nd a GUT ompletion.We will, however, assume that gauge ouplings and soft SUSY parameters an be uni�ed,i.e. impliitly assume that suh a GUT model an indeed be onstruted.A. Step 1: From GUT sale to SU(2)R breaking saleJust below the GUT sale the gauge group of the model is SU(3)c×SU(2)L ×SU(2)R ×

U(1)B−L. In addition it is assumed that parity is onserved, see below. The matter ontentof the model is given in table I. Here Q, Qc, L and Lc are the quark and lepton super�eldsof the MSSM with the addition of (three) right-handed neutrino(s) νc.Two Φ super�elds, bidoublets under SU(2)L × SU(2)R, are introdued. They ontainthe standard Hd and Hu MSSM Higgs doublets. In this model, two opies are needed for anon-trivial CKM matrix. Although there are known attempts to build a realisti LR modelwith only one bidoublet generating the quark mixing angles at the loop level [59℄, we will5



not rely on suh a mehanism. Finally, the rest of the super�elds in table I are introduedto break the LR symmetry, as explained above.Table I shows also the gauge harges for the matter ontent in the model. In partiular,the last olumn shows the B − L value for the di�erent super�elds. However, the followingde�nition for the eletri harge operator will be used throughout this paper
Q = I3L + I3R +

B − L

2
(1)and thus the U(1)B−L harge is atually B−L

2
.With the representations in table I, the most general superpotential ompatible with thegauge symmetry and parity is

W = YQQΦQc + YLLΦL
c − µ

2
ΦΦ + fL∆L+ f ∗Lc∆cLc

+ a∆Ω∆̄ + a∗∆cΩc∆̄c + αΩΦΦ + α∗ΩcΦΦ

+ M∆∆∆̄ +M∗
∆∆

c∆̄c +MΩΩΩ +M∗
ΩΩ

cΩc . (2)Note that this superpotential is invariant under the parity transformations Q ↔ (Qc)∗,
L ↔ (Lc)∗, Φ ↔ Φ†, ∆ ↔ (∆c)∗, ∆̄ ↔ (∆̄c)∗, Ω ↔ (Ωc)∗. This disrete symmetry �xes, forexample, the Lc∆cLc oupling to be f ∗, the omplex onjugate of the L∆L oupling, thusreduing the number of free parameters of the model.Family and gauge indies have been omitted in eq. (2), more detailed expressions anbe found in [46℄. YQ and YL are quark and lepton Yukawa ouplings. However, with twobidoublets there are two opies of them, and thus there are four 3 × 3 Yukawa matries.Conservation of parity implies that they must be hermitian. µ is a 2× 2 symmetri matrix,whose entries have dimensions of mass, f is a 3 × 3 (dimensionless) omplex symmetrimatrix, and α is a 2×2 antisymmetri matrix, and thus it only ontains one (dimensionless)omplex parameter, α12. The mass parameters MΩ and M∆ an be exhanged for vR and
vBL, the vauum expetation values of the salar �elds that break the LR symmetry, seebelow.The soft terms of the model are

−Lsoft = m2
QQ̃

†Q̃ +m2
QcQ̃c

†
Q̃c +m2

LL̃
†L̃+m2

LcL̃c
†
L̃c

+ m2
ΦΦ

†Φ +m2
∆∆

†∆+m2
∆̄∆̄

†∆̄ +m2
∆c∆c†∆c +m2

∆̄c∆̄
c †∆̄c

+ m2
ΩΩ

†Ω +m2
ΩcΩc†Ωc +

1

2

[

M1B̃
0B̃0 +M2(W̃LW̃L + W̃RW̃R) +M3g̃g̃ + h.c.

]

+
[

TQQ̃ΦQ̃c + TLL̃ΦL̃c + Tf L̃∆L̃+ T ∗
f L̃

c∆cL̃c

+ Ta∆Ω∆̄ + T ∗
a∆

cΩc∆̄c + TαΩΦΦ + T ∗
αΩ

cΦΦ + h.c.
]

+
[

BµΦΦ +BM∆
∆∆̄ +BM∆

∗∆c∆̄c +BMΩ
ΩΩ +BMΩ

∗ΩcΩc + h.c.
]

. (3)Again, family and gauge indies have been omitted for the sake of simpliity. The LRmodel itself does not, of ourse, �x the values of the soft SUSY breaking terms. In thenumerial evaluation of the RGEs we will resort to mSugra-like boundary onditions, i.e.6



m2
0I3×3 = m2

Q = m2
Qc = m2

L = m2
Lc , m2

0I2×2 = m2
Φ, m2

0 = m2
∆ = m2

∆̄
= m2

∆c = m2
∆̄c = m2

Ω =

m2
Ωc , M1/2 = M1 = M2 = M3, TQ = A0YQ, TL = A0YL, Tf = A0f, Ta = A0a, Tα = A0α,

Bµ = B0, BM∆
= B0M∆, BMΩ

= B0MΩ. The superpotential ouplings f , YQ and YL are�xed by the low-sale fermion masses and mixing angles. Their values at the GUT sale areobtained by RGE running. This will be disussed in more detail in setion IID.The breaking of the LR gauge group to the MSSM gauge group takes plae in two steps:
SU(2)R × U(1)B−L → U(1)R × U(1)B−L → U(1)Y . In the �rst step the neutral omponentof the triplet Ω takes a vev:

〈Ωc 0〉 = vR√
2

(4)whih breaks SU(2)R. However, sine I3R(Ω
c 0) = 0 there is a U(1)R symmetry left over.Next, the group U(1)R × U(1)B−L is broken by

〈∆c 0〉 = vBL√
2
, 〈∆̄c 0〉 = v̄BL√

2
. (5)The remaining symmetry is now U(1)Y with hyperharge de�ned as Y = I3R + B−L

2
.The tadpole equations do not link Ωc, ∆c and ∆̄c with their left-handed ounterparts,due to supersymmetry. Thus, the left-handed triplets an have vanishing vevs [46℄ and themodel produes only a type-I seesaw.Although a �hierarhy� between the two breaking sales may exist, vBL ≪ vR, one annotneglet the e�ets of the seond breaking stage on the �rst one, sine mass terms of Ω and

∆ enter in both tadpole equations. If we assume v̄BL = vBL the tadpole equations of themodel an be written
∂V

∂vR
= 4|MΩ|2vR +

1

2
|a|2v2BLvR − 1

2
v2BL [a

∗(M∆ +MΩ) + c.c] = 0 , (6)
∂V

∂vBL

= |M∆|2vBL +
1

4
|a|2(v2BL + v2R)vBL − 1

2
vBLvR [a∗(M∆ +MΩ) + c.c] = 0 . (7)In these equations (small) soft SUSY breaking terms have been negleted. Similarly, atthis stage there are no eletroweak symmetry breaking vevs vd and vu. From equations(6) and (7) one sees that, in fat, there is an inverse hierarhy between the vevs and thesuperpotential masses M∆, MΩ, given by

vR =
2M∆

a
, vBL =

2

a
(2M∆MΩ)

1/2 . (8)And so, vBL ≪ vR requires M∆ ≫ MΩ, as has already been disussed in [46℄.B. Step 2: From SU(2)R breaking sale to U(1)B−L breaking saleAt this step the gauge group is SU(3)c×SU(2)L×U(1)R×U(1)B−L. The partile ontentof the model from the SU(2)R breaking sale to the U(1)B−L breaking sale is given in tableII. 7



Super�eld generations SU(3)c SU(2)L U(1)R U(1)B−L

Q 3 3 2 0 1
3

dc 3 3̄ 1 1
2 −1

3

uc 3 3̄ 1 −1
2 −1

3

L 3 1 2 0 −1

ec 3 1 1 1
2 1

νc 3 1 1 −1
2 1

Hd 1 1 2 −1
2 0

Hu 1 1 2 1
2 0

∆c 0 1 1 1 1 -2
∆̄c 0 1 1 1 -1 2
Ω 1 1 3 0 0
Ωc 0 1 1 1 0 0TABLE II. Matter ontent from the SU(2)R breaking sale to the U(1)B−L breaking sale.Some omments might be in order. Despite M∆ being of the order of vR (or larger), seeeq.(8), not all omponents of the ∆ super�elds reeive large masses. The neutral omponentsof ∆c and ∆̄c lie at the vBL sale. One an easily hek that the F-term ontributions totheir masses vanish in the minimum of the salar potential eq. (8). Moreover, Ωc does notgenerate D-terms ontributions to their masses. Therefore, ontrary to the other omponentsof the ∆ triplets, they only get masses at the vBL sale. On the other hand, one might guessthat all omponents in the Ω,Ωc super�elds should be retained at this stage, sine theirsuperpotential mass MΩ is required to be below vBL. However, some of their omponents getontributions from SU(2)R breaking, and thus they beome heavy. The harged omponentsof Ωc do develop large masses, in the ase of the salars through D-terms, while in the aseof the fermions due to their mixing with the harged gauginos W̃±

R , whih have massesproportional to vR. However, the neutral omponents of Ωc do not get SU(2)R breakingontributions, sine they have I3R(Ω
c 0) = 0, and then they must be inluded in this energyregime. See referene [47℄ for a more quantitative disussion.After SU(2)R breaking the two bidoublets Φ1 and Φ2 get split into four SU(2)L dou-blets. Two of them must remain light, identi�ed with the two Higgs doublets of the MSSM,responsible for EW symmetry breaking, while, at the same time, the other two get massesof the order of vR. This strong hierarhy an be only obtained by imposing a �ne-tuningondition on the parameters involved in the bidoublet setor.The superpotential terms mixing the four SU(2)L doublets an be rewritten as
WM = (Hf

d )
TMHH

f
u (9)where Hf

d = (H1
d , H

2
d) and Hf

u = (H1
u, H

2
u) are the �avour eigenstates. In this basis reads

8



the matrix
MH =

(

µ11 µ12 + α12MR

µ12 − α12MR µ22

)

, (10)where the relations µij = µji and αij = −αji have been used and MR = vR
2
has been de�ned.In order to get two light doublets we impose the �ne-tuning ondition [47℄

Det(MH) = µ11µ22 − (µ2
12 − α2

12M
2
R) = 0 . (11)The result of eq. (11) is to split the two Higgs bidoublets into two pairs of doublets (Hd, Hu)Land (Hd, Hu)R, where (Hd, Hu)L is the light pair that appears in table II, and (Hd, Hu)Ra heavy pair with mass of order of vR. In pratie, equation (11) implies that one of thesuperpotential parameters must be hosen in terms of the others. Sine this �ne-tuningondition is not proteted by any symmetry, the RGEs do not preserve it, and one mustimpose it at the SU(2)R breaking sale. In our omputation we hose to ompute µ11 interms of the free parameters µ12, µ22, α12 and vR.In order to ompute the resulting ouplings for the light Higgs doublets one must rotatethe original �elds into their mass basis. SineMH is not a symmetri matrix (unless α12 = 0)one has to rotate independently Hf

d and Hf
u , i.e. Hf

d = DHm
d , Hf

u = UHm
u , where D and Uare orthogonal matries and Hm

d = (HL
d , H

R
d ) and Hm

u = (HL
u , H

R
u ) are the mass eigenstates.This way one �nds

WM = (Hf
d )

TMHH
f
u = (Hm

d )TDTMHUHm
u = (Hm

d )TM̂HH
m
u (12)where M̂H is a diagonal matrix, with eigenvalues

M̂2
H,1 = 0 ,

M̂2
H,2 =

1

µ2
22

(

α4
12M

4
R + 2α2

12M
2
R(µ

2
22 − µ2

12) + (µ2
22 + µ2

12)
2
)

. (13)The D and U rotations are, in general, di�erent and we parametrize them as
D =

(

cos θ1 sin θ1
− sin θ1 cos θ1

)

, U =

(

cos θ2 sin θ2
− sin θ2 cos θ2

) (14)and get
H1

d = cos θ1H
L
d + sin θ1H

R
d ,

H2
d = − sin θ1H

L
d + cos θ1H

R
d , (15)and similar forHu. In general the angles θ1 and θ2 are di�erent. However, they are onnetedto the same matrix MH and an be alulated by diagonalizing MH(MH)

T or (MH)
TMHand one �nds

tan θ1,2 =
µ12 ± α12MR

µ22
. (16)9



In these expressions Det(MH) = 0 has been used to simplify the result. Exat Det(MH) = 0implies that the µ-term of the MSSM is zero, so this ondition an only be true up to smallorretions, see the disussion below. Note that there are two interesting limits. First,
µ12 ≫ α12MR : this implies tan θ1 = tan θ2 and therefore D = U . This is as expeted, sinethat limit makes MH symmetri. And, seond, µ12 ≪ α12MR : this implies tan θ1 = − tan θ2and therefore D = UT .The superpotential at this stage is

W = YuQHuu
c + YdQHdd

c + YeLHde
c + YνLHuν

c + µHuHd

+ f 1
c ν

cνc∆c 0 +M1
∆c∆c 0∆̄c 0 + a1c∆

c 0∆̄c 0Ωc 0

+ bΩHdHu + bcΩ
c 0HdHu +MΩΩΩ +MΩcΩc 0Ωc 0. (17)Partiles belonging to the same SU(2)R gauge multiplets split due to their di�erent U(1)Rharges. At this stage both the LR group, that symmetrizes the SU(2)L and SU(2)R gaugeinterations, and the disrete parity symmetry that we imposed on the ouplings are broken.The soft terms are

−Lsoft = m2
QQ̃

†Q̃+m2
uc ũc†ũc +m2

dc d̃
c
†
d̃c +m2

LL̃
†L̃+m2

ec ẽ
c†ẽc +m2

νc ν̃
c†ν̃c

+ m2
Hu

H†
uHu +m2

Hd
H†

dHd +m2
∆c 0∆c 0†∆c 0 +m2

∆̄c 0∆̄
c 0 †∆̄c 0

+ m2
ΩΩ

†Ω+m2
Ωc 0Ωc 0 †Ωc 0 +

1

2

[

M1B̃
0B̃0 +MLW̃LW̃L +MRW̃ 0

RW̃
0
R +M3g̃g̃ + h.c.

]

+
[

TuQ̃Huũc + TdQ̃Hdd̃c + TeL̃Hdẽc + TνL̃Huν̃c (18)
+ T 1

fc ν̃
cν̃c∆c 0 + T 1

ac∆
c 0Ωc 0∆̄c 0 + TbΩHdHu + TbcΩ

c 0HdHu + h.c.
]

+
[

BµHuHd +BM1
∆c
∆c 0∆̄c 0 +BMΩ

ΩΩ +BMc
Ω
Ωc 0Ωc 0 + h.c.

]

.Again we suppress gauge and family indies.We must impose mathing onditions at the SU(2)R breaking sale. These are for super-potential parameters given by
Yd = Y 1

Q cos θ1 − Y 2
Q sin θ1 , Yu = −Y 1

Q cos θ2 + Y 2
Q sin θ2 ,

Ye = Y 1
L cos θ1 − Y 2

L sin θ1 , Yν = −Y 1
L cos θ2 + Y 2

L sin θ2 ,

f 1
c = −f ∗ , a1c = − a∗√

2
,

M1
∆c = M∗

∆ , MΩc = M∗
Ω ,

b = 2αR , bc =
√
2α∗R , (19)where R = sin(θ1 − θ2). For the soft masses we have

m2
uc = m2

dc = m2
Qc , (20)

m2
ec = m2

νc = m2
Lc ,

m2
∆c 0 = m2

∆c ,

m2
∆̄c 0 = m2

∆̄c ,

m2
Ωc 0 = m2

Ωc ,

ML = MR = M2 .10



Soft trilinears mathing follow orresponding onditions. In addition, one has
m2

Hd
= cos2 θ1(m

2
Φ)11 + sin2 θ1(m

2
Φ)22 − sin θ1 cos θ1

[

(m2
Φ)12 + (m2

Φ)21
]

,

m2
Hu

= cos2 θ2(m
2
Φ)11 + sin2 θ2(m

2
Φ)22 − sin θ2 cos θ2

[

(m2
Φ)12 + (m2

Φ)21
]

,as obtained when the operator m2
ΦΦ

†Φ is projeted into the light Higgs doublets operators
(HL

d )
†HL

d and (HL
u )

†HL
u . Gauge ouplings are mathed as gL = gR = g2.C. Step 3: From U(1)B−L breaking sale to EW/SUSY saleWemention this stage only for ompleteness, sine the last regime is just the usual MSSM.We need mathing onditions in the gauge setor. Sine U(1)R ×U(1)B−L breaks to U(1)Y ,the MSSM gauge oupling g1 will be a ombination of gR and gBL. The resulting relationshipis

g1 =

√
5gRgBL

√

2g2R + 3g2BL

. (21)Analogously, the following ondition holds for gaugino masses
M1(MSSM) =

2g2RM1 + 3g2BLMR

2g2R + 3g2BL

. (22)Note that in the last two equations the gauge ouplings are GUT-normalized. Eletroweaksymmetry breaking ours as in the MSSM. We take the Higgs doublet vevs
〈H0

d〉 =
vd√
2
, 〈H0

u〉 =
vu√
2
, (23)as free parameters and then solve the tadpole equations to �nd µMSSM and Bµ. µMSSM mustbe di�erent from zero, that is Det(MH) an not be exatly zero. Instead the tuning must beexat up to Det(MH) = O(µ2

MSSM). As usual tanβ = vu
vd

is used as a free parameter. Alsothe sign of µMSSM is not onstrained as usual.D. Neutrino masses, LFV and Yukawa ouplingsNeutrino masses are generated after U(1)B−L breaking through a type-I seesaw meha-nism. The matrix f 1
c leads to Majorana masses for the right-handed neutrinos one ∆c 0gets a vev. We de�ne the seesaw sale as the lightest eigenvalue of

MS ≡ f 1
c vBL . (24)As usual, we an always rotate the �elds to a basis where MS is diagonal. However,this will introdue lepton �avour violating entries in the YLi

Yukawas, see disussion below.As mentioned above, ontrary to non-supersymmetri LR models [2℄, there is no type-IIontribution to neutrino masses. 11



parameter best �t 2-σ
∆m2

21[10
−5eV2] 7.59+0.23

−0.18 7.22 − 8.03

|∆m2
31|[10−3eV2] 2.40+0.12

−0.11 2.18 − 2.64

sin2 θ12 0.318+0.019
−0.016 0.29 − 0.36

sin2 θ23 0.50+0.07
−0.06 0.39 − 0.63

sin2 θ13 0.013+0.013
−0.009 ≤ 0.039TABLE III. Best-�t values with 1-σ errors and 2-σ intervals (1 d.o.f.) taken from the referene [60℄,whih is updated ontinuously on the web.Global �ts to all available experimental data provide values for the parameters involvedin neutrino osillations, see table III for updated results and ref. [61, 62℄ for experimentalresults. As �rst observed in [63℄, these data imply that the neutrino mass matrix an bediagonalized to a good approximation by the so-alled tri-bimaximal mixing pattern:
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. (25)The matrix produt Yν · (f 1
c )

−1 · Y T
ν is onstrained by this partiular struture. LFV entriesan be present in both Yν and f 1

c , see also the disussion about parameter ounting in thenext subsetion. However, in the numerial setion we will onsider only two spei� kindsof �ts:
• Yν-�t: �avour struture in Yν and diagonal f 1

c .
• f -�t: �avour struture in f 1

c and diagonal Yν .While at �rst it may seem either way of doing the �t is equivalent, f 1
c and Yν in our setup anleave di�erent traes in the soft slepton mass parameters if vBL ≪ vR. This last onditionis essential to distinguish between both possibilities, beause otherwise one obtains thestraightforward predition that LFV entries in left and right slepton are equal, due to theassumed LR symmetry above vR.These two types of �t were already disussed in referene [64℄, whih investigates lowenergy LFV signatures in a supersymmetri seesaw model where the right-handed neutrinomass is generated from a term of the form f∆cνcνc. When the salar omponent of ∆caquires a vev a type-I seesaw is obtained, generating masses for the light neutrinos. There-fore, this model has the ingredients to aommodate a Yν-�t, named as Dira LFV in [64℄,or a f -�t, named as Majorana LFV. Note, however, that the left-right symmetry, entral inour work, is missing in this referene, thus implying di�erent signatures at the eletroweaksale.The di�erene in phenomenology of the two �ts an be easily understood onsideringapproximated expressions for the RGEs for m2

L and m2
ec . In the �rst step, from the GUT12



sale to the vR sale RGEs at 1-loop order an be written in leading-log approximation as[51℄
∆m2

L = − 1

4π2

(

3ff † + Y
(k)
L Y

(k) †
L

)

(3m2
0 + A2

0) ln

(

mGUT

vR

)

,

∆m2
Lc = − 1

4π2

(

3f †f + Y
(k) †
L Y

(k)
L

)

(3m2
0 + A2

0) ln

(

mGUT

vR

)

. (26)Of ourse, also the A parameters develop LFV o�-diagonals in the running. We do not givethe orresponding approximated equations for brevity. After parity breaking at the vR salethe Yukawa oupling YL splits into Ye, the harged lepton Yukawa, and Yν , the neutrinoYukawa. The later ontributes to LFV entries in the running down to the vBL sale. Thus,
∆m2

L ∼ − 1

8π2
YνY

†
ν

(

3m2
L|vR + A2

e|vR
)

ln

(

vR
vBL

)

,

∆m2
ec ∼ 0 , (27)where m2

L|vR is the matrix m2
L at the sale vR and A2

e|vR is de�ned as Te = YeAe and also hasto be taken at vR. In order to understand the main di�erene between the two �ts, let us �rstonsider the f -�t. This assumes that Yν is diagonal at the seesaw sale and thus the observedlow energy mismath between the neutrino and harged lepton setors is due to a non-trivial�avour struture in f 1
c . Of ourse, non-diagonal entries in f generate in the running alsonon-diagonal entries in Yν and Ye, but these an be negleted in �rst approximation. In thisase, equations (26) and (27) show that the LR symmetry makes m2

L and m2
ec run with thesame �avour struture and the magnitudes of their o�-diagonal entries at the SUSY saleare similar. If, on the other hand, Yν is non-trivial (Yν-�t), while f is diagonal, the runningfrom the GUT sale to the vR sale indues again the same o�-diagonal entries in m2

L and
m2

Lc . However, from vR to vBL the o�-diagonals entries in m2
L ontinue to run, while thosein m2

ec do not. This e�et, generated by the right-handed neutrinos via the Yν Yukawas,indues additional �avour violating e�ets in the L setor ompared to the R setor. SeeingLFV in both left and right slepton setors thus allows us to indiretly learn about the highenergy theory. We will study this in some detail in the numerial setion below.E. Parameter ountingLet us brie�y summarize the free parameters of the model. With the assumption ofmSugra (or better: mSugra-like) boundary onditions, in the SUSY breaking setor weonly have the standard parameters m0, M1/2, A0, tan β, sign(µMSSM). Thus, we ount 4+1parameters in the soft terms. We note in passing that the soft terms of the heavy setor,of ourse, do not have to follow stritly the onditions outlined in equation (3), as long asthese parameters are small ompared to vBL there are no hanges ompared to the abovedisussion.In the superpotential we have a, α, µ,M∆ andMΩ. This leaves, at �rst sight, 7 parametersfree. However, we an redue them to 4+2 parameters as follows. Sine αij = −αji, α only13



ontains one free parameter: α12. The matrix µ has 3 entries, but one of them, µ11, is �xedby the �ne-tuning ondition Det(MH) = O(µ2
MSSM). This leaves two free parameters, µ12,

µ22. We have traded M∆ and MΩ for the vevs vR, vBL, sine ln( vR
vBL

) and ln(vGUT

vR
) enterinto the RGEs and thus an, at least in priniple, be determined from low-energy spetra.There are then in summary 6 parameters, four independent of low-energy onstraints andtwo whih ould be �xed from LFV data, see below.In addition, in the superpotential we have the Yukawa matries YQi

, YLi
and f . Let'sonsider the quark setor �rst. Sine we an always go to a basis in whih one of the YQi

isdiagonal with only real entries, there are 12 parameters. Ten of them are �xed by six quarkmasses, three CKM angles and the CKM phase, leaving two phases undetermined.In the lepton setor we have the symmetri matries, YL1
and YL2

. As with the quarksetor, a basis hange shows that there are only 12 free parameters. f is symmetri and thusounts as another 9 parameters. Going to a basis in whih f is diagonal does not redue thenumber of free parameters, sine in this basis we an no longer assume one of the YLi
to bediagonal. In summary there are thus free 21 parameters in these three matries.In the simple, pure seesaw type-I with three generations of right-handed neutrinos thenumber of free parameters is 21. Only 12 of them an be �xed from low-energy data: threeneutrino and three harged lepton masses, three leptoni mixing angles and three phases (twoMajorana and one Dira phase). However, as pointed out in [11℄, in priniple, m2

L ontains9 observable entries and thus, if the normalization (i.e. m0, A0, tanβ et.) is known fromother sfermion measurements, one ould re-onstrut the type-I seesaw parameters 6.How does the SUSY LR model ompare to this? We have, as disussed above, also21 parameters in the three oupling matries, but neutrino masses depend also on vBL.However, in priniple, we have 9 more observables in m2
ec , assuming again that the softSUSY breaking terms an be extrated from other measurements. Sine in the RGEs also

vR appears we have in total 23 parameters whih need to be determined. The number ofobservables, on the other hand is �xed to 30 in total, as we have 12 (low-energy leptonsetor) plus 9 (left sleptons) plus 9 (right sleptons) possible measurements.III. NUMERICAL RESULTSA. Proedure for numerisAll neessary, analytial expressions were alulated with SARAH. For this purpose, twodi�erent model �les for the model above the two threshold sales were reated and usedto alulate the full set of 2-loop RGEs. SARAH alulates the RGEs using the generiexpressions of [53℄ in the most general form respeting the omplete �avour struture. TheseRGEs were afterwards exported to Fortran ode and implemented in SPheno. As starting6 Of ourse, this disussion is slightly aademi, sine at least one of the Majorana phases will never bemeasured in praxis. 14



point for the RGE running, the gauge and Yukawa ouplings at the eletroweak sale areused. In the alulation of the gauge and Yukawa ouplings we follow losely the proeduredesribed in ref. [58℄: the values for the Yukawa ouplings giving mass to the SM fermionsand the gauge ouplings are determined at the sale MZ based on the measured values forthe quark, lepton and vetor boson masses as well as for the gauge ouplings. Here, wehave inluded the 1-loop orretions to the mass of W- and Z-boson as well as the SUSYontributions to δV B for alulating the gauge ouplings. Similarly, we have inluded theomplete 1-loop orretions to the self-energies of SM fermions [65℄. Moreover, we haveresummed the tan β enhaned terms for the alulation of the Yukawa ouplings of the b-quark and the τ -lepton as in [58℄. The vauum expetation values vd and vu are alulatedwith respet to the given value of tanβ at MZ . Sine we are working with two distintthreshold sales, not all heavy �elds are integrated out at their mass and the orresponding 1-loop boundary onditions at the threshold sales are needed. It is known that these partilesause a �nite shift in the gauge ouplings and gaugino masses. The general expressions are[66℄
gi → gi

(

1± 1

16π2
g2i I

i
2(r) ln

(

M2

M2
T

))

, (28)
Mi → Mi

(

1± 1

16π2
g2i I

i
2(r) ln

(

M2

M2
T

))

. (29)
I i2(r) is the Dynkin index of a �eld transforming as representation r with respet to thegauge group belonging to the gauge oupling gi, M is the mass of this partile and MT is thethreshold sale. When evaluating the RGEs from the low to the high sale, the ontributionis positive, when running down, it is negative. The di�erent masses used for alulatingthe �nite shifts are the eigenvalues of the full tree-level mass matrix of the harged, heavypartiles removed from the spetrum. The orret mass spetrum is alulated in an iterativeway. The GUT sale is de�ned as the sale at whih gBL = g2 = gGUT holds. Generally,there is di�erene with g3 to gGUT in the perent range, the atual numerial mismathdepending on the sales vBL and vR and being larger for lower values of vBL and vR. Ithas been stressed in partiular in [67℄ that within supersymmetri LR models, the LRsymmetry breaking sale has to be lose to the GUT sale, otherwise this mismath willgrow too large. However, several solutions are known. In [68℄ it was pointed out that GUTthresholds - unknown unless the GUT model, inluding the omplete Higgs setor used tobreak the GUT symmetry, is spei�ed - an lead to important orretions, aounting for thisapparent non-uni�ation (for a disussion of these e�ets in the ontext of SU(5) see [69℄).Another possibility is the addition of new partiles to the spetrum. For example, referene[70℄ pointed out that new oloured super�elds, harged under SU(3)c but singlet underthe other gauge subgroups, an easily lead to gauge oupling uni�ation. Nevertheless,we simply use gBL = g2 = gGUT and attribute departures from omplete uni�ation to(unknown) thresholds and/or the existene of additional oloured partiles below mGUT .After applying the GUT sale boundary onditions, the RGEs are evaluated down to thelow sale and the mass spetrum of the MSSM is alulated. The MSSM masses are, in15
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Leff = e
mi

2
l̄iσµνF

µν(Aij
LPL + Aij

RPR)lj + h.c. . (30)17
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2
(1 ∓ γ5) are the usual hirality projetors and therefore the ouplings ALand AR are generated by loops with left and right sleptons, respetively. In our numerialalulation we use exat expressions for AL and AR. However, for an easier understandingof the numerial results, we note that the relation between these ouplings and the sleptonsoft masses is very approximately given by

Aij
L ∼ (m2

L)ij
m4

SUSY

, Aij
R ∼ (m2

ec)ij
m4

SUSY

, (31)where mSUSY is a typial supersymmetri mass. Here it has been assumed that (a)hargino/neutralino masses are similar to slepton masses and (b) A-terms mixing left-right transitions are negligible. Therefore, due to the negligible o�-diagonal entries in m2
ec ,a pure seesaw model predits AR ≃ 0.The branhing ratio for li → ljγ an be alulated from the previous formulas. The resultis

Br(li → ljγ) =
48π3α

G2
F

(

|Aij
L |2 + |Aij

R|2
)

Br(li → ljνiν̄j) . (32)Figure 4 shows two examples for Br(µ → eγ) in the m0,M1/2 plane. Here, we have �xed
vBL = 1014 GeV and vR = 1015 GeV and show to the left MS = 1012 GeV, whereas to theright MS = 1013 GeV. Here we have assumed a degenerate spetrum right-handed neutrinoswhih we denote by MS = MRi. One Yukawas are �tted to explain the observed neutrinomasses, the branhing ratio shows an approximately quadrati dependene on the seesawsale, with lower MS giving smaller Br(µ → eγ). As expeted, the branhing ratio alsostrongly dereases as m0 and/or M1/2 inrease. This is beause the superpartiles in the18
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Br(µ → eγ) ∼ 48π3α

G2
F

(m2
L,ẽc)

2
ij

m8
SUSY

, (33)whih shows that Br(µ → eγ) dereases as m−8
SUSY .It is also remarkable that for a given seesaw sale, Br(µ → eγ) is sizeably larger in theLR model than in a pure seesaw type-I model, see for example [25℄. The explanation of thisis that right sleptons ontribute signi�antly in the LR model to Br(µ → eγ) and theseontributions are absent in seesaw models.As already disussed, a pure seesaw model predits simply AR ≃ 0. However, in the LRmodel we expet a more ompliated piture. Left-right symmetry implies that, above theparity breaking sale, non-negligible �avour violating entries are generated inm2

ec . Therefore,
AR 6= 0 is obtained at low energy. The angular distribution of the outgoing positron at, forexample, the MEG experiment ould be used to disriminate between left- and right-handedpolarized states [76, 77℄. If MEG is able to measure the positron polarization asymmetry,de�ned as

A(µ+ → e+γ) =
|AL|2 − |AR|2
|AL|2 + |AR|2

, (34)there will be an additional observable to distinguish from minimal seesaw models. In a pureseesaw model one expets A ≃ +1 to a very good auray. However, the LR model typially19
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FIG. 5. Contours of A(µ+ → e+γ) in the m0,M1/2 plane. To the left MS = 1012 GeV, whereas tothe right MS = 1013 GeV. The parameters have been hosen as in �gure 4.leads to signi�ant departures from this expetation, giving an interesting signature of thehigh energy restoration of parity.Figure 5 shows ontours for A(µ+ → e+γ) in the m0,M1/2 plane. For the orrespondingbranhing ratios see �gure 4. Note the rather strong dependene on m0. The latter an beunderstood as follows. Sine vBL in these examples is one order of magnitude smaller than
vR, and the Yν �t has been used, the LFV mixing angles in the left slepton setor are largerthan the orresponding LFV entries in the right sleptons. At very large values of m0, werethe masses of right and left sleptons are of omparable magnitude, therefore �left� LFV ismore important and the model approahes the pure seesaw expetation. At smaller valuesof m0, right sleptons are lighter than left sleptons, and due to the strong dependene of
µ → eγ on the sfermion masses entering the loop alulation, see eq. (31), AR and AL anbeome omparable, despite the smaller LFV entries in right slepton mass matries. In thelimit of very small right slepton masses the model then approahes A ∼ 0. We have notexpliitly searhed for regions of parameter spae with A < 0, but one expets that negativevalues for A are possible if vBL is not muh below vR and sleptons are light at the sametime, i.e. small values of m0 and M1/2. Note that, again due to the LR symmetry above to
vR, the model an never approah the limit A = −1 exatly.The positron polarization asymmetry is very sensitive to the high energy sales. Figure6 shows A as a funtion of vR for MS = 1013 GeV, vBL = 1014 GeV and the mSugraparameters as in the SPS3 benhmark point. The plot has been obtained using the Yν �t.This example shows that as vR approahesmGUT the positron polarizationA approahes +1,whih means AL dominates the alulation. This is beause, in the Yν �t, the right-handedLFV soft slepton masses, and thus the orresponding AR oupling, only run from mGUT to20
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A(µ+ → e+γ) also has an important dependene on the seesaw sale. This is shownin �gure 7, where A is plotted as a funtion of the lightest right-handed neutrino mass.This dependene an be easily understood from the seesaw formula for neutrino masses. Itimplies that larger MS requires larger Yukawa parameters in order to �t neutrino masseswhih, in turn, leads to larger �avour violating soft terms due to RGE running. However,note that, for very small seesaw sales all lepton �avour violating e�ets are negligible andno asymmetry is produed, sine AL ∼ AR ∼ 0.In addition, �gure 7 shows again the relevane of vR, whih determines the parity breakingsale at whih the LFV entries in the right-handed slepton setor essentially stop running.Lighter olours indiate larger vR. As shown already in �gure 6 for a partiular point, thepositron polarization approahes +1 as vR is inreased.Below the SU(2)R breaking sale parity is broken and left and right slepton soft massesevolve di�erently. The approximate solutions to the RGEs in equations (26) and (27) showthat, if neutrino data is �tted aording to the Yν �t, the left-handed ones keep runningfrom the SU(2)R breaking sale to the U(1)B−L sale. In this ase one expets larger �avourviolating e�ets in the left-handed slepton setor and a orrelation with the ratio vBL/vR,whih measures the di�erene between the breaking sales. This orrelation, only present inthe Yν �t, is shown in �gure 8. On the one hand, one �nds that as vBL and vR beome verydi�erent, vBL/vR ≪ 1, the positron asymmetry approahes A = +1. On the other hand,when the two breaking sales are lose, vBL/vR ∼ 1, this e�et disappears and the positronpolarization asymmetry approahes A = 0. Note that the Yν �t does not usually produe a21
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L ∼ ∆m2
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χ̃0
2 → l̃±l∓ → χ̃0

1l
±l∓ .This well known signature has been widely studied due to the aurate information it anprovide about the partile spetrum [81�85℄. Note that in this deay one assumes usually thatthe χ̃0

2 themselves stem from the deay hain q̃L → qχ̃0
2. If the mass orderingmχ̃0

2
> ml̃ > mχ̃0

1is realized, the dilepton invariant mass [83, 86℄, de�ned as m2(l+l−) = (pl+ + pl−)
2, has anedge struture with a prominent kinematial endpoint at

[

m2(l+l−)
]

max
≡ m2

ll =
(m2
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−m2
l̃
)(m2

l̃
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χ̃0
1

)

m2
l̃

, (35)where the masses of the harged leptons have been negleted. The position of this edge anbe measured with impressively high preision at the LHC [81�83℄, implying also an auratedetermination of the intermediate slepton masses.In fat, if two di�erent sleptons l̃1,2 have su�iently high event rates for χ̃0
2 → l̃±1,2l

∓
j →

χ̃0
1l

±
i l

∓
j and their masses allow these hains to be on-shell, two di�erent dilepton edge dis-tributions are expeted [30, 87℄. This presents a powerful tool to measure slepton masssplittings, whih in turn allows to disriminate between the standard mSugra expetation,with usually negligible mass splittings for the �rst two generations, and extended modelswith additional soures of �avour violation.27
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)
. (36)Here ∆mll(i, j) = mlili −mlj lj is the di�erene between two edge positions, ∆ml̃ = ml̃i

−ml̃jthe di�erene between slepton masses and m̄ll and m̄l̃ average values of the orrespondingquantities. Note that higher order ontributions of ∆m
l̃

m̄
l̃

have been negleted in equation(36).A number of studies about the dilepton mass distribution have been performed [81�83℄,onluding that the position of the edges an be measured at the LHC with an auray upto 10−3. Moreover, as shown in referene [30℄, this an be generally translated into a similarpreision for the relative ẽ − µ̃ mass splitting, with some regions of parameter spae wherevalues as small as 10−4 might be measurable. Sine this mass splitting is usually negligiblein a pure mSugra senario, it is regarded as an interesting signature of either lepton �avourviolation or non-universality in the soft terms. Furthermore, in the ontext of this paper, itis important to emphasize that pure seesaw models an have this signature only in the leftslepton setor [31℄.Figure 15 shows our results for the observables ∆mll
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as a funtion of the seesawsale. Large values for MS lead to sizable deviations from the mSugra expetation, with a28
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L
(mass distribution with intermediate Lsleptons) and (∆mll
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R
(mass distribution with intermediate R sleptons). Again, the mainnovelty with respet to the usual seesaw implementations is the orrelation in the rightsetor, not present in the minimal ase [31℄.Furthermore, the proess χ̃0

2 → χ̃0
1l

+
i l

−
j might provide additional LFV signatures if therate for deays with li 6= lj is su�iently high. Referene [89℄ has investigated this possibilityin great detail, performing a omplete simulation of the CMS detetor in the LHC for thedeay χ̃0

2 → χ̃0
1eµ. The result is given in terms of the quantity

Keµ =
Br(χ̃0

2 → χ̃0
1eµ)

Br(χ̃0
2 → χ̃0

1ee) +Br(χ̃0
2 → χ̃0

1µµ)
, (37)whih parametrizes the amount of �avour violation in χ̃0

2 deays. The study, foused onthe CMS test point LM1 (m0 = 60 GeV, M1/2 = 250 GeV, A0 = 0 GeV, tanβ = 10,
sign(µ) = +) [84℄, onludes that LFV an be disovered at the LHC at 5σ level with anintegrated luminosity of 10fb−1 if Keµ ≥ Kmin

eµ = 0.04.Figure 17 shows our omputation ofKeµ as a funtion of the lightest right-handed neutrinomass, for the parameter hoie vBL = 1015 GeV and vR = 5 · 1015 GeV. The results areshown splitting the ontributions from intermediate left (blue) and right (red) sleptons.Although the seleted mSugra parameters belong to the SPS3 point, and not to LM1 as in29
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eµ is expeted7. This is beause the redution inthe ross-setion due to the slightly heavier supersymmetri spetrum is possibly partiallyompensated by the orresponding redution in the SM bakground and thus a limiting value
Kmin

eµ of a similar order is expeted. Moreover, [89℄ uses 10 fb−1 and with larger integratedluminosities even smaller Kmin
eµ should beome aessible at the LHC.The main result in �gure 17 is that for large MS values the rates for LFV χ̃0

2 deaysare measurable for both left and right intermediate sleptons. In fat, for MS & 1012 GeVthe parameter Keµ is above its minimum value for the 5σ disovery of χ̃0
2 → χ̃0

1eµ. Seereferenes [89, 90℄ for more details on the LHC disovery potential in the searh for LFV inthis hannel.7 Moreover, the LM1 point, being very similar to SPS1a', is strongly onstrained by µ → eγ.
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IV. CONCLUSIONSWe have studied a supersymmetri left-right symmetri model. Our motivation for study-ing this setup was twofold. First, LR models are theoretially attrative, sine they ontainall the neessary ingredients to generate a seesaw mehanism, instead of adding it by handas is so often done. And, seond, in a setup where the SUSY LR is supplemented by �avourblind supersymmetry breaking boundary onditions, di�erent from all pure seesaw setups,lepton �avour violation ours in both, the left and the right slepton setors.We have alulated possible low-energy signals of this SUSY LR model, using full 2-loopRGEs for all parameters. We have found that low-energy lepton �avour violating deays,suh as µ → eγ are (a) expeted to be larger than for the orresponding mSugra pointsin parameter spae of seesaw type-I models and (b) the polarization asymmetry A of theoutgoing positron is found to di�er signi�antly from the pure seesaw predition of A = +1in large regions of parameter spae. We have also disussed possible ollider signatures of theSUSY LR model for LHC and a possible ILC. Mass splittings between smuons and seletronsand LFV violating slepton deays should our in both the left and the right slepton setor,again di�erent from the pure seesaw expetations.We think therefore that the SUSY LR model is a good example of a �beyond� minimal,pure seesaw and o�ers many interesting novelties. For example, the impat of the interme-diate sales on dark matter reli density and on ertain mass ombinations and the in�ueneof the right-handed neutrino spetrum on low energy observables, are topis that ertainlydeserve further studies.ACKNOWLEDGEMENTSW.P. thanks IFIC/C.S.I.C. for hospitality. This work was supported by the SpanishMICINN under grants FPA2008-00319/FPA, by the MULTIDARK Consolider CSD2009-00064, by Prometeo/2009/091, by the EU grant UNILHC PITN-GA-2009-237920 andFPA2008-04002-E/PORTU. A.V. thanks the Generalitat Valeniana for �nanial supportand the people at CFTP in Lisbon for hospitality. The work of J. N. E. has been supportedby Fundação para a Ciênia e a Tenologia through the fellowship SFRH/BD/29642/2006.J. N. E. and J. C. R. also aknowledge the �nanial support from Fundação para a Ciênia ea Tenologia grants CFTP-FCT UNIT 777 and CERN/FP/109305/2009. W.P. is partiallysupported by the German Ministry of Eduation and Researh (BMBF) under ontrat05HT6WWA and by the Alexander von Humboldt Foundation. F.S. has been supported bythe DFG researh training group GRK1147.Appendix A: RGEsWe present in the following appendies our results for the RGEs of the model above the
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anomalous dimensions of all hiral super�elds. We brie�y disuss in this setion how theseresults were alulated. Furthermore, we show how they an be used to alulate the other
β-funtions of the models and give as example the 1-loop results for the soft SUSY breakingmasses of the sleptons. The omplete results are given online on this sitehttp://theorie.physik.uni-wuerzburg.de/~fnstaub/supplementary.htmlIn addition, the orresponding model �les for SARAH are also given on this web page.1. Calulation of supersymmetri RGEsFor a general N = 1 supersymmetri gauge theory with superpotential

W (φ) =
1

2
µijφiφj +

1

6
Y ijkφiφjφk (A1)the soft SUSY-breaking salar terms are given by

Vsoft = (1

2
bijφiφj +

1

6
hijkφiφjφk + ..)+ (m2)ijφiφ

∗
j . (A2)The anomalous dimensions are given by [53℄
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2 − 3C2(G)C2(i)] , (A4)and the β-funtions for the gauge ouplings are given by
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− g3Y ijkYijkC2(k)/d(G) . (A6)Here, C2(i) is the quadrati Casimir for a spei� super�eld and C2(R), C2(G) are thequadrati Casimirs for the matter and adjoint representations, respetively. d(G) is thedimension of the adjoint representation.The β-funtions for the superpotential parameters an be obtained by using super�eld teh-nique. The obtained expressions are [91, 92℄.
βijk
Y = Y p(ijγp

k) , (A7)
βij
µ = µp(iγp

j) . (A8)The (..) in the supersripts denote symmetrization. Most of the β-funtions of the modelsan be derived from these results using the proedure given in [93℄ based on the spurionformalism [94℄. In the following, we brie�y summarize the basi ideas of this alulation for32



ompleteness.The exat results for the soft β-funtions are given by [93℄:
βM = 2O

[

βg

g

]

, (A9)
βijk
h = hl(jkγi)

l − 2Y l(jkγ1
i)
l ,

βij
b = bl(iγj)

l − 2µl(iγ1
j)
l ,

(βm2) i
j = ∆γi

j . (A10)where we de�ned
O = Mg2

∂

∂g2
− hlmn ∂

∂Y lmn
, (A11)
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i
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Ỹ lmn ∂
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. (A13)Here, M is the gaugino mass and Ỹ ijk = (m2)ilY

jkl + (m2)j lY
ikl + (m2)klY

ijl. Eqs. (A9)-(A10) hold in a lass of renormalization shemes that inludes the DRED′-one [95℄. We takethe known ontributions of X from [96℄:
XDRED′(1) = −2g3S , (A14)
XDRED′(2) = (2r)−1g3tr[WC2(R)]− 4g5C2(G)S − 2g5C2(G)QMM∗ , (A15)where

S = r−1tr[m2C2(R)]−MM∗C2(G) , (A16)
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jpq − 8g2MM∗C2(R)j i .(A17)With Q = T (R)− 3C2(G), and T (R) = tr [C2(R)], r being the number of group generators.2. From GUT sale to SU(2)R breaking saleIn the following setions we will use the de�nitions
Y ij
Qk

= Y ijk
Q , Y ij

Lk
= Y ijk

L (A18)and in the same way T ij
Qk

and T ij
Lk
. We will also assume summation of repeated indies.
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a. Anomalous Dimensions
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b. Beta funtions for soft breaking masses of sleptonsUsing the proedure explained in se. A 1, we an alulate the soft breaking masses forthe sleptons. The results are
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3. From SU(2)R breaking sale to U(1)B−L breaking salea. Anomalous Dimensions
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ûc = 2Y †

uYu −
1

12

(

32g23 + 6g2R + g2BL

)

1 (A54)
γ
(2)
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Ĥd

= 3Tr(YdY
†
d

)

− 1

2
g2R +

3

2
|b|2 − 3

2
g2L + |bc|2 + Tr(YeY

†
e

) (A62)
γ
(2)

Ĥd
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