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θi incident angle
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Introduction

On ne voit bien qu’avec le coeur, l’essentiel est invisible pour les yeux.

Antoine de Saint Exupéry, "Le Petit Prince" (1943)

Among the properties of light, polarization is very hard to observe with our eyes. Indeed, everyone can
see the difference between a red beam or a blue one, a collimated or a diverging beam by looking at
the spot size at different places; even a grasp of coherence is reachable with the naked eye but we are
unable to see polarization differences without the help of instrumentation. We can’t tell the difference
in polarization between light emitted by the sun or by a computer screen: one is not polarized while the
other one is polarized. However this invisible property of light is already used in our everyday life. Last
decade, polarization has been extensively researched and methods to create light beams with a specific
variation of polarization were discovered. These beams lead to an astronomical amount of applications
in several domains such as military, industry, astronomy, medical sciences and many others.

To create a space-variant polarized beam, one of the simplest method is to use a Space-variant retarder
(SR): an optical retarder with a constant phase retard and a variation of its fast axis and a uniformly
polarized beam. The uniformly polarized beam meets a different fast axis orientation and becomes a
polarized beam with a specific variation of its polarization.
The initial goal of this thesis was to build with liquid crystal polymers a space-variant retarder for a
specific application: coronagraphy. During our first manipulation to record simple retarders, we discov-
ered an article concerning the recording of a space-variant retarder with liquid crystals polymers using
differently polarized beams. We were impressed by this technique and realization, our first reaction
was :"Waw, they are skilled, they can achieve that! It is really awesome!" but this article led to several
questions like:

• How does it work?

• Can we do the same?

• Can this concept be used for other applications?

• Is it possible to record a retarder for coronagraphy using this technique?

• What are the limitations of this technique?

• Is it cheap?

• ...



4 Introduction

The present thesis will answer at these questions in a quite concise way.

The first chapter, will present the space-variant retarders, their applications and several recording meth-
ods.

Chapter 2 will explain the original recording method based on the superimposition of differently
polarized beams using liquid crystals. The mathematical model will be detailed, several examples with
two beams will be presented and the expansion to a four-beam superimposition will be described.

Next, in chapter 3, our first application will be shown. It is a dynamic polarization analysis method
using space-variant retarders recorded by two circularly polarized beams of opposite handedness. The
mathematical description and the experimental aspects such as the recording of the retarder and the mea-
surement process will be detailed. We will conclude with the analysis of the measurements and the
presentation of the possible upgrades and extensions of the method.

Chapter 4 will introduce a second application. It consists in a polarization states separator based on
retarders similar to the polarization analyzer but with a shorter period. The mathematical principle will
be exposed as well as the use of the retarders to shearography.

Afterwards, during chapter 5, we will focus on the recording of a specific kind of retarders: the Vortex
Retarders (VR). It will introduce their distinctive features and their classification. The systems based
on the superimposition of differently polarized beams will be exposed and analyzed thanks to numerical
simulations. The first prototypes of VR recorded using polarization holography will be presented and a
short sensitivity analysis will be performed to determine the effect of the experimental conditions.

Then, in chapter 6, we will come back to coronagraphy. After a short presentation of the concept and
evolution, the computed performances of several retarders used as coronagraphs will be shown and com-
pared to the actual experimental setup.

As a conclusion, we will synthesize the main results of the thesis and expose some of the many upgrades
as well as future applications that this technology will enable.
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Space-variant retarders: their
applications and their building method

Contents
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In this chapter, we present the space-variant retarders. We decribe the common characteristics of
space-variant retarders and the specificities of several particular retarders1. Due to their specificities,
some retarders are extremely well suited for some applications while others retarders are extremely
useful for another type of applications. Since a very large number of applications exist, during the thesis
we focused on a few of them. The selected applications will be presented in the present chapter and they
will be completely detailed in the next chapters. Finally, several materials and manufacturing methods
will be exposed.

1The reader can find a short resume of the polarization formalisms wich will be used in Appendix A.
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1.1 Theoretical background

As their name suggests, space variant retarders are characterized by a variation of their optical axis orien-
tation. Due to this definition, a large amount of different configurations can be imagined. As a first step
into the world of space-variant retarders (SR), let us classify these retarders by looking at the structure
of their optical axis variation.

• The first distinctive feature is the law which governs the optical axis orientation. Some methods
are used to synthesize retarders with a specific orientation of their optical axis (Fig.1.1(a)) while
other methods are used to obtain retarders with a random orientation (Fig.1.1(b)). The applications
of the retarders are also very different between these two types. Retarders with a specific structure
are designed to achieve a specific non uniform orientation of the polarization in the beam while
the others are more likely to be used as simulators of unpolarized beam or as failures of the first
kind.

(a) (b)

Figure 1.1: (a) Scheme of an ordered retarder where the orientation of the fast axis is a function of the
position of the retarder: α = θ where α is the orientation of the fast axis and (r, θ) are the polar coordinates
in the retarder. (b) Scheme of a retarder with a random orientation of its fast axis. The fast axis is pictured
by dashed blue lines.

For the structured retarders other classifications can be made:

– The variation can be a 1D or a 2D variation. A 1D variation means that in one direction
the fast axis is modified while its orientation is conserved along the perpendicular direction
(Fig.1.2(a)). A 2D variation means that the variation occurs in the 2 perpendicular directions
(Fig.1.2(b)).
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(a) (b)

Figure 1.2: (a) Scheme of a retarder with a 1D variation of its fast axis orientation. (b) Scheme of
a retarder with a 2D variation of its fast axis orientation. α is the orientation of the fast axis, x is the
direction of variation in the 1D SR, (r, θ) are the polar coordinates in the 2D SR.

– 2 types of variation can also be defined: discrete and continuous variation. Discrete retarders
(Fig.1.3(a)) can be viewed as a junction of several retarders with a uniform orientation of the
fast axis while the other ones exhibit a smooth variation for the orientation from one point to
its neighbors (Fig.1.3(b)).

(a) (b)

Figure 1.3: (a) Scheme of a retarder with a discrete variation, each area is characterized by a uniform
orientation of the axis. (b) Scheme of a retarder where the variation is continuous. α is the local orientation
of the fast axis and (r, θ) are the polar coordinates.

As we will see in the next sections, depending on the structure of the variations, the building methods
and the efficiency for some applications are different.
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1.2 Applications

Until now, several applications of SR have been developed in a lot of domains.
In the present work, several applications of SR with liquid crystals polymers have been investigated. The
following paragraphs will introduce them while the development of the specific application is related in
the application chapter. Some applications like polarization analysis, polarization gratings or polarization
converters lead to more advanced applications (e.g. ellipsometry for polarization analysis, shearography
for polarization gratings, optimal focusing with polarization converters). The advanced applications will
also be described in the chapter related to the basic application.

• A first application of SR is a dynamic method of polarization analysis using a 1D SR and a linear
polarizer [1, 2, 3].
An incident uniformly polarized beam will exhibit a 1D variation of its polarization after the
retarder. Therefore, the beam transmitted by the retarder and a linear polarizer exhibits intensity
variations. By studying the variation of the intensity, one can compute the polarization parameters
of the incident beam.

• SR with a periodical variation of approximately ten times the wavelength of the incident beam acts
as polarization gratings [1, 4, 5].
An incident beam is separated into several beams differently polarized the same way a beam is
diffracted by a grating. The angle between the beams and the intensity of each beams depend on
the characteristics of the SR and the polarization state of the incident beam.

• Specific 2D SR can be used as phase mask coronagraphs [6, 7, 8, 9, 10].
The goal of coronagraphy is to reduce the light of a central star to enable the visual detection of
its fainter companions. Phase masks are used to shape the phase of the incident light to obtain the
reduction of the central star intensity. The required phase shaping is achieved by the orientation of
the fast axis.

• Several 2D SRs are used as polarization converters [11, 12].
Thanks to the structure of their optical axis, they are able to convert a uniformly polarized beam
into a radially (Fig.1.4(a)) or azimuthally polarized one (Fig.1.4(b)). The structure of the retarder
must be adapted to the incident polarization: the structure being different for a circularly or a lin-
early polarized beam and a converter designed to achieve a radial orientation from one polarization
converts the orthogonal polarization to the azimuthal one.
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(a) (b)

Figure 1.4: Schemes of a radially polarized beam (a) and an azimuthally polarized one (b). The polar-
ization being pictured by blue arrows, α is the local orientation of the polarization and (r, θ) are the polar
coordinates.

• SR could be used to simulate an unpolarized beam from one completely polarized incident beam.
Several 1D SR will be stacked to create a large amount of different polarization states. Scanning
the retarders with a small spot and moving the spot will allow to change the polarization state of
the transmitted beam. Using a temporal averaging on the transmitted beam enables to simulate an
unpolarized beam.
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1.3 Building methods

As stated before, there are different kinds of SRs: 1D/2D variation, discrete or continuous variation of
the fast axis orientation.
This section is a brief overview of the methods and materials used to record SR.

1.3.1 Birefringent plate

The easiest way to build a SR is to put together several retarders of uniform orientation to obtain a dis-
crete SR [12, 13]. Space-variant half-wave plates have already been realized by laterally gluing together
several half-wave plates of uniform orientation.

Figure 1.5: Picture of a manufactured SR composed by eight sectors of a λ/2 plate each one with
its proper orientation of its fast axis, the arrows represent the direction of the slow axis of each sectors
(picture from Machavariani et al. [13]).

Unfortunately, due to the discrete variation, the obtained polarization is roughly the desired one. This
deviation from a continuous variation of the polarization orientation may affect the performance for
several applications or may require an appropriate polarization filter to conserve them [12, 14]. Moreover
at the interfaces, the beam exhibits zones with no transmitted light: dead zones. The presence of the
dead zones will also affect the quality of the retarder. As an example, for an imagery application such
as coronagraphy, the presence of the dead zones leads to a serious decrease of the performance since the
planet can not be detected if the light is completely blocked.
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1.3.2 Zeroth-order gratings

Another way to record SR is to use specific gratings: zeroth-order gratings (ZOGs). ZOGs are particular
case of diffraction gratings, they only diffract the zeroth order of the incident beam. To exhibit the ZOG
property, the following condition must be respected [6, 15, 16]:

Λ

λ
≤

1
nI sin θi + max(nI , nIII)

. (1.1)

Where Λ is the grating period, λ is the wavelength of the incident beam, θi is the incident angle and
(nI , nIII) are the refractive indices of the media (see Fig. 1.6 for gratings with different periods).

(a) (b)

(c) (d)

Figure 1.6: Several gratings with different groove periods Λ1 > Λ2 > Λ3. (a) Diffraction pattern for a
white incident beam (in black on the picture) and a grating with a groove period of Λ1. (b) Diffraction
pattern for a monochromatic beam and a grating with a groove period of Λ1. (c) Diffraction pattern for a
monochromatic beam and a grating with a groove period of Λ2. (d) Diffraction pattern for a monochro-
matic beam and a grating with a groove period of Λ3 respecting the ZOG condition. Pictures from Mawet
et al. [17].

Theoretically and experimentally, it has been demonstrated that these gratings can be used as birefringent
plates. Using the Rigorous Coupled Wave Analysis (RCWA) [9, 18], one can compute the properties of
the equivalent birefringent plate knowing the gratings characteristics. To briefly summarize, for a 1D
surface-relief grating:

• The refractive indices for the directions of polarization parallel and perpendicular to the grating
grooves are function of the structure real indices and of the filling factor.

• The fast axis orientation is parallel to the grating vector K. K is perpendicular to the grating

grooves and |K| =
2π
λ

.
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Therefore a ZOG with a non-uniform orientation of K can be viewed as a SR.
Two kinds of variation exist: discrete and continuous variation.

• Discrete gratings can be viewed as the grating version of the plates joining. They are composed
of several areas characterized by a uniform K and the orientation of K changes from one area to
the other one (see Fig. 1.7). Once again, due to the discreteness, the transmitted beam may exhibit
dead zones at the edges of the areas of uniform orientation and for a small number of areas the
beam may slightly deviate from the desired one reducing the performances for several applications

(a) (b)

Figure 1.7: Top views of SR using ZOG with a discrete variation of their grating vector. (a) represents a
1D SR; (b) represents a 2D SR.

• Continuous gratings are characterized by a continuous variation of K module or orientation. The
continuity is assured by ∇ ∧ K = 0. These gratings are more complicated to build for complex
optical axis pattern. During the recording process, it is difficult to achieve the optimal gratings pa-
rameters (optimal shape of the grooves, optimal size parameters, optimal filling ...) while achieving
the desired orientation of the grooves and preserving the continuity of the grating structure.

(a) (b)

Figure 1.8: Top views of SR using ZOG with a continuous variation of their grating vector. (a) represents
a 1D SR; (b) represents a 2D SR. (a) is inspired by the grating structure desribed in [16]
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1.3.3 Liquid crystals

As a brief reminder, the liquid crystal phase is an intermediate phase between the crystal and the liquid
phases [19, 20, 21]. As a liquid the molecules are able to diffuse but as a crystal the same molecules
exhibit an orientational order and in some cases a positional order too.
The liquid crystal molecules are called mesogens, the most simple one can be viewed as a rod like
molecule. A liquid crystal phase contains these molecules with their long axis pointing to a preferred
direction during the diffusion, the preferred direction being called the director, designed by the vector n
(see Fig. 1.9). In the present work, two major properties of liquid crystals were used.

• Due to their anisotropy, LCs exhibit birefringent properties: the light polarized parallel to the
director propagates at a different speed from the light polarized perpendicular to the director. The
speed difference induces a phase retard between the two polarization components. Therefore, the
orientation of the liquid crystals define the orientation of the retarder fast axis.

• The LCs are able to align when submitted to an electromagnetic field. LCs have electric dipoles:
one end of the molecules exhibits a net negative charge while the other end is characterized by a
positive one. When submitted to an electric field, the molecules with an electric dipole will orient
themselves along the direction of the electric field. If the molecules are not characterized by a
permanent dipole, the field produces a re-arrangement of the electrons and protons in the molecule
resulting in an induced electric dipole. Even though the effect is weaker than the permanent dipole,
the orientation along the electric field still occurs.

Thanks to these properties, recording a SR containing LCs can be achieved by submitting the LCs to the
appropriate electric field to achieve the desired optical axis pattern.

Figure 1.9: Representation of liquid crystals with a vertical director.
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A lot of retarders made from LC already exist, a classification of the retarders and several examples are
presented in Appendix B. In this thesis, our goal was to fabricate SRs with an uniform orientation of the
LC along their thickness and a frozen orientation of the LC. Therefore the following recording methods
are mainly used to record this kind of retarders. Several recording ways exist, they can be classified into
three categories:

• rubbing the LCs or an alignment layer with a magnetic rod to imprint the fast axis pattern [11, 22],

• sending an electric current using an electrode [23],

• exposing the LCs layer or an alignment layer to a linearly polarized recording beam [3, 4, 8, 22,
24].

The common point of these methods is that they own a second step where the LC are fixed to prevent a
variation of their orientation when exposed to a polarized light.

• Rubbing an alignment layer or the LCs layer with a magnetic rod will submit the LCs to a specific
electromagnetic field and it will orient them. A uniform retarder is created if the rod possesses the
same orientation in the retarder while a SR will be realized if the orientation of the rod changes
during the alignment process. Unfortunately, any pattern with a continuous variation of the fast
axis orientation cannot be achieved and some areas of misorientation of the LCs may appear after
the recording process.

Figure 1.10: Representation of a retarder with an alignment using a magnetic rod
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• Using a LC gel, an electrode under the substrate and a needle on top of the LC layer allow to
submit the LC to a radial electric field (see Fig. 1.11). After the alignment, the LC gel will be
cooled and exposed to UV beam to fix the LC to reach a frozen orientation of the fast axis. This
method allows the recording of a retarder with a rotation of 360◦ of the fast axis orientation only.

Figure 1.11: Representation of a retarder with an alignment using a hole electrode to create a radial
electric field

• Using a linearly polarized light to expose an alignment layer and modifying the orientation the
polarization also allows the recording of SRs in LCs.
Two techniques exist to obtain the required variation of the recording polarization for the first
layer.

– The first one is based on mechanical action. Using a wedge aperture and rotating mounts
containing a linear polarizer and the substrate enable the recording of an artificial space-
variant linear polarization [8, 24]. The polarizer and the substrate are continuously rotated to
expose each parts of the retarder through a different orientation of the recording polarization
(see Figure 1.12). The method is able to produce SRs with continuous rotation of their fast
axis with different amount of total rotation. The total rotation is a function of the relative
speed of the mounts: if the polarizer and substrate exhibit the same rotating speed, the total
rotation of the fast axis will be of 360◦ while a rotation of the substrate 2 times slower than
the rotation the polarizer record a retarder with a rotation of 180◦ of the fast axis orientation.
Unfortunately, due to the rotation, the center of the retarder may exhibit area with disoriented
LCs.

Figure 1.12: Scheme of the exposure process for the recording with mask and rotating mounts.
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– The second method uses polarization holography. The interference between two orthogonally
polarized beams to create a 1D variation of the recording polarization [25, 26]. Since two
different beams are superimposed only 1D SR can be realized with this method [3, 4, 22].
Our contribution is to expand polarization holography to four beams in order to record 2D
SR retarders for coronagraphy or polarization converting.

For this method, after the exposure to the beam with a non uniform polarization, the LCs are fixed
using UV curing and the retarder can be exposed to another polarized beam without a variation of
its fast axis orientation.

1.4 Conclusions

In this introductory chapter, we described the space-variant retarders and we classified them following
their properties (1D, 2D, continuous, discrete ...). We also exposed a short review of their applications
and their recording methods. In the next chapter, we will present the principle of polarization holography
and its expansion to four beams. We will also describe our material: the liquid crystal polymers, the
recording process of retarders and one measuring system.
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In the previous chapter, we introduced the space-variant retarders, several applications and record-
ing methods. In the present work, polarization holography was used to record SRs made out of liquid
crystal polymers without mechanical action. This chapter concerns the polarization holography. It ex-
poses the mathematical model, it develops several examples of the superimposition of two differently
polarized beams and it presents the expansion of polarization holography to the case of a four-beam
superimposition. Afterwards, our material, the Liquid Crystal Polymers (LCP) is presented as well as
the experimental and recording process of a simple retarder.
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2.1 Polarization interferometry

Usually, when interference phenomena are discussed, the beams inducing the interference are character-
ized by the same polarization state as stated by the Arago-Fresnel laws [1, 2, 3, 4].

• Two waves with the same polarization state can interfere.

• Two waves orthogonally polarized cannot interfere.

• Two orthogonally polarized waves coming from orthogonal components of unpolarized light and
brought to the same plane cannot interfere.

• Two orthogonally polarized waves, originating from the same polarization beam and brought to
the same polarization state can interfere.

Despite these laws, the superimposition of two orthogonally coherent polarized beams produces an in-
terference "pattern": the resulting electric field exhibits a variation of its orientation instead of a variation
of its intensity [5, 6].
Since the 80’s, investigations on the superimposition of orthogonally polarized beams have been made
and several materials were tested to record the variation of the electric field orientation.

2.1.1 Mathematical model

Kilosanidze et al. [7] developed a mathematical model of the local polarization resulting from the super-
imposition of two generic coherent beams based on the Jones formalism [8].

Two generic coherent beams A and B are represented by the following equation.

A =

(
Ax

Ay exp(iφA)

)
exp(iωt) B =

(
Bx

By exp(iφB)

)
exp(iδ) exp(iωt) (2.1)

Where Ax and Bx are the amplitude modules of the horizontal component of A and B, Ay and By the am-
plitude modules of the vertical components, φA and φB the phase differences between the horizontal and
vertical components. ω is the pulsation of the beams and δ is the phase difference between the two beams.

At the overlap plane, the resulting electric field: Σ can be written as equation 2.2.

Σ =

(
Ax + Bx exp(iδ)

Ay exp(iφA) + By exp(iφB + iδ)

)
exp(iωt) (2.2)

The local polarization ellipse is described by the real part of the electric field and is written as

< (Σ) = p cos(ωt) + q sin(ωt) (2.3)

where p =

(
Ax + Bx cos(δ)

Ay cos(φA) + By cos(φB + δ)

)
and q = −

(
Bx sin(δ)

Ay sin(φA) + By sin(φB + δ)

)
.

To describe the local polarization ellipse, three parameters must be provided: I1 the intensity along the
largest axis, I2 the intensity along the smallest axis and α the angle between the horizontal and the largest
axis of the ellipse (see Fig.2.1).
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These parameters are given by

I1,2 = 1
2

[
(p2

x + p2
y) + (q2

x + q2
y)
]
± 1

2

√[
(p2

x − p2
y) + (q2

x − q2
y)
]2

+ 4
(
px py + qxqy

)2
,

sin(2α) =
2(px py + qxqy)√[

(p2
x − p2

y) + (q2
x − q2

y)
]2

+ 4
(
px py + qxqy

)2
,

cos(2α) =
(p2

x − p2
y) + (q2

x − q2
y)√[

(p2
x − p2

y) + (q2
x − q2

y)
]2

+ 4
(
px py + qxqy

)2
.

(2.4)

Figure 2.1: Representation of the local polarization ellipse, the largest (L) and the smallest (s) axis are
pictured by dashed blue lines.

Let us notice that I2 = 0 and I1 , 0 always represents a linear polarization and I2 = I1 , 0 represents a
circular polarization.
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2.1.2 Examples

To illustrate the model, several simple cases can be studied.

• the classical case of two linearly polarized beams with the same polarization,

• two circularly polarized beams with the same handedness

• two linearly polarized beams orthogonally polarized

• two circularly polarized beams of opposite handedness

a: 2 linearly polarized beams with the same polarization: vertical case

Ax = Bx = 0 I1 = 2 × (1 + cos (δ))
Ay = By = 1 ⇒ I2 = 0
φA = φB = 0 α = 90◦

b: 2 circularly polarized beam with the same polarization: right handed

Ax = Bx =

√
2

2
I1 = 1 + cos (δ)

Ay = By =

√
2

2
⇒ I2 = 1 + cos (δ)

φA = −
π

2
; φB = −

π

2
θ is undefined

c: 2 linearly orthogonally polarized beams

Ax = 1; Bx = 0 I1 = 1 + |cos (δ)|
Ay = 0; By = 1 ⇒ I2 = 1 − |cos (δ)|
φA = φB = 0 sign [cos (δ)] ∗

π

4
d: 2 circularly polarized beams of opposite handedness

Ax = Bx =

√
2

2
I1 = 1 + |cos (δ)|

Ay = By =

√
2

2
⇒ I2 = 1 − |cos (δ)|

φA = −
π

2
: φBa =

π

2
θ =

δ

2



2.1. Polarization interferometry 25

Figure 2.2: Representation of the local polarization ellipse for case a.

Figure 2.3: Representation of the local polarization ellipse for case b.

Figure 2.4: Representation of the local polarization ellipse for case c.

Figure 2.5: Representation of the local polarization ellipse for case d.

case a and case b case c and case d

Figure 2.6: Representation of the intensity of the resulting electric fields for the 4 configurations.
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2.1.3 Expansion to four beams

One of our contributions is to expand the superimposition to a 4 beam overlap to allow the design of a
2D space variant polarization pattern.
Our goal is to realize 2D SRs with a rotational symmetry of their fast axis. Thus we modeled the four
beams superimposition pictured in Figure 2.7.

Figure 2.7: Representation of the superimpostion with of beams, possessing the same incident angle.

Using the previous formalism, the four beams are described by:

A =

(
Ax

Ay exp(iφA)

)
exp(iδA), B =

(
Bx

By exp(iφB)

)
exp(iδB)

C =

(
Cx

Cy exp(iφC)

)
exp(iδC), D =

(
Dx

Dy exp(iφD)

)
exp(iδD).

(2.5)

An important modification is that the δi of each beams are computed as the phase difference between the
i plane-wave beam and a virtual beam with a normal incidence. Therefore

δA =
2π
λ

sin(θi) × (y), δB =
2π
λ

sin(θi) × (−x)

δC =
2π
λ

sin(θi) × (−y), δD =
2π
λ

sin(θi) × (x)

with θi is the incident angle.
The two vectors describing the polarization ellipse become:

p =

 Ax cos(δA) + Bx cos(δB) + Cx cos(δC) + Dx cos(δD)

Ay cos(φA + δA) + By cos(φB + δB) + Cy cos(φC + δC) + Dy cos(φD + δD)


q = −

 Ax sin(δA) + Bx sin(δB) + Cx sin(δC) + Dx sin(δD)

Ay sin(φA + δA) + By sin(φB + δB) + Cy sin(φC + δC) + Dy sin(φD + δD)


, (2.6)

while the ellipse parameters are still described by equation 2.4. The four beams systems will be described
and analyzed in the chapter dedicated to the recording of 2D SR (chapter 5. The next section will present
our material, the recording process of a simple retarder i.e. a retarder with a uniform orientation of its
optical axis and the measuring process of these retarders.
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2.2 Retarders in liquid crystal polymers

Liquid crystal polymers are a particular case of liquid crystals. In a nutshell, the mesogens are inserted
inside polymer chains [9, 10, 11]. Two kinds of LCPs exist: main-chain LCPs and side-chain LCPs.

• For main-chain LCPs, the mesogens are part of the main chain of polymer (see Fig. 2.8 (a)).

• For side-chain LCPs, the mesogens are connected to the polymer by a flexible bridge called the
spacer (see Fig. 2.8 (b)).

Like the previous case, the mesogens will exhibit birefringent properties and their orientation will define
the orientation of the optical axis of the retarders. Following the category, the properties are slightly
different.

Figure 2.8: Representation of the two kinds of LCPs, (a) main-chain LCP, (b) side-chain LCP. Spacers
are represented in green

2.2.1 Recording process

The recording material used during this thesis is from ROLIC R©: ROP − 103 and ROF − 5102.
The generic recording process contains two steps.

• The first one concerns the alignment layer ROP − 103. The layer is spin-coated on a clean2 glass
substrate to achieve a thickness of ≈ 50 nm. Then the substrate is heated to get rid of the solvents
and is exposed to UV polarized beam with the recording setup pictured in Figure 2.9.
During the first exposure, the photo-polymers contained in the first layer will align themselves
according to the direction of the recording electric field (see Figure 2.10).

• The second step concerns the LCP ROF − 5103. The second layer is spin-coated on the first one
and the LC will orient themselves according to the orientation of the polymers below.
The orientation of the LC will define the orientation of the fast axis of the sample. Then the
prototype is heated and cooled under a nitrogen flush to avoid oxidation on the LC layer and
finally exposed to an unpolarized UV source to fix the LC.
After the exposure the LC are frozen: the orientation of the fast axis will not change while the
retarder is exposed to a polarized beam.
Changing the spin-coating conditions will change the thickness of the birefringent layer allowing
to modify the phase retard induced by the retarder.

2The cleaning process and a more detailled presentation of the recording process are exposed in Appendix C
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Figure 2.9: Representation of the recording setup for a retarder with a uniform orientation of its fast axis,
the beam is pictured in blue and the polarization is pictured in red.

Figure 2.10: Representation of the recording setup for a discrete 2D SR. The polymers in the areas
exposed to a polarized light are characterized by the same orientation while the polymers in the unexposed
areas are characterized by a random orientation. To finish working with the first layer, the polarizer and
the mask must be rotated to expose the other areas. The picture is from the components datasheet [12, 13].

This method is used to produce retarders with a uniform orientation of their fast axis or SR with a discrete
variation of their optical if several masks are used (see Figure 2.11 for uniform retarders and Figure 2.12
for retarders with two orientation of its their fast axis).
To record 1D or 2D SR with a continuous variation, polarization holography is used to generate the
space-variant recording electric field, the changes of the exposure setup will be presented in their specific
section.

Figure 2.11: Several pictures of the first prototypes of uniform retarders in liquid crystal polymers be-
tween two crossed polarizers.
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(a) (b) (c)

Figure 2.12: Several pictures of the first retarder with two areas of same orientation of its fast axis
between two linear polarizers, the variation of orientation is about 90◦. (a) Pictures the intensity of the
retarder between two linear polarizers and no obvious variations are present due to the symmetry of the
situation. (b) & (c) Present two stacked retarders. The first one is the non-uniform one while the other is a
uniform one. The second retarder is used to break the symmetry to achieve a variation of the transmitted
intensity which highlights the variation of the fast axis orientation. Therefore the two areas are clearly
visible. The line between the two areas is caused by the mask implied during the recording process.

2.2.2 Measuring process

The measuring process of a simple retarder is to compute the phase shift between the ordinary and
extraordinary component of the incident polarization (φ) and the orientation of its fast axis (α).
To compute these parameters, we used the polarimetric bench at Hololab (see Figures 2.13 and 2.13).
The bench is composed of:

• a fibered coupled laser at 660 nm with a diverging beam L

• a collimation lens l

• a diaphragm d

• a linear polarizer P1

• a quarter-wave plate λ/4

• 2 linear polarizers on rotation mounts computer controlled P2 & P3

• a mono-pixel detector D

Figure 2.13: Scheme of the polarimetric bench, the polarization is pictured in red.
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Figure 2.14: Picture of the polarimetric bench.

The fast axis of the quarter-wave plate forms an angle of 45◦ with the axis of the linear polarizer P1

to achieve a circular polarization. The principle of measurement is the same as Yang et al.[14], the bench
will measure the transmitted intensity for several positions of P2 each time for two configurations:

• P3 transmission axis is parallel to P2 transmission axis⇒ I�
• P3 transmission axis is orthogonal to P2 axis⇒ I⊥.

The birefringent parameters are given by the next equation.

I⊥
I�

=
sin2 (2 (α − α0)) sin2 (φ/2)

1 − 4
(
1 − sin2 (α − α0)

)
sin2 (α − α0) sin2 (φ/2)

(2.7)

Where φ is the phase retard between the ordinary and extraordinary components induced by the retarder,
α is the angle between the polarizer and the vertical as defined in Figure 2.15 and α0 is the angle between
the vertical and one of the optical axes of the retarder. The results of our numerical simulations are
exposed in Table 2.1 and Figure 2.16 represents the numerical intensity for simulated waveplates.

definition of α I�1 I⊥1 I�2 I⊥2

Figure 2.15: Definition of α and representations of several configurations for the measurement of I� and
I⊥.
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Table 2.1: Simulated parameters for several birefringent plates. φ is the phase retard induced by the plate
and α is the orientation of one neutral axis. α is degree and exceptionnaly, φ is in degree to.

α f ast = −45 α f ast = −20 α f ast = 0 α f ast = 10 α f ast = 45 α f ast = 90

φin = 45
φc = 45
αc = 45

φc = 45
αc = 70

φc = 445
αc = 90

φc = 45
αc = 100

φc = 45
αc = 45

φc = 45
αc = 90

φin = 87
φc = 87
αc = 45

φc = 87
αc = 70

φc = 87
αc = 90

φc = 87
αc = 100

φc = 87
αc = 45

φc = 87
αc = 90

φin = 90
φc = 90
αc = 45

φc = 90
αc = 70

φc = 90
αc = 90

φc = 90
αc = 100

φc = 90
αc = 45

φc = 90
θc = 90

φin = 120
φc = 120
αc = 45

φc = 120
αc = 70

φc = 120
αc = 90

φc = 120
αc = 100

φc = 120
θc = 45

φc = 120
αc = 90

φin = 180
φc = 180
αc = 45

φc = 180
αc = 70

φc = 180
αc = 90

φc = 180
αc = 100

φc = 180
θc = 45

φc = 180
αc = 90

φin = 230
φc = 130
αc = 45

φc = 130
αc = 70

φc = 130
αc = 90

φc = 130
αc = 100

φc = 130
αc = 45

φc = 130
αc = 90

(a) (b)

Figure 2.16: Fit for two simulated waveplates, the red line is the fitted intensity while the blue dots
represents the input intensity (a): φ = 87◦ α = 45◦, (b): φ = 120◦ α = 90◦.

One can observe that the phase retard induced by the plate is always accurately computed while the angle
θ represents the orientation of the closest neutral axis of the birefringent plates3.

3A phase retard of 230◦ is equivalent to a phase a retard of 130◦ and the computed angle of orientation is the angle of the
fast or of the slow axis of the waveplates.
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Several retarders in LCP with a uniform orientation of their fast axis were measured with the bench, the
results for three retarders are presented in Table 2.2 and Figure 2.17 presents an example of the fitting
by the equation 2.7.

Table 2.2: Results of the phase difference for four retarders measured on the polarimetric bench, the
variation of φ are due to small variations of the spin-coating parameters, exceptionally the phase retard is
in ◦ for simplicity.

φ (◦) 95%confidence interval
retarder A 89.04 [88.59;89.49]
retarder B 87.71 [86.75;87.58]
retarder C 87.72 [85.89;89.58]
retarder D 89.07 [87.18;90.88]

Figure 2.17: Example of the fitting of the measurements. The red line represents the fitted intensity while
the blue dots stand for the measured one.
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2.2.3 Possible upgrades of the bench

Presently, the measurement of the phase retard and the orientation of one neutral axis is for only pixel
per measurement. A useful expansion would be to achieve the measurement for the whole retarder in
one measurement process. An idea is to replace the mono pixel detector by a ccd camera and to compute
the fitting process for several pixels after the measurement. So a map of φ would be available, the map
could be useful for other applications such as the polarization analysis method (see section 3.4).

Another upgrade would be to use several fibered sources of different wavelengths or a visible continuum
source coupled with wavelength filters to compute the phase retard versus the wavelength for a same
point of a retarder. The measured phase retard can be written as

φ =
2π∆n (λ) h

λ
.

Where ∆n is the difference between the ordinary and the extraordinary refractive indices and h is the
thickness of the birefringent layer. Using the computation of φ as a function of λ, we will be able to
compare the curve of ∆n as a function of λ with the datasheet from the supplier (see Figure 2.18).

Figure 2.18: Variation of ∆n as a function of λ [12, 13].

2.3 Conclusions

In this chapter, we present our recording method based on the superimposition of differently polarized
beams, several simple examples were shown and the superimposition with four beams was introduced.
Our material, the liquid crystal polymers was introduced and the generic recording was detailed. Finally,
the measuring process used to compute the phase retard and the orientation of the fast axis of the retarders
and the results for several prototypes were presented.
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In the previous chapter, we introduced our recording method and our material. The first retarders
we recorded were 1D continuous SR using the superimposition of two circularly polarized beams of
opposite handedness. Thanks to these retarders, we developed a new method of polarization analysis
in nearly real time. The principle is to record the variation of the intensity transmitted through a linear
polarizer and 1D SR to compute the polarization parameters of the beam. This chapter presents the
mathematical model of the method and the results of several numerical simulations. Then, it exposed
the experimental aspects such as the recording of the retarder and the measurement process. After, the
results are analyzed and several upgrades of the method are mentioned. Finally, a short overview of a
possible application of the method is presented.
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3.1 Introduction

The first direct application of polarization holography which we developed is a polarization analysis
method. As we saw in section 2.1, at a fixed point in space, the end of the electric field describes an
ellipse during a period of vibration. Polarization analysis aims to determine the characteristics of po-
larization. The determination can be used for a lot of applications such as camouflage detection [1],
ellipsometry [2, 3], biomedical applications [4, 5], astronomical observations [6], imagery [7] ...
Several methods to measure the Stokes parameters of an incident beam already exist [3, 8, 9, 10, 11, 12,
7, 13, 14].

A usual method consists in measuring the variation of the transmitted intensity after a rotating quarter-
wave plate and a linear polarizer [3, 8, 9, 10]. Using the Fourier analysis of the transmitted signal allows
to compute the Stokes parameters of the incident beam. Unfortunately, this method is unable to measure
dynamic variation of the polarization since it is based on several measurements for different orientations
of the quarter-wave plate fast axis.

Another method consists in the splitting of the beam into four beams which could be coupled with
several polarization optical elements to compute the Stokes parameters [3, 9, 10, 12]. The drawbacks of
this method is the cost of the several detectors, the size of the setup and the sensitivity to statistical errors.

Our method is inspired by a method based on a 1D discrete SR in ZOG [9], the retarder will transform
a uniformly polarized beam into a space-variant one and a linear polarizer will convert the variation of
the polarization into a space-variant intensity. Using a spatial Fourier analysis of the intensity allows
to compute the Stokes parameters. We replaced the 1D discrete SR by a 1D continuous SR containing
LCP [15]. The retarder is realized by recording the superimposition of two circularly polarized beams
of opposite handedness, the electric field and the retarder are pictured in Figure 3.1 (a) and (b). Due to
the continuous variation of the electric field orientation, the retarder exhibits a continuous variation of
its fast axis orientation. The orientation being written as: α = πx/p where p is the period of the retarder.
The period is the distance between two columns where the LC are characterized by the same orientation
and depends on the recording wavelength λr and the incident angle θi: p = λr/2 sin(θi).

(a) (b)

Figure 3.1: (a) Representation of the electric field resulting from the superimposition of two circularly
polarized beams of opposite handedness used to achieve the variation of the fast axis orientation. (b)
Representation of the retarder used for polarization analysis.
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The principle is the following one: the retarder will transform an incident uniformly polarized beam into
a beam with a continuous and periodic variation of its polarization. The linear polarizer will convert the
polarization variation into an intensity variation. The camera will record the transmitted intensity and by
analyzing its variation, one can compute the polarization state of the incident beam. Our experimental
setup is schemed in Figure 3.2. The next section will expose the mathematical model of our method and
will show the results of our numerical simulations.

Figure 3.2: Picture of the experimental process, the polarization modifier enables the generation of several
polarization states.
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3.2 Simulating a mathematical model

3.2.1 Mathematical model

Firstly, concerning polarization measurement, instead of using the Jones formalism presented in the
previous chapter, we will use the Stokes-Mueller formalism [16].
The incident beam is written as :

S in =


S 0

S 1

S 2

S 3

 .
Our goal is to compute the S i of the incident beam. A generic birefringent plate with an arbitrary
orientation of its fast axis α and an arbitrary phase retard between the fast and slow axis φ is modeled as
[16]

BP =


1 0 0 0
0 1 − 2 sin2(2α) sin2(φ/2) 2 cos(2α) sin(2α) sin2(φ/2) − sin(2α) sin(φ)
0 2 cos(2α) sin(2α) sin2(φ/2) 1 − 2 cos2(2α) sin2(φ/2) cos(2α) sin(φ)
0 sin(2α) sin(φ) − cos(2α) sin(φ) cos(φ)

 . (3.1)

Our plate is a periodic SR (α = πx/p) with a period of p 4. The vertical polarizer P is represented by:

P =
1
2


1 1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 .
After the linear polarizer, the transmitted beam is described by the following equation.

S out =



S 0

2
−

S 1

2

(
1 − sin2(2α) sin2

(
φ

2

))
− S 2 cos(2α)sin(2α) sin2

(
φ

2

)
+

S 3

2
sin(2α) sin(φ)

−
S 0

2
+

S 1

2

(
1 − sin2(2α) sin2

(
φ

2

))
+ S 2 cos(2α)sin(2α) sin2

(
φ

2

)
−

S 3

2
sin(2α) sin(φ)

0

0


(3.2)

At the detector, the intensity I = S out, 0 is recorded and it is expressed by

I =
S 0

2
−

S 1

2

(
cos(4α) sin2

(
φ

2

)
+ cos2

(
φ

2

))
−

S 2

2
sin2

(
φ

2

)
sin(4α) +

S 3

2
sin(2α) sin(φ). (3.3)

Measuring the variation of the intensity in the x direction allows to compute the Stokes parameters
of the incident beam if the parameters of the retarder are known. For a completely polarized beam:
S 2

0 = S 2
1 + S 2

2 + S 2
3. In the following, completely polarized beams are considered to reduce the number

of Stokes parameters from 4 to 3.

4Indeed, α1 = 225◦, α2 = 405◦, α3 = 585◦ are equivalent represent to an orientation of 45◦". Therefore, the mathematical
period of our retarder is p/2
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3.2.2 Numerical simulations

We simulated a measurement process for a beam transmitted by the retarder and a linear polarizer.
Our measurement process consists into two steps The first one is a calibration process used to compute
the retarder parameters p and φ. The second one is the measurement of the polarization of an unknown
beam. Let us also remark that in reality, the first column of the retarder does not necessarily possess an
horizontal fast axis, therefore another parameter must be added x0 and α becomes α = π ∗ (x + x0)/d. x0

will define the orientation of the first pixel in the retarder.
We numerically simulated our method with several polarized beams and one 1D SR characterized by
p = 2048 pixels, φ = 87◦ and 8 periods are contained in the retarder.

Calibration process
To determine the retarder’s parameters, calibration measurements must be performed. The retarder will
be exposed to beams with a well-known polarization state to compute p and φ while imposing the Stokes
parameters. We use the horizontal, the vertical and the right circular polarizations.
The beams used for the calibration are the following ones

S a =


1
1
0
0

 ; S b =


1
−1
0
0

 ; S c =


1
0
0
1

 .
The intensities after the linear polarizer for the three calibration beams are pictured in Figure 3.3.
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(a) (b)

(c)

Figure 3.3: Computed numerical intensity for the 3 calibrations beams, (a) horizontal polarization, (b)
vertical polarization, (c) right handed polarization. For linearly polarized incident beams, the distance
peak-to-peak is half of the period, for a circularly polarized incident beam this distance is equal to the
period of the retarder.

For the first calibration beam, the Stokes parameters are imposed. The first guess of p is obtained by
observation of the apparent period of the transmitted intensity variation and the first guess of φ is based
on measurements performed by the polarimetric bench (see 2.2.2) of uniform retarders realized with the
same spin-coating parameters. Several fits are computed for the first beam with a first guess of p as a
multiple of the apparent period.
As an example, Figure 3.4 and Table 3.2 present the results of several fits for an incident horizontal
beam where only the starting point of p is changed from one fit to another and the others parameters are
summarized in Table 3.1.

Table 3.1: Values of the parameters for the calibration with an horizontally polarized beam

parameters initial value lower value upper value
φ 85 -360 360
S 1 1 0.99 1.01
S 2 0 -0.01 0.01
S 3 0 -0.01 0.01
x0 0.151 −∞ ∞
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Representation of several fitted functions for the calibration intensity. The difference between
the graphs is the initial value of the period :p0. The input intensity is in blue while the fitted intensity is
in red. (a) p0 = 1000; (b) p0 = 2000; (c) p0 = 3000; (d) p0 = 4000: (e) p0 = 5000 and (f) p0 = 6000.
One can observe that only (b) with p0 = 2000 achieves a good fit. Therefore, if the fit matches the input
intensity, no error on the period is possible
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Table 3.2: Results of the fits with different startpoint of p

p0 = 1000 p0 = 2000
parameters value 95% confidence interval val 95% confidence interval
p (pixels) 981.8 [981.4; 982.3] 2048 [2048; 2048]
φ (◦) 69.35 [68.69; 70.02] 87.35 [−152; 326.7]

x0 -117.2 [-121.7;-112.7] −0.05122 [−4.019; 3.916]
p0 = 3000 p0 = 4000

parameters value 95% confidence interval val 95% confidence interval
p (pixels) 3101 [3096; 3105] 4325 [4316; 4334]
φ (◦) 69.33 [−1.7 104; 1.7 104] 68.83 [−1.4 104; 1.4 104]

x0 312.7 [-784.3;1410] 510.8 [−790.3, 1812]
p0 = 5000 p0 = 6000

parameters value 95% confidence interval val 95% confidence interval
p (pixels) 4982 [4970; 4993] 5868 [5851; 5885]
φ (◦) 68.7 [68.05; 69.34] 68.56 [−1.3 104; 1.3 104]

x0 465 [441.4;488.6] 543.18 [−1030; 2116]

The results obtained with p0 = 2000 as the initial value are resumed in Table 3.3.

Table 3.3: Retarder’s parameters obtained through the calibration process with p = 2048.

parameters value 95% confidence interval
p 2048 [2048; 2048]
φ(◦) 87 [86.95; 87.05]
x0 -1 [−1;−0.9999]

.

These results will be used for the two others configuration beams to check the values of the parameters.

Results of the numerical simulations
After the calibration, the beams with different polarization states will be computed. The goal is to fit
the transmitted intensity with Equation 3.3 while, imposing the retarders parameters. The results of
the simulations are presented in Table 3.4 and four plots of the numerical and computed intensities are
presented in Figure 3.5.
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Table 3.4: Results of the numerical simulations for several completely polarized beams

S i input computed 95% confidence interval input computed 95% confidence interval
S 1 0 4.43 10−11 [−5.92 10−8; 5.94 10−8]
S 2 0 3.10 10−11 [−3.70 10−7; −2.50 10−7]
S 3 −1 −1 [−1; −1]
S 1 0 −0.0005 [−0.0006;−0.0005] 0 0, 0011 [0.008; 0.0013]
S 2 1 0.9997 [0.9997; 0.9997] −1 −1.001 [−1, 001; −1]
S 3 0 −3.6 10−10 [−5.5 10−10; −1.7 10−10] 0 −3.8 10−9 [−5.9 10−9; −1.7 10−9]
S 1 1 0.9981 [0.996; 0.9999] 1 1.1017 [1.1017; 1.1017]
S 2 1 0.9998 [0.9996; 1] −1 −1.002 [−1.002; −1.002]
S 3 0 −5.54 10−5 [−8.18 10−5; −2.91 10−5] 0 −2.62 10−10 [−5.39 10−10; 1.45 10−11]
S 1 −1 −0.999 [−0.999; −0.999] 1 −0.9976 [−0.9976; −0.9976]
S 2 1 1.002 [1.002; 1.002] −1 −1.004 [−1.004; −1.004]
S 3 0 −2.62 10−10 [−3.39 10−10; 1.45 10−11] 0 −1.86 10−11 [2.86 10−11; −9.6 10−12]
S 1 0 5.69 10−7 [−5.89 10−7; −5.45 10−7] 0 −3.72 10−7 [−3.85 10−7; −3.59 10−7]
S 2 1 1 [1; 1] 1 1 [1; 1]
S 3 1 1 [1; 1] −1 −1 [−1; −1]
S 1 0 −3.5 10−8 [−3.6 10−8; −3.3 10−8] 0 1.1 10−6 [1.07 10−6; −1.1510−6]
S 2 −1 −1 [−1; −1] −1 −1 [−1; −1]
S 3 1 1 [1; 1] −1 −1 [−1; −1]
S 1 1 1 [1; 1] 1 1 [1; 1]
S 2 0 2.30 10−10 [2.07 10−10; 2.52 10−10] 0 5.46 10−9 [5.12 10−9; 5.78 10−9]
S 3 1 1 [1; 1] −1 −1 [−1; −1]
S 1 −1 −1 [−1; −1] −1 −1 [−1; −1]
S 2 0 −3.54 10−7 [−3.68 10−7; −3.40 10−7] 0 1.80 10−12 [−6.10 10−10; −6.13 10−10]
S 3 1 1 [1; 1] −1 −1 [−1; −1]
S 1 1 1 [1; 1] 1 1 [1; 1]
S 2 1 1 [1; 1] 1 1 [1; 1]
S 3 1 1 [1; 1] −1 −1 [−1; −1]
S 1 1 1 [1; 1] 1 1 [1; −1]
S 2 −1 −1 [−1; −1] −1 −1 [−1; −1]
S 3 1 1 [1; 1] −1 −1 [1−; −1]
S 1 −1 1 [−1; , 1] −1 −1 [−1; −1]
S 2 1 1 [1; 1] 1 1 [1; 1]
S 3 1 1 [1; 1] −1 −1 [1−; −1]
S 1 −1 −1 [−1; −1] −1 −1 [−1; −1]
S 2 −1 −1 [−1; −1] −1 −1 [−1; −1]
S 3 1 1 [1; 1] −1 −1 [−1; −1]
S 1 1 1 [1; 1] 2 2 [2; 2]
S 2 2 2 [2; 2] −1 −1 [−1; −1]
S 3 3 3 [3; 3] 1 1 [1; 1]
S 1 −0.7 −0.7 [−0.7; −0.7] −15 −15 [15; 15]
S 2 1.3 1.3 [1.3; 1.3] −0.25 −0.25 [−0.25; −0.25]
S 3 −2 −2 [−2; −2] 5 5 [−5; −5]
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(a) (b)

(c) (d)

Figure 3.5: Plots of input intensity (in blue) and fitted intensity (in red) for four completely polarized
beam. (a) S in = (1 1 1), (b) S in = (−1 − 1 0), (c) S in = (1 2 3), (d) S in = (0 − 1 1)

Conclusions of the numerical part
As we can observe, the computed parameters are the same as the introduced one and the fitted intensities
are also extremely close to the computed ones. Thanks to those promising results, we can assume that
our method computes the Stokes parameters for the ideal case: a retarder with an uniform phase retard φ
and a perfect sampling of the intensity variation. In the following section, we will detail the experimental
aspects of the method: the recording of the retarder, the measurement process and the analysis of the
results.
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3.3 Experimental process

3.3.1 Recording

To obtain the expected variation of the fast axis orientation, the recording setup of the first layer is
modified compared to the case of a uniform retarder while the recording of the second layer stays the
same. To achieve the recording of the superimposition of two circularly polarized beams of opposite
handedness, several elements are added on the experimetal setup (see Figure 3.6) such as:

• a quarter-wave plate,

• a Savart plate [17, 18],

• a quarter-wave plate.

The Savart plate is a pair of identical birefringent crystals where the fast axis forms an angle of 45◦ with
the normal of the crystals and the axis is rotated of 90◦ from one crystal to the other one. The utility of
the Savart plate is to divide one incident polarized beam into two linearly orhtogonally polarized beams.
Assuming an incident beam uniformly polarized under normal incidence, the emerging beams are also
at normal incidence with respect to the Savart plate and there is no phase difference between them.
The goal of the first quarter-wave plate is to generate an incident circularly polarized beam on the Savart
plate to obtain two orthogonally polarized beams with the same intensity exiting the Savart plate. Finally,
the second quarter-wave plate will circularize the incident beams to record the superimposition of two
circularly polarized beams of same intensity and opposite handedness.

Figure 3.6: Scheme of the recording setup for the polarization analyzer, beams are pictured in blue and
the polarization in red.

Figure 3.7: Scheme of a decemented Savart plate, the fast axis of the crystals are pictured in blue, the
polarization in red and the direction of propagation in green.
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A picture of the retarder is exposed in Figure 3.8
Between two polarizers, the transmitted intensity exhibits the predicted variation according to the theory.
The color variation for the white source are linked to the variation of the phase shift φ induced by the
retarder which is dependent of the incident wavelength.

Figure 3.8: Picture of the retarder between two linear polarizers.

3.3.2 Measuring

Our experimental setup contained:

• a red laser at 633 nm L,

• two converging lenses to expand and collimate the beam l1, l2,

• a linear polarizer and a quarter-wave plate with an angle of 45◦ between their fast axes P1, λ/4,

• a linear polarizer on a rotation mount which will be turned to achieve several linearly polarized
beams with different orientation of their polarization P2,

• the retarder S ,

• a linear polarizer with its transmission axis aligned on the vertical P3

• a screen and a camera.

Figure 3.9: Picture of the retarder between two linear polarizers
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Our experimental process can be sum up in 7 points:

1. computation of the normalized intensity for all pictures,

2. determination of the orientation of the lines of same intensity (ζ) using one picture,

3. rotation of the pictures to obtain vertical lines of same intensity,

4. determination of the area of interest using one picture,

5. selection of the area of interest and meaning of the lines inside this area for every pictures,

6. determination of the retarder’s parameters with the pictures correspoding to the calibration beams,

7. computation of the Stokes for the measuring pictures.

1. Computation of the normalized intensity

To measure the polarization state of a beam, videos are recorded for three different configurations (see
Figure 3.10) :

• one with the whole setup (see Figure 3.2)⇒ Im,

• one without the last linear polarizer⇒ Re f ,

• one with the laser turned off⇒ D.

Next, pictures are extracted from the videos and the mean transmitted intensity is computed (see Fig-
ure 3.10).

(a) (b) (c)

Figure 3.10: Pictures of the transmitted intensity for −45◦, (a) is Im, (b) is Re f and (c) is D.

Then a normalized image is computed Norm =
Im − D

Re f − D
to reduce the effect of intensity variation due

to optical aberrations independent of polarization (see Figure 3.11).

We can observe that the pictures are very similar. The transmitted intensity exhibits the expected periodic
variation for the real retarder.
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(a) (b)

Figure 3.11: (a) Picture of the normalized intensity for an angle −45◦ (b) numerical map of the transmitted
intensity for an ideal birefringent plate with the same characteristics.

2&3. Determination of ζ and rotation of the pictures

Since the orientation of the intensity variation depends on the direction of the fast axis variation, ex-
perimentally the areas of same intensity could be tilted with respect to the horizontal (Figure 3.12 (a)).
Therefore the computation of this angle and the rotation of the pictures are mandatory to achieve vertical
lines of uniform orientation. Using the Hough transform [19, 20], the angle is computed and the pictures
are rotated using MATLAB c© (Figure 3.12 (b)).

(a) (b)

Figure 3.12: (a) Picture of the transmitted intensity, the areas of same intensity are not vertical due to the
orientation of the retarder (b) rotated picture with the angle computed using the Hough transform.
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4&5. Determination of the area of interest and computation of the mean line

After the rotation of the pictures, an area of interest is selected (see Figure 3.13) based on several criteria.

• The area must contain several periods of variation of the intensity.

• The area must be near the retarder center to avoid important variations of φ.

• The area must avoid diffraction patterns due to dust or oxidation on the retarder.

Then a mean is performed on the line of the picture to compute the mean intensity which will be fitted
afterwards.

(a) (b)

Figure 3.13: (a) Picture of the rotated intensity and the selection of the region of interest. (b) Region of
interest where the mean intensity per column will be computed.
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6. Determination of the retarder’ parameters

The mean intensity for the vertical and horizontal polarization are used for the calibration. The trans-
mitted intensity will be fitted by equation 3.4 while imposing the values of the Stokes parameters to find
the values of the retarder’s parameters (φ, d, x0) and the parameters due to the recording (A, o f f ). A
represents the gain of the camera and o f f stands for the offset.

A
{√

S 2
1 + S 2

2 + S 2
3 − S 1

[
cos

(
4π ∗ (x + x0)

d

)
sin2

(
φ

2

)
+ cos2

(
φ

2

)]
− S 2 sin

(
4π(x + x0)

d

)
sin2

(
φ

2

)
+ S 3 sin

(
2π(x + x0)

d

)
sin(φ)

}
+ o f f (3.4)

Figure 3.14 presents the results of the calibration process.

(a)

parameters value 95% confidence interval
A 0.43 [0.41; 0.44]
d 142.2 [141.5; 143]

o f f 0 [0; 0.05]
φ 91.43◦ [90.5; 92.5]
x0 53.88 [53; 54.5]

(b)

Figure 3.14: Results for the calibration using the horizontally polarized beams. (a) Represents the cali-
bration fit of the transmitted intensity for an incident vertically polarized beam, the blue dots represent the
experimental intensity, the red line the computed intensity with the parameters. (b) Values of the retarder
and camera parameters obtained thanks to the calibration process.

These parameters will be imposed with the other beam to compute the Stokes parameters.
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7. Computation of the Stokes parameters for the measured beams

Finally, while imposing the parameters of the retarder and the camera, the mean transmitted intensity
will be fitted to compute the Stokes parameters of the incident beam. Several linearly polarized beams
were measured. To change the polarization state from one beam to another, the polarizer was rotated.
The experimental results are summarized in Table 3.5 and Figure 3.15 presents fits for two beams.

Table 3.5: Experimetal results of the polarization analyzer. α is the orientation of the polarization, the
S norm column represents the Stokes parameters when for a beam with S 0 = 1 and RMSE is the value of
the Root Mean Square Error obtained using the curve fitting tool of MATLAB c©.

α(◦) S in S computed confidence interval S norm RMSE
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2/2
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[−0.12; −0.06]

 −0.69
−0.72
−0.05

 0.02

−45

 0
−1
0


 −0.11
−1
−0.03

 [−0.15; −0.08]
[−1.02; −0.98]
[−0.05; −0.01]
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 0.05

−22.5


√

2/2
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 0.94
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[−1.03; −0.97]
[−0.04; 0.04]

 −0.69
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0
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√

2/2
√

2/2
0


 0.98

1.01
0.05

 [0.90; 1.07]
[1; 1.02]

[−0.06; 0.07]

 0.7
0.72
0.03

 0.02

45

 0
1
0


 −0.15

1.01
0.05

 [−0.17; −0. − 0.11]
[1; 1.02]

[0.02; 0.08]

 −0.14
0.97
0.05
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−
√

2/2
√
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 −0.65
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0.02

 [−0.73; −0.52]
[0.6; 1.02]

[−0.05; 0.05]

 −0.62
0.79
0.02

 0.02

(a) (b)

Figure 3.15: Fits of the transmitted intensity for two different linearly polarized beams, the blue dots
represent the experimetal intensities, the red line the computed intensities with the parameters. (a) Is for
a −45◦ polarized beam with the horizontal. (b) Pictures a beam with a polarization at 67.5◦ with the
horizontal.
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3.3.3 Results analysis

As we can observe, our method does not perfectly compute the Stokes parameters. The computed pa-
rameters are different from the real ones but the general orientation of the polarization is respected. The
major difference between the Stokes parameters is obtained for the orientation of 45◦, where the polar-
ization can be viewed as a nearly linear polarization at 49◦. Several origins are possible for the error on
the computed Stokes parameters.

• A variation of the phase retard inside the retarder:
The phase retard induced by the retarder between the components of the polarized light may
present variations. Due to the spin-coating process, the thickness of the birefringent layer may
vary, altering the phase retard: φ , cste ⇒ φ = φ(x, y) while φ is considered a constant during the
calibration and computation processes.

• The speckle phenomenon:
Since we project the intensity on a screen, the speckle phenomenon occurs [16, 21]. It induces
another variation of the intensity which may lead to errors on the determination of the angle of
orientation of same intensity lines and on the computed parameters.

• Several optical defaults:
As we can see in Figure 3.11, our system is not free from optical defaults. Our pictures present
circular and diffraction patterns due to small misalignment of the lenses and dust particles present
on the LCP layer of the retarder. The variation of intensity and the reduction of the small usable
area of the retarder may reduce the accuracy of the computation.

• Error on the angle of lines of same intensity:
During the numerical treatment, the Hough transform is used to compute the orientation of the
lines of same intensity. However, in several cases the computation of the angle leads to several
angles contained in an interval about 2◦. This error may cause a mixing of different regions when
the mean intensity is computed reducing the accuracy of the parameters computation. Moreover,
the rotation of the image performed with MATLAB c©uses an interpolation algorithm to compute
the rotated image which may cause some loss of information.

• Sampling problem:
Another possible source of error is the sampling. Our pictures only contain a small number of
periods and a small number of pixels per period. The sampling conditions could lead to a poor
computation of the Stokes parameters.

To determine the effect of the errors, several simulations were made. To simulate the effect of a φ
variation, two parabolic profiles were computed with a maximum variation of 3 and 9◦ (see Figure 3.16
(a) & (b)). A speckle intensity was computed and multiplied to the perfect case intensity (Figure 3.16
(c)). An intensity map was also computed for an error of 1◦ on ζ and the mean line was computed
(Figure 3.16 (d)). Finally an intensity map with a reduced number of periods and pixels per periods was
also computed.
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Table 3.6: Results for several error sources.
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One can observe that the polarization states are not affected the same way by the errors. Three cases
are not much affected (S in = (0 − 1 0), S in =

√
2/2
√

2/2 0) and S in = (0 1 0)) while the others present
significant errors. For these cases, the major contributions are the variation of the phase of 9◦, the
presence of the speckle and the error on ζ. Therefore, a reduction of these error sources could lead to
better results.
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(a) (b)

(c) (d)

Figure 3.16: Presentation of the several error sources. (a) & (b) Represent the variation of φ inside the
retarder, as a function of the position in the retarder as a multiple of the period. (a) Stands for a maximum
variation of 3◦ and (b) for 9◦ with a base value of 87◦. (c) Represents an example of the intensity when
speckle is also computed. (d) Depicts the intensity where the area of interest will be selected with an error
on ζ.
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3.4 Conclusions and perspectives

3.4.1 Conclusions

In this chapter, we presented an original polarization analysis method using a 1D continuous SR. Thanks
to the superimposition of two circularly polarized beams of opposite handedness, we are able to record
a retarder with a continuous and periodical variation of its fast axis. The variation of the fast axis will
transform an incident uniformly polarized beam into a space-variant one. This variation will be used to
compute the Stokes parameters of the incident beam thanks to a linear polarizer and a recording camera.
We presented the mathematical model of the measuring process and several numerical simulations with
completely polarized beams. We also described the experimental steps: the recording and the measuring
processes. The computed parameters are different from the real ones but the general orientation of the
polarization is respected.

3.4.2 Perspectives

Several upgrades are possible to achieve a better accuracy and quality of the computed parameters.

• Including phase retard variation in the computation process:
As we stated before, a variation of φ inside the retarder may reduce the accuracy of the parame-
ters computation. In order to solve this problem, the whole retarder should be measured on the
polarimetric bench to compute a map of φ. A new fitting algorithm should be implemented to
allow the computation of the Stokes parameters using three variables x, y and φ(x, y). Since the
polarimetric bench compute a map of α and φ, the calibration will be replaced by the measurement
of the retarder and a verification measurement will be perfomed using a beam with a well known
polarization state.

• Reducing the importance of the speckle phenomenon:
Using a high speed rotating disk between the vertical polarizer and the projection screen and
performing a temporal meaning would allow to reduce the effect of the speckle phenomenon.

• Upgrading the optical system:
Presently, the optical system used to collimate the beam is not optimized for imagery. An optical
system free from aberrations due to misalignment will achieve a better quality of the pictures
leading to a better accuracy on the parameters computation. Moreover, the camera used for the
recording of the picture is not optimized neither, a large suface of the detector is not used because
the beam is quite small at the minimum distance between the screen and the camera for clean
pictures. An optimization of the size of the beam, the size of the retarder and the used size of the
detector would lead to a more accurate computation of ζ and more relevant results.
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3.4.3 Expansion of the method to ellipsometry measurements

One application of our polarization analysis method could be ellipsometry [2, 3]. The goal of this
subsection is to briefly present ellipsometry and to show how our polarization analyzer could be used.

Ellipsometry is a contact free technique that measures several characteristics of an interface using the
variation of the polarization state of the reflected beam. In a nutshell, a monochromatic beam with a
well-known polarization state is incident to the surface with an angle θi (see Figure 3.17), due to surface
properties (like the material, the state of its surface ...) the polarization of the reflected beam changes.
By studying these variations, one can determine several surface properties.

Figure 3.17: Scheme of the ellipsometry principle. The polarization of the incident and reflected beam
are represented in red (Ei Er) and the decomposition in the s and p components are pictured in green.

The principle of the measurement is to determine a ratio of complex reflection coefficients: ρ which will
be used to determine the interface properties using several models [3]. The electric field of the incident
and reflected beams are decomposed following the s and p components5.
The complex amplitudes of the beams can be written as

Erp = Rp Eip, Ers = Rs Eis. (3.5)

Where Eip and Eis respectively are the complex amplitudes following the p and s components of the in-
cident beam, Erp and Ers stands for the reflected beam and Rp and Rs are complex reflexion coefficients.

ρ can be defined as the ratio of the complex reflection coefficients ρ =
Rp

Rs
, it can also be defined as a ratio

of two coefficients χi and χr: ρ =
χi

χr
which represents the ratio of the s component on the p component

χi =
Eis

Eip
and χr =

Ers

Erp
.

5The s components represents an electric field perpendicular to the incidence plane while p stands for an electric field
comprised in the incidence plane.
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Several physical models exist to describe the phenomenon of the reflection: two-phases model, three-
phases, multilayer ...
Their common point is to express the physical properties of the interface as a function of ρ. As an
example, we present the two-phases model which expresses n as a function of ρ.
It represents a single interface between two homogenous and isotropic semi-infinite media (1, 2).
The reflection coefficients are given by

r12,p =
ε2Ω1 − ε1Ω2

ε2Ω1 + ε1Ω2

r12,s =
Ω1 −Ω2

Ω1 + Ω2

. (3.6)

Where εi = N2
i is the dieclectric function of the medium i, N is the complex refractive index and

Ω =
(
εi − ε1 sin2(θi)

)1/2
. The measured ρ is given by equation 3.7:

ρ =
sin (θi) tan (θi) −

[
ε sin2 (θi)

]1/2

sin (θi) tan (θi) +
[
ε sin2 (θi)

]1/2 (3.7)

with ε =
ε2

ε1
.

Finally, ε2 can be written as a function of ρ and ε1 as

ε2 = ε1

sin2 (θi) + sin2 (θi) tan2 (θi)
[
1 − ρ
1 + ρ

]2
 . (3.8)

Using an incident beam from a medium with a well-known ε1 allows the computation of ε2 at a given
wavelength. Several methods exist to analyze the polarization of the reflected beam in ellipsometry such
as the nulling ellipsometry, the photometric ellipsometry and the return path ellipsometry ... One method
is particularly interesting since it uses the Stokes parameters of the reflected beams to compute ρ.
Indeed, the coefficients χi and χt can be written as:

χ =
S 2 + ıS 3

S 0 + S 1
=

S 0 − ıS 1

S 2 − ıS 3
. (3.9)

Typical setups used to compute the Stokes parameters with ellipsometry are based on four detectors
devices (see Figure 3.18)
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Figure 3.18: Representation of the four Stokes parameters measurement using four detectors and two
wollaston prisms (W).

The beam is divided into four different beams and each beam is transmitted through different polarization
elements to record 4 different intensities: I1, I2, I3, I4. The recorded intensities depend on the Stokes
parameters of the incident beam and the optical elements:

I = A .S ,

where A is 4 by 4 matrix which represents the optical elements and is obtained by performing calibration
measurements with a linearly polarized beam and quarter-wave plate.
We believe that our retarder could be used for ellipsometric measurements. The advantages would be a
compact and simple setup since our method only requires the retarder and a linear polarizer. It would be
also possible to monitor dynamic variations of the state using an appropriate camera.
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The second application which we developed at Hololab for 1D continuous SR is a polarization states
separator. An incident polarized beam will be separated into several differently polarized beams de-
pending on the polarization state of the beam and the retarder characteristics. The variation of the fast
axis follows the same pattern as the analyzer. The difference between these retarders lies in the size
their period: the period of the analyzer is ≈ 5 mm while the period of the separator is ≈ 20 µm. Due to
the ratio period/wavelength, the retarder will diffract the incident beam into several orders with specific
polarization states. The retarder was developed with Pascal Blain a PhD student at Hololab. It will be
extensively described and analyzed in his forthcoming Ph.D. thesis. This chapter will be a brief overview
of it. We will present the mathematical principle and the application we worked on.



66 Chapter 4. Polarization states separator

4.1 Introduction

The polarization state separator is nearly the same retarder as the polarization analyzer. It exhibits the
same variation of the fast axis orientation but its period is way smaller: 15 µm instead of 6 mm for the
analyzer. Due to the period/wavelength ratio, the retarder will exhibit diffraction properties in the visible.
Three orders of diffraction will appear each with a unique polarization state depending on the retarder’s
characteristics and the polarization of the incident beam.
The principle of the separator will be described in the following section.

4.2 Diffraction analysis

This time, the retarder will be modeled using the Jones formalism. The polarization separator (PS ) is
represented by [1]:

PS =

 cos
(
φ

2

)
− ı cos(2α) sin

(
φ

2

)
−ı sin(2α) sin

(
φ

2

)
−ı sin(2α) sin

(
φ

2

)
cos

(
φ

2

)
+ ı cos(2α) sin

(
φ

2

)
 , (4.1)

α and φ being the orientation of the fast axis and the phase retard induced by the retarder.
The electric field Eout simply being: Eout = PS Ein.
With the far-field condition and a period/wavelength ratio about 30, diffraction occurs [2] and the field
after the retarder Edi f f is represented by Equation 4.2 [3].

Edi f f =

(
FT

(
Eout,x

)
FT

(
Eout,y

) )
(4.2)

It can be shown that only three orders of diffraction are present D0, DR, DL [4] with their own diffraction
efficiency η0, ηR, ηl [5, 6, 7].

η0 = cos2
(
φ

2

)
ηR =

1
2

(
1 − S ′3

)
sin2

(
φ

2

)
ηL =

1
2

(
1 + S ′3

)
sin2

(
φ

2

) (4.3)

Where S ′3 is the fourth normalized Stokes parameters of the incident beam: S ′3 = S 3/S 0.
We can observe that:

• for a perfect half-wave plate: φ =
π

2
thus η0 = 0 and only two diffraction orders exist,

• for an incident circularly polarized beam and half-wave plate, only one diffraction order is present
and it is orthogonally polarized with respect to the incident one.

The behavior of the retarder in these configurations is pictured in Figure 4.1 and a prototype is presented
in Figure 4.2.
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(a) (b) (c)

Figure 4.1: Schemes of the effect of the polarization state separator for several configurations. The
polarization of the beams is pictured in red and the variation of the fast axis orientation is vertical like
the separation direction. (a) Pictures the general case where three orders of diffraction are present. (b)
Represents the case of a perfect half-wave plate where only two diffraction orders exist. (c) Stands for a
half-wave plate and a circularly polarized incident beam where only one diffraction order exists.

Figure 4.2: Picture of the beam after a polarization state separator for a phase retard of π.

4.3 Application to shearography

In the following paper [8], the polarization separator is used for shearography. The goal is to detect
defaults on a surface, the surface is illuminated by a collimated beam and the retarder is placed before
the camera, the separator will be designed to be act as a half-wave plate. The retarder will diffract the
beams diffused by the studied surface into two circularly polarized beams of opposite handedness and
same intensity. A linear polarizer will be placed between the separator and the camera to produce a
fringe pattern. By submitting the surface to a slight deformation of a few wavelength , the fringe pattern
will change and by recording its variation, one can determine the surface default. In the article, the
principle of the method is explained, several numerical simulations and their analysis are exposed. Our
first prototypes are presented as well as the proof of the concept and an analysis of the experimental
limits is performed. Finally, several improvement of the methods are given.
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The shearing amount defines the resolution of a speckle shearing interferometer and the shearing direction defines 
the sensitivity direction of the setup. The properties of circular (cycloid) holographic polarization gratings recorded 
in liquid crystal polymers can be used to build a new multi shearing direction and amount shearography set-up. 
The polarization states of the diffracted beams offer an easy way to produce phase shifts and thus to compute the 
phase contained in the shearograms. The theoretical bases of such a device are highlighted and an original 
compact and full in-line set-up is proposed. First experimental results of delamination detection and flaw detection 
by shearography are presented. A discussion on the importance of the grating recording and the polarization 
orientation shows the best working requirements.   

 

1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION    

 
Shearography is widely used in the field of Non-destructive 

Testing [1]. Many shearing elements for shearographic devices 
have been proposed [2]. Among these, the most suited with phase 
shifting techniques (which are the only way to obtain 
quantitative, i.e. numerical, evaluation of a shearogram [3]) and 
the most widely used interferometer, is the modified Michelson 
[3]. The main drawback of this interferometer is that the crossed 
reference and object beams can be altered differently by external 
vibrations and environmental disturbances.  

 
To overcome this drawback self-referenced almost common path 
interferometers based on a diffractive element [4] and on a 
birefringent element [5] (i.e. a Savart Plate [6]) have been 
developed for shearography. Unfortunately their constant 
shearing direction [4] and amount [5] limit their use. Indeed the 
shearing amount defines the resolution of the interferometer and 
the shearing direction defines the direction in which the first 
derivative of the displacement is evaluated. It has also been 
established that quantitative topological shearography has to be 
made along the shearing direction [7,8]. 
 
A less sensitive interferometer, which allows at the same time 
phase shifting and variation of the shearing amount and 
direction, would be ideal for shearography. We propose to 
associate birefringence together with diffraction. Circular 
polarization gratings (CPG) recorded in Liquid Crystal Polymers 
(LCP) [9-14] is the combination which will allow building the first 
full in line shearography set-up that easily enables phase shifting 
with the ability to change the shearing direction and amount. 
After a short reminder of CPGs properties, a new shearography 
set-up and some experimental results will be proposed. 
 
 
2. THEORITICAL2. THEORITICAL2. THEORITICAL2. THEORITICAL    BACKGROUNDBACKGROUNDBACKGROUNDBACKGROUND        

The following results and statements are inspired from previous 
related works [9-18] on CPGs. In this section we use those results 
to prove that CPGs can be applied to shearography and that they 
are well suited for it.   

A. Reminder of what a CPG isA. Reminder of what a CPG isA. Reminder of what a CPG isA. Reminder of what a CPG is    
A CPG is built by recording an interference pattern of two 
orthogonal circular polarizations beams. When the beams are 
overlapping in the horizontal x direction, it results in a series of 
linear polarizations with different orientations in the x direction 
but with uniform illumination intensity [9]. This cycloid pattern 
is written in a polarization sensitive material. The CPG is then 
formed in photo-cross-linkable liquid crystal polymers aligned 
according to this patterned layer [10, 11].  
 
The Jones matrix of such a birefringent plate with spatially 
varying optical axis is given by Eq. 1.  
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where d is the spatial period of the grating, λ the reading 
wavelength in free space, oe nnn −=∆  is the birefringence, h the 
thickness of the layer and R a rotation matrix in the plane of the 
retarder about the normal z-axis.  
 
As elegantly shown in [12], CPGs can only have three diffracted 
orders (0th and ±1st orders). Eq. 2 gives the efficiencies of the 
diffracted beams [13].  
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where P is the degree of polarization in Stokes formalism, and 
( )ab±= −1tanχ  is the ellipticity angle of the input beam with 

a the longest and b the shortest axis of the polarization ellipse. 

B. Application to shearographyB. Application to shearographyB. Application to shearographyB. Application to shearography    
The ±1 order separation will be used as symmetric sheared 
beams. To get rid of the 0th order for shearography the CPG has 
to be built as a half-wave plate, i.e. 00 =η  in Eq. 2. For a linear 
or a non-polarized input beam entering the grating, the two 
diffracted beams will have crossed circular polarization states. 
The intensities of the two sheared beams must be equal in order 
to enhance the contrast of the shearograms. The contrast ratio is 
given by the following equation 
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Where Imax and Imin are the maximum and the minimum of the 
intensity of the interference pattern of two electric field E1 and E2 
with the respective amplitudes A1 and A2. 
Thanks to the relation between 1±η and χ  in Eq. 2, this 
condition is reached if the input beam is linearly polarized. 

C. Rotation of the CPG for changing the shearing directionC. Rotation of the CPG for changing the shearing directionC. Rotation of the CPG for changing the shearing directionC. Rotation of the CPG for changing the shearing direction    
The effect of the CPG rotation about its normal for beam 
shearing orientation variation has been tested by computer 
simulation. A Gaussian vertically polarized beam Ein enters a 
half-wave plate CPG. The output field can be written as [14]:  
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Considering far field [15] and a grating period greater than λ10
[16], the diffracted field Ediff is given in [14]: 
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Eq. 2 leads to the intensity distribution shown in Fig. 1 where the 
grating equation λθ md m =sin

 
governs the diffraction angles, 

where mθ is the diffraction angle of the mth order.  
No change in the intensity or the polarization state of the output 
beams occurs when rotating the grating about its normal (see 
Fig. 2). Thus by placing the CPG in a precision rotating mount, 
one should be able to control the shearing beam direction.  

D. D. D. D. Variation ofVariation ofVariation ofVariation of    the shearing the shearing the shearing the shearing amountamountamountamount    
There are two different ways for varying the shearing amount. 
The first one consists in a multi-period grating (at least three or 
four areas with different periods). Thus by laterally translating 
the CPG, the input beam will be diffracted at different angles.  
 
The second one uses two successive parallel CPGs with the same 
orientation and period. The first grating diffracts two beams with 
circular polarization of opposite handedness. Their ellipticity 
angle χ are 4π− and 4π , and their Stokes parameters are 
respectively (1,0,0,-1) and (1,0,0,1). The second grating further 
diffracts the two beams. But as one can deduce in the relation 
between the parameters 1±η , χ and P  in Eq. 2, only one beam is 
further diffracted for each incoming beam. Thanks to the 
principle of reversibility of light, the diffracted beam restores the 
initial propagation direction. Fig. 3 sums up those concepts.  
The idea is not new and it has been established that the distance 

Fig. 1. Simulation of the intensity distributions of the output beams 
exiting a half-wave plate CPG and their respective polarization state. (a) 
Input beam with a vertical linear polarization, λ=532nm. (b) Intensities of 
the diffracted beams behind the CPG with a period d=15µm. The beams 
polarization states are shown in the upper right corner of each picture:
clockwise and counter-clockwise circular polarizations for the diffracted 
beams. 

Fig. 2. (Color online) (a) Variation of the intensity and ellipticity of the 
diffracted beams while the grating is rotated about its normal with a 
maximal error of 0.0015. (b)  Diffracted beams intensities for different 
grating orientations θ = 0, -50 and -90°. 

Fig. 3. (Color online) Polarization conversion [14] and beam propagation 
[18] trough two successive CPGs with (a) a linearly vertical polarized input 
input beam and (b) a counterclockwise circular polarized input. 



between the two diffracted beams is given by ( )1tan ±∆=∆ θzx
 

[17], where z∆ is the displacement of the grating along the 
propagation axis, x∆ the lateral displacement of the diffracted 
beams and 1±θ is the diffraction angle for the ±1 orders.  
Thus by applying this concept to shearography, changing the 
distance between the two gratings will change the shearing 
amount. One more advantage of the previous statement is that 
the shearing amount can be cancelled out [18], making easier the 
preliminary step of camera lens focusing. 
 

E. Phase shiftingE. Phase shiftingE. Phase shiftingE. Phase shifting    
Phase shifts are convenient for interferometry. Inteferograms 
with different phase shifts are compared in order to calculate 
their phase. Here we can take advantage of the orthogonal 
circular polarized output beams [19]. The Jones matrix of the 
CPG can be rewritten as two opposite circular polarizers with a 
phase difference φ between them:  
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Considering a vertical initial polarization and an analyzer P2 of 
polarization orientation ϕ  with respect to the x direction, the 
interference intensity distribution is given by Eq. 7:  
 

( )( )ϕφϕ 2cos102 ++= II    (7) 

 
By placing a motorized rotating polarizer after the CPG, phase 
shifting techniques will be achievable. In order to avoid any 
mechanical movement, a polarizer array [20] or a calibrated 
liquid crystal variable retarder (LCVR) [5] placed between a 
quarter-wave plate (QWP) and a polarizer could be used. The 
orientation of the fast and slow axis of the LCVR must be 
oriented at 45° to the orientation of the QWP axis. The 
orientation of the polarizer can be parallel or orthogonal to the 
QWP axis. With such elements temporal phase shifting and 
temporal phase transforms [21,22] are achievable. 
 
 
3. 3. 3. 3. DDDDESIGN OF A SHEAROGRAESIGN OF A SHEAROGRAESIGN OF A SHEAROGRAESIGN OF A SHEAROGRAPHY SET UP BASED PHY SET UP BASED PHY SET UP BASED PHY SET UP BASED 
ONONONON    THE ASSOCIATION OF TWO CPGTHE ASSOCIATION OF TWO CPGTHE ASSOCIATION OF TWO CPGTHE ASSOCIATION OF TWO CPGssss    

Thanks to the aforementioned properties of CPGs, a new 
shearography setup which allows phase shifting, shearing 
direction and amount modulation is proposed in Fig. 4. A first 
lens L1 is used to collect the light diffused by the object under 
test. A polarizer P1 ensures a linear input polarization. CPG1 is 
on a rotation stage and CPG2 can be translated in the z direction 
as long as it endures the same rotation as CPG1. P2 can be a 
rotating polarizer or a polarizer array. L2 is the objective lens of 
the camera.  
 
 
4444. EXPERIMENTAL SETTINGS & RESULTS. EXPERIMENTAL SETTINGS & RESULTS. EXPERIMENTAL SETTINGS & RESULTS. EXPERIMENTAL SETTINGS & RESULTS    

AAAA. Recording . Recording . Recording . Recording CPGsCPGsCPGsCPGs        
Our CPGs are built with Liquid Crystal Polymers (LCP) which 
are Liquid Crystals connected to chain polymers from Rolic®. A 
near 50 nm photo-alignment layer (Rolic® ROP103) is spin-coated 
on a 15 x 15 x 1.5 mm³ glass substrate and baked during 5 
minutes at a temperature of 150°C. Then the alignment is set 
through exposure to a series of linear polarizations pattern with a 
325 nm laser light and a dose of 200 mJ/cm². The cycloid pattern 
is obtained by polarization holography [9], i.e. the 
superimposition of two circularly polarized beams of opposite 
handedness, in order to have a grating period of ~15 µm. For that 
purpose, we selected a Mach-Zender interferometer bench [13]. 
The LCP precursor (Rolic® ROF5102), which orients itself 
according to the photo-alignment layer, is then spin-coated, 
heated to get rid of solvents (during 3 minutes at 50°C under 
nitrogen flushing) and subsequently polymerized by UV curing. 
In fact, the LCP reaches a stable solid state. The coating 
thickness of the LCP precursor is chosen to obtain a half-wave 
plate at 532 nm, i.e. ~2.3 µm.  

B. B. B. B. Proof of concept with one CPGProof of concept with one CPGProof of concept with one CPGProof of concept with one CPG    
 First experimental results were obtained from an optical 
workbench assembly without CPG2 and with a motorized 
rotating polarizer as P2. CPG1 was oriented so that there is a 
vertical shearing direction. The experiment (see Fig. 5) consists in 
detecting delamination between two thin glued sheets of 
aluminum. The glue between the two layers is purposely non-
homogeneously applied. The thermal loading is made with a 250 
W IR lamp located at about ten centimeters behind the plates. 
The loading is applied during 5 s. The phase maps are calculated 
at different thermal relaxation times after switching off the lamp. 
The reference time and phase map is set before switching on the 
lamp. Fig. 6 shows some phase maps recorded by a 4 image 

Fig. 4. (Color online) Shearography set up using two CPGs with the same 
orientation and period 

Fig. 5. (Color online) Experimental setup used to detect delamination 
between two glued aluminium plates. 



temporal phase shifting algorithm (the 4 frames correspond to I0°, 
I90°, I180°, I270° in Eq. 7).  

C. C. C. C. Checking the twoChecking the twoChecking the twoChecking the two    CPGCPGCPGCPG    arrangementarrangementarrangementarrangement    
Instead of a diffuse input light in our shearographic head in Fig. 
5, a collimated 532nm laser diode beam (50 mW) is used. The 
camera is replaced by a diffusive screen. Thus instead of having a 
shearogram interferometer we have an interferometric fringe 
projector. This trick allows checking the theories mentioned in 
section 2.C and 2.D: 
- Moving CPG2 away from CPG1 leads to a decrease of the 
fringes period (cf. Fig. 7). This period is inversely proportional to 
the distance between the two CPGs. This corroborates the 
relation between the shearing amount and z∆ between the two 
CPGs.  
- Rotating both the CPGs about the system optical axis generates 
a rotation of the fringes orientation in Fig. 7. The shearing 
direction is determined along the perpendicular to the orientation 
of the fringes.  
- Rotating of the polarization orientation of P2 results in a spatial 
shift of the fringes. If as suggested in section 2.E, no mechanical 

movements are preferred to a rotating polarizer, the fringes 
projector configuration enables an easy way to calibrate a liquid 
crystal variable retarder coupled with a quarter-wave plate.   

DDDD. . . . Results obtained with Results obtained with Results obtained with Results obtained with the twothe twothe twothe two    CPG designCPG designCPG designCPG design    
The interferometer is set as described in section 3 (Fig. 5). The 
experiment consists of detecting a hidden defect made in an 
aluminum plate. The plate thickness is 2 mm. The defect volume 
is 10 x 10 x 1 mm³. The thermal loading conditions are the same 
as earlier with a 4 s heating.  A 300 mW fiber coupled laser diode 
brings a wide uniform laser beam on the plate (cf. Fig. 8). The 
unwrapped difference phasemaps are obtained by subtracting a 
phase map recorded before the loading with one recorded 30 s 
after it. The filtering method is the sine-cosine filtering [23]. The 
area covered by each picture is approximately 4 x 3 cm². 
The top line of Fig. 9 shows that the sensitivity of our set-up can 
be changed. This sensitivity improvement is due to the increase 
of the shearing amount and in our case with the growing of the 
distance between the two CPGs. 
The bottom line of Fig. 9 shows that the set up really offers the 
possibility to change the shearing direction by rotating both 
CPGs about the set-up optical axis.  
 
 
5. DI5. DI5. DI5. DISSSSCUSSIONCUSSIONCUSSIONCUSSION    

AAAA. . . . CCCCriticalityriticalityriticalityriticality    of the CPG recordingof the CPG recordingof the CPG recordingof the CPG recording    
We will first discuss the criticality of the CPG recording. In order 
to diffract 2 beams only the CPG has to work as a half wave-
plate. The coated thickness depends on the precision with which 
the spin coating is made. The recorded gratings might not have 

Fig. 8. (Color online) Experimental setup used to detect a hidden defect on 
an aluminium plate with a two CPG configuration.  

Fig. 6. (Color Online)(a) Wrapped phase map difference between a phase 
map before heating and a phase map 10s after the heating has started. It 
shows delamination between two glued thin layers of metal over an area 
of 4 x 3 cm². (b) Temporal evolution of the difference phase maps during 
the relaxation time. 

Fig. 7. (Color online) Adjustments of the set-up by using a fringe projector 
configuration. The distance between the camera and the screen is fixed 
(50 cm). The only changing parameters are the distance between the 
CPG and their orientations. The pictures in the top line are recorded with 

. 

Fig. 9. Wrapped phase maps obtained with the two CPG shearography 
set-up with different amounts and orientations of the shearing. The 
phasemaps in the top line are recorded with and the one in the 
bottom line are recorded with mm. 



exactπ phase retardation. Different CPGs with different phase 
retardation were simulated thanks to Eq. 5. As shown in Fig. 10, 
the intensity ratio of the 0th order grows as the phase retardation 
of the CPG deviates from π . Thus a 0th order of CPG1 exists and 
when this linearly polarized beam reaches the 2nd CPG under 
normal incidence, it is diffracted into three new orders. 
Meanwhile ±1st orders after the first grating are not diffracted by 
the second grating and their initial beam propagation direction is 
restored. By placing a mask the unwanted ±1st orders beams 
diffracted by CPG2 can be easily prevented. Then 3 beams (+1,-1 
and 0,0 in Fig. 11) can be recorded by the CCD camera. Without 
taking into account the influence of the polarizer P2, this leads to 
a 3 wave interference pattern, the contrast ratio of which is:  
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Let’s consider that the intensity ratio between the 0th order and 
the 1st order is 4% after CPG1. Then after CPG2, I±1 is 300 times

0,0I . As 11
2
2

2
1 −+ === IIAA and 0,0

2
3 IA = , then Eq. 8 is almost 

equivalent to Eq. 3.  
In our lab, we have to coat the LCP precursor layer at a speed of 
1600 rev/min during 30 s for a π phase retardation. Knowing 
that the rotation accuracy of our spin-coater is ±50 rev/min and 
considering that the coated thickness is decreasingly proportional 
to the number of revolution, then the approximated phase 
retardation of our CPGs are between π96.0 and π03.1 . By 
reporting those values in Fig. 11, one can see that the intensity 
ratio is below 1%, thus after CPG2, I±1 is 4500 times 0,0I . Eq. 8 is 

thus equivalent to Eq. 3 and the influence of 0,0I can be 
neglected. 
 
Using 2 successive CPGs and a mask compensates the fact that 
those are not accurately made as half wave-plates. Even if a third 
beam reaches the CCD camera, its impact is negligible on the 
overall result.  

B.B.B.B.    Criticality of the pCriticality of the pCriticality of the pCriticality of the poooolarizationlarizationlarizationlarization    orientationorientationorientationorientation    
For previous set-ups [4,5] the orientation of the input polarizer 
was of great importance because it defined the intensity ratio 
between the two generated beams. For a good fringe contrast the 
intensities of the two beams have to be as equal as possible. In 
this new set-up, the polarization orientation incident on CPG1 is 
of no importance as long as it is a linear polarization. 
When using a rotating polarizer as P2, the initial orientation of 
the polarizer is of no importance too. As two opposite circular 
polarization states exit from CPG2, whatever the orientation of 
P2 is, the same amount of amplitude will be projected according 
to its orientation.  
If a liquid crystal phase modulator is used, the orientation of its 
axis does not matter, but the orientation of the following polarizer 

must be oriented at 45° according to the retarder axis. Indeed the 
polarization states exiting the LCVR are orthogonal and linear, 
thus to project the same amount of intensity on the same 
polarization state the polarizer has to be accurately oriented. If as 
described in Fig. 12, an error angle ε  occurs between the ideal 
orientation of 45° and the real orientation of the polarizer P2 Eq. 
3 becomes Eq.  9:  
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Assuming A1 and A2 are equal after CPG1, thus ( )ε2cos=C . A 
Taylor series development allows to approximate this contrast 
ratio by 221 ε−≈C . Thus a small error angle ε leads to a 
decrease of twice the square of its value on the contrast ratio.  
 
 
6666. CONCLUSION. CONCLUSION. CONCLUSION. CONCLUSIONSSSS    

Fig. 11. (Color online) Shearography set up using two CPGs with the same 
orientation and period 

Fig. 12. (Color online) Adjustments of the set-up by using a fringe 
projector configuration. The distance between the camera and the screen 
is fixed (50cm). The only changing parameters are the distance between 
the CPG and their orientations. 

Fig. 10. (Color online) Intensity ratio between the 1st order and the 0th

order according to the phase retardance of the CPG. 



CPGs have outstanding features that facilitate a really compact 
setup with few optical elements. Thanks to polarization states 
separation, an in line set-up is made possible. Thus the 
installation suffers less from misalignment tilt and is easier to 
build. As it is a symmetrical common path interferometer, short 
coherence length source can be used. Although great care must 
be taken that the spatial coherence of the source is guaranteed. 
The output polarization states of the diffracted beams even ease 
phase shifting methods with a rotating polarizer or a polarizer 
array. We believe that the suggested interferometer is versatile 
and could be used for example in fringe projection profilometry, 
imaging spectrometry or Fourier transform spectrometry.  
 
In this work we also outline the main drawbacks that could occur 
during the manufacturing of the device. Further work should 
compare the performances of such a shearographic device with 
more traditional shearography set-ups. 
  
A further step in this approach would be to use Achromatic 
Polarization Gratings [24] and broadband polarizers to be able to 
easily change the source depending on the absorption/reflection of 
the object under investigation.  
 
Thanks to F. Languy and G. Martin for their precious help. The 
authors are grateful to the financial support of the MINT Project 
from the Marshall program of the Walloon Government.  
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4.4 Conclusions and perspectives

In this chapter, we presented the polarization states separator. It is a 1D continuous SR characterized by a
period of approximately 15µ m. The retarder diffracts the incident beam into several polarization orders
with their own polarization states. The number of diffracted beams depends on the polarization state of
the incident beam and the birefringence of the retarder. Its application to shearography was presented
with the numerical simulations and the experimental tests.

In the future, two major upgrades could be performed. Using liquid crystals which allow a variation of
their orientation in the thickness would achieve achromatic polarization gratings [6, 9]. A new setup
allowing fringe projection and shearography with the same element could be implemented [10].
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In the previous chapters, we exposed applications of 1D SR recorded using the superimposition of 2
differently polarized beams. This chapter will present the vortex retarders. They are specific kind of 2D
SR characterized by a rotation of their fast axis.
The retarders will be described and classified. The recording systems based on polarization holography
will be shown. The first vortex retarders recorded only by polarization holography will be detailed
and finally a small sensitivity analysis will be performed to present the variations due to experimental
conditions.



80 Chapter 5. Vortex retarders

5.1 Introduction

Vortex retarders are specific retarders which convert an incident beam into an optical vortex.
Optical vortices are particular beams characterized by a phase singularity at their center just like a
whirlpool. The form of the phase over the wavefront is the same as a screw dislocation φ = exp ıθ [1, 2,
3], where θ is the azimuthal coordinate.
Just like a whirlpool, at the center of the vortex beam, the phase is undefined and the intensity of the
beam is null.
To generate a vortex beam, two kinds of retarders exist: scalar retarders and vectorial retarders.
For the scalar retarders, the variation of the phase is achieved thanks to a variation of the thickness of the
retarder. While transmitted through an helix shaped retarder, the beam acquires the desired wavefront.
The vectorial retarders do not implement a material ramp. They locally manipulate the polarization of
the beam to create the required wavefront. Usually, vectorial vortex retarders are made of birefringent
material characterized by a rotation of their optical axis (see Fig 5.1).

Figure 5.1: Representation of the rotation of the fast axis in a vortex retarder, the orientation of the fast
axis is pictured by blue dashed lines.
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Since scalar retarders implement a material phase ramp, the difficulty is to achieve an accurate and
continuous etching of the surface. The thickness of the retarder must be accurate to a very small fraction
of λ/n. Moreover, scalar vortices exhibit a strong dependence on the wavelength, the phase retard ∆ψ
being a function of the wavelength [4]

∆ψ =
2π
λ

[n(λ) − 1] h, (5.1)

where h is the thickness of the material. As a consequence, this dependence to the wavelength restricts
the usage of scalar retarders to applications with a short spectral band or a monochromatic light.

In the present thesis, we worked on the recording of vectorial vortex retarders using polarization holog-
raphy and LCP. We will shape the recording electric field to achieve the desired rotation of the fast axis
of the retarder. The next section will describe the origin of the phase and the mathematical model of the
vortices.

5.2 Mathematical description

5.2.1 Pancharatnam phase and topological charge

The distinctive feature of a vortex retarder is the rotation of the fast axis. It will convert a uniformly
polarized beam into a space-variant one.
Two points of the beam possess a phase difference: the Pancharatnam phase φP.
It was described by Pancharatnam as a geometric phase during the observation of the superimposition
of two differently polarized beams [5]. He associated the variation of the observed intensity to a phase
difference between the beams.

Two modern descriptions exist [2, 4, 6, 7, 8]. The first one is more geometrical while the other one is
based on the Jones formalism.

• The geometrical description relies on the Poincaré sphere of polarization and is used to compute
the phase difference between two beams with a variation of the polarization state of one of them.
It was demonstrated that a cyclic change of the polarization state of a beam generates a phase
retard. The retard depends on the polarization states achieved. It is equal to half of the area com-
prised between the polarization states on the Poincaré sphere [9].
As an example, we will study the case of a linearly polarized beam transmitted by two quarter-
wave plates and a half-wave plate. The incident polarization is a linear one and it is represented by
point A (see Figure 5.2). After the quarter-wave plate with an angle of 45◦ between the incident
polarization and the orientation of the fast axis, the beam becomes circularly polarized (point B).
The other quarter-wave plate converts the circular polarization into a linear one with a different
orientation (point C). Finally, the beam recovers its initial polarization state thanks to the half-
wave plate. It can be shown that the beam acquires an extra phase retard compared to a beam
transmitted by the same birefringent plates with their fast axis aligned to the incident polarization.
The extra phase retard is equal to half of the solid angle subtended by the trajectory ABCA: Ω

φP = Ω/2. (5.2)
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Figure 5.2: Representation of a cyclic change of polarization state, the red lines on the Poincaré sphere
represents the path of the beam.

• The other description is more appropriate for the phase difference between two points in a non
uniformly polarized beam originated from a uniformly polarized one [10].
In this configuration, the Pancharatnam phase is computed as the inner product of the polarization
of the beams using the Jones formalism and the helical base [2, 11].
For example, for two points A and B of the same beam:

φP = arg 〈JB, JA〉 . (5.3)

Since we are working with space-variant retarders and space-variant polarization, the second description
will be used.

Another characteristic of the vortex beam is the topological charge l. It is defined as the number of times
the Pancharatnam phase accumulates 2π along a closed path surrounding the singularity [2, 4]:

l =
1

2π

∮
∇φPds. (5.4)

The next subsection will present the mathematics of a coronagraph and its Panchartnam phase.
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(a) (b) (c)

Figure 5.3: Representation of several vortex retarders. The orientation of the fast axis is represented by
dashed blue lines. The polarization of the transmitted beams for an incident horizontaly polarized beam is
pictured by orange arrows: (a) describes a retarder with a rotation of 180◦ of its fast axis leading to l = 1.
(b) Stands for a rotation of 360◦ and l = 2. (c) Represents a rotation of 540◦ and l = 3.

5.2.2 Vortex nature of retarders with a rotating fast axis

The vortex nature of our retarder will be presented under the Jones formalism.
A uniform birefringent wave-plate characterized by a horizontal optical axis is represented by the fol-
lowing equation [12, 13].

HP =

 ηee−
ıφ
2 0

0 ηoe
ıφ
2

 (5.5)

where ηo is the transmittance along the ordinary direction of polarization, ηe is the transmittance along
the extraordinary direction of polarization and φ is the ordinary-extraordinary phase shift. For a perfect
half-wave plate ηe = ηo = 1 and φ = π.

To represent a SR, the previous matrix is rotated by an angle α depending on the position in the retarder
α = α(r, θ) with r and θ the polar coordinates in the retarder and α the angle between the optical axis and
the horizontal.

S R = R−1[α(r, θ)] HP R[α(r, θ)] (5.6)

Where R[α(r, θ)] represents the rotation matrix, R =

(
cosα(r, θ) − sinα(r, θ)
sinα(r, θ) cosα(r, θ)

)
.

For a theoretical lossless birefringent plate(ηo = ηe = 1), the space-variant retarder is finally represented
by

cos(
φ

2
)
(

1 0
0 1

)
− ı sin(

∆φ

2
)
(
− cos(2α) sin(2α)
sin(2α) cos(2α)

)
. (5.7)

The model is splitted into two different parts:

• the imaginary part represents a perfect polarization rotator,

• the real part represents a system which does not modify the polarization of the beam.
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For a perfect half-wave plate, φ = π, the real part is null. By simplifying the imaginary part, the retarder
is represented by

S V =

(
− cos(2α) sin(2α)
sin(2α) cos(2α)

)
(5.8)

For small phase errors, φ = π + ε. By multiplying by ı the equation 5.7, the retarder is represented by(
− cos(2α) sin(2α)
sin(2α) cos(2α)

)
+ ıε

(
1 0
0 1

)
. (5.9)

For a nearly perfect half-wave plate the effect of the phase error is proportionnal to the phase default ε
and its effect can be reduced by an appropriate polarization filtering. To highlight the vortex nature of

the retarder, the SR is projected on the helical basis thanks to the matrix U =
1
√

2

(
1 1
−ı ı

)
.

In the helical basis, the retarder is represented by

S Rhelic = U−1S R U =
1
2

 ηee−
ıφ
2 + ηoe

ıφ
2

(
ηee−

ıφ
2 − ηoe

ıφ
2

)
e2ıα(

ηee−
ıφ
2 − ηoe

ıφ
2

)
e−2ıα ηee−

ıφ
2 + ηoe

ıφ
2

 . (5.10)

In this basis, the retarder can still be divided into two terms. The first one will affect the phase and the
polarization of the incoming beam while the second term does not affect the polarization state of the
incoming beam and is a function of the mask’s defaults (ηe , 1 ηo , 1, φ , π). This decomposition is
obtained thanks to the definition of two coefficients M and D depending on the birefringent properties of
the retarder. M will multiply the mask matrix and D will multiply the default matrix.
With M = 1

2 (ηee−
ıφ
2 − ηoe

ıφ
2 ) and D = 1

2 (ηee−
ıφ
2 + ηoe

ıφ
2 ), the retarder becomes

S Rhelic = M
(

0 e2ıα

e−2ıα 0

)
+ D

(
1 0
0 1

)
. (5.11)

For a perfect half-wave (ηe = ηo = 1 and φ = π) M = −ı and D = 0. By simplifying the −ı factor, the
retarder is represented by the following equation:(

0 e2ıα

e−2ıα 0

)
. (5.12)

For a radial orientation of the fast axis α = θ6, the retarder becomes(
0 e2ıθ

e−2ıθ 0

)
. (5.13)

In the helical basis, the unit vectors are the right and left handed circular polarization states:

RCin =

(
1
0

)
, LCin =

(
0
1

)
.

After the retarder, these two beams become

RCout =

(
0

e−2ıθ

)
, RLout =

(
e2ıθ

0

)
.

6A radial orientation of the optical axis for a half-wave plate will generate a vortex with topological charge of 2 while
higher rotation speed of the fast axis will generate higher topological charges.
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The transmitted beam is orthogonally polarized to the incident beam and possesses a phase modification
of 2θ.
The Pancharatnam phase between two points in the resulting beam at the same radius but at a different
angle A(r1, θ = 0) and B(r1, θ = θB) is 2θB. Thanks to this result, we are able to plot the Pancharatnam
phase for the whole retarder and conclude that a retarder with a radial orientation of its optical axis is
indeed a vortex generator.

In this thesis we focused on vortex retarders with a topological charge of one and two. For these retarders,
the orientation of the fast axis is given b: α = θ/2 for l = 1 and α = θ for l = 2. The next pictures
will present their main characteristics such as a representation of their fast axis orientation (Figures 5.4
and 5.5), the transmitted intensity when the retarder is between two parallel polarizers (Figure 5.6) and
the Pancharatnam phase inside the vortex beam (Figure 5.7).

(a) (b)

Figure 5.4: Representation of the fast axis orientation (dashed blue) for two vortices of different topolog-
ical charges: (a) is characterized by a rotation of its fast axis equal to π generating vortices with lp = 1.
(b) Is characterized by a rotation of its fast axis equal to 2π generating vortices with lp = 2.

(a) (b)

Figure 5.5: Representation of the retarders fast axis orientation in degrees: (a) represents a total rotation
of 180◦, (b) represents a total rotation of 360◦. The discontinuity at the right side of (b) is caused by the
chosen scale, the orientation being a continuous function in reality.
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(a) (b)

Figure 5.6: Representation of the transmitted intensity for the vortex retarders between two parallel linear
polarizers: (a) is characterizd by 2 bright and two dark areas while (b) is characterized by four bright and
four dark areas.

(a) (b)

Figure 5.7: Representation of the Pancharatnam phase inside the beam transmitted by the vortex retarders
as a multiple of π. The maximum phase retard is 2π for (a) and 4π for (b). Once again the discontinuity
on the left side of (b) is caused by the scale, the phase varying smoothly from 0 to 4π.

The following section will present several systems of 4 beams differently polarized which are able to
record vortex retarders.

5.3 Recording using polarization holography

As mentioned in 2.1.3, we expanded polarization holography to 4 beams. Several systems achieve the
recording of vortex retarders with l = 1 and l = 2. Their resulting electric fields deviate from the ideal
one: the intensity or the directionality of the fields drop down to zero near the phase singularity. The
composition of the systems, the analysis of the recording electric fields and the first determination of the
experimental limits are presented in the following article [14].
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1. Introduction

Our goal is to develop a new method to produce vor-
tex retarders (VRs) without mechanical action using
the superimposition of several polarized beams. VRs
are particular space-variant retarders (SRs), i.e., bi-
refringent plates characterized by a nonuniform ori-
entation of their fast axis (see Fig. 1). The fast axis in
a VR rotates around the center of the plate inducing
a phase dislocation of the form exp�ilθ�, where l is the
topological charge and θ the azimuthal angle
(see Fig. 2).

The topological charge is defined as the number
of times the Pancharatnam phase (ϕp) accumulates
2π along a closed path surrounding the phase singu-
larity [1,2]:

l � 1
2π

I
∇ϕpds:

The Pancharatnam phase between two points (Γ and
Ω) in a nonuniformly polarized beam is defined as the
argument of the inner product of their Jones vectors,
ϕp � arghΓjΩi [1,3,4].

Nowadays, there are many applications of SR and
VR, as follows:

• SRs are used as polarization analyzers or polari-
zation states separators. A SR modifies the polariza-
tion parameters of the beam or diffracts it in specific
polarization states. By analyzing the intensity of the
transmitted or diffracted beams, one can compute
the Stokes parameters of the incoming beam [5,6].
• VRs can be used as polarization converters to

transform a uniformly linearly polarized beam into
a radially polarized one [7–9]. Radially polarized
beams lead to several applications such as tighter
focusing [10–12], optimal surface plasmon excitation
by a focusing beam [12,13], and optical tweez-
ers [12,14].
• SR and VR have already been used in phase

mask coronagraphy [2,15–19]. The goal of coronagra-
phy is to dim the light of a star to diminish the con-
trast between the star and its fainter companions.

Presently, to our knowledge, no method is able
to build VR with different topological charges with-
out mechanical action (e.g., rotation of a mask, trans-
lation of lenses, etc.) or multiple exposures of the
alignment layer. In this paper, we propose a purely
optical and versatile method based on polarization
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holography and liquid crystal polymers (LCPs). Us-
ing the superimposition of several polarized beams,
we will shape the polarization of the resulting beam
to obtain the required polarization pattern of the
recording beam.

The paper contains the following sections. In
Section 2, we briefly detail several methods of SR
and VR building. In Section 3, we present the theory
of polarization holography, its application for two cir-
cularly polarized beams of opposite handedness, and
its expansion to four beams with arbitrary polariza-
tion states. In Section 4, we describe the parameters
of the polarization ellipse resulting from the super-
imposition and the analysis of the resulting beams
as recording ones. In Section 5, we expose our first
experimental results.

2. Current Recording Methods

Several materials and methods are already used to
build SR and VR: assembling several birefringent
plates with different fast axis orientations [20],
building of zero order gratings (ZOG) characterized
by a variation of the grating structure orientation
[16,17,21], and designing the fast axis pattern by
aligning liquid crystals (LCs) [2,6–8,19,22–24].

• The easiest way to produce a SR is to laterally
join together several half-wave plates with a varia-
tion of their fast axis orientation to form one birefrin-
gent plate characterized by a discrete variation of its
fast axis [12,20]. Unfortunately, due to the discrete-
ness, the polarization is hardly the desired one.
Moreover, the transmitted beam exhibits dead zones,
i.e., zones with no transmitted light due to the glued
interfaces [12].
• Another way to produce SR and VR is to use

ZOG. ZOG only diffract the zeroth-order due to their
groove period Λ. The ZOG condition [16,17,21] is

Λ
λ
≤

1
nI sin χ �max�nI; nIII�

; (1)

where λ is the wavelength, χ is the angle of incidence,
and nI, nIII are the refractive indices of the incident
and output media, respectively.

Theoretically and experimentally, it was demon-
strated that ZOG can be used as birefringent plates
[17,21]. The birefringent properties of the identical
plate depend on the grating parameters, such as
the grating period, the filling factor, the refractive in-
dices, and the grating vector K, perpendicular to the
grating grooves with jKj � 2π∕Λ.

To achieve the fast axis variation, the orientation
of the grating vector must be nonuniform. Two kinds
of variation exist: discrete and continuous variation.

Discrete gratings contain several areas of uniform
K, the vector’s orientation being modified from one
area to the other one. Due to the discrete variation,
the transmitted beam can exhibit dead zones at the
edges reducing the performances of the retarder for
several applications [5,15]. Continuous gratings
exhibit a continuous variation of the length or of
the orientation of K, the continuity being assured
by ∇∧K � 0. The drawback of continuous gratings
is the difficulty to achieve the optimal grating
parameters while preserving the continuity of the
grating structure [17,21].
• LCs are already used to record SR and VR. Their

ability to easily achieve a nonuniform orientation im-
plies a simple recording process of continuous SR.
Subject to an electromagnetic field, LC orient them-
selves according to this field. Several recording
methods already use this property, e.g., rubbing an
alignment layer with a magnetic rod to imprint
the fast axis pattern [7,22], sending an electric cur-
rent through a hole electrode under the substrate
to create a radial electric field [23], or exposing piece
by piece an alignment layer to several uniformly
polarized beams using rotation mounts, apertures,
or cylindrical lenses [2,8,19].

These techniques have already been used but none
of them is able to achieve the recording of VR of dif-
ferent topological charges without mechanical action
or areas containing disoriented LC.

A static method based on polarization holography
and LC is already used to record SR with a one-
dimensional variation of their fast axis orientation
[6,22,24–26]. Inside the area of superimposition,
the resulting electric field is characterized by a varia-
tion of its orientation. The LC will be used to record
the variation to realize a unidimensional SR. We
propose to expand polarization holography to four
beams like Ruiz et al. [27] to record retarders with
a 2D variation of their fast axis. To be specific, we will
record VR with topological charges of 1 and 2.

3. Polarization Holography

Our goal is to produce VR with topological charges of
1 and 2 (see Fig. 2). Using LCP allows for the record-
ing of the orientation of the local electric field. Polari-
zation holography is used to shape the resulting
electric fields to imprint a specific fast axis pattern.
Kilosanidze and Kakauridze [28] developed a math-
ematical description of the local polarization ellipse
for the superimposition of two generic coherent
beams A and B

Fig. 1. Schematic representation of the fast axis (in dashed blue)
for a SR, x being the direction of variation of the fast axis in the SR
and α the orientation of the fast axis.
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A �
� Ax

Ay exp�iϕA�

�
exp�iωt�;

B �
� Bx

By exp�iϕB�

�
exp�iδ� exp�iωt�; (2)

where Ax and Bx are the amplitude modules of
the horizontal component of A and B, Ay and By
are the amplitude modules for the vertical compo-
nents, ϕA and ϕB are the phase differences between
the horizontal and vertical components, ω is the pul-
sation of the beams, and δ is the phase difference
between the two beams. At the recording plane,
the resulting electric field Σ can be written as

Σ �
�

Ax � Bx exp�iδ�
Ay exp�iϕA� � By exp�iϕB � iδ�

�
exp�iωt�: (3)

The local polarization ellipse is described by the
real part of the electric field and is written as

R�Σ� � p cos�ωt� � q sin�ωt�; (4)

where

p �
�

Ax � Bx cos�δ�
Ay cos�ϕA� � By cos�ϕB � δ�

�

and

q � −

�
Bx sin�δ�

Ay sin�ϕA� � By sin�ϕB � δ�
�
:

The ellipse is characterized by three parameters: I1
the intensity along the largest axis, I2 the intensity
along the smallest axis, and θ the angle between the
largest axis and the horizontal direction (see Fig. 3).

These parameters are given by

I1;2 �
1
2
��p2

x �p2
y���q2x �q2y��

�1
2

���������������������������������������������������������������������������������������
��p2

x −p2
y���q2x −q2y��2�4�pxpy�qxqy�2

q
;

sin�2θ�� 2�pxpy�qxqy����������������������������������������������������������������������������������������
��p2

x −p2
y���q2x −q2y��2�4�pxpy�qxqy�2

q ;

cos�2θ�� �p2
x −p2

y���q2x −q2y����������������������������������������������������������������������������������������
��p2

x −p2
y���q2x −q2y��2�4�pxpy�qxqy�2

q :

(5)

As an example, it can be shown that the superim-
position of two circularly polarized beams of opposite
handedness results in an electric field of uniform
intensity and characterized by a variation of its
orientation.

Circularly polarized beams of opposite handedness
are characterized by

Ax � Ay � Bx � By �
���
2

p
∕2;

ϕA � −π∕2; ϕB � π∕2:

With these parameters, p and q are given by

p �
��
�

p
2�∕2

�
1� cos�δ�
− sin�δ�

�
;

q � −
��
�

p
2�∕2

�
1� sin�δ�
−1� cos�δ�

�
:

Finally, the local polarization ellipse is described by

I1�2; I2�0; sin�2θ��sin�δ�; cos�2θ��cos�δ�: (6)

Using theseparameters, the resulting electric field in-
side the superimposition area can be characterized.

Fig. 2. Schematic representation of the fast axis (in dashed blue).
(a) AVR with l � 1 and (b) a VR with l � 2, α being the orientation
of the fast axis and (r, θ) the polar coordinates. The orange arrows
represent the ideal electric field required to record the retarders
with LCP.

Fig. 3. Schematic representation of the local polarization ellipse.
The largest (L) and the smallest (s) axis are pictured in dashed
blue.
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• I2 � 0 and I1 ≠ 0 means the electric field can be
pictured by vectors everywhere.
• I1 � 2 signifies a constant intensity inside the

electric field.
• tan�2θ� � tan�δ� describes a variation of the

electric field orientation.

Combining these statements, it can be assumed
that at the recording plane, the local polarization
is linear and its orientation depends on the phase dif-
ference between the superimposed beams.

The electric field pattern resulting from the beams
superimposition is represented in Fig. 4.

Our goal is to record VR with l � 1 and l � 2,
therefore the resulting electric field must exhibit
2D variation and rotational symmetry (see Fig. 2)
which is impossible with only two beams. To obtain
the desired electric field, we expanded polarization
holography to a four beam overlap �A;B;C;D� in a
tetrahedral configuration, represented in Fig. 5.

The four beams are described by

A �
� Ax

Ay exp�iα�

�
exp�iδA�;

B �
� Bx

By exp�iβ�

�
exp�iδB�;

C �
� Cx

Cy exp�iγ�

�
exp�iδC�;

D �
� Dx

Dy exp�iδ�

�
exp�iδD�

with δA � �2π∕λ� sin�θi� × �y�, δB � �2π∕λ� sin�θi�×
�−x�, δC � �2π∕λ� sin�θi� × �−y�, δD � �2π∕λ� sin�θi�×
�x�, and θi is the incident angle.

With this configuration, the parameters of the lo-
cal polarization are the same function of p and q and
these vectors become

p �
� Ax cos�δA� � Bx cos�δB� � Cx cos�δC� �Dx cos�δD�
Ay cos�α� δA� � By cos�β� δB� � Cy cos�γ � δC� �Dy cos�δ� δD�

�
;

q � −

� Ax sin�δA� � Bx sin�δB� � Cx sin�δC� �Dx sin�δD�
Ay sin�α� δA� � By sin�β� δB� � Cy sin�γ � δC� �Dy sin�δ� δD�

�
: (7)

4. Vectorial Vortex Recording

Our final goal is to record a radial electric field to
achieve a VR with l � 2. We found several systems
of four beams fitting this purpose. In this paper,
the most interesting ones are presented. The first
system (A) is composed of four linearly polarized
beams. The second one (B) is composed of two lin-
early and two circularly polarized beams. Finally,
the third system (C) is composed of four linearly po-
larized beams with a beam retarded by a quarter
wavelength. A results in a locally radially electric
field l � 2, while B and C resulting electric fields
are characterized by a rotation of 180° about a vortex
center: l � 1. These plates with l � 1 will be used
as polarization converters to achieve the desired
radially polarized beam required for the recording
of l � 2 VR.

A is characterized by

A �
�
0

1

�
; B �

�
1

0

�
;

C �
�
0

1

�
; D �

�
1

0

�
: (8)

B is characterized by

A �
�
0

1

�
; B �

���
2

p

2

�
1

−i

�
;

C �
�
1

0

�
; D �

���
2

p

2

�
1

i

�
: (9)

Fig. 4. Orientation of the electric field for the superimposition of
two circularly polarized beams of opposite handedness, δ being the
phase retard between the two beams.

Fig. 5. Schematic representation of the polarization overlap, the
four beams possess the same incident angle on the surface.
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C is characterized by

A �
�
1

0

�
; B �

���
2

p

2

�
1

1

�
;

C �
�
0

i

�
; D �

���
2

p

2

�
1

−1

�
: (10)

Figures 6–8 represent the intensity of several plates
between two parallel linear polarizers.

To achieve an ideal VR of l � 2, the electric field
must be similar to the electric field of a perfectly ra-
dially polarized beam with a uniform intensity. The
electric fields resulting from our simulations ap-
proach this ideal field but they are different in terms
of uniformity of the intensity or directionality of the
local polarization ellipse. In the following, we will
analyze and compare our resulting electric fields.

The local polarization ellipse resulting from A is
perfectly linear. The superimposition area contains
several vortex centers and along a vortex center
the orientation of the polarization rotates about
360°. However, the system presents a major draw-
back: the intensity drops down to zero at the vortex
center. Due to the lack of recording intensity, the
orientation of the fast axis near the center of the
retarder may be random after the recording process.

For B and C, the superimposition area also con-
tains several vortex centers but unlike A, the fast
axis of the local polarization rotates only about
180° instead of 360°. A retarder recorded using B
or C will exhibit only a half of the desired fast axis
rotation. However, a half-wave plate characterized

by this orientation of fast axis acts a polarization
converter: it transforms a horizontally polarized
beam into a radially polarized one. Therefore, these
systems are not direct recording of VR with l � 2 but
a two step recording process. The first step is a four
beam overlap to record a half-wave plate at the re-
cording wavelength (325 nm) characterized by a total
rotation of its fast axis of 180° (VR with l � 1). The
second step uses a UV (325 nm) collimated beam
transmitted through the nonuniform half-wave plate
to record a VR of l � 2. With these systems, the elec-
tric field resulting from the superimposition does not
undergo the drastic drop of intensity at the center
but the directionality of the local polarization ellipse
decreases near the center and the local polarization
is perfectly circular at a vortex center.

Since our resulting electric fields deviate from the
ideal one, the orientation of the polymers contained
in the first layer may not be the predicted one, caus-
ing an area with disoriented LC at the end of the
recording process. Indeed, to achieve a perfect orien-
tation of the LC, the alignment layer must be submit-
ted to an electric field with an important intensity
and directionality. Our resulting fields present drops
of intensity or directionality, to characterize them
two criteria were established.

• Idir � �I1– I2�∕IT , with IT being the sum of the
intensity of the beams used in the overlap. Idir rep-
resents the percentage of the directional intensity.
For the ideal recording electric field, Idir � 1 every-
where in the sample, while Idir � 0 means the LC
cannot properly align because the beam is circularly
polarized: I1 � I2 or the intensity is null I1 � I2 � 0.
• dp � 1 − �I2∕I1� is the directionality parameter.

For a linear polarized beam dp � 1, while dp � 0 is
for a circularly polarized beam.

The criteria will be used to numerically compute
areas where the recording electric field is not strong
or directional enough to achieve a proper orientation
of the polymers in the first layer. Therefore, after the
recording process, the LC contained in these areas
may not have the predicted orientation. To easily re-
present the variation of these criteria, maps with a
size equal to p were computed and are presented
in Figs. 9 and 10.

Near the vortex centers, the variation of these
parameters exhibits rotational symmetry. However,
for B, Idir exhibits an asymmetry in the y direction

Fig. 6. Transmitted intensities of the half-wave plates obtained
by polarization holography with several vortex centers. The small-
est distance between two vortex centers will be defined as the
period p, with p being a function of the incident angle and the re-
cording wavelength, θi and λr, respectively, with λr � 325 nm. Our
simulations were made with θi � 5 arcsec; therefore p � 20;626λr.
The value of θi was chosen due to experimental results.

Fig. 7. Transmitted intensities of the half-wave plates obtained
by polarization holography between two parallel polarizers for a
size of p.

Fig. 8. Transmitted intensities of VR of l � 2 obtained by polari-
zation holography between two parallel polarizers for a size of p. B
and C are obtained by the recording a collimated beam transmitted
by the intermediate plates.
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but the drop of intensity being in the region with a
strong deviation from the ideal angle, this region
is not of great interest in VR and will not be exten-
sively analyzed.

To obtain accurate values on the evolution of the
characteristics of our beam, Idir and dp were com-
puted along the line containing the vortex center
and calculations were made to determine the radii
of the circles where these parameters are under sev-
eral thresholds. The thresholds were selected on an
experimental base. They represent Idir and dp for a
linearly polarized beam transmitted by a quarter-
wave plate with an angle α between the direction
of the incident polarization and its fast axis. We
chose several values of α: 22.5°, 30°, 37.5°, 42.5°,
44.5°, and 44.9°. The results are summarized in
Table 1.

Several pictures of possible disorientation area are
presented in Fig. 11. The evolution of Idir and dp are
shown in Figs. 12 and 13 and the numerical values of
the radii are in Tables 2 and 3, respectively.

The systems with an intermediate plate are
characterized by the same loss of directionality. Con-
sequently, the criterion of choice will be the direc-
tional intensity. Based on this criterion, the best
system is C because the radius where the directional
intensity is below a threshold is smaller than in the
other systems. Another advantage of C is that the
distribution of its fast axis orientation is very similar
to the perfect case unlike B where the areas of same
orientation do not follow straight lines but are
curves. However, the recording setup of C is compli-
cated to implement because the D beam must be

accurately retarded by a quarter-wave with respect
to the other beams.

5. First Experimental Results

Our method presents two major differences with the
classical method used to record uniform retarders.

• Our recording electric fields are not the ideal
electric field with a uniform intensity and where
the local polarization is linear everywhere. Our re-
cording fields present drops Idir and dp.
• Our recording electric fields result from the

superimposition of differently polarized beams.

Fig. 9. Maps of Idir for the three systems.

Fig. 10. Maps of dp for the three systems.

Table 1. Table of Idir and dp for Several Values of α

α�°� Idir dp

22.5 0.701 0.824
30 0.5 0.6667
42.5 0.2588 0.1603
44.5 0.0872 0.0343
44.9 0.0035 0.007

Fig. 11. Maps of transmitted intensities of half-wave plates ob-
tained with C between two parallel polarizers with an area of dis-
orientation of the LC. The intensity in the area of disorientation is
pictured by the transmitted intensity of an unpolarized beam after
a linear polarizer. Thus, the area of disorientation pictured
by a gray disk depend on the criterion. (a) Idir < Idir30°,
(b) Idir < Idir42.5°, and (c) Idir < Idir44.9°.

Fig. 12. Evolution of Idir along the central line. The dashed lines
represent several limit values selected in our analysis: Idir30°,
Idir42.5°, and Idir44.9°.

Fig. 13. Evolution of dp along the central line. The dashed lines
represent several limit values selected in our analysis: dp30°,
dp42.5°, and dp44.9°, with B and C being superimposed.
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Before recording a VR with l � 2, we realized two
sets of experiments to separately test the deviations
from the ideal case. The first set allowed us to deter-
mine a first approximation of the lower limit of Idir
and dp to obtain an upper approximation of the area
containing disoriented LC. The goal of the other set
was to achieve the recording of 1D SR using the
superimposition of two circularly polarized beams
of opposite handedness. It allowed us to implement
a simple full in-line recording process.

A. Determination of the Lower Limits of Idir and dp

To determine the lower limits of Idir and dp, several
retarders were recorded using elliptical polarization.
The recording setup contained a UV laser at 325 nm,
a UV linear polarizer (p1), a UV quarter-wave bire-
fringent plate on a rotation mount (l1), and a beam
expander (see Fig. 14). To change the polarization
of the recording beam from one retarder to the other,
l1 was rotated along its normal. Several retarders
were recorded with an angle from 0° to 45° between
the axes of p1 and l1.

The recording process of our samples contains two
successive steps.

• First, a photalignment layer (Rolic ROP103) of
approximately 50 nm is spin-coated on a glass sub-
strate. Then, the layer is submitted to the elliptical
recording polarization with a dose of 200 mJ∕cm2.
• Second, the LCP precursor (Rolic ROF5102) is

spin-coated on the previous one and heated to re-
move the solvents. The LCs will orient themselves
according to the orientation of the polarization

sensitive elements of the first layer. Then, the sample
is submitted to UV curing. Therefore, the LCs are
fixed so the fast axis of the sample is frozen. The coat-
ing thickness of the second layer is determined to
produce an half-wave plate at 660 nm.

To characterize the uniformity of the fast axis
orientation, the following property was used: when
the fast axis of a uniform retarder is parallel or
perpendicular to the incident polarization, the
polarization remains unchanged. The retarder is
inserted between two linear polarizers which are
continuously rotated and the transmitted intensity
is recorded. On one hand, when the fast axis of a uni-
form retarder is aligned with the axis of one of the
polarizers, the transmitted intensity must be null.
On the other hand, a retarder with a variation of
its fast axis orientation will never exhibit a null in-
tensity between two crossed polarizers. Therefore,
the transmitted intensity will be used as a criterion
of uniform directionality of the fast axis.

The experimental setup was composed of a visible
collimated beam (660 nm), a linear polarizer (P1), a
quarter-wave plate with an angle of 45° between its
fast axis and the axis of P1, two linear polarizers on
accurate rotation mounts �P2; P3�, and a camera (see
Fig. 15). P2 and P3 were in cross configuration and
the retarder was inserted between them. They were
simultaneously rotated to keep them in cross
configuration and the transmitted intensity was
recorded.

Presently, several retarders were recorded and the
largest angle between the axes of l1 and p1 is
45°� 2°. We observed a nearly uniform transmitted
intensity with very small variations due to dust on
the LC layer, small polarization variations of the re-
cording beam due to its expanding and imperfections
of the polarizers (Fig. 16).

Using these promising results, we can assume that
the LC are still properly oriented for an angle of 43°
between the axes of l1 and p1. The recording ellipse
obtained in this configuration is characterized by
Idir � 0.0698 and dp � 0.1034. The radii of the area
corresponding to these criteria were computed for
the systems and the results are pictured in Fig. 17
and summarized in Table 4.

The largest radius of possible disorientation is
1755λr for a sample length of 20;626λr. It represents
an area of ≈2.3% of the total area of the retarder.
However, it is an upper limit of the radius of

Table 2. Table of Radii for the Resulting Intensities (in λr Units)
for a Size of a Sample of ≈20;626λr

A B C

Idir < Idir�22.5°� 6557 5155 2462
Idir < Idir�30°� 5155 3437 1687
Idir < Idir�37.5°� 3503 1718 856
Idir < Idir�42.5°� 1966 574 286
Idir < Idir�44.5°� 869 116 57
Idir < Idir�44.9°� 387 24 11

Table 3. Table of Radii for the Ratio of Intensities (in λr
Units) for a Size of a Sample of ≈20;626λr

B C

dp < dp�22.5°� 5155 5155
dp < dp�30°� 3436 3436
dp < dp�37.5°� 1718 1718
dp < dp�42.5°� 572 572
dp < dp�44.5°� 116 116
dp < dp�44.9°� 24 24

Fig. 14. Scheme of the exposing process, polarization in red and
beam in blue.

Fig. 15. Scheme of the measuring process, polarization in red and
beam in blue.
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disorientation area and other prototypes will be re-
corded with a more accurate angle between l1 and p1.

B. Recording of 1D SR

To test our capability to record the overlap of several
polarized beams, simple prototypes were realized.
We exposed the first layer to the superimposition
of two circularly polarized beams of opposite handed-
ness to record the electric field pictured in Fig. 1. The
recording setup contained the same UV laser, a beam
expander, a linear polarizer p1, a Savart plate [29],
and a quarter-wave plate. The Savart plate was used
to separate the incident beam into two beams of same
intensity with orthogonal linear polarization and l1
was used to circularize the polarization of these
beams in order to generate the two circularly polar-
ized beams of opposite handedness. The exposing
setup is pictured in Fig. 18 and pictures of the
prototypes are presented in Fig. 19.

The prototypes exhibited the expected continuous
variation of the fast axis orientation in the area of

superimposition. The variation is pictured by the in-
tensity variation of an incident linearly polarized
beam transmitted by the retarder and a linear polar-
izer (see Fig. 19). Changing the expanding process
allowed us to record retarders with different periods
from 15 μm to 1.3 cm. These retarders were used for
two applications depending on their period. Retard-
ers with a small period (≈15 μm) were used as polari-
zation state separators [25], while retarders with a
large period (≈3 mm) were used as polarization ana-
lyzers [6]. Thanks to these prototypes, we also ob-
served that a period of 20;626λr ≈ 6 mm was within
our reach. Moreover, the smallest distance between
two vortex centers being the same as the period of
the 1D SR, we can assume that distances between
15 μm and 1.3 cm are realistic for our VR. Therefore,
with our recording setup, a typical size of a VR
containing only one center can be from 5 mm to
1.2 cm.

6. Conclusions and Perspectives

In this paper, VRs, their applications, and methods of
recording were exposed. The theory of polarization
holography with two beams was completely devel-
oped and its use as a new method to build a VR with
four polarized beams was described. The systems
used to induce a radially polarized beam were pre-
sented. We showed that our systems do not achieve
ideal recording electric fields but fields with a drop of
intensity or directionality. Our systems were numeri-
cally characterized thanks to two parameters Idir and
dp. The first experimental results on the lower
acceptable value of these parameters were pre-
sented. We computed an upper limit of possible
disorientation area. The experimental setup for
the recording of a 1D SR and the first prototypes
were presented.

Fig. 16. (a) Transmitted intensity between two cross polarizers
for a uniform retarder recorded with an ellipticaly polarized beam
with an angle of 45°� 2° between the axes of l1 and p1. (b) Trans-
mitted intensity for a commercial birefringent plate in the setup.
The variations of intensity in (a) are mainly due to dust on the LC
layer and on small polarization aberrations due to the expanding
process. The two pictures were taken with the same camera and
the same exposure time and gain.

Fig. 17. Transmitted intensities between two parallel polarizers
with the largest area of disorientation for each systems with the
actual experimental limit (α � 43°).

Table 4. Table of Radii for a Recording Polarization Obtained
with an Angle of 43° between the Axis of p1 and the Axis of l1

(in λrecording Units) for a Size of a Sample of ≈20;626λr

A B C

Idir < Idir�43°� 1755 458 229
dp < dp�43°� 458 458

Fig. 18. Scheme of the recording process, polarization in red and
beam in blue. The two recording beams possess the same intensity
to record a series of linear polarization.

Fig. 19. (a) Picture of a 1D SR between two crossed polarizers
with a white source. Defects are due to dust and small oxidation
spots. The retarder was recorded using the superimposition of two
circularly polarized beams of opposite handedness. (b) Transmitted
intensity of a uniformly linearly polarized beam after the retarder
and a linear polarizer.
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In the future, two mains tasks will be achieved: the
accurate determination of the limits of dp and Idir
and the recording and testing of several VR.

To accurately determine these limits, the recording
setup will be changed: the beam will be collimated
before the polarizer and the quarter-wave plate to
avoid polarization modifications due to the expand-
ing process and a more complex method will be used
to improve the determination of the angle between
the axis of the polarizer and the axis of the
quarter-wave plate.

To record prototypes with a 2D variation of the fast
axis, another Savart plate with its shearing direction
perpendicular to the first one will be added, generat-
ing four differently polarized beams and allowing the
recording of VR prototypes.

This work and the author are funded thanks to a
grant of the “Fond pour la formation à la Recherche
dans l’Industrie et l’Agriculture” (FRIA).
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Complements to the article
After the publication of this article, another set of prototypes was realized to determine with a better
accuracy the experimental limits: the minimal value of the directionality parameter dp and the minimum
value of the directional intensity Idir. Several changes were performed on the recording setup:

• The error on the angle formed by the axis of the quarter-wave plate and the linear polarizer was
reduced to 0.5◦.

• The recording setup was modified: the linear polarizer and the quarter-wave plate were moved
after the beam expander (see Figure 5.8).

• The alignment of the beam expander was improved using a reference mirror. The mirror is placed
to achieve a normal incidence where no other optics are present. Then the beam expander is
positioned, it will be aligned to achieve the best reflected beam.

Figure 5.8: Representation of the new recording setup, the beam is pictured in blue and the polarization
is represented by red arrows.

Thanks to these prototypes, two major conclusions can be established.

• The maximum acceptable angle between the axes of the polarization components depends on the
expanding process. A better alignment of the beam expander will allow a larger angle before de-
picting visible signs of misorientation of the LCs. Indeed retarders with a poorly aligned expanding
process presented a milky veil for an angle larger than 38◦ while with our better alignment, the
coating only appears for angles larger than 43.5◦.

• We confirmed that with our best alignment of the beam expander, the maximum angle was 43.5◦.
Therefore the present experimental limits correspond to the polarization ellipse after a quarter-
wave plate with an angle of 45◦ between its optical axis and the incident polarization

dp = 0.1034; Idir = 0.0698.

The maximum radius of the misalignment area Rmis and the percentage of the ratio between the mis-
aligned surface and the total surface of the retarder smis are presented in Table 5.1.

Table 5.1: Table of the radii of the expected misalignment area Rmis and of the ratios of these areas on
the surface of the retarders smis for the three systems A , B and C . The size of a sample is ≈ 20626λr.

A B C
Rmis 1755 458 458
smis 2.27% 0.15% 0.15%
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Nonetheless, one of the reviewers of our article suggested the reading of patent [15] which claims using
a neighbor effect to realize micro-arrays of optical vortices with LCs.
Several small areas of the pattern are exposed to a defined polarization state while a large one between
the exposed part is never exposed. The orientation of the polymers inside the alignment layer will adjust
to ensure continuity with the borders to create a vortex pattern at the center. Presently, the size of the
unexposed area is 30 µm for exposed areas of approximately 10 µm.

Therefore, we strongly believe that our present experimental limit is a maximum one. It can be reduced
by two facts: a better alignment of the beam expander and the neighbor effect.

• Using a UV wavefront sensor will compute the aberrations of the wavefront after the beam ex-
pander. Therefore, adding high precision translation components on the beam expander could
properly correct the aberrations. Due to the fact that the directionality limits depend on the align-
mentand collimation, a proper recording could be achieved with a less directional field with a
better aligned beam. Then the recording limits should correspond to a more circularly polarized
beam reducing the area of misorientation.

• Since the alignment of the polymers are influenced by the neighbors, even if the polymers near
the phase singularity are not exposed to a sufficiently directional field, their neighbors are exposed
to a proper field. Therefore, the polymers near the phase singularity will align according to their
neighbors orientation and the incoming electric field. This could significantly reduce the area of
misalignment. With the same reduction of 15 µm than the patent [15], the Rmis and smis as a
functions of the recording wavelength are given by Table 5.2.

Table 5.2: Table of the radii of the expected misalignment areas Rmis and of the ratios of these areas
on the surface of the retarders for the three systems smis when a reduction of 15 µm (46λr) is taken into
account. The size of a sample is ≈ 20626λr.

A B C
Rmis 1709 412 412
smis 2.16% 0.13% 0.13%
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5.4 Experimental recording

The recording setup of the vortex retarders contains the following elements (Figures 5.9 & 5.10):

• a UV laser at 325 nm,

• a beam expander BE,

• a linear UV polarizer with a vertical orientation P1,

• two quarter-wave plates λ/4a , λ/4b,

• two Savart plates S av1, S av2.

Figure 5.9: Representation of the recording setup, the beams are pictured in blue and the polarization is
represented by red arrows.

Figure 5.10: Picture of the recording setup.

The first quarter-wave plate converts the incident beam (Figure 5.11 (a)) to a circularly polarized one
(Figure 5.11 (b)). The first Savart plate divides the incident beam into two linearly polarized beams
with orthogonal linear polarizations (Figure 5.11 (c)), the beams being separated following the vertical.
The second quarter-wave plate converts the incident beam into circularly polarized beams of opposite
handedness (Figure 5.11 (d)). Finally, the second Savart plate divides the two incident beams into four
beams linearly polarized (Figure 5.11 (e)). The separation will follow the horizontal and the beams are
in a square configuration.
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(a) (b) (c)

(d) (e)

Figure 5.11: Representation of the positions of the beams and their polarization states through the po-
larization part of the recording setup. The beams are pictured by blue circles and their polarization states
by red arrows. The distance between the beams after the Savart plate is d. Experimentally, the beams are
larger and a superimposition area of the four beams exists.

To determine the characteristics of the local polarization ellipse, the Stokes parameters of the superimpo-
sition area were measured. A linear polarizer, a projecting screen and a camera were added on the setup
and the transmitted intensity for several orientations of the polarizer axis was recorded to compute the
Stokes parameters. The characteristics of the polarization ellipse and the Stokes parameters are linked
by the following system of equations [16, 17]:

S 0 = I2
1 − I2

2

S 1 = I2
1 − I2

2 cos(2α)

S 2 = I2
1 − I2

2 sin(2α)

(5.14)

where I1 is the intensity following the largest semi-axis of the polarization ellipse, I2 is the intensity
following the smallest one and α is the angle between the largest axis and the horizontal.
Several pictures of the orientation of the largest axis for different viewing angles are presented in Fig-
ure 5.12.
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(a) (b)

(c) (d)

Figure 5.12: Representation of the orientation of the largest axis of the local polarization ellipse inside
the superimposition area for several angles of view. The orientation of the largest axis varies from 0◦ to
180◦.

We can observe that we have several rotation centers. The axis performs a rotation of 180◦ corresponding
to the recording of charge one vortices. The rotation centers are aligned along several lines of different
orientations. Thanks to the measuring of the Stokes parameters, the directionality parameter as well as
the residual intensity were also computed. Since the orientation of the fast axis depends of the orienta-
tion of the local polarization ellipse, a half-wave plate was simulated with its orientation of fast axis and
the transmitted intensity of this plate between two linear polarizers were computed. Figure 5.13 presents
these results.
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(a) (b)

(c) (d)

Figure 5.13: Representation of the recording field parameters and numerical simulation of a birefringent
plate recorded using this electric field: (a) & (b) present the parameters of the electric field; (a) pictures dp

and (b) represents Idir. (c) & (d) present the parameters of the simulated plate: (c) presents the transmitted
intensity of the half-wave plate between two linear polarizers and (d) shows the variation of the fast axis
orientation as a multiple of 180◦.

We can observe that:

• Along a vortex center, the transmitted intensity effectively presents two bright and two dark areas.
It was expected since the orientation of the largest axis undergoes a total rotation of 180◦.

• The distance between two centers of rotation is approximately 1.5 mm.

• Near a rotation center, the directionality of the electric field decreases. Therefore an area of mis-
orientation of the LC can be expected. Figure 5.14 presents the expected transmitted intensity with
misorientation areas Imis.
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Figure 5.14: Numerical simulation of the transmited intensity with area of misorientation. The polar-
ization of the beam after the disorientation areas was computed as an unpolarized beam. Therefore, the
transmitted intensity is equal to half of the incident one and grey disks appear on the picture.

On the picture, we can observe that several areas of misalignment of the LCs appear.
These areas are centered on the future vortices centers, they are different ellipses which can be approx-
imated by circles of different radii. The largest radius of misorientation is approximately 10% of the
distance between two centers of rotation. Experimentally, it corresponds to a radius of 150 µm.

Finally, two prototypes were recorded. The thickness of the birefringent layer was chosen to match the
half-wave condition near 600 nm. Figure 5.15 presents several pictures of the transmitted intensity of
the prototypes between two linear polarizers with a white source.
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Figure 5.15: Pictures of the prototypes between two linear polarizers and a white source. The pictures
were taken for different orientation between the polarizers.

As expected, the transmitted intensity exhibits the distinctive shape of a retarder containing several
charge one vortices. Near a rotation center, there are two dark areas and two bright areas. The dis-
tance between two rotation centers is 1.5 mm and the radius of the misorientation area is estimated at
approximately 150 µm. Moreover, the pattern of the transmitted intensity for the real case presents no
obvious differences with the computed transmitted intensity obtained by the Stokes parameters measure-
ment.
To achieve a better knowledge of the electric field, we changed our numerical model to fit the experi-
mental conditions.

• The four beams are in the square configuration pictured in figure 5.11 (e).

• The beams are gaussian beams instead of infinite beam with uniform intensity.

• The beams are characterized by different intensities corresponding to the measured ones.

The parameters of the local polarization ellipse and the intensity transmitted by the simulated half-wave
plate were computed for a sample size of 1.5 cm, they are presented in Figure 5.16.
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(a) (b)

(c) (d)

Figure 5.16: Representation of the simulated electric field with the experimental parameters and simula-
tion of the recorded birefringent plate: (a) & (b) represent the parameters of the electric field; (a) pictures
dp and (b) Idir. (c) & and (d) rxpose the parameters of the simulated plate: (c) presents the transmitted
intensity of the half-wave plate between two linear polarizers and (d) shows the variation of the fast axis
orientation as a multiple of 180◦.

One can observe that the simulations results are similar to the experimental ones. The same pattern of
centers is observed, the rotation of the optical axis along a center is also about 180◦. The reduction of
the electric field directionality near vortex centers also occurs. However, several differences exist: the
alignment of the vortex centers is a bit different and the directional intensity is smaller in the simulated
case.

To achieve a better knowledge of our experimental model, we performed a sensitivity analysis.
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5.5 Sensitivity analysis

The parameters of the sensitivity analysis were separated into two categories, the first ones depending
on the orientation of the active axis of the polarization components and the second ones depending on
the expanding process.

• The first set contains the difference between the orientation of the optical axis of the components
and its ideal orientation. The ideal orientation of the active polarization axis is able to achieve
the recording of four beams in a square configuration with identical intensity and the appropriate
polarization state (see Figure 5.11 (e)).

• The second set contains the incident angle θi and the width of the gaussian beams σ.

5.5.1 Jones representation of the polarization components

The first task to compute the resulting field is to model the polarization components.
Since four components are present, four differences exist ε1, ε2, ε3, ε4. These parameters affect the polar-
ization states of the beams, their intensity and the position of their center which determines the phase
relation between them.
The polarization and the intensity of the beams can be computed using the Jones formalism, the vec-
tors representing the exiting beams being obtained by multiplications of the matrices of the polarization
components and the incident beam vector.

A generic birefringent plate with a retard of φ and orientation α of its fast axis is given by [13].(
cos(φ/2) + ı cos(2α) sin(φ/2) −ı sin(2α) sin(φ/2)

−ı sin(2α) sin(φ/2) cos(φ/2) − ı cos(2α) sin(φ/2)

)
(5.15)

Since the incident beam (Jin) is vertically polarized, the ideal orientation of the first quarter-wave plate
(L1) axis is 45◦. Therefore, L1 is characterized by φ = π/2 and α = 45◦ + ε1 after simplifications it is
described by equation 5.16.

L1 =

√
2

2

(
1 − ı sin(2ε1) −ı cos(2ε1)
−ı cos(2ε1) 1 + ı sin(2ε1)

)
(5.16)

The Savart plate can be viewed as two linear polarizers depending on the separation direction of the
beams. The transmission axes are at +45◦ and −45◦ with respect to the separation direction. A general
linear polarizer with a transmission direction of α is represented in equation 5.17.

Pα =
1
2

(
1 + cos(2α) − sin(2α)
− sin(2α) 1 − cos(2α)

)
(5.17)

Experimentally, the first separation direction is vertical. Thus the polarizers S a1 and S b1 representing the
first Savart plate are oriented at +45◦ + ε2 and −45◦ + ε2 (equations 5.18 and 5.19).

S a1 =
1
2

(
1 − sin(2ε2) − cos(2ε2)
− cos(2ε2) 1 + sin(2ε2)

)
(5.18)

S a1 =
1
2

(
1 + sin(2ε2) cos(2ε2)

cos(2ε2) 1 − sin(2ε2)

)
(5.19)



106 Chapter 5. Vortex retarders

The ideal orientation of the axis of the second quarter wave-plate, L2,is horizontal.
So L2 is characterized by φ = π/2 and α = ε3 (equation 5.20).

L2 =

√
2

2

(
1 + cos(2ε3) −ı sin(2ε3)
−ı sin(2ε3) 1 − cos(2ε3)

)
(5.20)

The second ideal separation direction of the Savart plate is the horizontal. Thus the polarizers S a2 and
S b2 representing it are oriented at 135◦ + ε4 and 45◦ + ε4 (Equations 5.21 and 5.22).

S a2 =
1
2

(
1 + sin(2ε4) cos(2ε4)

cos(2ε4) 1 − sin(2ε4)

)
(5.21)

S b2 =
1
2

(
1 − sin(2ε4) − cos(2ε4)
− cos(2ε4) 1 + sin(2ε4)

)
(5.22)

Finally, the four exiting beams can be written as.

A = S a2 L2 S 1a L1 Jin

B = S b2 L2 S 1a L1 Jin

C = S a2 L2 S 1b L1 Jin

D = S b2 L2 S ba L1 Jin

(5.23)

5.5.2 Position of the beams centers

To compute the phase difference of the beams, the position of their center must be studied.
The action of a Savart plate on the position is a displacement of the beam centers: they are shifted on a
circle centered on the incident beam. The radius of this circle rS depends on distance between the beams
at the exit of the Savart plate d, rS =

√
2

2 d and the angle of rotation depends on the separation direction
(see Figure 5.17.

Figure 5.17: Picture of the beams centers exiting the Savart plate for an horizontal separation direction.
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For a Savart plate with a perfect vertical direction and a separation of d, the centers of the beams a and
b will be

ax = d/2 ay = d/2
bx = d/2 by = −d/2.

For a Savart plate with a separation direction of 90◦ + ε2, the positions of the two centers are given by:

ax = cos(45 + ε2) × rS ay = sin(45 + ε2) × rS

bx = cos(45 + ε2) × rS by = − sin(45 + ε2) × rS
.

The two configurations are presented on Figure 5.18.

Figure 5.18: Picture of the beams centers exiting the Savart plate, the perfect case is pictured in blue
while the case with an alignment error is pictured in red.
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The action of the second Savart plate is the same as the first one, the centers of the four beams are on
two circles of same radius. The first one is centered in a and the second one is centered in b. A and B
originate from a while C and D originate from b (see Figure 5.19).

The ideal case is an horizontal separation direction after a vertical one, the beam positions are (see
Figure 5.19 (a)):

Ax = 0 = Ay = d
Bx = d By = d
Cx = d Cy = 0
Dx = 0 Dy = 0

. (5.24)

For a case where misalignments occur, the separation direction of the first Savart plate is 90◦+ ε2 and the
direction of the second one is ε4. The coordinates of the beams are given by (see Figure 5.19 (b)):

Ax = (cos(135 + ε4) + cos(45 + ε2)) × rS Ay = (sin(135 + ε4) + sin(45 + ε2)) × rS

Bx = (cos(45 + ε4) + cos(45 + ε2)) × rS By = (sin(45 + ε4) + sin(45 + ε2)) × rS

Cx = (cos(45 + ε4) + cos(−45 + ε2)) × rS Cy = (sin(45 + ε4) + sin(−45 + ε2)) × rS

Dx = (cos(135 + ε4) + cos(−45 + ε2)) × rS Dy = (sin(135 + ε4) + sin(−45 + ε2)) × rS

. (5.25)

(a) (b)

Figure 5.19: Representation of the beam with two Savart plates: (a) stands for the perfect case where the
first separation direction is purely vertical and the second is purely horizontal, (b) stands for a case where
small errors on the angles are present. The action of the first plate is pictured in blue while the action of
the second one is pictured in green.
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5.5.3 Parameters due to the expanding process

To find the parameters due to the expanding process, we measured the beam after the beam expander
in two configurations. The first one contains only the beam expander. It measures the intensity of the

expanded beam, to compute σ in the gaussian intensity profile I = I0 ∗ exp(−
2 ∗ r
σ

).
The second setup contains the beam expander, a quarter-wave plate, a savart plate and a linear polarizer
to convert the polarization variation into an intensity variation to compute θi by measuring the distance
between two lines of same intensity (Figure 5.20). We found thatσ = 2.92 mm ± 0.04 mm and θi = 18.57
arcsec ± 0.2 arcsec.

Figure 5.20: Representation of the measuring setup for θi, the beams are represented by blue lines and
their polarization in red.
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5.5.4 Perfect case simulation

Firstly, the perfect case was simulated. It is described by ε1 = ε2 = ε3 = ε4 = 0 , θi = 18.57 arcsec and
σ = 2.92 mm. The characteristics of the simulation are presented in Figures 5.21 and 5.22.

(a) (b)

(c) (d)

Figure 5.21: Simulation of the perfect case features for a square of 1.5 cm. (a) Represents the direc-
tionality parameter dp. (b) Pictures the directional intensity Idir. (c) shows the transmitted intensity of the
simulated half-wave plate between two perpendicular linear polarizers. (d) Exposes the orientation of the
plate fast axis as a multiple of 180◦.
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Figure 5.22: Representation of the transmitted intensity for the simulated half-wave plate between two
linear polarizers where the areas of misorientation are pictured by grey disks with an intensity of 0.5.

The perfect case captures the essence of the experimental case.

• Several rotation centers are present.

• The rotation of the fast axis along a rotation center is 180◦.

• The rotation centers are aligned on several curves.

• The distance between two rotation centers is 13.47 mm with a variation of approximately 0.1 mm,
it is approximately the distance between two centers in the experimental case.

• Loss of directionality also appears near the rotation centers for the perfect case.

The major difference is on the directional intensity Idir which is larger in the perfect case simulation than
in the simulation of the experimental case.

5.5.5 Definition of the comparison criteria

To simplify the analysis, we defined several comparison criteria

• the dimensions of the frame containing the area submitted to an appropriate recording field,

• the coordinates of four rotation centers (see Figure 5.23),

• the largest and smallest semi-axes of the areas of misorientation for these four centers.

The accuracy of the method for the determination of the coordinates and of the size of the semi-axes is
about 1 pixel at the smallest resolution: 1.76 µm.
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To compute these parameters, two simulations were realized for each case.

• The first one contains 8 periods of the retarder. It is characterized by a resolution of 7.05 µm and
it is used to compute the total rotation of the optical axis, the number of rotation centers and the
size of the frame.

• The second one contains 2 periods. It is characterized by a resolution of 1.76 µm and it is used to
to compute the position of the centers and the size of the semi-axes.

Figure 5.23: Position of the centers used in the sensitivity analysis.

The results of the sensitivity analysis are presented in the following section.

5.5.6 Polarization sensitivity analysis

Our accuracy on the determination of the angle of the polarization axes is about 1◦, so the parameters ε
will vary between −1◦ and +1◦ with a step of 0.5◦. Since it covers a large amount of cases, we limited
our simulation to several physical cases:

• only one component is misaligned,

• all the components present the same error,

• one component is misaligned but the next elements are properly aligned according to it.
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Case 1
The polarization axis of the second Savart plate is misaligned.

ε1 = ε2 = ε3 = 0 ε4 ∈ [−1; 1]

Table 5.3: Results for an error on the second Savart plate

ε4 = −1 ε4 = −0.5 ε4 = 0 ε4 = 0.5 ε4 = 1
Frame (pixels) 1297×1344 1296×1388 1296×1257 1295×1369 1295×1374

Coordinates (pixels)
a (637,994) (633,987) (629,980) (629,973) (621,966)
b (1402,1062) (1397,1052) (1392,1043) (1387,1034) (1382,1025)
c (1728,1684) (1739,1674) (1741,1683) (1763,1693) (1774,1701)
d (1044,1739) (1055,1746) (1066,1753) (1077,1760) (1088,1767)

Size of the axes (pixels)
a (46,19) (47,18) (47,19) (46,19) (47,19)
b (46,14) (44,14) (44,15) (44,14) (42,16)
c (65,17) (64,18) (62,17) (63,18) (62,19)
d (55,19) (53,20) (54,19) (53,19) (53,20)

ε4 = −1 ε4 = −0.5 ε4 = 0

ε4 = 0.5 ε4 = 1

Figure 5.24: Representation of Imis with variation of ε4.
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Case 2
The polarization axis of the second quarter-wave plate is misaligned.

ε1 = ε2 = ε4 = 0 ε3 ∈ [−1; 1]

Table 5.4: Results for an error on the second quarter-wave plate.

ε3 = −1 ε3 = −0.5 ε3 = 0 ε3 = 0.5 ε3 = 1
Frame (pixels) 1293×1342 1295×1349 1296×1257 1297×1365 1298×1371

Coordinates (pixels)
a (620,981) (625,981) (629,980) (633,980) (637,979)
b (1382,1041) (1387,1042) (1392,1043) (1396,1044) (1401,1044)
c (1755,1702) (1752,1692) (1741,1683) (1749,1674) (1750,1664)
d (1068,1769) (1067,1761) (1066,1753) (1065,1745) (1064,1737)

Size of the axes (pixels)
a (47,21) (48,20) (47,19) (46,19) (46,19)
b (43,15) (44,15) (44,15) (45,14) (44,14)
c (64,18) (63,18) (62,17) (63,18) (63,15)
d (55,20) (55,19) (54,19) (54,19) (53,19)

ε3 = −1 ε3 = −0.5 ε3 = 0

ε3 = 0.5 ε3 = 1

Figure 5.25: Representation of Imis with variation of ε3.
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Case 3
The polarization axis of the first Savart plate is misaligned.

ε1 = ε3 = ε4 = 0 ε2 ∈ [−1; 1]

Table 5.5: Results for an error on the first Savart plate.

ε2 = −1 ε2 = −0.5 ε2 = 0 ε2 = 0.5 ε2 = 1
Frame (pixels) 1296×1271 1297×1282 1282×1257 1297×1385 1296×1385

Coordinates (pixels)
a (638,994) (634,987) (629,980) (624,973) (620,967)
b (1400,1061) (1396,1052) (1392,1043) (1387,1034) (1382,1025)
c (1738,1693) (1744,1688) (1741,1683) (1757,1679) (1764,1674)
d (1036,1739) (1053,1746) (1066,1753) (1081,1759) (1095,1765)

Size of the axes (pixels)
a (47,18) (46,18) (47,19) (47,20) (47,21)
b (45,15) (45,15) (44,15) (44,14) (44,14)
c (68,20) (66,18) (62,17) (62,18) (60,17)
d (56,19) (55,17) (54,19) (54,19) (53,19)

ε2 = −1 ε2 = −0.5 ε2 = 0

ε2 = 0.5 ε2 = 1

Figure 5.26: Representation of Imis with variation of ε2.
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Case 4
The polarization axis of the first element is misaligned.

ε2 = ε3 = ε4 = 0 ε1 ∈ [−1; 1]

Table 5.6: Results for an error on the first quarter-wave plate.

ε1 = −1 ε1 = −0.5 ε1 = 0 ε1 = 0.5 ε1 = 1
Frame (pixels) 1296×1365 1296×1362 1282×1257 1296×1350 1296×1343

Coordinates (pixels)
a (628,979) (629,980) (629,980) (630,980) (631,981)
b (1392,1043) (1392,1042) (1392,1043) (1392,1043) (1392,1043)
c (1758,1683) (1754,1683) (1741,1683) (1748,1684) (1745,1685)
d (1075,1754) (1070,1753) (1066,1753) (1062,1753) (1059,17545)

Size of the axes (pixels)
a (47,19) (46,18) (47,19) (46,19) (47,18)
b (45,15) (45,15) (44,15) (44,14) (44,14)
c (63,18) (66,18) (62,17) (63,18) (63,19)
d (55,19) (55,17) (54,19) (54,18) (54,19)

ε1 = −1 ε1 = −0.5 ε2 = 0

ε1 = 0.5 ε1 = 1

Figure 5.27: Representation of Imis with variation of ε1.
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Case 5
The error on the alignment of all the elements is the same.

ε1 = ε2 = ε3 = ε4, ∈ [−1; 1]

Table 5.7: Results for the same error for all the elements.

ε1 = −1 ε1 = −0.5 ε1 = 0 ε1 = 0.5 ε1 = 1
Frame (pixels) 1294×1271 1295×1278 1282×1257 1297×1386 1297×1401

Coordinates (pixels)
a (628,994) (629,987) (629,980) (629,973) (629,967)
b (1391,1059) (1391,1051) (1392,1043) (1391,1034) (1391,1026)
c (1748,1711) (1749,1697) (1741,1683) (1753,1670) (1755,1658)
d (1046,1756) (1057,1755) (1066,1753) (1075,1751) (1085,1750)

Size of the axes (pixels)
a (48,19) (46,19) (47,19) (47,19) (47,20)
b (45,15) (45,16) (44,15) (42,14) (43,15)
c (67,20) (65,19) (62,17) (61,16) (60,17)
d (57,20) (57,19) (54,19) (52,19) (51,19)

ε1 = −1 ε1 = −0.5 ε1 = 0

ε1 = 0.5 ε1 = 1

Figure 5.28: Representation of Imis with variation of ε.
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Case 6
The first Savart plate is misaligned, the next elements possess the same error.

ε1 = 0 ε2 = ε3 = ε4, ∈ [−1; 1]

Table 5.8: Results for an error on the first Savart with the same error for the next elements.

ε2 = −1 ε2 = −0.5 ε2 = 0 ε2 = 0.5 ε2 = 1
Frame (pixels) 1294×1270 1295×1276 1282×1257 1297×1389 1289×1403

Coordinates (pixels)
a (629,994) (629,987) (629,980) (628,973) (629,966)
b (1390,1059) (1391,1051) (1392,1043) (1391,1034) (1391,1026)
c (1741,1712) (1746,1697) (1741,1683) (1756,1670) (1761,1657)
d (1038,1755) (1052,1754) (1066,1753) (1080,1752) (1093,1750)

Size of the axes (pixels)
a (47,19) (46,20) (47,19) (46,20) (47,20)
b (45,16) (44,15) (44,15) (43,14) (44,14)
c (67,20) (64,19) (62,17) (62,17) (60,16)
d (56,20) (56,19) (54,19) (53,19) (52,19)

ε1 = −1 ε1 = −0.5 ε1 = 0

ε1 = 0.5 ε1 = 1

Figure 5.29: Representation of Imis with variation of ε2.
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Results analysis for the polarization part
When compared to the ideal case, the simulations present small differences with the perfect case.
The variation of the fast axis along a rotation center is always 180◦ and the pattern of the rotation centers
is similar.
The modification of the parameters increases with the error.
The size of the frame exhibits variations. The larger one happens for the case 5 where all the active
axes are misaligned with the same error. The difference on the surface of the frame is about 12% of the
perfect case.
We can also observe that the centers do not stay at the same place, their displacement also increases with
the error on the positioning. The larger displacement is about 30 pixels, it corresponds to 53 µm which
is small compared to the size of the simulated retarder which is about 1.5 cm in the simulation.
The semi-axes of the ellipses also present variations, the largest variation exhibits an increased about
10% compared the perfect case. Since the error on the determination of the size of the semi-axes is
about 1 pixel, the maximum error on the variation computation is about 4 pixels which is quite important
compared to the observed variation. In the future, to increase the result/error ratio, simulations should
be performed with a smaller pixel size.
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5.5.7 Expanding process simple analysis

Due to the expanding process, σ and θi are modified at the same time, they were measured for two
configurations.

Table 5.9: Results for the variation of the beam parameters.

position1 position 2 reference
Parameters

σ (mm) 2.04 2.88 2.92
θi (arcsec) 43.08 23.54 18.57

Frame 1324×1376 1411×1353 1296×1257
Coordinates (pixels)

a (1178,1024) (716,995) (629,980)
b (1497,1037) (1311,1033) (1392,1043)
c (1648,1316) (1602,1560) (1751,1683)
d (1342,1329) (1053,1601) (1066,1753)

Size of the axes (pixels)
a (18,6) (35,14) (47,19)
b (19,8) (34,11) (44,15)
c (21,6) (43,13) (62,17)
d (18,6) (38,14) (54,19)

position 1 position 2 prefect case

Figure 5.30: Representation of Imis with variation due to the expanding process.
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Results analysis for the expanding part
This time, strong modifications exist. The rotation of the fast axis is still 180◦ along a rotation center but
the number of rotation centers drastically changes. However, the pattern of the centers is similar for the
three cases.
We can observe that an increase of the width of the Gaussian beam is combined with a reduction of the
incident angle. It is shown by a reduction of the frame size and by an increase of the distance between
two rotation centers. The reduction of the distance between two centers was expected. Also a decrease
of the misorientation ellipses axes exists and it is approximately the same percentage than the reduction
of the distance between two rotation centers.
In the future, upgrades will be performed on the measuring setup of the beam parameters to achieve a
better accuracy on σ and θi using a UV camera at normal incidence instead of a projection screen.

5.5.8 Conclusion of the sensitivity analysis

Two kinds of parameters were selected in the analysis: the errors on the angles formed by the horizontal
and the active polarization axes of the elements and the beams parameters σ and θi.

The results of the simulations based on the polarization parameters present no obvious variations in our
error range. A significant variation of the recorded plate appears when the alignment error is typically
five times larger than our experimental one (5◦ instead of 1◦). An example is shown in Figure 5.31.
Therefore we are pretty confident with our polarization systems and no upgrade on the determination of
the axis seems mandatory.

Figure 5.31: Variations of Imis for larger error on the second Savart plate polarization axis. The modifi-
cation of the fast axis pattern becomes important for angle of 5◦.
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The parameters depending on the collimating process are modified at the same time. This leads to great
variations of the characteristics of the beam like the frame, the number of rotation centers, the distance
between them and the size of the semi-axes of the misorientation ellipses. In the future, the measurement
systems should be upgraded to achieve a better quality of the measurements and other measurements and
simulations will be performed to obtain a better knowledge on the feasible configurations.

5.6 Conclusions and perspectives

In this chapter, the vortex retarders were described. They are characterized by a rotation of their fast
axis. Several systems of four differently polarized beams used to record them without mechanical action
were exposed and their resulting electric fields were analyzed. Since the fields differ from the ideal case,
decreases of intensity or directionality occur and misorientation areas of the liquid crystal could appear.
Simple prototypes were realized to determine the experimental limits and the misorientation areas were
computed for the numerical simulations. The experimental recording setup was exposed and the first
prototypes were presented, analyzed and compared to the simulation of the actual recording setup. Fi-
nally, a sensitivity analysis was performed to achieve a better knowledge of the experimental reality.

Several things still need to be investigated. The effect of the neighbors on this particular case must be
measured to determine the decrease of the misorientation areas. The wavefront aberrations due to the
Savart plates should be simulated, measured and added in the computation of the recording electric field.
Accurate measurements of the beams parameters variation should be performed to compute the variation
of the electric field when the two parameters change.
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In this chapter, we focus on our initial application of vortex retarders: coronagraphy.
The goal of coronagraphy is to suppress the light of a central star to make its faint companions visible.
The principle of coronagraphy is presented and the use of vortex retarders is mathematically developed.
The computation of the performances is explained. The attenuation of on-axis sources will be computed
for the theoretical and experimental systems presented in the previous chapters. For each system, several
cases will be studied to know the influence of the area of misorientation and the effect of its reduction to
the presence of well aligned neighbors. Finally the attenuation for off-axis sources will be computed for
several cases and compared to the attenuation of an on-axis one.
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6.1 Introduction

Coronagraphy is a method invented by Bernard Lyot [1] to observe the sun’s corona. An opaque mask is
inserted inside a telescope to block the light from the sun to allow the examination of the sun’s corona.
Applied to the observation of exoplanets, coronagraphy is used to simulate the eclipse of a star by
reducing or suppressing its light. Since the star companions are fainter than the star, they are usually
hidden by the central star light. A decrease of this light reduces the contrast between the star and its
companions allowing their imaging.
A coronagraph has become a generic term for a system which suppresses or strongly reduces the on-axis
light of a central star while allowing the transmission of the light of surrounding sources to allow their
detection [2, 3].
The basic principle is pictured in Figure 6.1 for a simple experimental test bench. For the observations
with a telescope, the lenses are replaced by the mirrors of the telescope.

Figure 6.1: Principle of the coronagraphic setup, the numbers present the important steps of the setup.
(1) Is a the beginning of the optical setup, (2) before the coronagraph, (3) after the coronagraph, (4) before
the Lyot stop, (5) after the Lyot stop, (6) at the detector.

To adapt the coronagraphy principle to the observation of exoplanets, several methods and techniques
were investigated [2, 4]. In this chapter we will focus on phase mask coronagraphs.
The principle is the same as the Lyot setup but the coronagraph mask is not an opaque one. It allows the
transmission of the central star light but it affects the phase of the wavefront to reject this central starlight
outside the Lyot stop. Several designs were proposed [5, 6], realized [7, 8] and tested on telescopes
[9, 10].
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Roddier phase mask
The mask proposed by Rodier [5] produces a π phase shift on a small part of the center of the central
lobe of the Airy pattern. The phase shift is introduced by a thickness difference of the retarder.
The mask presents several drawbacks

• the phase retard depends on the wavelength ψ =
2π
λ

(n − 1)h,

• the size of the central lobe is a function of the wavelength [5].

Therefore, the ideal effect of the mask is obtained for only one wavelength and the performances de-
crease when used with a large bandwidth.

Four quadrant phase mask
An evolution of the Roddier phase mask was proposed by Rouan in 2000 [6]. The mask divides the focal
plane into four symmetrical areas. On one diagonal, the areas will induce a π phase retard caused by a
thickness difference with the adjacent parts (see figure 6.2).

Figure 6.2: Representation of the four quadrant phase mask. The areas in red are characterized by an
additional thickness computed to produce an extra π phase retard compared to the blue areas.

Thanks to the π phase retard between two adjacent quadrants, the central light will destructively interfere
and it will be rejected outside of the Lyot stop. The advantage of this mask is the absence of geometric
chromatism but it still exhibits a variation of the phase retard with the wavelength.
To solve this problem, the use of subwavelength gratings was proposed [11]. The phase retard will be
obtained trhough the variation of the grooves orientation instead of a variation of the thickness. The
gratings parameters achieve a corresponding half-wave plate and the groove orientation will change
about 90◦ from one area to the other (see figure 6.3).
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Figure 6.3: Representation of the four quadrant phase mask with subwavelength gratings. The gratings
parameters are the same but the groove orientation is rotated from one area to the other.

Unfortunately, due to the rapid change of gratings orientations, phase discontinuities are present on the
edges of the quadrants. They will cause dead zones on the final pictures which will prevent the observa-
tion of the companion if its light falls on the edges.

Vortex coronagraphs
Since the dead zones are due to the discontinuity of the grooves orientation, a continuous rotation of
the fast axis was imagined leading to the use of vortex retarders for coronagraphy. Two avatars exist:
the Annular Groove Phase Mask (AGPM) and the Vector Vortex Coronagraph. The AGPM [2, 12, 13]
is composed of circular subwavelength gratings while the other one contain liquid crystals polymers
oriented to achieve a continuous rotation of the fast axis [8, 10, 14]. Both present specific advantages
and drawbacks [2, 15] as the difficulty to achieve the optimal parameters of the grating or the difficulty
to achieve a proper orientation of the liquid crystals at the center of the retarder.
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6.2 Mathematical description of coronagraphy

The setup in Figure 6.1 is used to prove the perfect rejection of an optical vortex coronagraph by com-
puting the amplitude of the electric field at each important steps. To simplify the computation, all the
lenses are approximated as perfect and are characterized by the same focal length f .

Before the first lens (1), a uniform amplitude is considered, it is given by equation 6.1.

Π

(
r1

2R1

)
(6.1)

where r1 is the radial coordinate in the aperture axes and R1 is the radius of the circular aperture.
After the first lens and before the coronagraph (2), the amplitude is given by equation 6.2.∫ ∞

0
Π

(
r1

2R1

)
exp
−2πı
λ f

(ρr1 cos(ω) cos(θ1) + ρr1 sin(ω) sin(θ1)) (6.2)

where r1, θ1 are the polar coordinates for the aperture and ρ, ω are the polar coordinates for the mask and
λ is the incident wavelength. After simplifications, the amplitude is given by equation 6.3.

2πR2 J1 (2πR1ρ/ fλ)
2πR1ρ/ fλ

(6.3)

where J1 is the first order Bessel function.
After the coronagraph (3), the amplitude is given by equation 6.4.

2πR2
1

J1 (2πR1ρ/ fλ)
2πRρ/ fλ

eı2α (6.4)

where α is the local orientation of the optical axis of the coronagraph, for a vortex retarder with a
topological charge of two, α = ω.
Before the Lyot stop: (4), the electric field is given by equation 6.5.∫ ∞

0

∫ 2π

0
2πR2

1
J1 (2πR1ρ/ fλ)

2πR1ρ/ fλ
eı2ωe−

ı2π
fλ ρr2 cos(ω−θ2)ρ dρ dω (6.5)

where r2, θ2 are the polar coordinates in the Lyot stop axes.
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Thanks to the definition of a Bessel function:

Jn (z) =
1

2πı−n

∫ 2π

0
eızcosηeınηdη

, the amplitude before the Lyot stop is given by equation 6.6.

−
e2ıθ2

2π
2πR2

1

∫ ∞

0

J1 (2πR1ρ/ fλ)
2πR1ρ/ fλ

J2 (2πρr2/ fλ) ρdρ (6.6)

Using the Sonine’s integral [16]

∫ ∞

0
y1+µ−λJλ (ay) Jµ (by) dy =


0 0 < a < b

bµ(a2 − b2)λ−µ−1

2λ−µ−1aλΓ(λ − µ)
0 < b < a

 (6.7)

where Γ is the Γ function:Γ(n) = (n − 1)!.
For a charge two vortex:  0 0 < r2 < R1

e−2ıθ2 r2
1 fλ

r2
2

0 < R1 < r2

 (6.8)

. Thus for an ideal vortex, the electric field of a central source can be rejected outside the geometric pupil
area.
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6.3 Computation of the performances of our retarders

To obtain the coronagraphic performances, the amplitude of the electric field A was computed at each
important steps of the Figure 6.1 using Fourier propagation in an IDL code given by D. Mawet.

1. At the beginning of the optical setup A1,

2. before the coronagraph A2 = T F (A1),

3. just after the coronagraph A3 = PM ∗ A2

where PM is the the phase caused by the vortex retarder PM = eı2θ,

4. just before the Lyot stop A4 = T F (A3),

5. after the Lyot stop A5 = LS ∗ A4,

6. finally, at the detector A6 = T F (A5).

The optical setup and the coronagraphs were simulated with the following characteristics.

• arrays size 1024 × 1024

• size of a pixel in the retarder plane 1.76 µ m

• incident wavelength 550 nm

• F #: 51.2

• sampling 16 pixels per λF

We computed the intensity at the detector for several coronagraphic setups: the perfect case, the systems
proposed in 5.3 (A , B and C Figure 6.4) and several rotation centers obtained from the simulation of
the experimental setups (a, b, c and d see Figures 6.5 and 6.6).

ideal vortex A B C

Figure 6.4: Representation of the transmitted intensity of charge 2 vortex with for the centers used to
compute the coronagraphic performances.
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Figure 6.5: Position of the centers (a, b, c and d) chosen to compute the coronagraphic performances.

a b c d

Figure 6.6: Representation of the transmitted intensities for the centers chosen to compute the corona-
graphic performances.

Since misorientation of the liquid crystals may appear, we decided to compute the performances for three
configurations.

1. The liquid crystals are perfectly oriented everwhere inside the retarder (see Figure 6.7 (a)).
Two cases are computed: one with the retarder and one without the retarder. The attenuation Att
is computed as the intensity at the detector obtained with the retarder IA divided by the maximum
of the intensity at the detector without the retarder IB (see Figure 6.8).

2. The liquid crystals exhibit areas of misorientation. A circular obstruction O is added on the retarder
to hide the area of misorientation (see Figure 6.7 (b)). An extra way is computed: it consists in the
attenuation produced only by the opaque circle. The intensity at the detector is IC. The attenuation
produced by the opaque circle is also computed AttO like the previous case and the contribution of

the retarder to the attenuation is computed as Contr =
Att

AttO
(see Figure 6.9).

3. The retarder also presents a misorientation area of the liquid crystals but its radius is reduced by
15 µm due to the presence of neighbors receiving the appropriate electric field (see Figure 6.7 (c)).
The computation is the same as the previous point except it takes into account a smaller obstruction
O.
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(a)
perfect orientation of the LC

(b)
complete area of misorientation

(c)
reduced area of misorientation

Figure 6.7: Transmitted intensities for the retarder produced by C for the three proposed configurations.
The opaque mask is the circular obstruction O which produced the dark circle at the center for the second
and third pictures.
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Figure 6.8: Flow chart for the computation of the performances without misorientation area.
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Figure 6.9: Flow chart for the computation of the performances where a misorientation area is present,
the differences between the second and the thrid case is the radius of O

In the following tables and figures, the results are summarized and compared to the ideal charge 2 VR
(named ideal in the table).
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6.3.1 A , B and C systems without an area of misorientation

Table 6.1: Table of the peak to peak attenuation.

peak to peak attenuation
ideal 9.42e-6
A 9.42e-6
B 8.93e-6
C 9.42e-6

Table 6.2: Table of the attenuation for several concentric circles with a radius in λ/d units.

0.25 0.5 1 1.5 2 3 5 7 10 15
ideal 8.86e-6 7.40e-6 3.82e-6 1.79e6 1.06e-6 4.95e-7 1.87e-7 9.86e-8 5.02e-8 2.38e-8
A 8.86e-6 7.40e-6 3.81e-6 1.78e-6 1.06e-6 4.95e-7 1.87e-7 9.86e-8 5.01e-8 2.38e-8
B 8.37e-6 7.02e-6 3.67e-6 1.73e-6 1.02e-6 4.78e-7 1.82e-7 9.61e-8 4.91e-8 2.37e-8
C 8.86e-6 7.40e-6 3.81e-6 1.78e-6 1.06e-6 4.95e-7 1.87e-7 9.86e-8 5.01e-8 2.38e-8

Figure 6.10: Variation of the attenuation for the three systems, for several concentric circles. The ideal
vortex being the ideal charge 2 VR.

We can observe that the attenuations for these systems are extremely close to the ideal charge two vortex.
It was expected since the orientation of the fast axis is also close to the ideal orientation near the vortex
centers and there is no misorientation area is present.
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6.3.2 A , B and C systems with an area of misorientation

The values of the radius of the misorientation areas in pixels are presented in table 6.3

Table 6.3: Table of the radius of the misorientation area in pixel size.

A B C
87 23 23

Table 6.4: Table of the peak to peak attenuation.

peak to peak attenuation
ideal 7.96e-7
A 1.01e-4
B 7.74e-3
C 7.12e-3

Table 6.5: Table of the attenuation for several concentric circles with a radius in λ/d units.

0.25 0.5 1 1.5 2 3 5 7 10 15
ideal 9.30e-11 1.15e-9 8.53e-9 1.08e-8 6.96e-9 8.17e-9 6.51e-9 5.13e-9 3.88e-9 3.05e-9
A 1.82e-7 2.47e-6 2.06e-5 3.22e-5 2.14e-5 1.85e-5 1.99e-5 2.59e-5 1.35e-5 6.16e-6
B 2.42e-5 2.78e-4 2.45e-3 4.80e-3 4.20e-3 2.10e-3 8.24e-4 4.38e-4 2.21e-4 1.00e-4
C 1.86e-5 2.57e-4 2.40e-3 4.74e-3 4.17e-3 2.08e-3 8.18e-4 4.35e-4 2.19e-4 9.93e-5

Figure 6.11: Variation of the attenuation for the three systems, for several concentric circles. The ideal
case vortex being the ideal charge 2 vortex retarder with a misorientation area masked by an opaque circle
of 5 µm diameter.



6.3. Computation of the performances of our retarders 137

Table 6.6: Table of the vortex retarder contribution to the attenuation for several concentric circles with a
radius in λ/d units.

0.25 0.5 1 1.5 2 3 5 7 10 15
ideal 1.05e-10 1.55e-9 2.23e-8 6.04e-8 6.59e-8 1.67e-7 3.60e-7 5.48e-7 8.37e-7 1.47e-6
A 8.86e-4 1.68e-2 4.13e-1 8.33e-1 7.28e-1 8.13e-1 8.88e-1 9.12e-1 9.16e-1 9.19e-1
B 4.69e-3 8.78e-2 1.77e0 1.25e0 1.01e0 9.67e-1 9.32e-1 9.18e-1 9.09e-1 9.03e-1
C 3.59e-3 8.14e-2 1.73e0 1.23e0 1.00e0 9.60e-1 9.26e-1 9.12e-1 9.02e-1 8.97e-1

Figure 6.12: Variation of vortex retarder contribution to the attenuation for the three systems, for several
concentric circles. The ideal case vortex being the ideal charge 2 vortex retarder.

Once the area of misorientation is introduced, differences appear between the configurations.
We can observe that the attenuations produced by our systems are weaker than the attenuation produced
by the perfect case with a misorientation area of 5 µm. Moreover the attenuation produced by A is
approximately hundred times stronger than the attenuation produced by B and C . However, a strong
attenuation of the central source does not necesserily means a performant coronagraphic setup. For
example, a large opaque mask alone will produce a high attenuation of the central source but it may also
produce high attenuation of the off-axis sources which is an important obstacle to the visual detection
of these off-axis sources. Therefore, after the computation of the attenuation for the central source the
attenuation of off-axis sources will be computed for several cases (see subsection 6.3.7) to compare the
systems.
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6.3.3 A , B and C systems with a reduced area of misorientation

Table 6.7: Table of the radius of the misorientation area in pixel size.

A B C
80 15 15

Table 6.8: Table of the peak to peak attenuation.

peak to peak attenuation
ideal 7.96e-7
A 1.00e-4
B 6.01e-3
C 5.49e-3

Table 6.9: Table of the attenuation for several concentric circles with the radius in λ/d units.

0.25 0.5 1 1.5 2 3 5 7 10 15
ideal 9.30e-11 1.15e-9 8.53e-9 1.08e-8 6.96e-9 8.17e-9 6.51e-9 5.13e-9 3.88e-9 3.05e-9
A 1.70e-7 2.33e-6 1.94e-5 3.15e-5 2.12e-5 1.86e-5 1.88e-5 2.60e-5 1.36e-5 6.20e-6
B 1.82e-5 2.11e-4 1.87e-3 3.67e-3 3.23e-3 1.61e-3 6.29e-4 3.34e-4 1.68e-4 7.62e-5
C 1.40e-5 1.96e-4 1.83e-3 3.63e-3 3.20e-3 1.60e-3 6.25e-4 3.32e-4 1.67e-4 7.56e-5

Figure 6.13: Variation of the attenuation for the three systems, for several concentric circles. The ideal
case vortex being the ideal charge 2 vortex retarder with a misorientation area masked by an opaque circle
of 5 µm diameter.
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Table 6.10: Table of the vortex retarder contribution to the attenuation for several concentric circles with
the radius in λ/d units.

0.25 0.5 1 1.5 2 3 5 7 10 15
ideal 1.05e-10 1.55e-9 2.23e-8 6.04e-8 6.59e-8 1.67e-7 3.60e-7 5.48e-7 8.37e-7 1.47e-6
A 8.29e-4 1.57e-2 3.90e-1 8.12e-1 7.81e-1 7.96e-1 8.66e-1 9.91e-1 9.14e-1 9.18e-1
B 1.38e-3 2.26e-2 6.06e-1 1.01e0 8.23e-1 7.81e-1 7.49e-1 7.35e-1 7.26e-1 7.21e-1
C 1.06e-3 2.10e-2 5.91e-1 9.99e-1 8.16e-1 7.75e-1 7.43e-1 7.30e-1 7.21e-1 7.15e-1

Figure 6.14: Variation of the vortex retarder contribution to the attenuation for several concentric circles.
The ideal case vortex being the ideal charge 2 vortex retarder.

We can observe that the 15 µm decrease of the radius of the misorientation area leads to small modifi-
cations of the performances for the 3 systems. The modifications of the attenuation are different for A
compared to B and C .
For A the attenuation is sometimes stronger and sometimes weaker than the attenuation for the whole
misorientation area, the ratio between the reduced one and the whole one oscillates about 1.03.
For B and C the reduced attenuation is always stronger than the whole one. The reduced attenuations
oscillates around 1.31 for the two systems. Therefore, we can conclude that the smaller the ratio of the
reduced radius on the initial one is, the stronger is the attenuation with the reduced misorientation area.
It can also be observed that the reduction of the misorientation area will also improve the contribution
of the vortex retarder on the attenuation and that the increase of the retarder contribution is also stronger
for B and C than A .
Finally, we can confirm that for these systems, the smaller the misorientation radius is, the smaller is the
deviation from the ideal performances.
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6.3.4 a, b, c and d centers without an area of misorientation

Table 6.11: Table of the peak to peak attenuation.

peak to peak attenuation
ideal 9.42e-6
a 1.08e-1
b 1.69e-2
c 1.67e-2
d 1.04e-1

Table 6.12: Table of the attenuation for concentric circles with the radius in λ/d units.

0.25 0.5 1 1.5 2 3 5 7 10 15
ideal 8.86e-6 7.40e-6 3.82e-6 1.79e6 1.06e-6 4.95e-7 1.87e-7 9.86e-8 5.02e-8 2.38e-8
a 1.02e-1 8.51e-2 4.37e-2 2.04e-2 1.21e-2 5.58e-3 2.07e-3 1.07e-3 5.30e-4 2.37e-4
b 1.58e-2 1.32e-2 6.83e-3 3.20e-3 1.89e-3 8.76e-4 3.25e-4 1.68e-4 8.33e-5 3.73e-5
c 1.57e-2 1.31e-2 6.74e-3 3.15e-3 1.86e-3 8.60e-4 3.19e-4 1.65e-4 8.18e-5 3.66e-5
d 9.85e-2 8.23e-2 4.23e-2 1.97e-2 1.17e-2 5.40e-3 2.00e-3 1.04e-3 5.13e-4 2.29e-4

Figure 6.15: Variation of the attenuation for the four rotation centers for several concentric circles. The
ideal case vortex being the ideal charge 2 vortex retarder.

This time, the attenuations produced by the retarders are different even for the case of a perfect orientation
of the liquid crystals. The attenuation achieved with our systems are always weaker than the ideal charge
2 vortex due to the deviation of the orientation of the fast axis. Besides, differences between our retarders
also exist. The attenuation produced by b and c is always stronger than the attenuation produced by
the other systems. When the intensities presented in Figure 6.6 are examined, it can be observed that
the fast axis patterns of these centers are closer to the ideal charge two pattern than the other center.
Consequently, we can assume that the closer the fast axis pattern is to the ideal charge two vortex, the
stronger the attenuation achieved by the retarder.



6.3. Computation of the performances of our retarders 141

6.3.5 a, b, c and d centers with an area of misorientation

Table 6.13: Table of the peak to peak attenuation.

peak to peak attenuation
ideal 7.96e-7
a 8.90e-5
b 8.63e-5
c 8.61e-5
d 8.65e-5

Table 6.14: Table of the attenuation for several concentric circles with the radius in λ/d units.

0.25 0.5 1 1.5 2 3 5 7 10 15
ideal 9.30e-11 1.15e-9 8.53e-9 1.08e-8 6.96e-9 8.17e-9 6.51e-9 5.13e-9 3.88e-9 3.05e-9
a 1.84e-5 1.49e-5 2.03e-5 2.66e-5 1.78e-5 1.45e-5 1.24e-5 2.39e-5 1.32e-5 6.03e-6
b 2.71e-6 4.17e-6 1.95e-5 2.76e-5 1.77e-5 1.45e-5 1.24e-5 2.40e-5 1.33e-5 6.07e-6
c 3.69e-6 4.16e-6 1.95e-5 2.77e-5 1.78e-5 1.45e-5 1.24e-5 2.41e-5 1.33e-5 6.07e-6
d 1.64e-5 1.33e-5 1.85e-5 2.44e-5 1.64e-5 1.34e-5 1.16e-5 2.35e-5 1.31e-5 6.00e-6

Figure 6.16: Variation of the attenuation for the four rotation centers for several concentric cricles. The
ideal case vortex being the ideal charge 2 vortex retarder with a misorientation area masked by an opaque
circle of 5 µm diameter.
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Table 6.15: Table of the vortex retarder contribution to the attenuation for several concentric circles with
the radius in λ/d units.

0.25 0.5 1 1.5 2 3 5 7 10 15
ideal 1.05e-10 1.55e-9 2.23e-8 6.04e-8 6.59e-8 1.67e-7 3.60e-7 5.48e-7 8.37e-7 1.47e-6
a 1.09e-1 1.25e-1 5.13e-1 8.40e-1 7.84e-1e 8.52e-1 9.10e-1 9.33e-1 9.28e-1 9.27e-1
b 1.59e-2 3.49e-2 4.93e-1 8.72e-1 7.81e-1 8.59e-1 9.90e-1 9.37e-1 9.33e-1 9.34e-1
c 1.58e-2 3.48e-2 4.94e-1 8.73e-1 7.82e-1 8.55e-1 9.10e-1 9.38e-1 9.33e-1 9.34e-1
d 9.64e-2 1.11e-1 4.69e-1 7.70e-1 7.19e-1 7.87e-1 8.52e-1 9.15e-1 9.17e-1 9.21e-1

Figure 6.17: Variation of the vortex retarder contribution to the attenuation for the four rotation centers
for several concentric circles. The ideal case vortex being the ideal charge 2 vortex retarder.

For this configuration, the introduction of the misorientation areas results in stronger attenuations. The
attenuations with the combination vortex retarders and opaque mask are thousand times stronger than
the previous case.
The contribution of the vortex retarder on the attenuation is quite weak compared to the cases presented
before. It was expected due to the facts that the radius of the misorientation is quite large and the fast
axis patterns deviate from the ideal case.
It can also be observed that for circles with a radius smaller than 1λ/d, the attenuation and the contribu-
tion of the retarder are stronger for b and c than the other centers while the characteristics of the centers
are equivalent for larger radii. This variation could be explained by the fast axis pattern which is closer
to the perfect case at a small distance of the center for b and c while it deviate like the other two at larger
distance. Other simulations with different fast axis pattern should be completed to check this hypothesis.
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6.3.6 a, b, c and d centers with a reduced area of misorientation

Table 6.16: Table of the peak to peak attenuation.

peak to peak attenuation
ideal 7.96e-7
a 5.98e-5
b 5.71e-5
c 5.72e-5
d 5.82e-5

Table 6.17: Table of the attenuation for for several concentric circles with the radius in λ/d units.

3 4 5 6 7 8 9 10 15 20
ideal 9.30e-11 1.15e-9 8.53e-9 1.08e-8 6.96e-9 8.17e-9 6.51e-9 5.13e-9 3.88e-9 3.05e-9
a 1.75e-5 1.41e-5 1.87e-5 2.48e-5 1.67e-5 1.36e-5 1.17e-5 1.80e-5 9.94e-5 4.55e-6
b 2.55e-6 3.85e-6 1.77e-5 2.56e-5 1.66e-5 1.37e-5 1.17e-5 1.81e-5 1.00e-5 4.60e-6
c 2.53e-6 3.84e-6 1.77e-5 2.57e-5 1.67e-5 1.37e-5 1.17e-5 1.81e-5 1.00e-5 4.59e-6
d 1.55e-5 1.26e-5 1.70e-5 2.27e-5 1.53e-5 1.26e-5 1.10e-5 1.76e-5 9.94e-6 4.54e-6

Figure 6.18: Variation of the attenuation for the four rotation centers for several concentric circles . The
ideal case vortex being the ideal charge 2 vortex retarder with a misorientation area masked by an opaque
circle of 5 µm diameter.
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Table 6.18: Table of the vortex retarder contribution to the attenuation for several concentric circles with
the radius in λ/d units.

3 4 5 6 7 8 9 10 15 20
ideal 1.05e-10 1.55e-9 2.23e-8 6.04e-8 6.59e-8 1.67e-7 3.60e-7 5.48e-7 8.37e-7 1.47e-6
a 1.08e-1 1.23e-1 4.92e-1 8.21e-1 7.60e-1 8.30e-1 8.89e-1 9.11e-1 9.91e-1 9.91e-1
b 1.58e-2 3.36e-2 4.67e-1 8.51e-1 7.58e-1 8.33e-1 8.89e-1 9.17e-1 9.16e-1 9.18e-1
c 1.16e-2 3.36e-2 4.68e-1 8.52e-1 7.59e-1 8.34e-1 8.90e-1 9.17e-1 9.16e-1 9.18e-1
d 9.61e-2 1.01e-1 4.48e-1 7.53e-1 6.98e-1 7.67e-1 8.34e-1 8.93e-1 8.99e-1 9.07e-1

Figure 6.19: Variation of the vortex retarder contribution to the attenuation for the four rotation centers
for several concentric circles. The ideal case vortex being the ideal charge 2 vortex retarder.

It can be noticed that the reduction of the area causes small variations on the attenuation and the contri-
bution of the retarder. This is deductible since the variation of the misorientation area is quite small only
7 pixels of difference on an initial value of 103 pixels compared to the variation from 23 to 15 for the B
and C systems. The stronger efficiency of b and c for radii smaller than 1λ/d is also observed for this
case.
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6.3.7 Attenuation for off-axis sources

Since large portions of the retarder are hidden by an opaque mask, off-axis sources could also be can-
celled. Therefore, we decided to compute the peak to peak attenuation for them with various configu-
rations of the retarder and the average attenuation for several circles. To compute the attenuation, other
retarders were computed with their rotation centers shifted about a multiple of λ/d [17, 18]. We chose
to compute A and C systems and the c center with their appropriate reduced misorientation areas and
the ideal charge two vortex with its opaque mask.

Figure 6.20: Variation of the peak to peak attenuations as functions of the shift of the retarder.

Figure 6.21: Variation of the average attenuation of circles with a center of 0.5λ/d as functions of the
shift of the retarder.
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Figure 6.22: Variation of the average attenuation of circles with a center of 1λ/d as functions of the shift
of the retarder.

Figure 6.23: Variation of the average attenuation of circles with a center of 1.5λ/d as functions of the
shift of the retarder.

We can observe that the system C presents the largest variation with the shift of the rotation centers
while the experimental center c is less sensitive to the shift. It is due to the size of the opaque mask. The
larger the opaque mask is, the less sensitive is the attenuation to the shift of the rotation center.
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We can observe that the performances of our experimental retarders are relatively poor but several so-
lutions exist to improve their performances. For example, with c, a reduction of approximately 50 µm
of the misorientation area’s radius will decrease the average attenuation of approximately 15 for off-axis
sources. Therefore the intensity will be 15 times stronger and the contrast between off-axis and on-axis
sources will be improved.
As expected, two criteria are important:

1. the orientation of the fast axis which must be closer as possible to the ideal pattern to achieve a
high attenuation of on-axis sources,

2. the misorientation area must be as small as possible to achieve the detection of the off-axis sources.

Thus, to improve the coronagraphic performances of our vortex retarders recorded by polarization holog-
raphy, we must

1. get closer to perfect alignment of the polarization optics to achieve a more regular rotation of the
fast axis,

2. achieve a better alignment of the beam expander to reduce the area of misorientation of the liquid
crystals.

6.4 Conclusions

In this chapter, coronagraphy was discussed. The goal of a coronagraph is to cancel the light of a central
star to see its faint companions. Several retarders used for coronagraphy were exposed. We presented
the computation process of the performances of our retarders and the results. The performances of
the systems shown in [19] are really close to the ideal charge two vortex but they decrease when the
misorientation areas are introduced. The performances of our experimental retarders are weak compared
to the ideal case but they could be improved using a better recording process to reduce the misorientation
areas and to order the fast axis pattern.
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Conclusions and perspectives

Objectives and results

In the present thesis, our goal was the recording of space-variant retarders in liquid crystal polymers for
coronagraphy using polarization holography to avoid mechanical actions. Several retarders and applica-
tions were investigated.

The first part of this work introduced the space-variant retarders, the polarization holography concept
and our material the liquid crystal polymers.
The first chapter presented the different kind of retarders, several applications and three bulding methods.

Chapter 2 introduced the concept of polarization holography, the generic recording process of a retarder
and the first retarders. These retarders were recorded using only one linearly polarized beam. Theye
retarders are characterized by a uniform orientation of their fast axis. They were measured on the polari-
metric bench of Hololab. They induce a phase retard of approximately 87◦ with small variations inside
the retarder.

The second part is dedicated to retarders recorded using the superimposition of two circularly polarized
beams of opposite handedness and their applications. The retarders are characterized by a variation of
their fast axis orientation in one dimension. Depending on their period and the incident wavelength, they
can be used as polarization analyzers or polarization states separators.

• Chapter 3 focuses on the polarization analyzer. The period of the retarder is approximately ten
thousand times larger than the wavelength. The retarder transforms a uniformly polarized beam
into a space-variant one and a linear polarizer converts the polarization into an intensity variation.
By recording the intensity variation, the Stokes parameters of the incident beam can be computed.
Numerical simulations were performed to test the method in the ideal conditions, several retarders
were recorded and tested with different linearly polarized beams. The computed parameters exhibit
a ten percent difference with the real ones. A short sensitivity analysis allowed us to determine the
origins of the error which are the speckle phenomenon, the error on the orientation of the lines of
same intensity and the variation of the phase retard inside the retarder. Several clues were given to
reduce the errors.
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• Chapter 4 is centered on the polarization states separator. The period is only thirty times larger
than the wavelength. The retarder diffracts the incident beam into maximum three orders, each
with their own polarization state. It was shown that depending on the retarder characteristics and
the incident polarization state, the number of diffracted beams and the diffraction angle change.
The application to shearography was presented. It aims to detect defaults under a diffusive surface.
The separator will diffract the incident beam into two superimposed circularly polarized beams of
opposite handedness. A linear polarizer after the retarder will convert the polarization variation
into an intensity one. By studying the change of the intensity pattern during a deformation, de-
faults can be observed. The method principle was exposed as well as numerical simulations. The
results of the first tests as well as an analysis of the experimental limits were exposed. Finally,
several improvements of the method were mentioned.

The third part cares about 2D space-variant retarders and their application to coronagraphy.
Chapter 5 presents the exapansion of polarization holography to a four-beam superimposition to achieve
2D space-variant retarders. A particular case was studied the vortex retarders. They are characterized by
a rotation of their fast axis. The mathematical model for the retarders was exposed and several record-
ing systems were presented and analyzed. The resulting fields deviate from the ideal ones: they exhibit
decreases of intensity or directionality near a rotation center resulting in an eventual misorientation area
of the liquid crystal. To determine the experimental limits, several simple retarders were recorded using
elliptically polarized beams. Then, retarders were recorded using the four beams superimposition. The
retarders present the expected rotation of their fast axis and a first estimation of their quality was also
computed. Finally, a short sensitivity analysis was performed to determine the modifications required
for a quality improvement.

In the last chapter, we came back to our original goal: coronagraphy. The principle behind the atten-
uations computation was explained and the performances of our retarders were computed for several
systems in different configurations. It was observed that two factors limit the efficiency of the retarders:
the deviation of the fast axis orientation from the ideal charge 2 vortex and the size of the misorientation
area. Due to this factors, the effects of our actual retarders are weak compared to the other realizations
but they could be improved by minimizing these factors.
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Perspectives

In the future, several improvemennts could be realized to increase the quality of our retarders and their
efficiency. Other applications of our retarders could also be investigated.

Improvements of the present applications

Polarization anaysis
The polarization analysis suffers from errors mainly due to the phase retard variation, the speckle and
the error on the orientation of the same intensity lines ζ.
Several ways exist to reduce them:

• Measuring the whole retarder with the polarimetric bench will provide a phase retard map. Using
this map in the fitting algorithm will improve the results quality.

• Rotating a transparent glass disk at high speed should reduce the importance of the speckle phe-
nomenon by performing a temporal averaging. Then the performances will be improved

• Changing the computation algorithm of the lines of same intensity will decrease the error on ζ and
will increase the accuracy of the computation.

Polarization states separator
The first results are promising. Several other tests will be performed and several upgrades are possible
like the recording of achromatic separators. They will achieve the half-wave plate condition in a large
bandwidth. Therefore, only two circularly polarized beams with equal intensity will be diffracted for
an incident linearly polarized one. This will allow the use of the same retarder with several wavelength
depending on the reflection spectrum of the surfaces. Moreover, it will allow to easily change the reso-
lution by switching from one source to the other with series of fibered sources.

Vortex retarders
The intensity and directionality limits depend on the collimating process. By upgrading the expanding
process, using for example a UV wavefront sensor to check the wavefront quality, the ratio between
the radius of the misorientation area on the distance between two rotation centers should be reduced.
Moreover, a better alignment of the expanding setup should reduce the wavefront aberrations and results
in the recording of VR closer to the ideal case. Several retarders will be recorded with the improved
recording setup. By measuring the Stokes parameters of the recording field one can compute the radius
of the misorientation areas for the retarders and by measuring the retarders with a polarizing microscope,
the size of these areas could be computed and compared to the expected value.

Coronagraphy
For coronagraphy, the performances will be computed for the retarders realized with the improved
recording setup. The new retarders will be characterized by a fast axis pattern closer to the ideal charge
2 vortex and a smaller area of misorientation of the liquid crystals. So the performances should approach
the ideal case.
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Other applications

In the future, other aplications of space-variant retarders could be investigated.

Polarization scrambler
The first one is based on several 1D continuous SR. It is polarization scrambling. It consists in the
simulation of an unpolarized beam from an incident polarized one. It is required by polarization sensi-
tive gratings where the diffracted orders depend on the polarization of the incident beam to cancel this
dependence. A simple method consists of several birefringent pates: a quarter-wave plate followed by
a half-wave plate and another quarter-wave plate. The orientation of the fast axes is quickly made to
change in order to achieve a large spectrum of polarization states. By performing a temporal average
during the variation, one can simulate the effect of an unpolarized beam [1, 2]. We proposed a series of
1D SR with same phase retard and different direction of variation with two different configurations.

• A large collimated beam will be transmitted by the different retarders, inside the beam a large
spectrum of different polarization states will be completed and by performing a spatial mean on
the beam an unpolarized beam can be simulated.

• A small beam will be transmitted by the retarders by moving the spot on different parts of the
retarders the resulting polarization state will change and by performing a temporal normalization
an unpolarized beam can be simulated.

Polarization converters
The other applications come from the usage of charge one vortex. As stated before, the retarder converts
a uniformly linearly polarized beam into a radially or azimuthally polarized one. Three applications
can be cited: tighter focalization, surface plasmon excitation by a focusing beam and enhanced optical
tweezers.

• It has been mathematically demonstrated that under certain conditions a radially polarized beam
can be focused into a tighter spot than a uniformly linearly polarized one. Specifically, a radially
polarized beam focused by a high numerical aperture with a central obstruction results in a smaller
spot than a uniformly polarized beam [3, 4, 5].

• Surface plamons are collective oscillations of electrons, in the most widely used configuration they
can only be excited by a p polarization [6]. To obtain a confined plasmonic field, a highly focusing
beam could be used. Unfortunately, with a uniformly polarized beam, the optimal excitation is not
achieved everywhere inside the spot since the beam is not p polarized everywhere. To obtain the
optimal excitation, a radial polarization is mandatory. This polarization could be achieved thanks
to a charge one VR [6, 5].
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• Optical tweezers use forces originating from electric field gradients in strongly focused beam
to trap and move microscopic volume of matter [7, 8]. Two kinds of forces are implied: the
gradient forces proportional to the gradient of the electric field and the scatering forces on the
particles. The first ones tend to stabilize the trap by putting the particle at the center of the beam
while the second ones weaken the trap by moving the particles centered on the focus of th ebeam.
Radial polarization allows the tighter focusing and increases the gradient forces while reducing
the scattering forces along the optical axis. This combination increases the efficiency of optical
tweezers allowing the trapping of larger particles [5, 9].
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A

Jones and Stokes formalism

During the writing of the thesis, we discovered that we continuously switch between the Stokes and
Jones formalisms. To make the reading easier, we will sum up these formalisms in this annex.
The Jones formalism is used to describe the electric field in terms of amplitude and phase, while the
Stokes formalism is more used to describe intensity or partial polarization [1].

Jones formalism
The Jones formalism is based on the electric field of the incident beam, it can only described fully
polarized beam. The electric field E is described by its horizontal and vertical components [1]:

E =

(
E0x expıφx

E0y expıφy

)
(A.1)

where E0x and E0y represent the amplitude for the horizontal and vertical components of the electric field
and φx, φy the phase of these components.

In the Jones formalism, a polarization element is represented by a 2×2 matrix and a generic birefringent
plate is given by [2]:(

cos(φ/2) + ı cos(2α) sin(φ/2) −ı sin(2α) sin(φ/2)
−ı sin(2α) sin(φ/2) cos(φ/2) − ı cos(2α) sin(φ/2)

)
(A.2)

where α is the fast axis orientation and φ is the phase retard between the two polarization components.
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Stokes-Mueller formalism
The Stokes parameters: S 0, S 1, S 2, S 3 are defined by the transmitted intensities after polarizers in several
configurations [3]:

S =


S 0

S 1

S 2

S 3

 =


I0 + I90

I0 − I90

I45 − I135

IR − IL

 (A.3)

I0, I45, I90 and I135 represent the intensities measured after a linear polarizer with its transmission axis
forming the corresponding angle with the horizontal. IR and IL stand for the intensities transmitted by a
right and left circular polarizer.

In the Stokes formalism, a polarization element is represented by a 4×4 matrix and a generic birefringent
plate is given by

BP =


1 0 0 0
0 1 − 2 sin2(2α) sin2(φ/2) 2 cos(2α) sin(2α) sin2(φ/2) − sin(2α) sin(φ)
0 2 cos(2α) sin(2α) sin2(φ/2) 1 − 2 cos2(2α) sin2(φ/2) cos(2α) sin(φ)
0 sin(2α) sin(φ) − cos(2α) sin(φ) cos(φ)

 (A.4)

where α is the fast axis orientation and φ is the phase retard.
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Retarders in liquid crystals

As stated in chapter 2, other retarders in liquid crystals exist. Two characteristics are possible: the
possibility to dynamically control the orientation of the LCs in the retarder and a variation of the LCs
orientation along the thickness of the retarder.

The most simple retarders made from LCs are characterized by a frozen orientation of the LCs.
After a specific recording process, even if the LCs submitted to an electromagnetic field, they do not
move and conserve their orientation.
However, some retarders allow a dynamical modification of their LCs orientation changing the phase
retard induced by the retarder. These retarders contain controllable electrodes [4] generating an electric
field to modify the LC orientation. The electrodes are located at the two interfaces of the retarders. Sub-
mitted to an electric current, the LC will change their orientation to align with the electric field; from
a director aligned with the incident beam to a pattern when the director is perpendicular to the incident
beam (see Figure B.1). Changing the tilt of the LC changes the indexes of the medium containing the LC
and the phase retard becomes controllable (see Figure B.2). These retarders are used for several applica-
tions in our everyday life such as liquid crystal display on alarm clock [1], a more industrial application
is their use for the phase shifting technique used in shearography [5, 6] to allow phase shifting techniques.

(a) (b) (c)

Figure B.1: (a), (b), (c) Representation of a retarder with a controllable retard for several positions of the
liquid crystals.
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Figure B.2: Represention the phase retard as a multiple of the wavelength for a commercial retarder
(LCC1111-A from Thorlabs) [4], when the applied voltage is changed, the retard produced by the retarder
is modified.

The other kind concerns the variation of the LC orientation along the thickness of the retarder.
Most retarders are characterized by a uniform orientation of their LC along their thickness while several
retarders exhibit a variation of their LC orientation along the thickness.
The retarders can be viewed as a stack of horizontal planes, the orientation of the LC changes from one
plane to the next one (see Figure. B.3).
These retarders exhibit achromatic properties. For example the phase retard between the polarization
component changes less than the uniform case for a large range of wavelengths [7]. To realize retarders
with a variation along the thickness a regularly used method implies two alignment layers differently
prepared and a LC cell containing LC able to exhibit that twisting property [8, 9]. The LC is sandwiched
between the two substrates with the alignment layers facing each other. The LC near the layers will
orient according to them and the LC between them will continuously rotate from one orientation to the
other one (see Figure B.4).
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Figure B.3: Representation of the LC orientation of one retarder along the thickness, the LCs are pictured
by blue cylinders.

Figure B.4: Profile representation of a 1D SR with a variation of the LC orientation along its thickness,
the 1D variation is in the x direction while the variation along the thickness is in the z direction.
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C

Cleaning and recording process

This annex will detail the cleaning and recording process presented in 2.2.1. The recording process can
be summed up in seven points:

1. Preparation of the substrate

2. Spin-coating of the first layer

3. First heating

4. First exposure

5. Spin-coating of the second layer

6. Second heating

7. Second exposure

1. Preparation of the substrate
Our substrates are microscope slides. The slides are cut to obtain square slides of approximatly 1.5 cm
large. They are washed in a bleach solution and to perform a first cleaning then they are rinsed with
bi-distilled water. Afterwards they are placed in a solution of Caro acid a.k.a. "piranha solution". It is
typically a solution of 5 ml of H2O2 at 30% with 15ml of H2S O4 at 90%. The substrate stays in the solu-
tion for 15 minutes, then it is rinsed with bi-distilled water, acetone and isopropanol. Next, the substrate
is glued to another clean larger square glass sheet of 8cm large. Finally, it is placed on the spin-coater.

2. Spin-coating of the first layer
When the substrate is on the spin-coater, drops of ROP − 103 are deposed on the substrate. The goal
of the spin-coating is to achieve a fixed homogenous thickness of the layer by rotating the substrate. A
spin-coating process consists in two regimes: the first one is a short one with a slow speed and the second
one is longer with a higher speed. The parameters are:

• a time of 15 s and a rotation speed of 800 rpm,

• a time of 60 s and a rotation speed of 3000 rpm.

With this set of parameters, a thickness of approximately 50 nm is expected.
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3. First heating
After the spin-coating, the retarder is placed on a heating plate to remove the residual solvents. It will
stay for 5 minutes at a temperature of 180◦C.

4. First exposure
After that, the retarder is placed on the first exposure setup. This exposure will align the polymers of the
first layer, their orientation will define the orientation of the fast axis in the finished retarder.
The retarder is vertically placed to be illuminated by the beam or the superimposed beams. The exposure
time is computed to allow an energy of 200mJ/cm2. It may vary according to the expanding process from
15 minutes to one hour. The first uniform retarders and the first 1D SR had longer exposure time. How-
ever, several modifications of the expanding setup were performed and the exposure time was reduced to
twenty minutes for the vortex retarders. To control the exposure an optical shutter is programmed with
the appropriate exposure time and a twenty minutes delay is added to allow the cooling of the retarder
after the heating and the manipulations to place it.

5. Spin-coating of the second layer
After the first exposure, the retarder is placed on the spin-coater and drops of ROF − 5103 are deposed
on top of the first layer. Only a high speed regime exists:

• a time of 60s and a rotation speed of 1600rpm.

With this regime we are able to achieve nearly half-wave plate at 532nm [5]. The absence of a slow
regime is due to the spin-coater parameters, one a previous spin-coater we were able to achieve the
retarders presented in chapters 2 and 3 with the same set of parameters for the low and high speed
regimes

• a time of 60s at a rotation speed of 800rpm.

6. Second heating
Since the second layer reacts with the oxygen of the air, once the spin-coating is finished, the retarder is
moved to a glove box where a nitrogen flush is present. The retarder is directly put under the nitrogen
entry to avoid oxidations. After 15 minutes, the retarder is placed on a heating plate at a temperature
of 50◦ for 3 minutes. The second heating will also remove the solvents of the second layer and it will
anneal the LCPs [10, 11].

7. Second exposure of the retarder
After the heating, still inside the glove box, the retarder is placed vertically just after a UV source with a
spectrum contained in 380 − 420 nm [12]. After a 10 minutes delay to allow the cooling of the retarder,
it will be exposed during approximately 3 minutes to achieve an energy of 1J/cm2. Then the retarder is
finished, the liquid crystals will not move if exposed to visible light.
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