Geochemistry of continental rivers of the Virunga Volcanic Province, East Africa

Charles Balagizi^{1,2,4}, François Darchambeau², Marcellin Kasereka¹, Steven Bouillon³, Mathieu Yalire¹ and Alberto V. Borges²

Between December 2010 and January 2012, monthly sampling was carried out on 13 rivers in the Virunga Volcanic Province (DR of the Congo); 8 of which drain into Kabuno bay (a subbasin of Lake Kivu), the 5 others draining into Lake Edward. We analysed both in situ physicochemical characteristics as well as a suite of biogeochemical parameters. Most parameters showed no pronounced seasonal variation, whereas their spatial variation suggests a strong control by catchment characteristics such as the geology, soil type, slope and vegetation. The maximum concentrations of nutrients such as nitrate (178 μ M), nitrite (0.3 μ M), ammonium (13.4 μ M) and total phosphorus (14.5 μ M) indicate that anthropogenic pollution is relatively limited. However, high suspended sediment concentrations (245-1467 mg L⁻¹) were recorded in rivers in the Kabuno bay catchment, indicating high soil erodibility, possibly as a consequence of deforestation.

Vegetation and relief regulate the type and concentration of organic matter; maximum concentrations for dissolved and particulate organic carbon (DOC and POC) were 1.80 and 0.57 mg L⁻¹, respectively, in rivers from lava field, while their respective concentrations were 4.92 and 26.29 mg L⁻¹ in non-volcanic sub-catchments. Dissolved inorganic carbon (DIC) dominated the C pools as a result of high carbonate and volcanic rocks dissolution. Specific conductivity and total alkalinity presented high values in rivers located in the volcanic field where K⁺ and Na⁺ were the dominant cations as product of water interactions with the highly alkalic basalts lavas. $\delta^{13}C_{POC}$ (-27.2 to -18.2 %) and $\delta^{13}C_{DOC}$ (-27.2 to -21.2 %) signatures showed a mixed

¹ Geochemistry and Environmental Department, Goma Volcano Observatory; Goma, D R Congo

² Chemical Oceanography Unit, Université de Liège, Liège, Belgium

³ Department of Earth & Environmental Sciences, Katholieke Universiteit Leuven, Leuven, Belgium

⁴ Department of Environmental Sciences, Via Vivaldi 43, 81100 Caserta Italy

origin of organic carbon from both C3 and C4 vegetation. $\delta^{13}C_{DIC}$ (-10.7 to 0.0 ‰) values were intermediate between those of CO₂ produced by terrestrial organic matter degradation, and those of DIC from carbonates rocks dissolution.

The rivers of the Virunga Volcanic Province were sources of carbon dioxide (CO_2) and methane (CH_4) to the atmosphere, with CH_4 and pCO_2 values ranging from 4.95 to 5051.95 nM and 3474 to 23339 ppm nM respectively. Highest pCO_2 values were found in rivers from volcanic fields and were correlated with dissolved nitrous oxide (N_2O) concentrations (24 to 68 nM). These rivers were the only sites where N_2O concentrations were oversaturated with respect to atmospheric equilibrium. Globally, CH_4 values were high in rivers located in the catchment of Kabuno bay where swamps promote CH_4 production.