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Abstract. We argue how it is possible to apply the general scheme of the effective scattering theory
(EST) to the description of the hadronic processes. The results of the numerical tests of sum rules
for πN spectrum parameters that follow from the bootstrap system allow us to claim the consistency
of the predictions obtained in the framework of our approach with the known phenomenology. We
also demonstrate that the tree-level low energy expansion coefficients computed in the framework
of our approach show nice agreement with known experimental data.
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INTRODUCTION

In papers [3, 4, 5, 6] we started the systematic study of the special class of effective
theories of strong interaction. Our principle goal is to develop a self consistent Dyson
perturbation technique for the infinite component effective scattering theory of strong
interaction. It is quite reasonable to start from the definition of such a theory. We use a
slightly modified version of the definition first given in [1]. The field theory is called ef-
fective if the quantum interaction Hamiltonian (in the interaction picture) contains all the
monomials consistent with a given algebraic (linear) symmetry. The effective theories
are as renormalizable as the ordinary renormalizable ones. The only difference is that
one needs to formulate an infinite number of renormalization prescriptions (RPs) fixing
the finite part of counterterms. Effective theories are intrinsically quantum constructions
since we relay upon Weinberg scheme of constructing QFT (see e.g. [2]). This approach
is adjusted for S-matrix calculations. We call a theory constructed with the use of this
scheme as effective scattering theory (EST).

In our approach we deal only with a very narrow class of localizable effective scatter-
ing theories and introduce the notion of extended perturbative scheme (see the discussion
in [3, 5]). The hypothetical localizable effective theory of strong interaction requires an
infinite extension of perturbative scheme by introduction of an infinite tower of baryon
and meson resonances of arbitrary high spin and mass. When dealing with such a theory
one has first to point out a way to assign meaning to the perturbation series. The second
problem is to somehow reduce the number of independent parameters for which it is
necessary to formulate RPs fixing the physical contents of the theory. In Refs. [3, 4, 5]
we propose a way to construct the meaningful perturbative scheme for such a theory.



CONSTRUCTION OF THE CAUCHY FORMS

The amplitude Mbβ
aα of πN binary scattering

πa(k)+Nα(p,λ )→ πb(k′)+Nβ (p′,λ ′) (1)

can be presented in the following form (isotopic invariance is taken to be the exact
symmetry of strong interaction):

Mbβ
aα = δbaδβαM+ + iεbac(σc)βαM−, (2)

where

M± = u(p′,λ ′)

{
A±+

(
k̂ + k̂′

2

)
B±

}
u(p,λ ) (k̂ ≡ γµkµ). (3)

The invariant amplitudes A±, B± are certain functions of Mandelstam variables s, t, u.
The tree-level binary πN scattering amplitude calculated in the framework of our

effective theory approach is the sum of all possible s-, t- and u- channel resonance ex-
changes plus the sum of contributions of all possible ππNN̄ vertices. To assign meaning
to this sum (which is certainly a formal one) one has to switch to minimal parame-
trization (see [4, 5]) and to use the method of Cauchy forms ([3] and Refs. therein).
The transition to the minimal parametrization helps to get rid of those combinations of
Hamiltonian couplings which appear only in off-shell matrix elements and hence does
not require the formulation of RPs since we are only interested in the calculation of the
S-matrix. In the minimal parametrization the vertices (Hamiltonian monomials) we need
are the following:

J = l + 1
2 (l = 0,1,2 . . .)

I = 1
2 , N =−1: gR̂πNNσ R̂µ1...µl ∂ µ1. . .∂ µl π +H.c.

I = 1
2 , N = +1: igRπNNσγ5Rµ1...µl ∂ µ1. . .∂ µl π +H.c.

I = 3
2 , N =−1: g∆̂πNNP3

2
∆̂µ1...µl ∂ µ1. . .∂ µl π +H.c.

I = 3
2 , N = +1: ig∆πNNγ5P3

2
∆µ1...µl ∂ µ1. . .∂ µl π +H.c.

J = 0,2, . . . , I = 0, P = +1:
1
2gSππSµ1...µJ(π ·∂ µ1. . .∂ µJ π) ,[

g(1)
NNSN∂µ1. . .∂µJ N + ig(2)

NNSJ∂µ1. . .∂µJ−1NγµJ N
]

Sµ1...µJ ,

J = 1,3, . . . , I = 1, P =−1:
1
2gV ππV µ1...µJ(π×∂ µ1. . .∂ µJ π) ,

[
ig(1)

NNV Nσ∂µ1. . .∂µJ N +g(2)
NNV JNγµJ σ∂µ1. . .∂µJ−1N

]
V µ1...µJ . (4)

Here g···... ≡ g···...(J, I,P) stand for real coupling constants, and σc (c = 1,2,3) are Pauli
matrices. N stands for resonance normality (N ≡ P(−1)l), where P is parity. P3

2
≡(

P3
2

)
aαbβ

is the projecting operator on the states with isospin I = 3/2, a,α,b,β being

the isotopic indices.



To construct the Cauchy forms for tree-level binary scattering amplitudes one needs
to fix the values of the residues at the relevant poles and to choose properly the bounding
polynomial degree. Residues at poles of tree-level amplitudes are just the on-shell
resonance spin sums for dotted by the minimal triple coupling constants. It is at this
step that we take the main advantage of minimal parametrization since there is only a
finite number of minimal triple vertices for each resonance with given quantum numbers.
The bounding polynomial degrees are chosen in accordance with the known values of
corresponding Regge intercepts.

This results in uniformly converging series of singular terms defining tree-level am-
plitude as the polynomially bounded meromorphic function in three mutually inter-
secting layers Bx : (x ∈ R, x ∼ 0; νx ∈ C), where x = s, t, u and νx, x (x = s, t,u):
νs = u− t, νt = s− u, νu = t − s. fixing the invariant amplitude in the layer up to
few unknown functions.

One of the principal results of [5] states that if one relays upon the renormalized per-
turbation theory scheme with on-shell renormalization point it is sufficient to formulate
RPs only for minimal triple couplings and (real) resonance masses. The next step is to
show that although the number of RPs fixing the physical contents of EST is still infinite
these RPs are not independent.

BOOTSTRAP SYSTEM

Bootstrap system arise as the requirement that the Cauchy forms (different in different
layers) should coincide in the domains of intersection of layers. This system constrains
the allowed values of fundamental observables of the theory (triple minimal couplings
and mass parameters). Besides it completely determines the allowed form of the four-
leg pointlike vertex contributions and in this way helps to fix completely the binary
scattering amplitude.

For example the set of bootstrap constrains for A− in Bt∩Bu : {t, u∈ R; t ∼ 0, u∼ 0}
domain reads:

Ψs(A−)≡ [Cauchy f orm in Bu]− [Cauchy f orm in Bt ] = 0 f or t, u∼ 0. (5)

Expanding the bootstrap equation in powers of kinematical variables t, u in the vicin-
ity of (t = 0, u = 0) one obtains an infinite set of sum rules for minimal (resultant) triple
couplings and resonance masse parameters. These constrains (m, n = 0, 1, ...) read as:

∑
Baryons

g2
RBπNVm,n(MRB ,J,N , I)− ∑

Mesons with
I=1, odd J,P=−1

gRMππ ·gRMNN̄Wm,n(MRM ,J) = 0. (6)

Here gRBπN (gRMππ , gRMNN̄) stand for minimal triple couplings of baryon (meson reso-
nances) with pions and nucleons. Vm,n and Wm,n are certain known functions depending
on resonance quantum numbers (mass parameter, spin, normality and isospin). Boot-
strap constrains are renorm-invariant in the sense that they are the equations for physical
renormalization prescriptions (RPs): triple couplings and mass parameters.

Since bootstrap constrains connect physical quantities the sum rules (6) can be
checked directly with the help of experimental data. Large series of well saturated sum



rules can be derived for the invariant amplitude A− as well as for other amplitudes (see
[6]). This shows that the system of postulates used in our EST approach looks quite
reasonable.

LOW ENERGY COEFFICIENTS

Here we present our estimates for the expansion coefficients of tree level amplitudes
around the cross-symmetric point (t = 0, νt = 0) in Bt layer. These results present
certain interest because those coefficients undoubtedly do acquire contributions from
the loop graphs. Nevertheless, as shown below, our estimates based on the tree level
approximation of extended perturbation scheme turn out to be in nice agreement with
the known data. This fact demonstrates that the latter scheme provides quite reasonable
numbers already at tree level and, hence, may be of interest from the computational point
of view.

Introducing the new quantity

C± = A±+
mνt

4m2− t
B̃± ,

(here B̃± is just B± with the nucleon pole subtracted) we define the low-energy coeffi-
cients (LEC’s) a±mn, b±mn, and c±mn as those in double Taylor series expansions around the
cross-symmetric point (t = 0, νt = 0):

B̃+(t,νt) = νt ∑
m,n

b+
mn(ν2

t )mtn ; B̃−(t,νt) = ∑
m,n

b−mn(ν2
t )mtn ;

C+(t,νt) = ∑
m,n

c+
mn(ν2

t )mtn ; C−(t,νt) = νt ∑
m,n

c−mn(ν2
t )mtn .

To get numerical values for these coefficients, we need to re-expand the Cauchy forms
in double power series in (t,νt). This is quite admissible because these forms converge
uniformly in whole Bt and, therefore, near the cross-symmetric point.

Using the explicit form of bootstrap constrains one can check that mesons with
I = J = 0 make contribution to the smooth (background) part of the amplitude A+ (and
hence C+) in the layer Bt . The Table 1 shows that the experimentally known values of
c+

00÷ c+
02 (see [7]) cannot be explained if we neglect the contribution due to light scalar

σ -meson with the mass parameter Mσ ∼ 550÷700 MeV and “effective coupling” (see
[7])

G0
1 ≡ gSππg(1)

NNS ∼ 50÷100

(this statement remains true with respect to a+
03 (c+

03)). Altogether, these results show
that the extended perturbation scheme provides reasonable values for the low energy
coefficients already at tree level. We emphasize that this is closely connected with the
postulated Regge asymptotic conditions in the hyperlayer Bt .



TABLE 1. Tree level low energy coefficients c+
mn (m,n = 0,1,2); XN ≡ X ×10N

Resonance c+
00 c+

01 c+
02 c+

10 c+
11 c+

12 c+
20 c+

21 c+
22

σ(650) +19 +0.94 +5.20−2

∆(1232) +2.74 +7.18−1 −1.66−2 +1.17 +1.68−1 −8.56−3 +2.12−1 +2.38−2 −2.37−3

±4.6−1 ±1.2−2 ±2.8−4 ±9.8−2 ±1.4−3 ±4.6−5 ±1.8−2 ±6.4−4 ±1.5−5

N(1440) −3.86 +4.50−2 −3.76−4 +6.65−2 +3.02−3 −6.37−5 +3.35−3 +9.59−5 −5.04−6

±1.6 ±1.9−2 ±1.6−4 ±1.3−1 ±2.0−3 ±2.4−5 ±6.4−3 ±1.7−4 ±3.1−6

Full set +23.1 +1.63 +3.50−2 +1.39 +1.83−1 −8.41−3 +2.19−1 +2.40−2 −2.37−3

±6.6 ±1.2−1 ±1.7−3 ±4.3−1 ±7.9−3 ±1.2−4 ±2.8−2 ±8.6−4 ±1.9−5

Data +25.6 +1.18 +3.55−2 +1.18 +1.53−1 −1.50−2 +2.00−1 +3.40−2 −8.00−3

±5.0−1 ±5.0−2 ±7.0−3 ±5.0−2 ±1.7−2 ±3.0−3 ±1.0−2 ±1.0−3 ±1.0−3

CONCLUSIONS

We develop the logically complete scheme of EST suitable for the description of
hadronic scattering processes. Numerical test of sum rules for πN (and also ππ and
KN) resonance parameters show that the system of postulates forming the basis our ap-
proach is consistent with the presently known phenomenology. We also argue that the
sum rules derived from the bootstrap system can be used as a powerful tool to study
hadron spectrum.
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