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We revisit the standard procedure to match non-perturbative models to perturbative
QCD, using experimental data. The strong coupling constant plays a central role in the
QCD evolution of parton densities. We will extend this procedure with a non-perturbative
generalization of the QCD running coupling and use this new development to understand
why perturbative treatments are working reasonably well in the context of hadronic
models. Vice versa, this new procedure broadens the ways of analyzing the freezing of
the running coupling constant.

Keywords: hadronic models; coupling constant; non-perturbative.

PACS numbers: 12.38 Aw, 12.38 Bx, 12.39 Ba, 14.20 Dh

1. Parton Distributions and the Hadronic Scale

The internal structure of the strongly interacting particles remains veiled. It is

still a challenge to describe consistently the dynamics of scattering processes and

hadronic structure at moderate energy scales. Because at such a scale a hadronic

representation takes over the partonic description, it is called the hadronic scale.

The hadronic scale is peculiar to each hadronic representation.

A way of connecting the perturbative and non-perturbative worlds has tradition-

ally been through the study of Parton Distribution Functions (PDFs): Deep Inelas-

tic processes are such that they enable us to look with a good resolution inside the

hadron and allow us to resolve the very short distances, i.e. small configurations of

quarks and gluons. At short distances, this part of the process is described through

perturbative QCD. A resolution of such short distances is obtained with the help

of non-strongly interacting probes. Such a probe, typically a photon, is provided by

hard reactions. In that scheme, the PDFs reflect how the target reacts to the probe,

or how the quarks and gluons are distributed inside the target. The insight into the

structure of hadrons is reached at that stage: the large virtuality of the photon, Q2,

involved in such processes allows for the factorization of the hard (perturbative)

and soft (non-perturbative) contributions in their amplitudes. Hence, the virtuality

1



August 5, 2011 15:28 WSPC/INSTRUCTION FILE evo˙predis˙courtoy

2 A. Courtoy

of the photon introduces another scale, i.e. the factorization scale.

The evaluation of PDFs is guided by a standard scheme, set up in valuable lit-

terature of the 90s [1, 2, 3]. This scheme runs in 3 main steps. First, we either build

models consistent with QCD in a moderate energy range, typically the hadronic

scale; or we use effective theories of QCD for the description of hadrons at the same

energy range. Second, PDFs are evaluated in these models, giving a description of

the Bjorken-x dependence of the distribution. Third, the scale dependence of these

distributions is studied. The last step allows to bring the moderate energy descrip-

tion of hadrons to the factorization scale, thanks to the QCD evolution equations. In

these proceedings, we will focus on this third step: how to match non-perturbative

models to perturbative QCD, using experimental data.

The hadronic scale is defined at a point where the partonic content of the model,

defined through the second moment of the parton distribution, is known. For in-

stance, the CTEQ parameterization gives a

〈

(uv + dv)(Q
2 = 10GeV2))

〉

n=2
= 0.36 , (1)

with qv the valence quark distributions and with 〈qv(Q2)〉n =
∫ 1

0
dxxn−1 qv(x, Q2).

In the extreme case, i.e., when we assume that the partons are pure valence quarks,

we evolve downward the second moment until

〈

(uv + dv)(µ2
0)

〉

n=2
= 1 . (2)

The hadronic scale is found to be µ2
0 ∼ 0.1 GeV2.

This standard procedure to fix the hadronic (non-perturbative) scale pushes per-

turbative QCD to its limit. In effect, the hadronic scale turns out to be of a few

hundred MeV2, where the strong coupling constant has already started approach-

ing its Landau pole. As it will be shown hereafter, the NmLO evolution converges

very fast, what justifies the perturbative approach. Consequently, the behaviour

of the strong coupling constant plays a central role in the QCD evolution of par-

ton densities. We here extend the standard procedure with the non-perturbative

generalization of the QCD running coupling. We justify the perturbative evolution

approach by comparing it to the non-perturbative momentum dependence as deter-

mined by the phenomenon of the freezing of the coupling constant, and to analyze

the consequences of introducing an effective gluon mass [4]. We use this new devel-

opment to understand why perturbative treatments are working reasonably well in

the context of hadronic models.

2. The Running Coupling Constant

In these proceedings, we call perturbative evolution the renormalization group equa-

tions (RGE) that follow from an analysis of the theory as a perturbative expansion

aMSTW gives a similar result.
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in Feynman diagrams with m loops leading to logarithmic corrections of the ratio

’momentum invariant to mass scale’, i.e.
(

αs log(P 2/M2)
)m

.

The running of the coupling constant is driven by the RGE. In QCD, αs is

defined by renormalization conditions imposed at a large momentum scale where

the coupling is small. The running coupling constant is dimensionless, but through

dimensional transmutation, the strength of the interaction may be described by a

dimensionful parameter. QCD scale, ΛQCD, is then defined as the energy scale where

the interaction strength reaches the value 1.

At NmLO the scale dependence of the coupling constant is given by

d a(Q2)

d(ln Q2)
= βNmLO(αs) =

m
∑

k=0

ak+2βk,

where a = αs/4π. We show here the solution to k = 2, i.e., NLO

β0 = 11 −
2

3
nf , β1 = 102 −

38

3
nf ,

where nf stands for the number of effectively massless quark flavors and βk de-

note the coefficients of the usual four-dimensional MS beta function of QCD. The

evolution equations for the coupling constant can be integrated out exactly leading

to

ln(Q2/Λ2
LO

) =
1

β0aLO

,

ln(Q2/Λ2
NLO

) =
1

β0aNLO

+
b1

β0

ln(β0aNLO) −
b1

β0

ln(1 + b1aNLO) , (3)

where bk = βk/β0. These equations, except the first, do not admit closed form

solution for the coupling constant, and we have solved them numerically. We show

their solution, for the same value of Λ = 250 MeV, in Fig. 1.
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Fig. 1. The running of the coupling constant. Left: The short dashed curve corresponds to the
LO solution, the medium dashed curve to NLO solution and the long dashed curve to the NNLO
solution(Λ = 250 MeV). Right: The solid curve represents the NLO solution with Λ = 250 MeV,
while the long dashed curve the NNLO solution with a value of Λ = 235 MeV.
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We see in Fig. 1 (left) that the NLO and NNLO solutions agree quite well even at

very low values of Q2 and in Fig. 1 (right) that they agree very well if we change the

value of Λ for the NNLO slightly, confirming the fast convergence of the expansion.

This analysis concludes, that even close to the Landau pole, the convergence of the

perturbative expansion is quite rapid, specially if we use a different value of Λ to

describe the different orders, a feature which comes out from the fitting procedures.

This fast convergence ensures that perturbative evolution can still be used at rather

low scales. However, when entering the non-perturbative regime, other mechanisms

take place that influence the QCD evolution. That is what we will call here non-

perturbative evolution.

It is well established by now that the QCD running coupling (effective charge)

freezes in the deep infrared. This non-perturbative property can be best understood

from the point of view of the dynamical gluon mass generation [5, 6, 7, 8]. Even

though the gluon is massless at the level of the fundamental QCD Lagrangian, and

remains massless to all order in perturbation theory, the non-perturbative QCD

dynamics generate an effective, momentum-dependent mass, without affecting the

local SU(3)c invariance, which remains intact. At the level of the Schwinger-Dyson

equations the generation of such a mass is associated with the existence of infrared

finite solutions for the gluon propagator, i.e. solutions with ∆−1(0) > 0. Such solu-

tions may be fitted by “massive” propagators of the form ∆−1(Q2) = Q2 +m2(Q2);

m2(Q2) is not “hard”, but depends non-trivially on the momentum transfer Q2.

One physically motivated possibility, which we shall use in here, is the so called

logarithmic mass running, which is defined by

m2(Q2) = m2
0

[

ln

(

Q2 + ρm2
0

Λ2

) /

ln

(

ρm2
0

Λ2

)]−1−γ

. (4)

Note that when Q2 → 0 one has m2(0) = m2
0. Even though in principle we do

not have any theoretical constraint that would put an upper bound to the value

of m0, phenomenological estimates place it in the range m0 ∼ Λ − 2Λ [9, 10.] The

other parameters were fixed at ρ ∼ 1 − 4, (γ) = 1/11 [5, 11, 12]. The (logarithmic)

running of m2, shown in Fig. 2 for two sets of parameters, is associated with the

the gauge-invariant non-local condensate of dimension two obtained through the

minimization of
∫

d4x(Aµ)2 over all gauge transformations.

The strong coupling constant plays a central role in the evolution of parton

densities. The non-perturbative generalization of αs(Q
2) the QCD running coupling,

comes in the form

aNP(Q2) =

[

β0 ln

(

Q2 + ρm2(Q2)

Λ2

)]−1

, (5)

where we use the same notation as before and NP stands for Non-Perturbative.

Note that its zero gluon mass limit leads to the LO perturbative coupling con-

stant momentum dependence. The m2(Q2) in the argument of the logarithm



August 5, 2011 15:28 WSPC/INSTRUCTION FILE evo˙predis˙courtoy

On the Role of the Running Coupling Constant in a Quark Model Analysis of T-odd TMDs. 5

0.01 0.1 1 10 100 1000
0.0

0.1

0.2

0.3

0.4

0.5

q2 HGeV2L

m
HG

eV
L

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

q2 HGeV2L
Α
Iq

2
M

4
Π

Fig. 2. Left: The dynamical gluon mass with a logarithmic running for two sets of parameters,
the small mass scenario (Λ = 250 MeV, m0 = 250 MeV, ρ = 1.5) is shown by the dashed curve;
the high mass scenario (Λ = 250 MeV, m0 = 500 MeV, ρ = 2.0) by the dotted curve. Right: The
running of the effective coupling.

tames the Landau pole, and a(Q2) freezes at a finite value in the IR, namely

a−1(0) = β0 ln(ρm2(0)/Λ2) [5, 6, 7] as can be seen in Fig. 2 for the same two sets

of parameters.

We nest discuss the relation between the perturbative and non-perturbative ap-

proaches from the point of view of the hadronic models. Here we note their numerical

similarity. As shown in Fig. 3, the coupling constant in the perturbative and non-

perturbative approaches are close in size for reasonable values of the parameters

from very low Q2 onward ( Q2 > 0.1 GeV2). This result supports the perturbative

approach used up to now in model calculations, since it shows, that despite the

vicinity of the Landau pole to the hadronic scale, the perturbative expansion is

quite convergent and agrees with the non-perturbative results for a wide range of

parameters.

3. Non-perturbative Evolution and the Hadron Scale

Let us see how to understand the hadronic scale in the language of models of

hadron structure. We use, to clarify the discussion, the original bag model, in its

most naive description, consisting of a cavity of perturbative vacuum surrounded

by non-perturbative vacuum. The bag model is designed to describe fundamentally

static properties, but in QCD all matrix elements must have a scale associated to

them as a result of the RGE of the theory. A fundamental step in the development

of the use of hadron models for the description of properties at high momentum

scales was the assertion that all calculations done in a model should have a RGE

scale associated to it [13]. The momentum distribution inside the hadron is only

related to the hadronic scale and not to the momentum governing the RG equation.

Thus a model calculation only gives a boundary condition for the RG evolution

as can be seen for example in the LO evolution equation for the moments of the
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Fig. 3. Left: The running of the effective coupling. The dotted and dashed curves represent the
non-perturbative evolution with the parameters used above. The solid curve shows the NNLO
evolution with Λ = 250 MeV. Right: The evolution of the second moment of the valence quark
distribution. The solid curve represents the perturbative LO approximation.

valence quark distribution

〈qv(Q2)〉n = 〈qv(µ2
0)〉n

(

αs(Q
2)

αs(µ2
0)

)dn

NS

, (6)

where dn
NS are the anomalous dimensions of the Non Singlet distributions. Inside,

the dynamics described by the model is unaffected by the evolution procedure, and

the model provides only the expectation value, 〈qv(µ2
0)〉n, which is associated with

the hadronic scale. As mentioned in the first Section, the hadronic scale is related

to the maximum wavelength at which the structure begins to be unveiled. This

explanation goes over to non-perturbative evolution. The non-perturbative solution

of the Dyson–Schwinger equations results in the appearence of an infrared cut-off in

the form of a gluon mass which determines the finiteness of the coupling constant

in the infrared. The crucial statement is that the gluon mass does not affect the

dynamics inside the bag, where perturbative physics is operative and therefore our

gluons inside will behave as massless. However, this mass will affect the evolution

as we have seen in the case of the coupling constant. The generalization of the

coupling constant results to the structure function imply that the LO evolution

Eq. (6) simply changes by incorporating the non-perturbative coupling constant

evolution Eq. (5).

The non-perturbative results, using the same parameters as before, are quite

close to those of the perturbative scheme and therefore we are confident that the

latter is a very good approximate description. We note however, that the corre-

sponding hadronic scale, for the sets of parameters chosen, turns out to be slightly

smaller than in the perturbative case (µ2
0 ∼ 0.1 GeV2), even for small gluon mass

m0 ∼ 250 MeV and small ρ ∼ 1. One could reach a pure valence scenario at higher

Q2 by forcing the parameters but at the price of generating a singularity in the

coupling constant in the infrared associated with the specific logarithmic form of



August 5, 2011 15:28 WSPC/INSTRUCTION FILE evo˙predis˙courtoy

On the Role of the Running Coupling Constant in a Quark Model Analysis of T-odd TMDs. 7

the parametrization. We feel that this strong parametrization dependence and the

singularity are non physical since the fineteness of the coupling constant in the

infrared is a wishful outcome of the non-perturbative analysis. In this sense, the

non-perturbative approach seems to favor a scenario where at the hadronic scale we

have not only valence quarks but also gluons and sea quarks [14, 15]. We mean by

this statement that to get a scenario with only valence quarks we are forced to very

low gluon masses and very small values ρ, while a non trivial scenario allows more

freedom in the choice of parameters.

4. Non-perturbative Evolution and Final State Interactions.

The TMDs are the set of functions that depend on both the Bjorken variable x, the

intrinsic transverse momentum of the quark |~k⊥| as well as on the scale Q2. The

TMDs are fixed by the possible scalar structures allowed by hermiticity, parity and

time-reversal invariance. The existence of leading twist final state interactions al-

lows for time-reversal odd functions. Thus by relaxing time-reversal invariance, one

defines two additional functions, the Sivers and the Boer-Mulders functions. The

growing interest for TMDs called for developments of QCD evolution and its appli-

cation to PDFs, what has been recently addressed for T-even TMDs in Ref. [16].

Results for T-odd TMDs should follow. In earlier evaluations of T-odd TMDs, the

collinear b perturbative evolution formalism has been naively applied to describe the

behavior of the T-odd Transverse Momentum Dependent parton distribution func-

tions (TMDs) [17, 18, 19].

In the standard approach towards an evaluation of the T-odd distribution func-

tions, the final state interactions are mimicked by a one-gluon-exchange. This gluon

exchange is usually described through the inclusion of a perturbative gluon prop-

agator [20, 17]. It is precisely due to this mechanism that these functions have an

explicit dependence in the coupling constant and therefore they are ideal to an-

alyze the physical impact of our discussion. Since perturbative QCD governs the

dynamics inside the confining region, there is no need to include a non-perturbative

massive gluon in the form given by Eq. (4), inside the bag. The main effect of the

non-perturbative approach here consists in a change of the hadronic scale µ2
0 and

the value of the running coupling constant at that scale, as clearly illustrated in

Fig. 3. This leads to a rescaling of the Sivers and Boer-Mulders functions through

a change of αs(µ
2
0).

In our previous calculations, we have used the NLO perturbative evolution, with

a(µ2
0) ∼ 0.1. Although a solution with this small a can be found, with our choice

of parameters, we see, from Fig. 3, that the coupling constant at the hadronic scale

in the non-perturbative approach and in the NNLO evolution is consistently larger

and lies in the interval 0.1 < a(µ2
0) < 0.3. Taking into account this range we show

bCollinear, in opposition to transverse, refers to schemes where only longitudinal momenta are
relevant. Here: PDFs that depend only on Bjorken-x besides their scale dependence.
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Fig. 4. The first moment of the Sivers function. The results are given for both the u (thick) and
d (normal) distributions. The solid (dashed) curves represent the calculation for a = 0.3(0.1). The
bands represent the error band for, respectively, the extraction of the Bochum group (full) and
Torino group (stripes).

the first moments of the Sivers function in Fig. 4, where we have two extractions

from the data at the SIDIS scale [21, 22]. In order to be able to compare our results

to phenomenology, one should apply the QCD evolution equations. If we apply the

same band of values of the coupling constant at the hadronic scale to calculation of

the Boer-Mulders function we find the results of Fig. 5. We see thus how the naive

scenario may serve to predict new observables and determine their experimental

feasibility.

The T-odd TMDs have been evaluated in a few models. In most of the mod-

els found in the literature final state interactions are approximated by taking into

account only the leading contribution due to the one-gluon exchange mechanism.

Non-perturbative evaluations of the T-odd functions have been proposed, e.g. non-

perturbative eikonal methods [23]. In the latter reference, the authors use a non-

perturbative gluon propagator, resulting from a Dyson-Schwinger framework, going

therefore beyond one-gluon-exchange approximation by resumming all order contri-

butions. It is worth noticing that the implementation of the final state interactions

is model dependent. The discussion we have presented in this paper is not applicable

in general to every scheme. The implementation of the non-perturbative evolution

as discussed here might be more complex in other (fully non-perturbative) schemes

as well as the description of the confinement mechanism.
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Fig. 5. The results for the first moment of the Boer-Mulders function calculated within the band
0.1 < a < 0.3. The results are given for both the u (band between the dotted lines) and d (band
with stripes) distributions. Notice that both have the same sign and therefore the bands overlap.

5. Conclusions

The careful analysis of the previous sections shows that the hadronic scale is close

to the infrared divergence (Landau pole) of the coupling constant for conventional

values of Λ. However, even in this vicinity, the convergence of the NmLO series is

very good for the same Λ and small modifications of it provide an extremely precise

agreement for all values of Q2 to the right of the pole. Moreover, an exciting result

is that the values obtained by perturbative QCD with reasonable parameters as

defined by DIS data, agree with the non-perturbative evaluation of the coupling

constant, which is infrared finite, for parameters which have been chosen to satisfy

lattice QCD restrictions of the propagator, with low values of the gluon mass m0 ∼

250 MeV, and ρ ∼ 1. The hadronic scale can be interpreted not only from the

point of view of perturbative evolution, but also from that of non-perturbative

momentum dependence of the coupling constant. Therefore a second result is that

the non-perturbative approach provides an explanation of why the evolution from

a low hadronic scale, even in the neighbourhood of the Landau pole, is consistent

and can be trusted.

It is interesting to see how the non-perturbative framework applies in a simple

way to the evaluation of the T-odd TMDs in the bag model. This observation

confirms the consistency of our previous calculation within this hadronic model. It

enables us to control the physics of the problem from the model side as well as to

infer from the evolution scenarios that, as expected, the naive pure valence quark

scenario is not favoured. However, it also shows that the naive scenario may well

serve to make predictions, within a reasonably small band, which should not be far

from experimental expectations.

Like the scale fixing procedure uses experimental data and relies on the knowl-
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edge of αs in the sense of perturbative QCD, vice versa, this new procedure broadens

the ways of analyzing the freezing of the running coupling constant: T-odd TMDs

are possible candidates to study the behaviour of αs at intermediate Q2, following

the example of Ref. [24] where the effective coupling constants are phenomenologi-

cally extracted.
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