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Summary
The calcium-sensing receptor (CaSR) belongs to the G-protein-coupled receptor superfamily and plays essential roles in divalent ion
homeostasis and cell differentiation. Because extracellular Ca2+ is essential for the development of stable epithelial tight junctions (TJs),
we hypothesized that the CaSR participates in regulating TJ assembly. We first assessed the expression of the CaSR in Madin-Darby
canine kidney (MDCK) cells at steady state and following manipulations that modulate TJ assembly. Next, we examined the effects of

CaSR agonists and antagonists on TJ assembly. Immunofluorescence studies indicate that endogenous CaSR is located at the basolateral
pole of MDCK cells. Stable transfection of human CaSR in MDCK cells further reveals that this protein co-distributes with b-catenin on
the basolateral membrane. Switching MDCK cells from low-Ca2+ medium to medium containing a normal Ca2+ concentration

significantly increases CaSR expression at both the mRNA and protein levels. Exposure of MDCK cells maintained in low-Ca2+

conditions to the CaSR agonists neomycin, Gd3+ or R-568 causes the transient relocation of the tight junction components ZO-1 and
occludin to sites of cell–cell contact, while inducing no significant changes in the expression of mRNAs encoding junction-associated

proteins. Stimulation of CaSR also increases the interaction between ZO-1 and the F-actin-binding protein I-afadin. This effect does not
involve activation of the AMP-activated protein kinase. By contrast, CaSR inhibition by NPS-2143 significantly decreases interaction of
ZO-1 with I-afadin and reduces deposition of ZO-1 at the cell surface following a Ca2+ switch from 5 mM to 200 mM [Ca2+]e. Pre-
exposure of MDCK cells to the cell-permeant Ca2+ chelator BAPTA-AM, similarly prevents TJ assembly caused by CaSR activation.

Finally, stable transfection of MDCK cells with a cDNA encoding a human disease-associated gain-of-function mutant form of the
CaSR increases the transepithelial electrical resistance of these cells in comparison to expression of the wild-type human CaSR. These
observations suggest that the CaSR participates in regulating TJ assembly.
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Introduction
The Ca2+-sensing receptor (CaSR) belongs to family C of the G-

protein-coupled receptor (GPCR) superfamily (Brown et al., 1993;

Bräuner-Osborne et al., 2007). The CaSR is ubiquitously expressed

and consists of an extracellular domain, a seven-transmembrane

domain and an intracellular loop. Its principal physiological ligand

is the Ca2+ ion. By sensing minute variations of the extracellular

Ca2+ concentration ([Ca2+]e) and appropriately modulating the

cellular responses to these changes, the CaSR plays an essential role

in Ca2+ homeostasis. Hence, it controls parathyroid hormone (PTH)

secretion by the parathyroid glands and modulates Ca2+ fluxes in the

kidney and the bone (Chakravarti et al., 2012; Geibel, 2010).

Mutations in the CASR gene have been associated with inherited

disorders of divalent mineral homeostasis (Pearce, et al., 1996;

Hannan et al., 2012). Loss-of-function mutations in one or both of

the CASR alleles result in hypercalcemic disorders as a result of

upward resetting of the receptor EC50 value (effective concentration

necessary to induce a 50% effect) for ionized Ca2+ in both the

parathyroid glands and the kidney (Gunn and Gaffney, 2004;

Thakker, 2004; Rus et al., 2008). Conversely, gain-of-function

mutations of the CASR gene result in hypocalcemia because of

downward resetting of the receptor EC50 (Chattopadhyay and

Brown, 2006; Letz et al., 2010). Furthermore, the EC50 value for

Ca2+ binding to the CaSR can be significantly affected by several

physiological parameters, including ionic strength, extracellular pH,

L-aromatic amino acids and polyamines, or by drugs, such as the

calcimimetic compounds cinacalcet HCl and R-568. In addition, the

CaSR can be directly activated by many di-, tri- and polyvalent

cations, including neomycin and Gd3+, in the absence of

extracellular Ca2+ (Nemeth, 2004).

Interestingly, the CaSR has been identified in numerous tissues

and cells that are not directly involved in Ca2+ homeostasis, in

which its role remains unclear (Magno et al., 2011; Riccardi and

Kemp, 2012). All along the gastro-intestinal tract, the CaSR

participates in nutrient sensing, hormone and fluid secretion, and

cell differentiation and apoptosis (Gama et al., 1997). In the skin,

the CaSR has been shown to regulate cell survival and Ca2+-

induced differentiation of epidermal keratinocytes (Komuves
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et al., 2002; Fatherazi et al., 2004; Troy et al., 2007; Tu et al.,
2008). Differentiated epithelial cells possess highly specialized

intercellular junctions, including adherens junctions (AJs) and
tight junctions (TJs). TJs form a seal at the superior aspect of the
lateral surface of the plasma membrane when epithelial cells

differentiate and acquire polarity. TJs regulate the passage of ions
and small molecules through the paracellular pathway (Van Itallie
and Anderson, 2004), and also restrict the diffusion of membrane
proteins between the apical and basolateral compartments (van

Meer and Simons, 1986). Extracellular Ca2+ is essential for both
the development of new junctions (Cereijido et al., 1981;
Gonzalez-Mariscal et al., 1985; Martinez-Palomo et al., 1980)

and the stabilization of mature junctions (Galli et al., 1976; Hays
et al., 1965; Meldolesi et al., 1978; Palant et al., 1983; Sedar and
Forte, 1964) between epithelial cells. The dependence of TJ

assembly on Ca2+ is probably attributable to the capacity of Ca2+ to
stabilize the cell adhesion molecule E-cadherin in its adhesive state
at AJs (Boller et al., 1985; Ringwald et al., 1987). However, recent
observations demonstrated that the CaSR regulates the expression

of TJ components, including claudins, in kidney epithelial cells
(Ikari et al., 2008; Gong et al., 2012). It is therefore tempting to
speculate that the CaSR might also be implicated in regulating the

Ca2+-induced assembly of TJs in epithelial cells.

In the Madin-Darby canine kidney (MDCK) epithelial cell model,
incubation in medium containing a reduced concentration of calcium

(low [Ca2+]e) disrupts intercellular junctions, and the restoration of
high [Ca2+]e induces the deposition of TJ proteins to the plasma
membrane. This manipulation is referred to as a ‘Ca2+ switch’, and is

associated with a rise of the cytosolic concentration of Ca2+ (Cereijido
et al., 1978; Gonzalez-Mariscal et al., 1990). Previous observations
from our group and others have demonstrated that the Ca2+ switch

stimulates various independent cellular cascades, including the
protein kinase C (PKC), the AMP-activated protein kinase (AMPK)
and the glycogen synthase kinase 3b (GSK-3b) pathways (Balda et al.,

1991; Zhang et al., 2006; Zheng and Cantley, 2007; Zhang et al.,
2011). In MDCK cells, a Ca2+ switch is typically associated with the
activation of AMPK and the inhibition of GSK-3b. Activated AMPK
phosphorylates I-afadin, at AJ sites, thereby inducing its interaction

with and the recruitment of the TJ-associated protein ZO-1 to the
plasma membrane. By contrast, I-afadin appears not to be required for
the assembly of TJs caused by GSK-3b inhibition (Zhang et al.,

2011).

Here, we show that the activation of the CaSR in MDCK cells
by well-established agonists causes the relocation of TJ

components to the plasma membrane. This CaSR-induced
assembly of TJs is associated with an increased interaction
between I-afadin and ZO-1, can be blocked by CaSR antagonists

and occurs without the activation of AMPK. Pre-exposure of
MDCK cells to the cell-permeant Ca2+ chelator, BAPTA-AM,
prevents the relocation of TJ components after stimulation of the

CaSR, but has no effect on TJ assembly induced by AMPK
activation. These observations further support the concept that
multiple independent pathways are implicated in the Ca2+-

induced formation of TJs in epithelial cells, and that one of these
pathways involves the CaSR.

Results
Expression and distribution of the Ca2+-sensing receptor
in MDCK cells at steady state and after Ca2+ switch

The CaSR is found in various segments of the mammalian
nephron, including the proximal tubule (PT), the thick ascending

limb (TAL) of Henlé’s loop, the distal tubule, and in both

principal and intercalated cells of the collecting duct (CD)

(Riccardi and Brown, 2010). Its subcellular distribution appears

to be segment specific, manifesting an apical polarization in PT

and CD cells, and a basolateral localization in TAL cells. The

subcellular distribution of the CaSR in MDCK cells has yet to be

determined. We performed co-immunofluorescence experiments

on MDCK cells at steady state using antibodies directed against

the CaSR and a marker of the basolateral membrane, b-catenin.

We found that the endogenous CaSR is expressed in intracellular

compartments and at the basolateral pole of MDCK cells

(Fig. 1A).

MDCK cells represent a well-established model in which to

study epithelial TJ formation, and junction formation can be

temporally controlled using the Ca2+ switch (Cereijido et al.,

1978). We cultured MDCK cells to confluence in high-Ca2+

medium (HCM, 1.8 mM [Ca2+]e) and then incubated them in

low-Ca2+ medium (LCM, 5 mM Ca2+) for 16 hours. At

successive time points after the reintroduction of HCM, cells

were lysed and analyzed. Real-time reverse transcription

polymerase chain reaction (RT-PCR) and immunoblotting

analyses showed that Ca2+ switch is associated with an

increased expression of CaSR at both the mRNA and the

protein levels (Fig. 1B–D). These observations suggest that the

expression of the CaSR is induced by the Ca2+ switch.

Activation of the CaSR induces Ca2+-independent

deposition of junction components

Distinct types of CaSR agonists have been identified and

categorized based upon their mode of action. Type I agonists

directly activate the CaSR and include the divalent ion Ca2+, as

well as other multivalent cations. Type II agonists act as

allosteric modifiers of Ca2+ affinity, and therefore require the

presence of extracellular Ca2+ to properly activate the CaSR. We

used both type I (neomycin and Gd3+) and type-II (calcimimetic

compound, R-568) agonists of the CaSR to investigate the

putative role of the CaSR in TJ regulation and biogenesis. First,

confluent MDCK cells at steady state were exposed to the

compound R-568 (800 nM) or to neomycin (1 mM) diluted in

normal-Ca2+ medium (1.8 mM [Ca2+]e) for 4 hours. Under these

conditions, the transepithelial electrical resistance (TEER)

increased to 570.8623.9 ohm.cm2 and 762.8669.8 ohm.cm2,

respectively. These values were significantly higher than the

TEER measured in MDCK cells exposed for 4 hours to DMSO

(417.7621.1 ohm.cm2) or PBS (433.3616.4 ohm.cm2).

Next, confluent MDCK cells were exposed to LCM for

16 hours, and then incubated in LCM containing either neomycin

(1 mM) or Gd3+ (100 mM) for 1 or 2 hours. We found that ZO-1

was significantly relocated to the sites of cell–cell contact after

exposure to neomycin or Gd3+, even in the virtual absence of

extracellular Ca2+ (Fig. 2A,B). We observed fragmentary strands

of ZO-1 on plasma membranes after as little as 1 hour of

incubation with neomycin or Gd3+. Exposure of MDCK cells to

R-568 (800 nM) or neomycin (1 mM) for 4 hours under low-

Ca2+ conditions (5 mM [Ca2+]e) did not induce a measurable

TEER. Furthermore, the ZO-1 strands failed to become more

consolidated and morphologically organized with prolonged

treatment, and disappeared at 8 hours of continued exposure

(Fig. 2A,B). A very similar pattern was observed when we used

antibodies directed against occludin to assess the subcellular
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distribution of this essential transmembrane component of TJs in

response to CaSR activation (supplementary material Fig. S1).

Finally, confluent MDCK cells were exposed to LCM for

16 hours and then incubated for 2 hours in LCM supplemented

with either 50 mM or 200 mM CaCl2 in the presence of vehicle

alone (DMSO, DMSO), the CaSR antagonist NPS-2143 (1 mM)

or the type II CaSR agonist R-568 (800 nM) (Fig. 3A,B).

Switching MDCK cells from LCM to 50 mM [Ca2+]e in the

presence of DMSO was associated with relocation of ZO-1 to

cell–cell contact sites. The magnitude of this process was

significantly enhanced in the presence of R-568, but was not

influenced by exposure to NPS-2143 (Fig. 3A,B). Similarly,

switching MDCK cells from LCM to 200 mM [Ca2+]e in the

presence of DMSO induced a relocation of ZO-1 to the plasma

membrane, which could be further increased in the presence of R-

568. Interestingly, the quantity of ZO-1 relocation to MDCK

cell–cell contacts following exposure to 200 mM [Ca2+]e for

2 hours in the presence of NPS-2143 only reached the level

observed after switching cells from LCM to 50 mM [Ca2+]e.

Altogether, these observations support the conclusion that the

activation of the CaSR participates in the relocation of TJ

components to cell–cell contacts. To further explore whether the

pharmacological activation of the CaSR also influences the

expression of TJ-associated proteins, we performed real-time RT-

PCR on samples from MDCK cells maintained in low-Ca2+

conditions for 16 hours and then exposed for 4 hours to R-568

(800 nM) or neomycin (1 mM). We did not observe any major

changes in expression of the mRNAs encoding type 1, 2 and 4

claudins or occludin in MDCK cells exposed to the CaSR

agonists in comparison to control cells. The fact that the CaSR

inhibitor only manifested effects on the ZO-1 relocation initiated

by exposure to 200 mM but not to 50 mM [Ca2+]e, suggests that

the Ca2+-induced relocation of TJ components to the plasma

membrane involves multiple mechanistically distinct Ca2+-

sensitive pathways with different Ca2+ affinities.

Activation of the CaSR in MDCK cells is not associated
with the phosphorylation of AMPK, but increases the
interaction between ZO-1 and I-afadin

Studies performed by our group and others have shown that a

Ca2+ switch induces the phosphorylation and activation of AMPK

in MDCK cells (Zhang et al., 2006; Zheng and Cantley, 2007).

Conversely, the pharmacological activation of AMPK by AICAR

induces Ca2+-independent deposition of junction components to

the sites of cell–cell contacts. Furthermore, both Ca2+ switch and

AMPK activation increase the physical interaction between ZO-1

and I-afadin, a peripheral membrane protein located at the AJ that

participates in organizing intercellular adhesive junctions

(Ooshio et al., 2010; Zhang et al., 2011). Therefore, we

assessed whether the relocation of ZO-1 to the plasma

membrane following the activation of the CaSR involved the

AMPK pathway. As in the previous experiment, confluent

MDCK cells were exposed to LCM for 16 hours and then

incubated in HCM or in LCM containing the type I CaSR

agonists neomycin (1 mM) or Gd3+ (100 mM) for 30–60 minutes.

Cells were lysed in the presence of protease and phosphatase

inhibitors and processed for immunoblotting analysis. As

previously described, Ca2+ switch induced a fourfold increase

in AMPK T172 phosphorylation and AMPK activity, as reflected

in the extent of S79 phosphorylation of acetyl CoA carboxylase

(ACC) (Hardie and Pan, 2002) (Fig. 4A,B). By contrast,

exposure to neomycin or Gd3+ was not associated with

phosphorylation or activation of AMPK (Fig. 4A,B). The total

amount of AMPKa1 catalytic subunit was not affected by any of

the conditions tested. To further investigate the simultaneous

processes implicated in relocation of TJ components following

exposure to Ca2+, we incubated confluent MDCK cells that had

been initially kept for 16 hours in LCM in increasing

concentrations of CaCl2 in the presence of DMSO or R-568

for 30 minutes. Interestingly, we found that AMPK was

phosphorylated and activated in MDCK cells following a Ca2+
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Fig. 1. Expression of the CaSR in MDCK

cells at steady-state and following Ca2+

switch. (A) Representative co-

immunofluorescence using rabbit polyclonal

antibodies directed against the CaSR and

mouse monoclonal antibodies directed

against b-catenin, a marker of the basolateral

membrane, in confluent MDCK cells. Merge

panels show the xyz planes, with the CaSR

labeled in red and b-catenin in green.

Arrowheads indicate the basolateral side.

Scale bar: 10 mm. (B–D) Comparative

quantification of mRNA (B) and protein

(C,D) expression of the CaSR in MDCK cells

following Ca2+ switch. MDCK cells were

lysed and processed at the indicated times

after Ca2+ switch. Real-time RT-PCR was

performed using specific primers directed

against canine CaSR (target gene) and canine

GAPDH (housekeeping gene), and the

quantification was performed using the

MxPro QPCR software (Stratagene).

Immunoblotting quantification was

performed using ImageJ software after

normalization to b-actin expression levels.

Data represent means 6 s.d.
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switch to concentrations as low as 50 mM (Fig. 4C,D). The level

of AMPK phosphorylation was similar when the [Ca2+]e was

switched from 5 mM to 50 mM, 100 mM or 200 mM. Activation

of the CaSR by R-568 did not modify the level of AMPK

phosphorylation and activation induced by the exposure to any of

these [Ca2+]e values.

In MDCK cells, the formation of TJs requires the transient

interaction of ZO-1 with I-afadin at the sites of initial cell–cell

adhesions (Ooshio et al., 2010; Zhang et al., 2011). Thus, we tested

whether the relocation of ZO-1 to the plasma membrane following

the activation of CaSR involved such an interaction between ZO-1

and I-afadin. First, confluent MDCK cells were exposed to LCM

for 16 hours and then incubated in LCM supplemented with the

type I CaSR agonists neomycin (1 mM) or Gd3+ (100 mM) for 30,

60 and 120 minutes (Fig. 5A,B). Cell lysates were subjected to

immunoprecipitation using rabbit polyclonal antibodies directed

against I-afadin, and the resultant immunoprecipitates were

processed for immunoblotting using mouse monoclonal anti-ZO-

1 antibodies. The total amounts of I-afadin and ZO-1 in cell lysates

were also measured to ensure that equal quantities of these proteins

were present under each condition. A faint interaction between

I-afadin and ZO-1 could be detected in MDCK cells kept in LCM

conditions. By contrast, the amount of ZO-1 protein that co-

immunprecipitated with I-afadin was significantly increased after

exposure to neomycin (Fig. 5A,B) or Gd3+ (data not shown), as

early as 30 minutes following incubation. The level of interaction

between I-afadin and ZO-1 did not significantly increase after

1 hour or 2 hours of continued incubation in comparison to the

quantity detected at the 30 minute time point.

Next, confluent MDCK cells were exposed to a Ca2+ switch from

5 mM to 200 mM [Ca2+]e in the presence of DMSO, R-568 or NPS-

2143 (Fig. 5A,B). As previously reported (Zhang et al., 2011), the

addition of Ca2+ to the culture medium induced the interaction

between I-afadin and ZO-1. The co-immunoprecipitation of I-afadin

and ZO-1 was significantly increased in the presence of the R-568

compound. Conversely, incubation of confluent MDCK cells with

NPS-2143, partially blocked the interaction between I-afadin and

ZO-1 induced by the Ca2+ switch to 200 mM [Ca2+]e.

Finally, MDCK cells initially kept in low-Ca2+ medium for

16 hours, were exposed to the AMPK activator AICAR (2 mM)
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Fig. 3. Deposition of ZO-1 at the plasma membrane after modulation of

the CaSR by R-568 in MDCK cells. (A) Confluent MDCK cells were

incubated in low-Ca2+ medium (LCM) for 16 hours, exposed to fresh LCM

supplemented with 50 mM or 200 mM CaCl2 and DMSO, the CaSR antagonist

NPS-2143 (1 mM) or the CaSR agonist R-568 (800 nM) for 2 hours, fixed in

ice-cold methanol and immunostained for ZO-1. Scale bar: 50 mm.

(B) Quantification of ZO-1 relocation to cell membrane in A. Data are means

6 s.d., and are representative of four independent experiments. ZO-1 length

per cell is measured within each of six randomly selected fields of view.

*P#0.05 versus incubation with DMSO by Student’s t-test.

Fig. 2. Deposition of ZO-1 at the plasma membrane following

activation of the CaSR in MDCK cells. (A) Confluent MDCK cells were

incubated in low-Ca2+ medium (LCM) for 16 hours, exposed to fresh LCM

supplemented with DMSO or with the CaSR agonists neomycin (1 mM) or

Gd3+ (100 mM) for the indicated time points, fixed in ice-cold methanol, and

immunostained for ZO-1. Scale bar: 50 mm. (B) Quantification of ZO-1

relocation to the cell membrane in A. Data represent means 6 s.d., and are

representative of four independent experiments. ZO-1 length per cell is

measured within each of six randomly selected fields of view. *P#0.05

versus incubation with DMSO by Student’s t-test.

Journal of Cell Science 000 (000)4



and/or to the CaSR agonists R-568 (800 nM) and neomycin

(1 mM), for 2 hours. Using a previously validated protocol (Zhang

et al., 2006), we quantified relocation of ZO-1 to the plasma

membrane following these different treatments. The length of ZO-

1 deposits in MDCK cells stimulated by AICAR alone

(11.461.7 mm/cell) or by AICAR and R-568 (10.262.1 mm/cell)

or by AICAR and neomycin (12.262.4 mm/cell) was significantly

higher than that measured in control MDCK cells kept in low-Ca2+

conditions (2.260.9 mm per cell), but not statistically different

between treated groups (Fig. 5C,D). These observations suggest

that both the CaSR and the AMPK cascades use a common final

step in TJ assembly.

Pre-exposure of MDCK cells to BAPTA-AM prevents the

relocation of TJ components to the plasma membrane

induced by the stimulation of the CaSR, but does not affect

TJ assembly induced by AMPK activation

The Ca2+ switch manipulation, which ultimately leads to TJ

formation, is mediated primarily by Ca2+ acting at extracellular

sites through the binding of Ca2+ to sites on E-cadherin

extracellular repeats (Gonzalez-Mariscal et al., 1990; Contreras

et al., 1992). In addition, changes in [Ca2+]i have been detected

both globally and in proximity to the sites of cell–cell contacts

(Gonzalez-Mariscal et al., 1990; Contreras et al., 1992; Nigam

et al., 1992). Chelation of Ca2+ by the Ca2+-permeant chelator,

bis-[2-aminophenoxy]-ethane tetraacetic acid [BAPTA-AM

(50 mM)], significantly retards the relocation of ZO-1 to the

plasma membrane produced by the Ca2+ switch (Stuart et al.,

1994). To investigate whether the CaSR-related assembly of TJs

requires free intracellular Ca2+, we pre-exposed MDCK cells

maintained in LCM for 16 hours to BAPTA-AM (50 mM) for

30 minutes before stimulating them with neomycin (1 mM) or R-

568 (800 nM) for 2 hours. In control MDCK cells, ZO-1 was

relocated to the plasma membrane following incubation with

neomycin or R-568. In marked contrast, deposition of ZO-1 at the

plasma membrane did not occur after similar incubations in

MDCK cells that had first been exposed to BAPTA-AM

(Fig. 6A,B). Furthermore, pre-exposure of MDCK cells to

BAPTA-AM prevented the interaction between I-afadin and

ZO-1 that is induced by stimulation of the CaSR with neomycin

(Fig. 6C,D). Interestingly, the relocation of ZO-1 and its transient

interaction with I-afadin, which are initiated by AMPK activation

by AICAR (Zhang et al., 2011), were not significantly affected

by pre-exposure of MDCK cells to BAPTA-AM (Fig. 6A–D).

Moreover, the phosphorylation and activation of AMPK in

MDCK cells following a Ca2+ switch was preserved in MDCK

cells pre-exposed to BAPTA-AM (supplementary material

Fig. S2).
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Fig. 4. CaSR activation does not stimulate AMPK phosphorylation or activation in MDCK cells. (A) Confluent MDCK cells were incubated in low-Ca2+

medium (LCM) for 16 hours, exposed to high-Ca2+ medium (HCM) or fresh LCM supplemented with the CaSR agonists neomycin (1 mM) or Gd3+ (100 mM) for

60 minutes, lysed in the presence of protease and phosphatase inhibitors, and probed with the indicated antibodies in a western blot analysis. (B) The

quantification of the immunoreactive signal for phospho-AMPK was performed using the Odyssey Infrared Scanner (Li-Cor Biosciences) after normalization to

the AMPKa1 expression level. Data represent mean percentages 6 s.d., with the LCM level used as a reference (100%). *P#0.05 versus LCM level by Student’s

t-test. (C) Confluent MDCK cells were incubated in LCM for 16 hours, exposed to fresh LCM supplemented with 50, 100 or 200 mM CaCl2, with or without

R-568 (800 nM) for 60 minutes, lysed in the presence of protease and phosphatase inhibitors and probed with the indicated antibodies in a western blot analysis.

(D) The quantification of the immunoreactive signal for phospho-AMPK was performed as in B. No significant difference was observed between the lysates

exposed to R-568 versus DMSO for any Ca2+ concentration.
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These observations suggest that free intracellular Ca2+ is

required for the assembly of TJs that is induced by the

stimulation of CaSR. By contrast, the relocation of ZO-1

caused by AMPK activation appears to be insensitive to the

chelation of intracellular Ca2+. These observations further

support the conclusion that extracellular Ca2+ activates

mechanistically distinct cascades that operate in parallel

through the activation of the CaSR and the AMPK pathways to

initiate TJ formation.

Stable expression of human disease-associated gain-of-

function P221L CaSR mutant in MDCK cells increases

TEER in comparison to MDCK cells expressing human

wild-type CaSR

Mutations in the CASR gene have been associated with inherited

disorders of divalent mineral homeostasis (Pearce et al., 1996).

Gain-of-function mutations result in a downward resetting of the

receptor EC50 and a leftward shift of the [Ca2+]e-response curve

when compared with wild-type CaSR (Chattopadhyay and

Brown, 2006; Letz et al., 2010; Hannan et al., 2012). In

particular, the mutant Pro221Leu CaSR involves substitution of a

non-polar residue for another non-polar residue in the

extracellular domain, and has been associated with autosomal-

dominant hypocalcemia with hypercalciuria (Conley et al., 2000;

Letz et al., 2010). The stable transfection of a construct encoding

a FLAG-tagged version of this human mutant CaSR in MDCK

cells did not affect the distribution of the junction-associated

protein, ZO-1, occludin and b-catenin, in comparison to MDCK

cells expressing the wild-type form of human CaSR-FLAG. Still,

the mutant Pro221Leu CaSR-FLAG was associated with a

significantly and reproducibly higher TEER in comparison to

the wild-type CaSR-FLAG (567.8671.1 ohms.cm2 versus

433.5661.9 ohms.cm2). Although variation of this magnitude

could conceivably be caused by clonal variation, it is worth

noting that the range of TEER difference observed between

MDCK cells transfected with the wild-type versus the active

form of the human CaSR corresponds to the range of TEER

differences observed in confluent MDCK cells exposed to CaSR

agonists diluted in normal-Ca2+ medium as compared to control

conditions. Interestingly, wild-type CaSR-FLAG was found to be

mostly located with b-catenin and the Na+/K+-ATPase (data not

shown) at the basolateral membrane of MDCK cells (Fig. 7A).

By contrast, the cellular distribution of P221L CaSR-FLAG

included both the basolateral membrane and an intracellular

compartment, suggesting that this mutant form of the

receptor might manifest a defect in cellular trafficking

(Fig. 7B). Moreover, wild-type CaSR-FLAG could be co-

immunoprecipitated with b-catenin, whereas this interaction

was partially lost in MDCK cells transfected with the active

Pro221Leu mutant P221L (Fig. 7C). The electrophoretic mobility

of the P221L mutant protein appeared to be different from that

observed for the wild-type CaSR-FLAG protein in western blot

analysis, with a reduction in the relative quantity of the 160-kD

band corresponding to the fully glycosylated CaSR (Bai et al.,

1996) (Fig. 7D). These observations suggested perturbations in

the maturation state of N-linked glycosylation in the mutant

or in the extent of other post-translational modifications.

Deglycosylation studies using PGNase F and endo H enzymes

revealed the absence of the endo-H-resistant mature form of the

CaSR in cell lysates expressing the P221L mutant, in contrast to

lysates expressing wild-type CaSR-FLAG (Fig. 7C, arrowhead).

Taken together, these data show that the P221L mutation causes a

defect in trafficking and maturation of the CaSR. This gain-of-

function mutation is associated with an increased TEER of

MDCK cells in comparison to wild-type CaSR, which further

supports a role for the CaSR in TJ regulation.
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Fig. 5. Increased interaction between ZO-1 and I-afadin

following activation of the CaSR in MDCK cells.

(A) Confluent MDCK cells were incubated in low-Ca2+

medium (LCM) for 16 hours, exposed to fresh LCM

supplemented with the CaSR agonist neomycin (1 mM) for the

indicated time intervals, and lysed in presence of protease

inhibitors. Cell lysates were immunoprecipitated using rabbit

polyclonal antibodies directed against I-afadin and Protein-A

agarose beads. Equal amounts of immunoprecipitates were then

separated on SDS-PAGE and probed with mouse monoclonal

anti-ZO-1 antibodies. Total cell lysates were simultaneously

subjected to immunoblotting using anti-I-afadin and anti-ZO1

antibodies. (B) The quantification of the immunoreactive signal

for ZO-1 in immunoprecipitates was performed using the

Odyssey Infrared Scanner (Li-Cor Biosciences) and normalized

to ZO-1 expression in total cell lysates. Data represent mean

percentages 6 s.d., with the LCM level used as a reference

(100%). *P#0.05 versus LCM level by Student’s t-test.

(C) Confluent MDCK cells were incubated in low-Ca2+ medium

(LCM) for 16 hours, exposed to fresh LCM supplemented with

200 mM CaCl2 and DMSO or the CaSR agonist R-568

(800 nM) or the CaSR antagonist NPS-2143 (1 mM) for

120 minutes and lysed in presence of protease inhibitors.

Immunoprecipitation was performed as described in A. (D) The

quantification of immunoreactive signals was performed as

described in B. Data represent mean percentages 6 s.d., with

the LCM level used as a reference (100%). *P#0.05 between

indicated pairs using Student’s t-test.
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Discussion
Our present studies show that the activation of the CaSR in

MDCK cells grown in low-Ca2+ conditions induces the relocation

of TJ components to cell–cell contact sites, without significant

changes in their mRNA expression. The CaSR is mainly located

close to or at the basolateral membrane in MDCK cells, where it

co-distributes with b-catenin. Its activation by well-established

agonists such as neomycin and the calcimimetic compound R-

568 causes a significant increase of TEER. In low-Ca2+

conditions, CaSR stimulation is associated with an increased

interaction between I-afadin and ZO-1 and the relocation of TJ-

associated proteins to the plasma membrane. These effects can be

prevented by exposing the cells to (1) the CaSR antagonist NPS-

2143, before Ca2+ switch or (2) to the cell-permeant Ca2+

chelator BAPTA-AM, before incubation with CaSR agonists.

The activation of the CaSR in MDCK cells appears not to result

in the phosphorylation or activation of AMPK. The stable

expression of the human CaSR harboring the disease-associated

gain-of-function P221L mutation causes a significant increase of

TEER in comparison to MDCK cells transfected with a construct

encoding the human wild-type CaSR.

The TJs form a dynamic intercellular seal that controls

paracellular permeability and that participates in the regulation

of a number of cellular processes including growth,

differentiation and metabolism (Van Itallie and Anderson,

2004; Tsukita et al., 2008). TJs are composed of a complex

assembly of integral and peripheral membrane proteins (Matter

and Balda, 2003). Integral transmembrane protein components of

TJs include claudins (CLDN), occludin and junction-associated

molecule (JAM-A). As many as 40 peripheral proteins associate

with the TJ and play crucial roles in their establishment and

maintenance. The most important TJ adaptor proteins are

members of the MAGUK (membrane-associated guanylate

kinase) family, ZO-1, ZO-2 and ZO-3. ZO-1 and ZO-2 have

essential roles in both organizing TJ components and targeting

them to their proper location (Fanning and Anderson, 2009). In

MDCK cells, the assembly of the TJ requires a transient

interaction between ZO-1 and I-afadin, through the two

proline-rich regions of I-afadin and the SH3 domain of ZO-1

(Yamamoto et al., 1997; Ooshio et al., 2010). During and after

the formation of TJs, ZO-1 dissociates from I-afadin and

associates instead with JAM-A. Here, we show that the

pharmacological activation of the CaSR in the virtual absence

of extracellular Ca2+ in MDCK cells is associated with (1) an

increased interaction of ZO-1 with I-afadin, and (2) the relocation

of ZO-1 and occludin to sites of cell–cell contact. These

observations suggest that the recruitment of TJ components

induced by CaSR stimulation bypasses the Ca2+-dependent
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Fig. 6. Effects of the cell-permeant Ca2+ chelator, BAPTA-AM, on ZO-1 relocation to the plasma membrane after CaSR stimulation or AMPK activation in

MDCK cells. (A) Confluent MDCK cells were incubated in low-Ca2+ medium (LCM) for 16 hours, exposed to fresh LCM supplemented or not with BAPTA-AM (50 mM)

for 30 minutes, incubated with the CaSR agonists neomycin (1 mM) or R-568 (800 nM), or with the AMPK activator AICAR (1 mM) for 2 hours, fixed in ice-cold

methanol and immunostained for ZO-1. Scale bar: 50 mm. (B) Quantification of ZO-1 relocation to cell membrane in A. Data represent means 6 s.d. and are representative

of three independent experiments. ZO-1 length per cell is measured within each of six randomly selected fields. *P#0.05 between indicated pairs using Student’s t-test.

(C) Confluent MDCK cells were incubated in LCM for 16 hours, exposed to fresh LCM supplemented or not with BAPTA-AM (50 mM) for 30 minutes, incubated with the

CaSR agonist neomycin (1 mM) or with the AMPK activator AICAR (1 mM) for 2 hours. Cells were lysed in the presence of protease inhibitors and immunoprecipitation

was performed using rabbit polyclonal antibodies directed against I-afadin and Protein-A agarose beads. Equal amounts of immunoprecipitates were then separated on

SDS-PAGE and probed with mouse monoclonal anti-ZO-1 antibodies. Total cell lysates were simultaneously subjected to immunoblotting using anti-I-afadin and anti-ZO1

antibodies. These data are representative of three independent experiments.
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interactions between E-cadherin molecules of adjacent epithelial

cells. This effect might be achieved by strengthening the trans

interactions mediated by other cell adhesion molecules, such as

those of the nectin–I-afadin system, and/or by modulating

cytoskeleton dynamics near the cell membrane so that nascent

cell–cell contacts are more stable, even without the participation

of E-cadherin. It must be noted that the present data do not

specifically demonstrate an effect on trans interactions. The

CaSR-induced relocation of junction-associated proteins could be

cell-autonomous and entirely independent of any change in

intercellular interactions. In addition, although no significant

changes in mRNA expression of TJ-associated proteins were

observed following exposure to CaSR agonists, it remains

unclear whether the activation of the CaSR is associated with

exocytic delivery to or retention of TJ components at the plasma

membrane.

The CaSR was first identified in tissues and cells implicated in

Ca2+ homeostasis, including the parathyroid glands and the

kidney (Brown et al., 1993; Tfelt-Hansen and Brown, 2005;

Chakravarti et al., 2012; Geibel, 2010). Recent observations have

demonstrated that the CaSR regulates the expression and

distribution of members of the claudin (CLDN) family (Ikari

et al., 2008; Gong et al., 2012). The expression of CLDN14 in

epithelial cells lining the renal thick ascending limb is positively

regulated by [Ca2+]e through the CaSR (Gong et al., 2012; Dimke

et al., 2013). Furthermore, the activation of the CaSR might

decrease the PKA-mediated phosphorylation of CLDN16,

thereby inducing its translocation and degradation in lysosomes

(Ikari et al., 2008). These in vitro and in vivo observations

emphasize the role of the CaSR in the regulation of TJ structure

and function in cells implicated in Ca2+ homeostasis. Our results

using cultured renal epithelial cells further support a role for the

CaSR in the assembly of TJs. It is unlikely that this mechanism

functions in all epithelial cells since the distribution of CaSR,

although widespread, is not ubiquitous.

CaSR signaling is mediated through several heterotrimeric

(Gq/11, Gi/o and G12/13) and small molecular weight G proteins

that regulate intracellular second messengers, lipid and protein

kinases, and transcription factors (Riccardi and Brown, 2012).

The complexity of CaSR signaling is partly linked to the large

variety of ligands that bind to the CaSR and to the diversity of

cell types expressing this receptor. The best-characterized

pathway involves the activation of phospholipase C by Gaq/11,

leading to the hydrolysis of phosphatidylinositol bisphosphate

(PIP2) into diacylglycerol and IP3 and to a consequent increase

in the intracellular Ca2+ concentration (Brennan and Conigrave,

2009). Both diacylglycerol and IP3-mediated elevations in

[Ca2+]i further activate the conventional protein kinase C

pathway. In addition, the elevation in [Ca2+]i can stimulate

calmodulin-dependent processes, namely the stabilization of the

CaSR at the plasma membrane by calmodulin itself and the

activation of calmodulin-dependent protein kinase CaMKII.

Alternatively, the CaSR-mediated activation of Gai/o can also

inhibit adenylate cyclase, thereby lowering intracellular cAMP

levels (Geibel et al., 2006). Here, we found that exposure of

MDCK cells to BAPTA-AM prevented the interaction of ZO-1
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Fig. 7. Expression of human wild-type and the P221L

active mutant of the CaSR in MDCK cells.

(A,B) Representative co-immunofluorescence using rabbit

polyclonal antibodies directed against FLAG and mouse

monoclonal antibodies directed against b-catenin, a

marker of the basolateral membrane, in MDCK cells

stably transfected with wild-type human CaSR-FLAG

(A) or with the human disease-associated P221L active

mutant of the CaSR-FLAG (B). Merge panels show xyz

planes, with the CaSR-FLAG labeled in red and b-catenin

in green. Scale bars: 10 mm. (C) MDCK cells stably

expressing human wild-type or P221L active mutant of the

CaSR-FLAG were lysed in the presence of protease

inhibitors and immunoprecipitated using mouse

monoclonal antibodies directed against FLAG and

protein-A agarose beads. Equal amounts of

immunoprecipitates (IP) were then separated on SDS-

PAGE and probed with rabbit polyclonal antibodies

directed against b-catenin. Total cell lysates (L) were

simultaneously subjected to immunoblotting using anti-

FLAG and anti-b-catenin antibodies. These data are

representative of three independent experiments.

(D) MDCK cells stably expressing human wild-type or

P221L active mutant of the CaSR-FLAG were lysed in the

presence of protease inhibitors, incubated with the

PGNase F and endo H deglycosylation enzymes for

60 minutes at 37 C̊, and probed with anti-FLAG

antibodies in a western blot analysis. The arrowhead

indicates the endo-H-resistant upper band of the

CaSR-FLAG.
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with I-afadin and its relocation to the plasma membrane
following CaSR activation. These observations further support

a role for [Ca2+]i as the principle second messenger that mediates
the influence of the CaSR on TJ assembly. By contrast, the
pharmacological activation of AMPK by AICAR led to increased
interaction between ZO-1 and I-afadin and TJ assembly, even in

the presence of BAPTA. Furthermore, loading MDCK cells with
BAPTA-AM did not affect the phosphorylation at Thr172 and
the activation of AMPK during a Ca2+ switch. However,

simultaneous activation of both the CaSR and the AMPK
pathways in MDCK cells did not produce an additive effect on
the extent of ZO-1 deposition at the plasma membrane in

comparison to a solo stimulation of any of these pathways. Thus,
these observations suggest that both the CaSR and the AMPK
cascades use a common final step in TJ assembly. Additional
studies are required to better identify the upstream cascade

leading to AMPK activation during Ca2+-induced TJ formation.

The EC50 value for Ca2+ binding at the CaSR in physiological
conditions is 4.160.1 mM [Ca2+]e (Bai et al., 1996; Pearce et al.,

1996), but can be significantly lowered by several physiological
stimuli or by drugs such as R-568 (Hammerland et al., 1998;
Petrel et al., 2004). Calcimimetics are positive allosteric

modulators that bind in the transmembrane domain on the
CaSR. In addition to its allosteric modulatory properties, the R-
568 compound might also display partial agonism per se (Henley
et al., 2011). Our studies show that switching MDCK cells from

5 mM to 50 mM [Ca2+]e induces the relocation of ZO-1 to the
plasma membrane. This was not prevented by pre-exposure to the
CaSR antagonist, NPS-2143, but was significantly amplified by

R-568. By contrast, the deposition of ZO-1 following a Ca2+

switch from 5 mM to 200 mM [Ca2+]e was partially blocked by
the CaSR antagonist, NPS-2143. Interestingly, we observed that

AMPK was phosphorylated at Thr172 and activated during a
Ca2+ switch from 5 mM to 50 mM [Ca2+]e, which could explain
the CaSR-independent TJ assembly observed under these low-

Ca2+ conditions. These observations further support the
conclusion that multiple independent pathways manifesting
distinct Ca2+ affinities are implicated in the Ca2+-induced
formation of TJs in epithelial cells.

Numerous observations support a pivotal role of the CaSR
during the ontogeny of various organs and tissues, including the
kidney, the lung, the gastro-intestinal tract, the nervous system

and the bone (Riccardi and Kemp, 2012). During mouse
development, CaSR immunoreactivity can be widely detected
as early as embryonic day 11.5. In addition, plasma [Ca2+] levels

in mammalian embryos are maintained above those in adults. The
influence of biological factors, such as pH, oxygen availability
and serum protein content, on the Ca2+ sensitivity of the CaSR in

utero and at birth remains to be clarified. In differentiated tissues,

such as the mucosa of the gastro-intestinal tract, the CaSR
participates in the modulation of cell proliferation and
differentiation (Ward et al., 2012). The human colonic

epithelium, for example, manifests a rising [Ca2+]e gradient
from the base to the top of the crypt, which correlates with an
increasing expression of the CaSR as epithelial cells migrate and

differentiate towards the apex of the crypt. Such Ca2+ signaling
mediated by the CaSR is thought to stop cell division, initiate cell
differentiation, and favor E-cadherin-based junction formation to

connect cells to one another (Chakrabarty et al., 2003). In
colorectal carcinoma, epigenetic silencing of the CASR gene
promoter by methylation is detected in 69% of cases and in 90%

of lymph node metastases, correlating strongly with reduced
CaSR expression (Hizaki et al., 2011). Taken together, these

findings indicate that changes in [Ca2+]e sensed by the CaSR
participate in the regulation of TJ assembly or maintenance.

Mutations in the CASR gene have been associated with
inherited disorders of divalent mineral homeostasis (Pearce et al.,

1996; Hannan et al., 2012). Loss-of-function mutations in one or
both of the CASR alleles result in hypercalcemic disorders,
whereas gain-of-function mutations cause autosomal dominant

hypocalcemia with hypercalciuria (ADHH) (Gunn and Gaffney,
2004; Thakker, 2004; Rus et al., 2008; Chattopadhyay and
Brown, 2006, Letz et al., 2010). The gain-of-function mutation at

nucleotide C662 (CCG to CTG) results in the substitution of a
leucine residue for a proline residue in the extracellular bilobed
Venus-fly-trap domain (VFTD) of the CaSR, which is predicted
to contain five Ca2+-binding sites (CaBSs) (Huang et al., 2007).

The important role of the VFTD cleft has been recently illustrated
by the identification and functional characterization of mutations
involving codons 173 and 221, which code for residues that are

located at the entrance to the VFTD cleft and lead to either a loss
or a gain of CaSR function (Hannan et al., 2012). The activating
Pro221Leu mutation is predicted to enhance the Ca2+ entry into

CaBS-1 owing to the substitution of the rigid side chain of the
wild-type proline residue at the entrance to the VFTD cleft with
the more-flexible leucine side chain. Here, we show that the
P221L mutation is associated with a defect in trafficking and

maturation of the CaSR. In contrast to wild-type CaSR, which co-
distributes with b-catenin at the basolateral membrane, the P221L
mutant remains predominantly localized to intracellular

compartments in MDCK cells. Furthermore, this mutant protein
migrates in SDS-PAGE with an apparent molecular mass that is
considerably smaller than that of the 160 kDa CaSR bearing fully

mature N-linked glycosylation. The P221L protein is sensitive to
deglycosylation by endoglycosydase H, suggesting that the bulk
of the protein never leaves the endoplasmic reticulum nor does it

undergo the Golgi-complex-associated maturation of its sugar
chains. Interestingly, studies testing whether the calcilytic drug
NPS-2143 could reduce the exaggerated signaling of activating
mutants at physiological Ca2+ concentrations showed that the

P221L mutant was sensitive to inhibition by this membrane-
impermeant drug only when it is co-expressed with wild-type
CaSR (Letz et al., 2010). Although these studies did not report on

the subcellular distributions of the mutants, it is tempting to
propose that co-expression of the wild-type form of the CaSR
partially rescues the P221L trafficking defect and helps the

mutant protein to reach the plasma membrane. If this was the
case, then the effect of P221L mutation on CaSR function might
not be attributable to changes in the affinity of the mutant

receptor for extracellular Ca2+. Rather, the mutation could exert
its affect by trapping the receptor in the ER, thus leading to the
continuous exposure of its extracellular domain to the very high
Ca2+ concentrations that are present in the ER lumen. Thus, the

apparent enhanced sensitivity of the P221L mutant receptor
might instead reflect its constant exposure to a high Ca2+

environment. In MDCK cells, stable transfection of the human

P221L mutant of the CaSR induces an increased TEER in
comparison to cells expressing the human wild-type CaSR. These
observations further support the role of the CaSR in the

regulation of TJ properties.

In conclusion, our data demonstrate that the CaSR participates
in the [Ca2+]e-induced assembly of TJs through an intracellular
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mechanism that is dependent on [Ca2+]i. The activation of the
CaSR in MDCK cells increases the interaction of ZO-1 with I-
afadin and promotes recruitment of CaSR to the plasma

membrane in the absence of AMPK phosphorylation and
activation. Future studies will be required to determine the
intracellular signaling cascade downstream of the CaSR that is

responsible for TJ regulation.

Materials and Methods
Plasmids and constructs
C-terminally FLAG-tagged expression vectors (FLAG-N2) encoding wild-type
and active mutant forms of the CaSR were generated by Dr Ch. Schöfl, Friedrich-
Alexander University, Erlangen, Germany. Detailed information about these
constructs was previously reported (Letz et al., 2010).

Cell culture and transfection
MDCK cells were maintained in a-MEM (Invitrogen) supplemented with 10%
fetal bovine serum (Invitrogen), 2 mM L-glutamine (Invitrogen), 50 units/ml
penicillin (Invitrogen) and 50 mg/ml streptomycin (Invitrogen). Cells were grown
in a humidified incubator at 37 C̊ in a 5% CO2 atmosphere. FLAG-N2 plasmids
encoding human wild-type or P221L mutant CaSR sequences were transfected into
MDCK cells by using Lipofectamine 2000 following the manufacturer’s
recommendations (Invitrogen). Selection and maintenance of stable MDCK cell
clones were performed in a-MEM containing 1 mg/ml neomycin (Sigma). Clones
were screened using rabbit polyclonal antibodies directed against FLAG by
immunofluorescence (IF) and immunoblotting (IB) analyses.

Ca2+ switch and drug exposure experiments
MDCK cells were grown to confluence on plastic (for IB) or on coverslips (for IF)
in a-MEM. Cells were then washed twice with minimum essential medium for
suspension culture (S-MEM, Invitrogen) and incubated in S-MEM supplemented
with 5% dialyzed fetal bovine serum, 2 mM L-glutamine, 50 units/ml penicillin
and 50 mg/ml streptomycin (low-calcium medium, LCM). Cells were incubated in
LCM for 16 hours before being switched back to a-MEM containing 1.8 mM Ca2+

(high-calcium medium, HCM) or exposed to drugs for the indicated times.
Neomycin, gadolinium and bis-[2-aminophenoxy]-ethane tetraacetic acid
(BAPTA-AM) were purchased from Sigma. Compound NPS-2143 was
purchased from Tocris-Bioscience. Compound R-568 was obtained from Amgen
(Thousand Oaks, CA). Final concentrations of DMSO never exceeded 0.1% (v/v).

Real-time RT-PCR
Total RNA was extracted from MDCK cells that had been exposed to different
conditions using the Qiagen RNeasy kit, and reverse transcribed using SuperScript
III reverse transcriptase (Invitrogen). Comparative mRNA expression analysis was
performed by real-time RT-PCR (Agilent Technologies, Stratagene Mx3005P)
using SYBR Green (QuantiTect, Qiagen), with glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as the reference gene. The relative quantification of
changes in target over GAPDH mRNA expression levels in comparison with
baseline levels was performed using the 2DDCt formula (Pfaffl, 2001).

Antibodies
Rabbit anti-CaSR was from Millipore. Rabbit anti-pACC (Ser79), anti-a1-AMPK
and anti-pAMPK (Thr172) were from Cell Signaling. Rabbit anti-b-catenin was
from Santa Cruz Technology. Rabbit anti-I-afadin-I and anti-FLAG and mouse
monoclonal anti-FLAG were from Sigma. Mouse monoclonal anti-ZO-1, anti-
occludin and anti-b-actin were from Invitrogen, Zymed Laboratories and Abcam,
respectively. Mouse monoclonal anti-Na+/K+-ATPase is directed against the
N-terminus of rat a1 subunit (Tamkun and Fambrough, 1986). Rhodamine-
conjugated goat anti-rabbit IgG was purchased from Chemicon. Alexa-Fluor-488-
conjugated goat anti-mouse IgG and Alexa-Fluor-488-conjugated goat anti-rabbit
IgG were purchased from Molecular Probes. Goat anti-mouse IRDye 800CW and
anti-rabbit IRDye 680CW were purchased from Li-Core BioSciences. All
commercially available antibodies were used according to the manufacturers’
instructions.

Immunofluorescence and Quantification of ZO-1 Staining
Cells on coverslips were washed three times with cold PBS and fixed in 100%
methanol at 220 C̊ for 10 minutes. Cells were then permeabilized in 0.3% Triton
X-100, 0.15% BSA (permeabilization buffer) in PBS for 15 minutes at room
temperature (RT) and blocked in goat serum dilution buffer (GSDB, 16% goat
serum (Invitrogen), 20 mM sodium phosphate, pH 7.4, 450 mM NaCl, 0.3%
Triton X-100) for 30 minutes at RT. Cells were incubated in primary antibody
diluted 1:100 in GSDB for 1 hour at RT, after which they were immersed three
times in permeabilization buffer, and then incubated for 1 hour in secondary
antibody diluted 1:200 in GSDB at RT. Cells were then rinsed three times in PBS

before mounting in Vectashield (Vector Laboratories). Cells were visualized
on a Zeiss Axiophot fluorescence microscope equipped with a Zeiss
AxioCamHRmCCDcamera, and on a Zeiss LSM 780 confocal laser-scanning
microscope. Contrast and brightness settings were chosen so that all pixels were in
the linear range. To quantify the mean ZO-1 length per cell, six fields were
randomly selected from each coverslip, and the total length of ZO-1 at the cell
periphery in each field was manually outlined, followed by length measurement
with ImageJ software (National Institutes of Health). Pictures were taken in the
focal plane in which the most strands of TJ components were visualized. Cell
numbers were counted for each field by using propidium iodide (Molecular
Probes) staining to reveal nuclei. Statistical analysis was performed using the two-
tailed Student’s t-test. In each case, the data presented are representative of at least
three independent experimental repetitions.

Deglycosylation studies
Cell lysates from MDCK cells expressing either human wild-type FLAG-tagged
CaSR or P221L mutant (20 mg protein/sample) were first exposed to denaturation
buffer according to the manufacturer’s recommendations (New England BioLabs)
for 10 minutes at 50 C̊, incubated with deglycosylation enzymes, PGNase F or
endo H, for 60 minutes at 37 C̊, and finally processed for western blotting analysis.

Co-immunoprecipitation and immunoblotting
Cells were lysed on ice in kinase lysis buffer (250 mM sucrose, 20 mM Tris-HCl,
pH 7.4, 50 mM NaCl, 50 mM NaF, 5 mM sodium pyrophosphate, 1 mM
Na3VO4, 2 mM fresh DTT, 1% Triton X-100) for 30 minutes, and sonicated for
15 seconds. Cell lysates were centrifuged at 15,000 rpm at 4 C̊ for 30 minutes,
after which the supernatants were collected. Co-immunoprecipitation studies were
performed using rabbit anti-I-afadin-I or mouse monoclonal anti-FLAG antibodies
and Pierce Protein-A agarose beads (Thermo Scientific). Equal amounts of
immunoprecipitates were resolved on an 8% SDS-polyacrylamide gel, and then
electrophoretically transferred to 0.2 mm nitrocellulose membranes (Bio-Rad).
Total cell lysates were also subjected to IB. Membranes were blocked with a milk
solution (150 mM NaCl, 20 mM Tris-HCl, 5% milk (w/v), 0.1% Tween (v/v),
pH 7.5) and successively probed with primary (diluted 1:1.000) and IRDye-
conjugated secondary (diluted 1:10,000) antibodies diluted in a 5% BSA solution.
Immunoreactive bands were detected using an Odyssey Infrared Scanner (Li-Cor
Biosciences).
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Marquez, M. E., Garcı́a-Sáinz, J. A. and Cereijido, M. (1991). Assembly and
sealing of tight junctions: possible participation of G-proteins, phospholipase C,
protein kinase C and calmodulin. J. Membr. Biol. 122, 193-202.

Boller, K., Vestweber, D. and Kemler, R. (1985). Cell-adhesion molecule uvomorulin
is localized in the intermediate junctions of adult intestinal epithelial cells. J. Cell

Biol. 100, 327-332.
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Thomsen, A. R., Hvidtfeldt, M. and Bräuner-Osborne, H. (2012). Biased agonism of
the calcium-sensing receptor. Cell Calcium 51, 107-116.

Troy, T. C., Li, Y., O’Malley, L. and Turksen, K. (2007). The temporal and spatial
expression of Claudins in epidermal development and the accelerated program of
epidermal differentiation in K14-CaSR transgenic mice. Gene Expr. Patterns 7, 423-430.

Tsukita, S., Yamazaki, Y., Katsuno, T., Tamura, A. and Tsukita, S. (2008). Tight
junction-based epithelial microenvironment and cell proliferation. Oncogene 27,
6930-6938.

Tu, C. L., Chang, W., Xie, Z. and Bikle, D. D. (2008). Inactivation of the calcium sensing
receptor inhibits E-cadherin-mediated cell-cell adhesion and calcium-induced differentiation
in human epidermal keratinocytes. J. Biol. Chem. 283, 3519-3528.

Van Itallie, C. M. and Anderson, J. M. (2004). The molecular physiology of tight
junction pores. Physiology (Bethesda) 19, 331-338.

Journal of Cell Science JCS127555.3d 16/9/13 11:05:18
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 7.51n/W (Jan 20 2003)

CaSR activates junction assembly 11

http://dx.doi.org/10.2174/138920109787847484
http://dx.doi.org/10.2174/138920109787847484
http://dx.doi.org/10.2174/138920109787847484
http://dx.doi.org/10.1038/366575a0
http://dx.doi.org/10.1038/366575a0
http://dx.doi.org/10.1038/366575a0
http://dx.doi.org/10.1038/366575a0
http://dx.doi.org/10.1083/jcb.77.3.853
http://dx.doi.org/10.1083/jcb.77.3.853
http://dx.doi.org/10.1083/jcb.77.3.853
http://dx.doi.org/10.1007/978-94-007-2888-2_5
http://dx.doi.org/10.1007/978-94-007-2888-2_5
http://dx.doi.org/10.1016/j.ceca.2003.10.012
http://dx.doi.org/10.1016/j.ceca.2003.10.012
http://dx.doi.org/10.1016/j.ymgme.2006.07.003
http://dx.doi.org/10.1016/j.ymgme.2006.07.003
http://dx.doi.org/10.1016/j.ymgme.2006.07.003
http://dx.doi.org/10.1006/mgme.2000.3096
http://dx.doi.org/10.1006/mgme.2000.3096
http://dx.doi.org/10.1006/mgme.2000.3096
http://dx.doi.org/10.1006/mgme.2000.3096
http://dx.doi.org/10.1152/ajprenal.00263.2012
http://dx.doi.org/10.1152/ajprenal.00263.2012
http://dx.doi.org/10.1152/ajprenal.00263.2012
http://dx.doi.org/10.1111/j.1749-6632.2009.04440.x
http://dx.doi.org/10.1111/j.1749-6632.2009.04440.x
http://dx.doi.org/10.1111/j.1749-6632.2009.04440.x
http://dx.doi.org/10.1007/s00424-003-1223-8
http://dx.doi.org/10.1007/s00424-003-1223-8
http://dx.doi.org/10.1007/s00424-003-1223-8
http://dx.doi.org/10.1016/0014-4827(76)90694-7
http://dx.doi.org/10.1016/0014-4827(76)90694-7
http://dx.doi.org/10.1016/0014-4827(76)90694-7
http://dx.doi.org/10.1073/pnas.0602996103
http://dx.doi.org/10.1073/pnas.0602996103
http://dx.doi.org/10.1073/pnas.0602996103
http://dx.doi.org/10.1073/pnas.0602996103
http://dx.doi.org/10.1038/emboj.2012.49
http://dx.doi.org/10.1038/emboj.2012.49
http://dx.doi.org/10.1038/emboj.2012.49
http://dx.doi.org/10.1038/emboj.2012.49
http://dx.doi.org/10.1007/BF01870778
http://dx.doi.org/10.1007/BF01870778
http://dx.doi.org/10.1016/0968-0004(88)90040-0
http://dx.doi.org/10.1016/0968-0004(88)90040-0
http://dx.doi.org/10.1258/0004563042466802
http://dx.doi.org/10.1258/0004563042466802
http://dx.doi.org/10.1093/hmg/dds105
http://dx.doi.org/10.1093/hmg/dds105
http://dx.doi.org/10.1093/hmg/dds105
http://dx.doi.org/10.1093/hmg/dds105
http://dx.doi.org/10.1093/hmg/dds105
http://dx.doi.org/10.1042/BST0301064
http://dx.doi.org/10.1042/BST0301064
http://dx.doi.org/10.1083/jcb.25.3.195
http://dx.doi.org/10.1083/jcb.25.3.195
http://dx.doi.org/10.1124/jpet.110.178681
http://dx.doi.org/10.1124/jpet.110.178681
http://dx.doi.org/10.1124/jpet.110.178681
http://dx.doi.org/10.1124/jpet.110.178681
http://dx.doi.org/10.1038/modpathol.2011.10
http://dx.doi.org/10.1038/modpathol.2011.10
http://dx.doi.org/10.1038/modpathol.2011.10
http://dx.doi.org/10.1038/modpathol.2011.10
http://dx.doi.org/10.1074/jbc.M701096200
http://dx.doi.org/10.1074/jbc.M701096200
http://dx.doi.org/10.1074/jbc.M701096200
http://dx.doi.org/10.1074/jbc.M701096200
http://dx.doi.org/10.1016/j.bbamem.2007.10.002
http://dx.doi.org/10.1016/j.bbamem.2007.10.002
http://dx.doi.org/10.1016/j.bbamem.2007.10.002
http://dx.doi.org/10.1002/jcp.10107
http://dx.doi.org/10.1002/jcp.10107
http://dx.doi.org/10.1002/jcp.10107
http://dx.doi.org/10.1210/jc.2010-0651
http://dx.doi.org/10.1210/jc.2010-0651
http://dx.doi.org/10.1210/jc.2010-0651
http://dx.doi.org/10.1210/jc.2010-0651
http://dx.doi.org/10.1210/er.2009-0043
http://dx.doi.org/10.1210/er.2009-0043
http://dx.doi.org/10.1083/jcb.87.3.736
http://dx.doi.org/10.1083/jcb.87.3.736
http://dx.doi.org/10.1083/jcb.87.3.736
http://dx.doi.org/10.1038/nrm1055
http://dx.doi.org/10.1038/nrm1055
http://dx.doi.org/10.1083/jcb.79.1.156
http://dx.doi.org/10.1083/jcb.79.1.156
http://dx.doi.org/10.1083/jcb.79.1.156
http://dx.doi.org/10.1016/j.ceca.2003.10.020
http://dx.doi.org/10.1016/j.ceca.2003.10.020
http://dx.doi.org/10.1073/pnas.89.13.6162
http://dx.doi.org/10.1073/pnas.89.13.6162
http://dx.doi.org/10.1073/pnas.89.13.6162
http://dx.doi.org/10.1074/jbc.M109.043760
http://dx.doi.org/10.1074/jbc.M109.043760
http://dx.doi.org/10.1074/jbc.M109.043760
http://dx.doi.org/10.1074/jbc.M109.043760
http://dx.doi.org/10.1172/JCI118987
http://dx.doi.org/10.1172/JCI118987
http://dx.doi.org/10.1172/JCI118987
http://dx.doi.org/10.1074/jbc.M400724200
http://dx.doi.org/10.1074/jbc.M400724200
http://dx.doi.org/10.1074/jbc.M400724200
http://dx.doi.org/10.1074/jbc.M400724200
http://dx.doi.org/10.1093/nar/29.9.e45
http://dx.doi.org/10.1093/nar/29.9.e45
http://dx.doi.org/10.1152/ajprenal.00608.2009
http://dx.doi.org/10.1152/ajprenal.00608.2009
http://dx.doi.org/10.1146/annurev-physiol-020911-153318
http://dx.doi.org/10.1146/annurev-physiol-020911-153318
http://dx.doi.org/10.1146/annurev-physiol-020911-153318
http://dx.doi.org/10.1210/jc.2008-1076
http://dx.doi.org/10.1210/jc.2008-1076
http://dx.doi.org/10.1210/jc.2008-1076
http://dx.doi.org/10.1210/jc.2008-1076
http://dx.doi.org/10.1083/jcb.22.1.173
http://dx.doi.org/10.1083/jcb.22.1.173
http://dx.doi.org/10.1002/jcp.1041590306
http://dx.doi.org/10.1002/jcp.1041590306
http://dx.doi.org/10.1002/jcp.1041590306
http://dx.doi.org/10.1080/10408360590886606
http://dx.doi.org/10.1080/10408360590886606
http://dx.doi.org/10.1016/j.ceca.2003.10.010
http://dx.doi.org/10.1016/j.ceca.2003.10.010
http://dx.doi.org/10.1016/j.ceca.2011.11.009
http://dx.doi.org/10.1016/j.ceca.2011.11.009
http://dx.doi.org/10.1016/j.modgep.2006.11.006
http://dx.doi.org/10.1016/j.modgep.2006.11.006
http://dx.doi.org/10.1016/j.modgep.2006.11.006
http://dx.doi.org/10.1038/onc.2008.344
http://dx.doi.org/10.1038/onc.2008.344
http://dx.doi.org/10.1038/onc.2008.344
http://dx.doi.org/10.1074/jbc.M708318200
http://dx.doi.org/10.1074/jbc.M708318200
http://dx.doi.org/10.1074/jbc.M708318200
http://dx.doi.org/10.1152/physiol.00027.2004
http://dx.doi.org/10.1152/physiol.00027.2004


van Meer, G. and Simons, K. (1986). The function of tight junctions in maintaining
differences in lipid composition between the apical and the basolateral cell surface
domains of MDCK cells. EMBO J. 5, 1455-1464.

Varani, J. (2011). Calcium, calcium-sensing receptor and growth control in the colonic
mucosa. Histol. Histopathol. 26, 769-779.

Ward, B. K., Magno, A. L., Walsh, J. P. and Ratajczak, T. (2012). The role of the
calcium-sensing receptor in human disease. Clin. Biochem. 45, 943-953.

Yamamoto, T., Harada, N., Kano, K., Taya, S., Canaani, E., Matsuura, Y.,
Mizoguchi, A., Ide, C. and Kaibuchi, K. (1997). The Ras target AF-6 interacts with
ZO-1 and serves as a peripheral component of tight junctions in epithelial cells.
J. Cell Biol. 139, 785-795.

Zhang, L., Li, J., Young, L. H. and Caplan, M. J. (2006). AMP-activated protein
kinase regulates the assembly of epithelial tight junctions. Proc. Natl. Acad. Sci. USA

103, 17272-17277.
Zhang, L., Jouret, F., Rinehart, J., Sfakianos, J., Mellman, I., Lifton, R. P., Young,

L. H. and Caplan, M. J. (2011). AMP-activated protein kinase (AMPK) activation
and glycogen synthase kinase-3b (GSK-3b) inhibition induce Ca2+-independent
deposition of tight junction components at the plasma membrane. J. Biol. Chem. 286,
16879-16890.

Zheng, B. and Cantley, L. C. (2007). Regulation of epithelial tight junction assembly
and disassembly by AMP-activated protein kinase. Proc. Natl. Acad. Sci. USA 104,
819-822.

Journal of Cell Science JCS127555.3d 16/9/13 11:05:18
The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 7.51n/W (Jan 20 2003)

Journal of Cell Science 000 (000)12

http://dx.doi.org/10.1016/j.clinbiochem.2012.03.034
http://dx.doi.org/10.1016/j.clinbiochem.2012.03.034
http://dx.doi.org/10.1083/jcb.139.3.785
http://dx.doi.org/10.1083/jcb.139.3.785
http://dx.doi.org/10.1083/jcb.139.3.785
http://dx.doi.org/10.1083/jcb.139.3.785
http://dx.doi.org/10.1073/pnas.0608531103
http://dx.doi.org/10.1073/pnas.0608531103
http://dx.doi.org/10.1073/pnas.0608531103
http://dx.doi.org/10.1074/jbc.M110.186932
http://dx.doi.org/10.1074/jbc.M110.186932
http://dx.doi.org/10.1074/jbc.M110.186932
http://dx.doi.org/10.1074/jbc.M110.186932
http://dx.doi.org/10.1074/jbc.M110.186932
http://dx.doi.org/10.1074/jbc.M110.186932
http://dx.doi.org/10.1073/pnas.0610157104
http://dx.doi.org/10.1073/pnas.0610157104
http://dx.doi.org/10.1073/pnas.0610157104

	Fig 1
	Fig 3
	Fig 2
	Fig 4
	Fig 5
	Fig 6
	Fig 7
	Ref 1
	Ref 2
	Ref 3
	Ref 4
	Ref 5
	Ref 6
	Ref 7
	Ref 8
	Ref 9
	Ref 10
	Ref 11
	Ref 12
	Ref 13
	Ref 14
	Ref 15
	Ref 16
	Ref 17
	Ref 18
	Ref 19
	Ref 20
	Ref 21
	Ref 22
	Ref 23
	Ref 24
	Ref 25
	Ref 26
	Ref 27
	Ref 28
	Ref 29
	Ref 30
	Ref 31
	Ref 32
	Ref 33
	Ref 34
	Ref 35
	Ref 36
	Ref 37
	Ref 38
	Ref 39
	Ref 40
	Ref 41
	Ref 42
	Ref 43
	Ref 44
	Ref 45
	Ref 46
	Ref 47
	Ref 48
	Ref 49
	Ref 50
	Ref 51
	Ref 52
	Ref 53
	Ref 54
	Ref 55
	Ref 56
	Ref 57
	Ref 58
	Ref 59
	Ref 60
	Ref 61
	Ref 62
	Ref 63
	Ref 64
	Ref 65
	Ref 66
	Ref 67
	Ref 68
	Ref 69

