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Abstract. We develop a new approach, based on quantization methods, to study higher
symmetries of invariant di�erential operators. We focus here on conformally invariant powers
of the Laplacian over a conformally �at manifold and recover results of Eastwood, Leistner,
Gover and �ilhan. In particular, conformally equivariant quantization establishes a corre-
spondence between the algebra of Hamiltonian symmetries of the null geodesic �ow and
the algebra of higher symmetries of the conformal Laplacian. Combined with a symplectic
reduction, this leads to a quantization of the minimal nilpotent coadjoint orbit of the con-
formal group. The star-deformation of its algebra of regular functions is isomorphic to the
algebra of higher symmetries of the conformal Laplacian. Both identify with the quotient of
the universal envelopping algebra by the Joseph ideal.

1. Introduction

There are a number of di�erent notions of symmetries for a di�erential operator P on
a manifold M . The most basic symmetries are the vector �elds X ∈ Vect(M) preserving
the considered operator: [P,X] = 0. More generally, symmetries can be given by di�erential
operators D ∈ D(M) of arbitrary order which commute with P . Such symmetries obviously
preserve the eigenspaces of P . Here, we are interested in the more general notion of higher
symmetries. They are de�ned as the di�erential operators D1 satisfying PD1 = D2P for some
di�erential operator D2. Thus, they preserve the kernel of P but not the other eigenspaces
in general. They form a subalgebra of D(M).

The higher symmetries given by di�erential operators of �rst order form a Lie algebra
g, which contains the vector �elds preserving P . The determination of the space of higher
symmetries of P , together with its algebra and g-module structure, is of interest from at least
two points of view: the integrability of the equation Pφ = 0, with φ in the source space of P ,
and the representation theory of the g-module kerP .

Higher symmetries have been investigated �rst for the Laplacian P = ∆. On R3, Boyer,
Kalnins and Miller have classi�ed all the second order higher symmetries of the Laplacian
[10], which allows them to get all the possible coordinates systems separating the equation
∆φ = 0. Later on, revealing the conformal nature of higher symmetries of ∆, Eastwood
has classi�ed all of them on Rn [19]. In particular, he provides an explicit bijection between
the higher symmetries of ∆ and the traceless conformal Killing tensors. After this seminal
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work, higher symmetries of various operators have been investigated from the point of view
of parabolic geometries [20, 25, 40], using either ambient method or tractor calculus. Physics
paper have also appeared on the subject [4, 5].

Up to constants, the Lie algebra of �rst order higher symmetries of ∆ on Rp,q is given
by g = o(p + 1, q + 1), which acts by conformal Killing vector �elds X ∈ Vect(Rp,q), i.e.
LXg = fXg, with fX ∈ C∞(M) and g the pseudo-Euclidean metric. Explicitly, for X ∈ g, we
have

(1.1) ∆(X + λDivX) = (X + µDivX)∆,

where Div is the divergence operator, λ = n−2
2n , µ = n+2

2n . In [19], Eastwood proves that the
algebra of higher symmetries of ∆ is a quotient of the universal enveloping algebra U(g)/J .
Moreover, he computes the ideal J which turns to be equal to the classical Joseph ideal [27].

The results in [19] rely on the conformal invariance of ∆ on Rp,q and hold as well on any
conformally �at manifold (M, g) [25], after replacing ∆ by the conformal Laplacian

P1 = ∇i gij∇j −
n− 2

4(n− 1)
R,

where ∇ is the Levi-Civita connection and R the scalar curvature. On the homogeneous
model of conformal geometry, given by the product of spheres Sp × Sq, the representation
of g on kerP1 de�ned by (1.1) integrates to a unitary irreducible representation of the Lie
group G = O(p + 1, q + 1), if p + q ≥ 4 is even [6]. This is the intensively studied minimal
representation of G, see e.g. [28, 29]. The induced representation of U(g) on kerP1 has
for kernel the Joseph ideal J , as proved in [6], and coincide then with the action of higher
symmetries on kerP1.

In this paper, we obtain the classi�cation of higher symmetries of P1 and their algebraic
structure in a new manner, using the theory of equivariant quantization of cotangent bundles
[17, 9, 12]. By the way, we get three new results. First, we establish that the map between
traceless conformal Killing tensors and higher symmetries of the Laplacian is a restriction of
the conformally equivariant quantization, which is de�ned on all the algebra of symmetric
tensors [17]. Second, we identify the algebra of traceless conformal Killing tensors on Sp × Sq

with the algebra of regular functions on O00, the minimal nilpotent coadjoint orbit of G.
Third, we provide a geometric interpretation for the algebraic structure of the space of higher
symmetries of P1, as the unique g-equivariant star-deformation of the algebra of regular
functions on O00, investigated in [1, 2]. We determine more generally the higher symmetries
of the conformal powers of the Laplacian, denoted P`, and thus recover the results of Gover and
�ilhan [25]. The present approach can be generalized to number of cases, indeed, equivariant
quantization is available for any |1|-graded parabolic geometry and for di�erential operators
acting on any irreducible natural bundles [12].

Let us now detail the content of this paper.
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In Section 2, we describe our main tools, namely the classi�cation of conformally in-
variant operators on symbols [21, 33], the conformally equivariant quantization Qλ,λ [17],
parametrized by λ ∈ R, and the induced star product on symbols [16].

In Section 3, we formulate and prove our �rst main result. We characterize the space
Aλ,` of higher symmetries of P` (with λ = n−2`

2n ) and the space K` of s-generalized conformal
Killing tensors with s < ` [35], as kernels of some conformally invariant operators. Then, we
prove that conformally equivariant quantization Qλ,λ intertwines both conformally invariant
operators. As a result, we get an isomorphism of g-module Qλ,λ : K` → Aλ,`, with g the
the Lie algebra of conformal vector �elds. Note that explicit formulas are available for the
conformally equivariant quantization [18, 32, 37, 38].

In section 4, we identify the algebras K` and Aλ,`. We prove that the space K of gener-
alized conformal Killing tensors is the subalgebra generated by g of the algebra of symmetric
tensors. Moreover, the spaces K` arise as quotients of K. Similarly, the spaces of symme-
tries Aλ,` are obtained as quotients of the algebra Aλ of di�erential operators generated by
X + λDivX with X ∈ g. We describe then all the coadjoint orbits of G in the image of
the moment map µ : T ∗Rp+1,q+1 → g∗ as symplectic reductions of the source manifold. The
algebras of regular functions on the two nilpotent orbits in the image of µ identify with K
and K1. As a consequence, we get an explicit description of the symmetry algebras Aλ,` as
deformations of K`. More precisely, the algebra K1 is the algebra of regular functions on the
minimal nilpotent coadjoint orbit O00 and the corresponding symmetry algebra Aλ,1 of P1

is isomorphic to a quotient U(g)/J . The ideal J is identi�ed with the Joseph ideal from its
de�ning property: this is the unique completely prime ideal in U(g) with associated variety
O00 [27]. Finally, we build a star product on each coadjoint orbit in the image of µ. In
particular, the conformally equivariant quantization induces the unique graded g-equivariant
star-product on O00, studied in [1, 2], and furnishes a representation of this star-product on
kerP1.

2. Conformal geometry of differential operators and of their symbols

We introduce in this section the basic notions that we use throughout the paper. We
recall two important results : the existence and uniqueness of the conformally equivariant
quantization [17] and the classi�cation of the conformally invariant operators on the space of
symbols, as in [33].

2.1. Basic de�nitions. LetM be a smooth manifold and D(M) be the algebra of di�erential
operators on C∞(M). The algebra D(M) has a natural �ltration

D0(M) ⊂ D1(M) ⊂ · · · ⊂ Dk(M) ⊂ · · · ,

where the space Dk(M), of di�erential operators of order k, is de�ned as the space of operators
P on C∞(M) satisfying [· · · [P, f0], · · · ], fk] = 0 for all functions f0, . . . , fk ∈ C∞(M). The
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associated graded algebra grD(M) is de�ned as

S(M) =
∞⊕
k=0

Dk(M)/Dk−1(M)

and called the algebra of symbols. It identi�es to two isomorphic algebras: the algebra
of symmetric tensors Γ(STM) and the algebra of functions on T ∗M , which are �berwise
polynomial. In that way, S(M) inherits of the canonical Poisson bracket {·, ·} on T ∗M .

The canonical projections σk : Dk(M) → Dk(M)/Dk−1(M) are called the principal
symbol maps. They satisfy the two following properties

σk+l(AB) = σk(A)σl(B),(2.1)

σk+l−1([A,B]) = {σk(A), σl(B)},(2.2)

for all A ∈ Dk(M) and B ∈ Dl(M).

2.2. Actions of Vect(M) on the spaces of di�erential operators and symbols. The
di�eomorphisms of M lift canonically to automorphisms of GL(M), the principal bundle of
linear frames over M . Consequently, they act canonically on sections of every associated
bundles to GL(M). The corresponding in�nitesimal actions of the Lie algebra Vect(M) of
vector �elds are given by Lie derivatives. In particular, we get a Vect(M)-module structure
on the spaces of symbols S(M).

The space of λ-densities is de�ned as Fλ := Γ(|ΛnT ∗M |⊗λ), with λ ∈ R. The line bundle
|ΛnT ∗M |⊗λ is the associated line bundle

|ΛnT ∗M |⊗λ = GL(M)×ρ R,

where the representation ρ of the group GL(n,R) on R is given by

ρ(A)e = |detA|−λe, ∀A ∈ GL(n,R), ∀e ∈ R.

Via a global section |vol|λ, the Vect(M)-module Fλ identi�es to the module (C∞(M), Lλ),
endowed with the Vect(M)-action

(2.3) LλX = X + λDiv(X),

where Div is the divergence operator with respect to |vol|. Note that a metric g on M de�nes
a canonical 1-density denoted |volg|.

The Vect(M)-module Dλ,µ of di�erential operators from λ- to µ-densities identi�es to
(D(M),Lλ,µ), with

Lλ,µX A = LµXA−AL
λ
X ,

for all X ∈ Vect(M) and A ∈ D(M). This action preserves the �ltration of D(M), hence
the algebra of symbols inherits of a Vect(M)-action compatible with the grading. This action
coincides with the Vect(M)-action by Lie derivative on

Sδ = S(M)⊗C∞(M) Fδ,

for δ = µ− λ.
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2.3. Conformal Lie algebra. A conformal structure on a smooth manifoldM is given by an
equivalence class [g] of pseudo-Riemannian metrics, where two metrics h and g are considered
equivalent if h = Fg for some positive function F ∈ C∞(M). The signature (p, q) of the
metric g is an invariant of the conformal structure.

To each signature corresponds a canonical �at model (Rp,q, [η]), with η = Ip ⊗−Iq. The
conformal manifold (M, [g]) is said to be conformally �at if it admits an atlas (Ui, φi), such
that φ∗i [η] coincides with the restriction of [g] to Ui.

The vector �elds that preserve a conformal class [g] are called conformal Killing vector
�elds. They are characterized by the equation LXg = fXg, with LXg the Lie derivative of g

along X and fX ∈ C∞(M). If (M, [g]) is conformally �at of dimension p + q ≥ 3, the local
conformal Killing vector �elds form a sheaf of Lie algebras locally isomorphic to

g = o(p+ 1, q + 1),

which is the conformal Lie algebra of (Rp,q, [η]).
An important example of conformally �at manifold is Sp× Sq, viewed as a homogeneous

space of G = O(p+1, q+1). Starting from the isometric action of G on the pseudo-Euclidean
space Rp+1,q+1, we get an action of G on the space of isotropic half-lines, which identi�es
naturally to the manifold Sp × Sq. Via this construction, the �at metric on Rp+1,q+1 induces
a conformally �at structure on Sp × Sq, preserved by the G-action.

2.4. Conformal invariants. The classi�cation of di�erential operators, acting between nat-
ural bundles and which are invariant under the action of local conformal Killing vector �elds,
is the same over all conformally �at manifolds (M, [g]) of signature (p, q). Using local confor-
mal coordinates (xi), which are such that gij = Fηij for a positive function F , the invariant
di�erential operators are given by the same formulæ on (M, [g]) and on Rp,q. Moreover, such
a classi�cation can be deduced from the classi�cation of morphisms of generalized Verma
modules of g = o(p + 1, q + 1), obtained in [7, 8]. All results presented here can also be
derived from the Weyl theory of invariants [41], applied to the a�ne part of g, and basic
computations, see e.g. [33].

First, we provide the well-known classi�cation of the conformal invariants of the Vect(M)-
modules of di�erential operators Dλ,µ and of symbols Sδ. We write them in terms of local
conformal coordinates (xi, pi) on T ∗M , of the corresponding derivatives (∂i, ∂pi), and of the
1-densities |volg| and |volη| determined by the metrics g and η respectively.

Proposition 2.1. On a conformally �at manifold (M, [g]), the conformal invariants of (Sδ)δ∈R
and (Dλ,µ)λ,µ∈R are given, up to a multiplicative constant, by

• R` ∈ S
2`
n for ` ∈ N,

• P` ∈ Dλ,µ for ` ∈ N and λ = n−2`
2n , µ = n+2`

2n ,

where R = |volg|2/ng−1 and P` is the `th conformal power of the Laplacian. In conformal

coordinates, they read locally as R = |volη|2/nηijpipj and P` = |volη|2`/n(ηij∂i∂j)
` .
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We refer to [24] and references inside for global expressions of the conformal powers of
the Laplacian. Since the principal symbol map is Vect(M)-equivariant, conformally invariant
di�erential operators give rise to conformally invariant symbols, but the fact that they are in
correspondence is remarkable.

Second, we present the classi�cation of the conformally invariant di�erential operators
on the space of symbols, as it appears in [33]. It relies on the harmonic decomposition of the
g-module of symbols, namely

Sδ =
⊕

k,s∈N, 2s≤k
Sδk,s,

where Sδk,s is the module of symbols S of degree k and of the form S = RsS0 with S0 a traceless
symbol. This means TS0 = 0, where T is the trace operator locally given by T = ηij∂pi∂pj .
The other local operators playing a role are

D = ∂i∂pi , G = ηijpi∂j , ∆ = ηij∂i∂j ,

the divergence, gradient and Laplace operators respectively.

Theorem 2.2. [33] Let k ≥ 2s and k′ ≥ 2s′ be four integers, and δ, δ′ ∈ R. The space of

conformal invariant di�erential operators from Sδk,s to Sδ
′
k′,s′ satis�es

• if n2 (δ′ − δ) /∈ Z, it is trivial,
• if j = n

2 (δ′ − δ) ∈ Z, it is one dimensional and generated by Rs
′
DdT s, if s′ − s = j, k − k′ = d− 2j and δ = 1 + 2(k−s)−d−1

n ,

Rs
′
Gg0T

s, if s′ − s = j − g, k − k′ = s− s′ − j and δ = 2s+1−g
n ,

Rs
′L`T s, if s′ − s = j − `, k − k′ = 2(`− j) and δ = 1

2 + k−`
n ,

where G0 = Π0 ◦G with Π0 the projection on traceless symbols and L` = ∆` + a1GD∆`−1 +

· · ·+ a`G
`D` for given real coe�cients a1, . . . , a`.

Global expression for divergence and gradient operators can be �nd in [14], and we refer
to [43] for L1.

2.5. Conformally equivariant quantization. Let λ, µ ∈ R and δ = µ− λ. We call quan-
tization the linear isomorphisms

Qλ,µ : Sδ → Dλ,µ,

which are right inverses of the principal symbol map on homogeneous symbols. This means
σk ◦ Qλ,µ = Id on Sδk for all k ∈ N.

Let h be a subalgebra of Vect(M). Since both Sδ and Dλ,µ are Vect(M)-modules, one
can look for h-equivariant quantization, i.e. maps Qλ,µ which intertwine the h-action. There
are no such map if h = Vect(M) as proved in [30]. On a conformally �at manifold, one can
choose h = g, the conformal Lie algebra. As proved in [17], there exists a unique g-equivariant
quantization Qλ,µ for generic values of δ = µ− λ.
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The exceptional values of δ leading to a non-unique or a non-existing conformally equi-
variant quantization have been classi�ed in [38, 33]. In particular, δ = 0 is not an exceptional
value.

Theorem 2.3. [38, 33] The conformally equivariant quantization exists and is unique on Sδk,s
if and only if there is no conformally invariant di�erential operators from Sδk,s to Sδ, i.e. for
δ /∈ IDk,s q

(
IGk,s ∪ ILk,s

)
where

IDk,s =

{
1 +

2(k − s)− d− 1

n
| d ∈ J1, k − 2sK

}
,

IGk,s =

{
2s+ 1− g

n
| g ∈ J1, sK

}
, ILk,s =

{
1

2
+
k − l
n
| l ∈ J1, sK

}
.(2.4)

Explicit formulæ are available for the conformally equivariant quantization. As an ex-
ample, we recall the one obtained by Radoux [37] on the space Sδ∗,0 =

⊕
k∈N Sδk,0 of traceless

symbols. It relies on the divergence operator and the normal ordering, which are locally
de�ned by D = ∂i∂pi and N : Si1···ik(x)pi1 · · · pik 7→ Si1···ik(x)∂i1 · · · ∂ik .

Proposition 2.4. [37] Let δ /∈ {1 + 2k−1−m
n |m = 1, . . . , k}, λ ∈ R and µ = λ + δ. On the

space Sδk,0 of traceless symbols of degree k, the conformally equivariant quantization is given

by

(2.5) Qλ,µ = N ◦

(
k∑

m=0

ckmD
m

)
,

with ck0 = 1 and ckm = k−m+nλ
m(2k−m−1+n(1−δ)) c

k
m−1, for m = 1, . . . , k.

The conformal equivariance of Qλ,µ implies that it is globally well-de�ned over confor-
mally �at manifolds. In the general case, including symbols with non-vanishing trace, fully
explicit formulæ are known only for symbols up to the degree 3 in momenta variables p [18, 32].
Moreover, �ilhan has obtained an expression for the conformally equivariant quantization in
the curved case on all symbols, in terms of the tractor calculus [38].

We will need an extra statement on the conformally equivariant quantization, which is
not in the literature but can be straightforwardly deduced from [17].

Proposition 2.5. Let λ, µ ∈ R with δ = µ− λ and let E be a g-submodule of Sδ. For a shift

δ /∈ 1
nN
∗, there exists a unique g-equivariant quantization Qλ,µ : E → Dλ,µ.

2.6. Conformally equivariant graded star product. Let us start with standard de�ni-
tions. The algebra of symbols S0 is commutative and graded, moreover, as a subalgebra
of C∞(T ∗M), it carries a Poisson bracket denoted by {·, ·}. A graded (or homogeneous)
star product on S0 is an associative C[[~]]-linear product ? on S0 ⊗ C[[~]], with ~ a formal
parameter. For S1, S2 ∈ S0, it is of the form S1 ? S2 =

∑
m∈N (i~)mBm(S1, S2) and satis�es:

(1) B0(S1, S2) = S1S2,
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(2) B1(S1, S2)−B1(S2, S1) = {S1, S2},
(3) for all integers k, l,m, Bm : S0

k ⊗ S0
l → S0

k+l−m is a bilinear operator.

A frequently required extra property is the symmetry (or parity) of the star product, namely
Bm(S1, S2) = (−1)mBm(S2, S1) for all integers m, or equivalently S1 ? S2 = S2 ? S1, where ·
is the complex conjugation.

Let us introduce three maps: the C[[~]]-linear map = : S0 ⊗C[[~]]→ S0 ⊗C[[~]] de�ned
by (i~)kId on S0

k , the C[[~]]-linear extension Qλ ⊗ Id : S0 ⊗ C[[~]] → Dλ,λ ⊗ C[[~]] of some
quantization Qλ and the composition Qλ~ = (Qλ ⊗ Id) ◦ =. We denote by ∗ the adjoint oper-
ation with respect to the Hermitian product (φ, ψ) =

∫
M φψ, de�ned on complex compactly

supported half-densities.

Proposition 2.6. The product ?λ de�ned by

(2.6) S1 ?
λ S2 = (Qλ~)−1

(
Qλ~(S1) ◦ Qλ~(S2)

)
, ∀S1, S2 ∈ S0 ⊗ C[[~]],

is a graded star product on S0. If the quantization satis�es Q
1
2
~ (S) = Q

1
2
~ (S)∗ for all S ∈ S0,

then the star product ?
1
2 is symmetric.

Proof. These results are classical. Using the property
(
σk ◦ Qλ~

)
|Sk(M)

= (i~)kId of the quan-

tization Qλ~ and the two properties (2.1) and (2.2) of the principal symbol maps, one easily

proves that ?λ is a graded star product. If the quantization satis�es Q
1
2
~ (S) = Q

1
2
~ (S)∗ for all

S ∈ S0, we deduce that S1 ?
1
2 S2 = S2 ?

1
2 S1 for all symbols S1, S2, thanks to the equalities

Q
1
2
~ (S1 ?

1
2 S2) =

(
Q

1
2
~ (S1) ◦ Q

1
2
~ (S2)

)∗
= Q

1
2
~ (S̄2 ?

1
2 S̄1). �

The action of X ∈ Vect(M) on S0 ⊂ C∞(T ∗M) is given by the Hamiltonian derivation
{µX , ·}, where µX = Xipi. From a star product ? on S0, we can de�ne a new action of Vect(M)

on S0 ⊗ C[[~]] via the star bracket, i.e. X ∈ Vect(M) acts on S ∈ S0 ⊗ C[[~]] by [µX , S]? =

µX ? S − S ? µX . Let h be a subalgebra of Vect(M). The star product is said h-equivariant
(or strongly h-invariant) if both induced h-actions coincide, namely [µX , S]? = i~{µX , S} for
all X ∈ h and all S ∈ S0. As one can expect, conformally equivariant quantizations give rise
to g-equivariant star products.

Proposition 2.7. [17, 16] Let (M, [g]) be a conformally �at manifold. The star product

?λ induced by the conformally equivariant quantization Qλ,λ via equation (2.6) is a graded

g-equivariant star product on S0. It is symmetric if and only if λ = 1
2 .

It is easy to prove that all graded g-equivariant star products on S0 arise in that way.
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3. Classification of the higher symmetries of the conformal powers of the

Laplacian

The aim of this section is to show how conformally equivariant quantization sheds new
light on the determination of higher symmetries of conformal Laplacian, initiated by East-
wood [19] and pursued in [20] and [25] for conformal powers of the Laplacian, in the con-
formally �at case. In all this section we work over a conformally �at manifold (M, [g]) of
dimension n ≥ 3 and P` denotes the `th conformal power of the Laplacian, pertaining to Dλ,µ

for values of the weights henceforth �xed to λ = n−2`
2n , µ = n+2`

2n .

3.1. De�nition of higher symmetries of P`. Let λ′ ∈ R and (P`) = {DP`|D ∈ Dµ,λ
′} be

the left ideal generated by P` in Dλ,λ
′
, with either λ′ = λ or λ′ = µ, depending on the context.

De�nition 3.1. The space of higher symmetries of P` is

Aλ,` = {D1 ∈ Dλ,λ such that ∃D2 ∈ Dµ,µ, P`D1 = D2P`}/(P`).

If D1 = DP`, with D ∈ Dµ,λ, the equality P`D1 = (P`D)P` holds. Hence, all elements
D1 ∈ (P`) satisfy the relation P`D1 = D2P` and the quotient de�ning Aλ,` is well-de�ned.

Clearly, Aλ,` is a subalgebra of Dλ,λ/(P`) and coincides with the kernel of the conformally
invariant map

QHS : Dλ,λ/(P`) → Dλ,µ/(P`)
[D] 7→ [P`D](3.1)

where QHS stands for Quantum Higher Symmetries and [D] = D + (P`).

Remark 3.2. Resorting to conformal coordinates, higher symmetries prove to be locally the

same on �at and conformally �at manifolds, but global existence can nevertheless be problem-

atic in this more general setting. We do not address this issue and work only locally.

Example 3.3. The higher symmetries of P` given by �rst order di�erential operators are the

constants, acting by multiplication as zero order di�erential operators, and the Lie derivatives

LλX for X ∈ g. In accordance with Proposition 2.1, we have indeed P`L
λ
X = LµXP`.

3.2. Symmetries of the null geodesic �ow and generalizations. Choosing a metric
g ∈ [g], we can regard P1 as acting on functions. Then, D1 ∈ Dk(M) is a higher symmetry
if there exists A ∈ D(M) such that [P1, D1] = AP1. Applying the principal symbol map and
using (2.2), we get

{R, σk(D1)} ∈ (R),

where R = σ2(P1) (see Proposition 2.1) and (R) is the ideal generated by R in S0. Conse-
quently, σk(D1) is constant along the Hamiltonian �ow of R, on the level set R = 0. Via the
isomorphism TM ∼= T ∗M , provided by the metric g, this �ow identi�es with the null geo-
desic �ow so that σk(D1) is a constant along the null geodesics. Thus, σk(D1) is a conformal
Killing tensor. We recall their de�nition, using round bracket for symmetrization of indices
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and the partial derivatives (∂i) associated to local conformal coordinates (xi). Moreover, L is
an arbitrary tensor and G0 = Π ◦G (see Theorem 2.2).

De�nition 3.4. A conformal Killing k-tensor K is de�ned equivalently as

• A symmetric traceless tensor of order k s.t. ∂(i0Ki1···ik) = g(i0i1Li2···ik),

• A traceless symbol of degree k satisfying {R,K} ∈ (R),

• A traceless symbol of degree k in the kernel of G0.

Easy computations lead to the equivalence between the three assertions. As for higher
symmetries, we are not concerned by global existence questions and work locally. For k = 1,
we recover the notion of conformal Killing vectors whose space identi�es to the Lie algebra g.
The conformal Killing tensors of higher orders correspond to transformations of the phase
space T ∗M not preserving the con�guration manifold M . Besides, the space of conformal
Killing k-tensors is a �nite-dimensional representation of g which turns to be irreducible,
as a consequence of Lepowsky's generalization [31] of the Bernstein-Gelfand-Gelfand resolu-
tion. We can generalize this picture to tensors (or symbols) with trace, using the conformal
invariance of G2s+1

0 T s on S0
k,s. The following de�nition is due to Nikitin and Prilipko [35].

De�nition 3.5. A s-generalized conformal Killing k-tensor K is de�ned equivalently as

• A symmetric traceless tensor of order (k−2s) s.t. ∂(i0 · · · ∂i2sKi2s+1···ik) = g(i0i1Li2···ik),

• A symbol RsK ∈ S0
k,s which is in the kernel of G2s+1

0 T s.

The equivalence of the two assertions relies on the equality T s(RsK) = cK, where c
is a constant. Again, the space of s-generalized conformal Killing tensors of order k is an
irreducible g-module. We denote this subspace of S0

k,s by Kk,s and set K∗,s =
⊕

k≥2sKk,s,

(3.2) K =
⊕
s∈N
K∗,s and K` = K/(R`) '

`−1⊕
s=0

K∗,s.

Remark 3.6. Killing k-tensors are symmetric tensors satisfying ∂(i0Ki1···ik) = 0, or equiv-

alently symbols of degree k satisfying {R,K} = 0. One can easily check that Killing tensors

are elements of K.

3.3. From classical to quantum symmetries. Here, we state and prove our �rst result :
the conformally equivariant quantization Qλ,λ establishes a bijection between the two spaces
of symmetries Aλ,` and K`. The existence of a g-module isomorphism between Aλ,` and K`

was established for the �rst time in [25] via di�erent methods. We assume that ` ∈ N∗,
λ = n−2`

2n and µ = n+2`
2n . To state our theorem we need the following

Lemma 3.7. Let (R`) be the left ideal generated by R` in S0 and (P`) be the ideal generated by

P` in Dλ,λ. The conformally equivariant quantization satis�es Qλ,λ((R`)) = (P `) and induces

then an isomorphism of g-modules

(3.3) Qλ,λ : S0/(R`)→ Dλ,λ/(P `).

Abusing notation, we call it a conformally equivariant quantization and denote it by Qλ,λ.
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Proof. The map SR` 7→ Qµ,λ(S)P` is conformally equivariant on (R`) and provides a right
inverse to the principal symbol map on homogeneous symbols. By Proposition 2.5, this map
coincides with Qλ,λ. �

Theorem 3.8. The conformally equivariant quantization as in (3.3) induces an isomorphism

of g-modules Qλ,λ : K` → Aλ,`, identifying higher symmetries of P` with s-generalized confor-

mal Killing tensors for s < `. Moreover, every K ∈ K satis�es P`Qλ,λ(K) = Qµ,µ(K)P`.

Proof. The idea of the proof is to use the conformally equivariant quantization to identify the
kernel Aλ,` of the operator QHS, see (3.1), with the one of an operator CHS on symbols, its
name standing for Classical Higher Symmetries. As a consequence, we have to deal with
the quotient algebras Dλ,λ′/(P`) with λ′ = λ or λ′ = µ. Clearly, the principal symbol
maps descend as surjective maps σk : Dλ,λ

′

k /(P`) →
⊕`−1

s=0 S
λ′−λ
k,s and, whenever it exists,

the conformally equivariant quantization gives then an isomorphism of g-modules, namely
Qλ,λ′ :

⊕`−1
s=0 Sλ

′−λ
∗,s → Dλ,λ′/(P`), where Sλ

′−λ
∗,s =

⊕
k∈N S

λ′−λ
k,s .

If 2` < n
2 + 1, Qλ,µ exists on

⊕`−1
s=0 Sλ

′−λ
∗,s , according to Proposition 2.3. The operator

CHS is then determined by the following commutative diagram of g-modules

(3.4) Dλ,λ/(P`)
QHS // Dλ,µ/(P`)

⊕`−1
s=0 S0

∗,s

Qλ,λ

OO

CHS
//
⊕`−1

s=0 S
2`
n
∗,s

Qλ,µ

OO

Thus, CHS is a conformally invariant operator, and as such it should �t in the classi�cation
given in Theorem 2.2. On S0

∗,s, the operator CHS is then equal to R`−s−1G2s+1
0 T s, up to

a multiplicative constant. This constant cannot be zero since QHS does not vanish on the
image of S0

∗,s. Hence, by De�nition 3.5, the kernel of QHS is isomorphic to the space K` via
the map Qλ,λ.

For arbitrary values of `, Qλ,µ may not exist and the proof is more involved. The
conformally invariant operator CHS is then de�ned via the following commutative diagram
of g-modules

(3.5) Dλ,λk /(P`)
QHS // Dλ,µk′ /(P`)

σk′
��

S0
k,s

Qλ,λ

OO

CHS
// S

2`
n
k′ ,

where k′ ∈ N is taken as small as possible, so that CHS does not vanish. According to Theorem
2.2, the operator CHS is proportional either to R`−s−1G2s+1

0 T s or to R`+s−k−
n
2Lk+n

2
T s, and

the second case can occur only if n/2 + (k − s) ≤ `.
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We prove thatQλ,λ(ker CHS) = ker QHS. SinceQλ,λ is a bijective linear map, we get that
Qλ,λ(ker CHS) contains ker QHS. We prove the converse inclusion. If CHS is proportional
to R`−s−1G2s+1

0 T s, we obtain that Qλ,λ(ker CHS) = ker QHS by irreducibility of the kernel
of CHS. If CHS is proportionnal to R`+s−k−

n
2Lk+n

2
T s, then CHS has for target space S2`/n

k′,s′

with k′ = 2`− k− n and s′ = 2`− 2(k− s)− n. According to Proposition 2.3, Qλ,µ exists on
S2`/n
k′,s′ , so that one gets the conformally invariant operator

(
QHS ◦ Qλ,λ −Qλ,µ ◦ CHS

)
: S0

k,s → D
λ,µ
k′′ /(P`),

with k′′ < k′. But the only conformally invariant operator S0
k,s → S

2`/n
k′′ is zero, hence the

latter operator vanishes and we get Qλ,λ(ker CHS) = ker QHS in all cases.
We prove that CHS is proportional to R`−s−1G2s+1

0 T s. Suppose it is not the case,
then CHS is proportionnal to R`+s−k−

n
2Lk+n

2
T s and its kernel is in�nite dimensional. Since

Qλ,λ(ker CHS) = ker QHS for all k, s, the graded associated algebra to Aλ,` satis�es grAλ,` '
ker CHS, and is then a subalgebra of S0/(R`). If its intersection with S0

k,s is in�nite dimen-
sional, then its intersection with S0

m for m ≥ k is in�nite dimensional also. But, as stated
above, CHS is proportional to R`−s

′−1G2s′+1
0 T s

′
on S0

m,s′ , for all s
′, if m is big enough. The

intersection of the kernel of CHS with S0
m is then �nite dimensional. As a consequence, CHS

cannot be proportionnal to R`+s−k−
n
2Lk+n

2
T s

Combining the results of the two preceding paragraph, we get the desired correspondence
between K` and Aλ,` in the general case.

Now, we can de�ne on Dλ,λ a new conformally invariant operator QHS0 : D 7→ P`D −
Qµ,µ ◦ (Qλ,λ)−1(D)P`. If Qλ,µ exists, the commutative diagram

Dλ,λ
QHS0 // Dλ,µ

S0

Qλ,λ

OO

// S
2`
n

Qλ,µ

OO

leads to a non-vanishing conformally invariant operator on S0
∗,s, which, by Theorem 2.2, is

proportional to the same operator CHS as before if s < ` − 1, and to the null operator
otherwise. We conclude that P`Qλ,λ(K) = Qµ,µ(K)P` for any K ∈ K if Qλ,µ exists. The
proof in the general case is analogous. �

Remark 3.9. For ` = 1 and (M, g) a conformally �at Lorentzian manifold, classical and

quantum symmetries for the equations of motion of a free massless particle correspond to each

other: {R,K} ∈ (R)⇐⇒ [P1,Qλ,λ(K)] ∈ (P1).
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Remark 3.10. The di�erential operators commuting with P` are the higher symmetries sat-

isfying Qλ,λ(K) = Qµ,µ(K), K ∈ K. In particular, for Killing 2-tensors K, one has [34]

Qα,α(K) = Kij∇i∇j + (∇iKij)∇j −
n2α(1− α)

(n+ 1)(n+ 2)
(∇i∇jKij)

− n2α(α− 1)

(n− 2)(n+ 1)
RicijK

ij +
2n2α(1− α)

(n− 2)(n− 1)(n+ 1)(n+ 2)
R gijK

ij ,

where α ∈ R, ∇ is the Levi-Civita connection, Ric the Ricci tensor and R the scalar curvature.

Since λ+ µ = 1, we get Qλ,λ(K) = Qµ,µ(K), and these operators are symmetries of P`.

Remark 3.11. Explicit expressions can be obtained for the higher symmetries of P` via the

formulæ for the conformally equivariant quantization given in (2.5) for ` = 1 or in [38] for
the general case. The obtained di�erential operators admit analogs in the curved case, which

are not necessarily higher symmetries anymore. E.g. all the conformal Killing 2-tensors do

not give rise to higher symmetries of the conformal Laplacian in general [34].

4. Algebras of symmetries: geometric realizations and deformations

The aim of this section is to provide a geometric interpretation for the algebras of classical
symmetries, to deduce from them the algebras of higher symmetries of P` and to identify the
star products induced by their composition as di�erential operators. In all this section we
work over a conformally �at manifold (M, [g]) of dimension n ≥ 3 and signature (p, q).

4.1. Algebras of symmetries are generated by g. Let us give a brief reminder on uni-
versal enveloping algebra U(h) and symmetric algebra S(h) of an arbitrary Lie algebra h. See
e.g. [15] for more details. From the tensor algebra of h, U(h) and S(h) inherit respectively a
�ltration {Uk(h)}k and a grading S(h) =

⊕
k Sk(h) such that grU(h) ' S(h). Consequently,

the canonical projections Uk(h)→ Uk(h)/Uk−1(h) de�ne principal symbol maps, whose right
inverses are called quantizations of S(h). Two such quantizations Q1, Q2 : S(h) → U(h) are
then linear bijections and satisfy Q−1

1 ◦ Q2 = Id + N with N : S(h) → S(h) a map which
strictly lowers the degree. The symmetrization map Sym : S(h)→ U(h) given by

(4.1) Sym : Xi1 · · ·Xik 7→
1

k!

∑
τ∈Sk

Xτ(i1) · · ·Xτ(ik)

is known to de�ne a h-equivariant quantization of S(h) for the canonical extensions of the
adjoint action of h to S(h) and U(h) [15]. Any other h-equivariant quantization is then of the
form Φ = Sym ◦ φ, with φ = Id +N and N a h-equivariant map on S(h) lowering the degree.

We return to the Lie algebra g = o(p+ 1, q+ 1), acting by conformal Killing vector �elds
on (M, [g]). Let µ0 : T ∗M → g∗ be the moment map. Via the de�ning universal properties
of the algebras S(g) and U(g), the pullback µ∗0 : g→ S0

1 and the Lie derivative Lλ : g→ Dλ,λ1

(see (2.3)) extend to algebra morphisms µ∗0 : S(g)→ S0 and Lλ : U(g)→ Dλ,λ. Let K be the
space of generalized conformal Killing tensors, de�ned in (3.2).
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Proposition 4.1. Let λ ∈ R. The spaces K and Aλ := Qλ,λ(K) are algebras satisfying

K = µ∗0(S(g)) ' S(g)/I and Aλ = Lλ(U(g)) ' U(g)/Jλ,

where I is a graded ideal of S(g) and Jλ is a �ltered ideal of U(g)) such that gr Jλ ' I.
Moreover, the conformally equivariant quantization of K lifts to a g-equivariant quanti-

zation Φλ of S(g), such that the following diagram commutes

(4.2) S(g)

µ∗0
��

Φλ // U(g)

Lλ
��

K
Qλ,λ

// Aλ

Proof. We start with proving K = µ∗0(S(g)). Let ` ∈ N∗. By de�nition, the space of higher
symmetries Aλ,` is a subalgebra of Dλ,λ/(P`). Therefore, the equality K` = K/(R`) (see
(3.2)) implies that K is a subalgebra of S0. From Lλ(g) ⊂ Aλ,` we deduce µ∗0(g) ⊂ K and
then µ∗0(S(g)) ⊂ K. Since the g-module µ∗0(S(g)) ∩ S0

k,s is clearly non-empty and Kk,s is an
irreducible g-module, we get the converse inclusion.

Now, we prove that Aλ = Lλ(U(g)). By semi-simplicity of g, the �nite dimensional
representations of g are completely reducible. In particular, K ∩ S0

k can be viewed as a
submodule of Sk(g) for all k ∈ N. This leads to the decomposition S(g) ' K ⊕ I of the
symmetric algebra. In other words, µ∗0 admits a g-equivariant section. Using the embedding
of Lλ(U(g)) into Dλ,λ, we get then the following diagram of g-modules

S(g)
Sym // U(g)

Lλ

��
K

OO

Qλ,λ ((

Lλ(U(g))

��
Dλ,λ

Each arrow in the latter diagram is g-equivariant and preserves the principal symbol. Hence,
uniqueness of Qλ,λ on the g-module K implies that the diagram is commutative, proving
Aλ = Lλ(U(g)).

Since µ∗0 respects the grading, its kernel I is a graded ideal, and since Lλ preserves the
�ltration, its kernel Jλ is �ltered. Using the commutativity of the following diagram,

Uk(g)

��

Lλ // Aλ ∩ Dλ,λk

��
Sk(g)

µ∗0 // Kk,

where the vertical arrows denote principal symbol maps, we get that gr Jλ = I.
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We have proved S(g) ' K ⊕ I, and along the same line we get U(g) ' Aλ ⊕ Jλ. Using
again the semi-simplicity of g, the isomorphism Jλk /J

λ
k−1 ' Ik leads to Jλk ' Ik⊕Jλk−1. Thus,

there exists an isomorphism of g-modules between I and Jλ, inverse to the symbol map.
Together with the previous decomposition of S(g) and U(g), this ensures the existence of the
quantization Φλ and the commutativity of the diagram (4.2). �

The proof shows that Kk,s = µ∗0(S(g))∩S0
k,s. Thus, on conformally �at manifolds, the s-

generalized conformal Killing k-tensors are algebraically generated from the conformal Killing
vectors. This fact can also be deduced from results in [11].

We recall that Aλ,` is the algebra of higher symmetries of P` (see De�nition 3.1) and K`

is the space of s-generalized conformal Killing tensors with s < ` (see (3.2)).

Corollary 4.2. Let ` ∈ N∗ and λ = n−2`
2n . We have the isomorphisms of algebras

K` = K/(R`) ' S(g)/I` and Aλ,` = Aλ/(P`) ' U(g)/Jλ,`,

where the ideals are I` = I + (µ∗0)−1(R`) and Jλ,` = Jλ + (Lλ)−1(P`).

Proof. By de�nition, we have K` = K/(R`). The equality Aλ,` = Aλ/(P`) is a consequence of
Qλ,λ(K`) = Aλ,` and Qλ,λ((R`)) = (P`) (see Theorem 3.8 and Lemma 3.7 respectively). The
remaining results follow from Proposition 4.1, R` ∈ µ∗0(S(g)) and again Qλ,λ((R`)) = (P`). �

4.2. A family of coadjoint orbits of O(p+ 1, q+ 1). We restrict in this section to the case
where M is the homogeneous space Sp× Sq of the conformal group G = O(p+ 1, q+ 1). This
group admits a linear Hamiltonian action on T ∗Rp+1,q+1, hence it embeds into the symplectic
linear group Sp(2n+4,R), with n = p+q. The centralizer of G in Sp(2n+2,R) is isomorphic
to SL(2,R), and they form together a Howe dual pair, see [26]. Their moment maps are given
explicitly by

(4.3)
µ : T ∗Rp+1,q+1 → g∗ and J : T ∗Rp+1,q+1 → sl(2,R)∗

(u, v) 7→ u ∧ v (u, v) 7→ (u · v, u2, v2)

where u, v ∈ Rp+1,q+1 and we use the G-module isomorphisms g∗ ' g ' Λ2Rp+1,q+1.
Our aim is to describe the coadjoint orbits in the image of µ as symplectic reductions

at 0 with respect to Lie subgroups of SL(2,R). This is closely related to known results on
symplectic dual pairs [3], see also [36].

The Lie subgroups of SL(2,R) are generated by the �ow of Hamiltonian functions in
J∗
(
S(sl(2,R))

)
, i.e. polynomial functions in x2 = ηABx

AxB, xp = xApA and p2 = ηABpApB,
where (xA, pA) are Cartesian coordinates on T ∗Rp+1,q+1. Important such functions are given
by the Casimir elements of g and sl(2,R) in C∞(T ∗Rp+1,q+1). They are equal to

C = (xp)2 − x2p2

and C/4 respectively, if we de�ne the Killing form by the map (X,Y ) 7→ 1
2Tr(ρ(X)ρ(Y )) with

ρ the standard representation.
We denote by 〈f1, . . . , fk〉 the Lie group generated by the �ow of Hamiltonian functions

f1, . . . , fk ∈ C∞(T ∗Rp+1,q+1) and by T ∗Rp+1,q+1// 〈f1, . . . , fk〉 the corresponding symplectic
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quotient at 0. If the linear span of those functions is closed under the Poisson bracket, the
above symplectic quotient is then the quotient of the common zero locus of f1, . . . , fk by their
Hamiltonian �ows. By the Marsden-Weinstein theorem, this quotient space is a symplectic
manifold if 0 is a regular value of the involved Hamiltonian functions. E.g., we have

(4.4) T ∗
(
Rp+1,q+1 \ {0}

)
//
〈
xp, x2

〉
' T ∗(Sp × Sq).

Note that T ∗(Sp × Sq) splits into three stable submanifolds under the Hamiltonian G-action,
according to the sign of the norm of covectors, with straightforward notation: T ∗(Sp × Sq) =

T ∗+(Sp × Sq) t T ∗0 (Sp × Sq) t T ∗−(Sp × Sq).

Theorem 4.3. Let p, q ≥ 1, n ≥ 3 and P (α, β) be the space of planes in Rp+1,q+1 of signature

(α, β). The coadjoint orbits of G in the image of µ are classi�ed as follows:

(1) the one parameter family of semi-simple orbits Oa+ and Oa− for a ∈ R∗+ such that

T ∗Rp+1,q+1// 〈xp,C − a〉 Z4 // Oa+ t Oa−
' // P (2, 0) t P (0, 2),

(2) the one parameter family of semi-simple orbits Oa for a ∈ R∗− such that

T ∗Rp+1,q+1// 〈xp,C − a〉 Z4 // Oa
' // P (1, 1),

(3) the two nilpotent orbits O0+ and O0− such that

T ∗+(Sp × Sq) t T ∗−(Sp × Sq) Z2 // O0+ t O0−
R∗ // P (1, 0) t P (0, 1),

(4) The minimal nilpotent orbit O00 such that

(T ∗(Sp × Sq) \ Sp × Sq)// 〈R〉 Z2 // O00
R∗ // P (0, 0),

(5) The null orbit {0}.
All the arrows denote G-equivariant coverings, whose �bers are indicated as superscript. The

�rst ones are symplectomorphisms.

Proof. Through the G-module isomorphisms Λ2Rp+1,q+1 ' g ' g∗, coadjoint orbits are
identi�ed to G-orbits in the space of bivectors, endowed with the natural G-action. The
moment map µ de�ned by (4.3) takes its values in the space of simple bivectors Bv =

{u ∧ v|u, v ∈ Rp+1,q+1}. Our key tool is the G-equivariant projection of Bv on the Grass-
mannian Gr(2, n+ 2) of planes in Rp+1,q+1. This is encompassed in the following sequence of
G-spaces:

(4.5) T ∗Rp+1,q+1
SL(2,R) // Bv

R∗ // Gr(2, n+ 2) ∪ {0},

where the superscripts denote the �bers of the coverings over Bv \ {0} and Gr(2, n+ 2). The
moment map µ preserves the Poisson structure, hence aG-stable subset of T ∗Rp+1,q+1 projects
onto coadjoint orbits of G, which themselves project onto G-orbits of Gr(2, n + 2) ∪ {0}.
Thanks to the Witt Theorem, the latter are known to be {0} and the 6 spaces P (α, β)
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of planes of given signature (α, β) for the induced metric. From (4.4), we easily get that
T ∗±(Rp+1,q+1

∗ )//
〈
xp, x2

〉
' T ∗±(Sp × Sq) and also that(

T ∗(Rp+1,q+1
∗ ) \ (Rp+1,q+1

∗ )
)
//
〈
xp, x2, p2

〉
' (T ∗(Sp × Sq) \ (Sp × Sq))// 〈R〉 ,

where Rp+1,q+1
∗ := Rp+1,q+1 \{0}. Thus, in the four non-trivial cases, we deal with symplectic

reductions of G-stable subset of T ∗Rp+1,q+1. We easily check that the common zero locus of
the Hamiltonian functions de�ning the reduction have the announced images in Gr(2, n+ 2).
Moreover, the one parameter groups generated by the Hamiltonian �ows of xp, x2, p2 and
C are respectively given by (u, v) 7→ (etu, e−tv), (u, v) 7→ (u, v + tu), (u, v) 7→ (u + tv, v)

and (u, v) 7→ (u + (tu2)v, v − (tv2)u), for t ∈ R. They act only in the �bers of µ, hence the
map µ descends to the symplectic quotients. A direct computation proves that the �bers
of µ on the reduced spaces are of cardinal 4 or 2. They admit a transitive action of the
discrete groups Z4 and Z2 respectively, the action of their generators being (u, v) 7→ (−v, u)

and (u, v) 7→ (−u,−v). We end with the four sequences (1), (2), (3), and (4). There, a unique
coadjoint orbit lies over each orbit in Gr(2, n+2), since the action of the group G is transitive
in the �bers of each arrow. For a proof of the minimality of O00 we refer to [42]. �

The points (3) and (4) in the latter theorem combine, according to Cordani [13], to
provide a conformal regularization by T ∗M of the cone O0+ ∪ O00 ∪ O0− , with singularity
in O00.

Remark 4.4. The used symplectic reductions of T ∗Rp+1,q+1 correspond to symplectic reduc-

tion with respect to the moment map J of SL(2,R) at, respectively, the points (0,±
√
a,∓
√
a)

for a>0, (0,
√
|a|,
√
|a|) for a<0, (0, 0,±1) and (0, 0, 0). Hence, we obtain a bijection between

the coadjoints orbits of SL(2,R) and the ones in the image of µ. Similar results are obtained

in [3] for general dual pairs, under the symplectic Howe condition.

Now, we determine the algebra of regular functions on each coadjoint orbit of G in the
image of µ. We have g ' Λ2Rp+1,q+1, that we represent by the Young diagram . Accordingly,
elementary representation theory of the orthogonal Lie algebra leads to

(4.6) g� g = ⊕ and =
0

⊕
0
⊕ R.

In the second decomposition, the index 0 denotes the trace-free part, and the three components
correspond to K2,0, K2,1 and the one-dimensional space generated by the Casimir element
in S2(g), still denoted by C. The extra term in the decomposition of g � g is generated by
exterior products in ΛRp+1,q+1 of elements of g ' Λ2Rp+1,q+1.

Lemma 4.5. The kernel of the pullback µ∗ : S(g)→ C∞(T ∗Rp+1,q+1) by the moment map of

g is the ideal generated by .

Proof. Since elements of g are skew-symmetric 2-tensors V AB on Rp+1,q+1, the map µ∗ is
explicitly given by V AB···CD 7→ xA · · ·xCV AB···CDpB · · · pD, and vanishes then on tensors
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V AB···CD which are skew-symmetric in any 3 indices. Hence, the module is in the kernel

of µ∗. In consequence, µ∗(Sk(g)) is contained in the module Sk(g)/
( )

, described by the
Young diagram with 2 lines and k columns. But none of the irreducible components of such a
Young diagram is in the kernel of µ∗, as all the traces, x2, xp, p2, can occur in C∞(T ∗Rp+1,q+1).

In conclusion, the algebra µ∗(S(g)) is isomorphic to S(g)/
( )

. �

Proposition 4.6. Let a ∈ R, C the Casimir element of g and Ia =
(

[C − a]R⊕
)
an ideal

of S(g). The algebras of regular functions on Oa(±) are given by S(g)/Ia.

Proof. Following the proof of Theorem 4.3, we get that the moment map µ descends to
T ∗(Rp+1,q+1 \ {0})// 〈xp,C〉 and provides thus a Z4-covering of the two orbits O0± . Hence,
for all a ∈ R, the coadjoint orbit Oa(±) admits a Z4-covering by a symplectic reduction of
T ∗Rp+1,q+1. Moreover, the generator of Z4 acts by (u, v) 7→ (−v, u), so that it leaves invariant
the functions in µ∗g, which are linear combinations of xApB−xBpA, for A,B = 0, . . . , p+q+1.
Therefore, on each coadjoint orbit Oa(±) , the algebra of regular functions is isomorphic to the
reduction of µ∗(S(g)) by 〈xp,C − a〉. The reduction with respect to xp modi�es only the
�bers of µ and the Casimir element C Poisson commutes with all elements in µ∗(S(g)), so
that reduction with respect to 〈xp,C − a〉 amounts to modding out by (C − a). �

4.3. The algebras of classical and quantum symmetries. We return now to a general
conformally �at manifold (M, [g]), and use notation of Section 4.1. In particular, K denotes
the algebra of generalized conformal Killing tensors, generated by µ∗0(g) in C∞(T ∗M), and
K1 = K/(R) is the algebra of traceless conformal Killing tensors over M .

Theorem 4.7. The algebra K is isomorphic to the algebras of regular functions on the orbits

O0±, given by S(g)/I0 with I0 =
(
C · R⊕

)
and C the Casimir element of g. Moreover, the

algebra K1 is isomorphic to the algebra of regular functions on O00, given by S(g)/I00 with

I00 = ( 0) + I0.

Proof. The algebras K and K1 are of local nature and thus we can assume that M = Sp× Sq.
According to Proposition 4.1, the algebra K is generated by µ∗0g, where µ0 : T ∗±M → g∗ is
the moment map of g. By Theorem 4.3, µ0 is a Z2-covering of the coadjoint orbits O0± and
the action of Z2 leaves invariant the functions in µ∗0g. Hence, K identi�es with the algebra
of regular functions on the orbits O0± and the isomorphism K ' S(g)/I0 follows then from
Proposition 4.6. Similarly, the coadjoint orbit O00 admits a Z2-covering by the symplectic
quotient (T ∗M \M)// 〈R〉. Thus, the algebra of regular functions on O00 arises as a reduction
of K. Since {R,K} ⊂ (R), this reduced algebra is K/(R) ' K1. As R ∈ K2,1 is the pullback
of an element in 0, we �nally obtain K1 ' S(g)/I00 and I00 = ( 0) + I0. . �

We can now recover the description of the algebras of higher symmetries Aλ,` of the `th

conformal powers of the Laplacian P`, obtained originally in [25]. In addition, we determine
the algebra Aλ = Qλ,λ(K), generated by the space of Lie derivatives Lλ(g) in Dλ,λ. Recall
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that we de�ne the Killing form by 1
2Tr(XY ), for every X,Y ∈ g. The corresponding Casimir

operator in U(g) is given by C = Sym(C), the symmetrization of C ∈ S(g) (see (4.1)).

Theorem 4.8. For every λ ∈ R, the algebras Aλ = Qλ,λ(K) are isomorphic to U(g)/Jλ with

Jλ =
(
Sym

( )
⊕ [C − ρ(λ)]R

)
, where ρ(λ) = n2λ(1 − λ) is the eigenvalue of the Casimir

operator C on λ-densities.

For λ = n−2`
n , the algebra of higher symmetries Aλ,` is isomorphic to U(g)/Jλ,`, where

Jλ,` is generated by Jλ and the Young diagram ... 0 of length 2`. In particular, Jλ,1 is the

Joseph ideal.

Proof. According to Proposition 4.1 and Theorem 4.7, we have Aλ ' U(g)/Jλ and the graded
ideal associated to Jλ is I0. We deduce that Jλ is also generated by quadratic elements and
we get then Jλ2 = Φλ(I2), with I2 = I0 ∩ S2(g) and Φλ = Sym ◦ φλ (see Proposition 4.1).
The map φλ being g-equivariant, the space φλ(I2) is a g-submodule of U2(g) ' R⊕ g⊕ S2(g).

Hence, Jλ2 is generated by Sym
( )

and the Casimir operator C of U(g), modi�ed by some

real number ρ(λ). Since C − ρ(λ) projects onto 0 via Lλ : U(g)→ Dλ,λ, the real number ρ(λ)

is necessarily the eigenvalue of Lλ(C) on λ-densities. The latter has been computed in [17] for
the opposite Killing form.

From Corollary 4.2, we deduce that Aλ,` is isomorphic to U(g)/Jλ,`, where Jλ,` is gen-
erated by Jλ and the Young diagram ... 0 of length 2`. Thanks to Theorem 3.8, we have
the isomorphism of algebras gr (Aλ,1) ' K1. As K1 ' S(g)/I00 and the ideal I00 is prime,
we deduce that Jλ,1 is completely prime. Besides, their common characteristic variety is the
closure of the minimal nilpotent coadjoint orbit of G. These two properties characterize the
Joseph ideal [27]. �

The identi�cation of the Joseph ideal in the context of the higher symmetries of the
Laplacian was already obtained in di�erent manners [22, 39], but not from its original def-
inition like here. The determination of the ideals Jλ,` has been already performed in the
context of higher symmetries of P` in [19, 20, 25], but in di�erent terms. Let us make clear
the link between the two approaches. We denote by 〈·, ·〉 the chosen Killing form and C the
associated Casimir element in S(g). In the previous works, the projections of X � Y ∈ g� g

on each irreducible component are used. Following g � g = 0 ⊕ 0 ⊕ R ⊕ , we have

X � Y = X � Y + X • Y + 〈X,Y 〉
2 dim gC + X ∧ Y . Then, the ideal Jλ is clearly generated by

Sym
( 〈X,Y 〉

2 dim g(C − ρ(λ)) +X ∧ Y
)
for X,Y ∈ g or equivalently by

Sym
(
X � Y −X � Y −X • Y +

ρ(λ)

2 dim g
〈X,Y 〉

)
,

which is the obtained expression in [19, 20, 25], modulo the extra generator associated to R`.

4.4. Quantization of a family of coadjoint orbits of G. Let H be a Lie group with Lie
algebra h. Assume Φ : S(h)→ U(h) is a h-equivariant quantization of the Poisson algebra S(h)

(see (4.1)). Analogously to the case of symbols, a h-equivariant graded star product ?Φ can be
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obtained on S(h), as the pullback of the product on U(h)⊗C[[~]] by the map Φ~ = (Φ⊗Id)◦=,
where = : S(h)⊗C[[~]]→ S(h)⊗C[[~]] is the linear map de�ned by (i~)kId on Sk(h). Denoting
by τ and γ the anti-automorphisms of U(h) and S(h) de�ned by −Id on h, the symmetry of
the star product on S(h) is equivalent to Φ~(̄·) = τ ◦ Φ~(·), or simply Φ ◦ γ = τ ◦ Φ.

The regular functions on the coadjoint orbits of H are Poisson algebras S(h)/I, for
various ideals I. To build graded h-equivariant star-products on them boils down to �nd
h-equivariant quantization maps S(h)/I → U(h)/J with grJ ∼= I, see e.g. [2]. A method is
to �nd a h-equivariant quantization Φ of S(h), such that Φ(I) = J . This is not trivial, Φ(I)

is not an ideal of U(h) in general [23]. On minimal nilpotent coadjoint orbits, for h 6= sl(n)

a simple Lie algebra, there exists a unique h-equivariant quantization and a unique graded
h-equivariant star-product [1, 2]. In that case, J is the Joseph ideal.

Here, we build a family of graded g-equivariant star-products, out of a family of g-
equivariant quantization of S(g), on the coadjoint orbits Oa(±) , a ∈ R, and O00, as given in
Theorem 4.3. According to Theorem 4.7, the algebra of regular functions on O0± is the algebra
K ' S(g)/I0 of generalized conformal Killing tensors. By Diagram (4.2), the g-equivariant
quantization Qλ,λ on K lifts to a quantization on S(g) and induces a star-deformation of K.
This extends to the algebra of regular functions S(g)/Ia on Oa(±) (see Proposition 4.6) via
the following Lemma.

Lemma 4.9. Let a ∈ R. There exists a g-equivariant linear map φa = Id +Na on S(g), such

that Na lowers the degree and φa(Ia) = I0. Thus, we get S(g)/Ia ' K as g-modules.

Proof. We know that S(g) ' I ⊕K and I = (C) +
( )

. Resorting to the semi-simplicity of g

and the �ltration of Ia = (C − a) +
( )

, we get that S(g) ' Ia + S(g)/Ia and (C − a) admits

a g-stable complement in Ia. The map φa de�ned by C
C−a Id on (C − a) and by the identity

on a g-stable complementary space satis�es the required properties. �

Theorem 4.10. There exists a family of g-equivariant quantizations (Φλ
a)a,λ∈R of S(g) such

that: (i) it lifts (Qλ,λ)λ∈R to S(g) for a = 0, (ii) it induces a family of symmetric g-invariant

star products on the coadjoint orbits Oa(±) for a ∈ R, (iii) if a = 0 and λ = n−2
2n , it induces

the unique graded g-equivariant star-product on the minimal coadjoint orbit O00.

Proof. The Proposition 4.1 ensures the existence of a g-equivariant quantization Φλ of S(g)

lifting Qλ,λ for every λ ∈ R. The lift property is equivalent to Φλ(I) = Jλ. We de�ne then
the family of g-equivariant quantizations Φλ

a = Φλ ◦φa, where φa is introduced in Lemma 4.9.
It can be chosen such that φ0 = Id, so (i) is trivially satis�ed. The Lemma 4.9 ensures
that Φλ

a(Ia) is an ideal and a g-module, hence the g-invariant star product ?Φλa
on S(g),

induced by Φλ
a , descends on the quotient S(g)/Ia. We recall that ?Φλa

is symmetric if Φλ
a

satis�es τ ◦ Φλ
a = Φλ

a ◦ γ. Rede�ning Φλ
a by 1

2(Φλ
a + τ ◦ Φλ

a ◦ γ), this is trivially the case, and
the quantization Φλ

0 is still a lift of Qλ,λ by uniqueness of the latter. This proves (ii). The last
point follows then from Corollary 4.2, Proposition 4.6 and the uniqueness result in [1, 2]. �
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Remark 4.11. For two distinct coadjoint orbits, the star products obtained above do not

coincide in general. This is reminiscent to the work of Fioresi and Lledó [23], dealing with

star products tangential to semi-simple coadjoint orbits of semi-simple Lie groups.

Remark 4.12. Via the conformally equivariant quantization Qλ,λ, the star-product on the

minimal nilpotent coadjoint orbit of O(p+ 1, q+ 1) is represented by the algebra of di�erential

operators preserving the kernel of the conformal Laplacian. The latter space is nothing else

than the minimal unitary representation of O(p+ 1, q + 1) if p+ q ≥ 4 is even [6].

Acknowledgements. It is a pleasure to acknowledge Christian Duval and Valentin Ovsienko
for their constant interest in this work, and Josef �ilhan for invaluable discussions.

References

[1] D. Arnal, H. Benamor, and B. Cahen. Algebraic deformation program on minimal nilpotent orbit. Lett.
Math. Phys., 30(3):241�250, 1994.

[2] A. Astashkevich and R. Brylinski. Non-local equivariant star product on the minimal nilpotent orbit.
Adv. Math., 171(1):86�102, 2002.

[3] C. Balleier and T. Wurzbacher. On the geometry and quantization of symplectic Howe pairs. Math. Zeit.,
271:577�591, 2012.

[4] X. Bekaert and M. Grigoriev. Manifestly conformal descriptions and higher symmetries of bosonic single-
tons. SIGMA, 6:038, 2010.

[5] Xavier Bekaert, Elisa Meunier, and Sergej Moroz. Symmetries and currents of the ideal and unitary fermi
gases. JHEP, 2012(2):113, 2012.

[6] B. Binegar and R. Zierau. Unitarization of a singular representation of SO(p, q). Comm. Math. Phys.,
138(2):245�258, 1991.

[7] B. D. Boe and D. H. Collingwood. A comparison theory for the structure of induced representations. J.
Algebra, 94(2):511�545, 1985.

[8] B. D. Boe and D. H. Collingwood. A comparison theory for the structure of induced representations. II.
Math. Z., 190(1):1�11, 1985.

[9] F. Boniver and P. Mathonet. IFFT-equivariant quantizations. J. Geom. Phys., 56(4):712�730, 2006.
[10] C. P. Boyer, E. G. Kalnins, and W. Miller, Jr. Symmetry and separation of variables for the Helmholtz

and Laplace equations. Nagoya Math. J., 60:35�80, 1976.
[11] David M. J. Calderbank and Tammo Diemer. Di�erential invariants and curved Bernstein-Gelfand-

Gelfand sequences. J. Reine Angew. Math., 537:67�103, 2001.
[12] A. �ap and J. �ilhan. Equivariant quantizations for AHS-structures. Adv. Math., 224(4):1717 � 1734,

2010.
[13] Bruno Cordani. Conformal regularization of the Kepler problem. Comm. Math. Phys., 103(3):403�413,

1986.
[14] N. Dairbekov and V. Sharafutdinov. On conformal killing symmetric tensor �elds on riemannian mani-

folds. Sib. Adv. Math., 21:1�41, 2011.
[15] Jacques Dixmier. Algèbres enveloppantes. Gauthiers-Villars, Paris, 1974.
[16] C. Duval, A. M. El Gradechi, and V. Yu. Ovsienko. Projectively and conformally invariant star-products.

Comm. Math. Phys., 244(1):3�27, 2004.
[17] C. Duval, P. B. A. Lecomte, and V. Yu. Ovsienko. Conformally equivariant quantization: existence and

uniqueness. Ann. Inst. Fourier (Grenoble), 49(6):1999�2029, 1999.
[18] C. Duval and V. Yu. Ovsienko. Conformally equivariant quantum Hamiltonians. Selecta Math. (N.S.),

7(3):291�320, 2001.
[19] M. G. Eastwood. Higher symmetries of the Laplacian. Ann. of Math. (2), 161(3):1645�1665, 2005.
[20] M. G. Eastwood and T. Leistner. Higher symmetries of the square of the Laplacian. In Symmetries

and overdetermined systems of partial di�erential equations, volume 144 of IMA Vol. Math. Appl., pages
319�338. Springer, New York, 2008.



22 JEAN-PHILIPPE MICHEL

[21] M. G. Eastwood and J. W. Rice. Conformally invariant di�erential operators on Minkowski space and
their curved analogues. Comm. Math. Phys., 109(2):207�228, 1987. Erratum Comm. Math. Phys., 144(1):
213, 1992.

[22] M. G. Eastwood, P. Somberg, and V. Sou£ek. Special tensors in the deformation theory of quadratic
algebras for the classical Lie algebras. J. Geom. Phys., 57(12):2539�2546, 2007.

[23] R. Fioresi and M. A. Lledó. On the deformation quantization of coadjoint orbits of semisimple groups.
Paci�c J. Math., 198(2):411�436, 2001.

[24] A. R. Gover and L. J. Peterson. Conformally invariant powers of the Laplacian, Q-curvature, and tractor
calculus. Comm. Math. Phys., 235(2):339�378, 2003.

[25] A. R. Gover and J. �ilhan. Higher symmetries of the conformal powers of the Laplacian on conformally
�at manifolds. J. Math Phys., 53(3):26 pp., 2012.

[26] R. Howe. Remarks on classical invariant theory. Trans. Amer. Math. Soc., 313(2):539�570, 1989. Erratum
Trans. Amer. Math. Soc., 318(2): 823, 1990.

[27] A. Joseph. The minimal orbit in a simple Lie algebra and its associated maximal ideal. Ann. Sci. École
Norm. Sup. (4), 9(1):1�29, 1976.

[28] T. Kobayashi and B. Ørsted. Analysis on the minimal representation of O(p, q). I. Realization via con-
formal geometry. Adv. Math., 180(2):486�512, 2003.

[29] T. Kobayashi and B. Ørsted. Analysis on the minimal representation of O(p, q). III. Ultrahyperbolic
equations on Rp−1,q−1. Adv. Math., 180(2):551�595, 2003.

[30] P. B. A. Lecomte and V. Yu. Ovsienko. Cohomology of the vector �elds Lie algebra and modules of
di�erential operators on a smooth manifold. Compositio Math., 124(1):95�110, 2000.

[31] J. Lepowsky. A generalization of the Bernstein�Gelfand�Gelfand resolution. J. Algebra, 49:496�511, 1977.
[32] S. E. Loubon Djounga. Conformally invariant quantization at order three. Lett. Math. Phys., 64(3):203�

212, 2003.
[33] J.-Ph. Michel. Conformally equivariant quantization - a complete classi�cation. SIGMA, 8:Paper 022,

2012.
[34] J.-Ph. Michel, F. Radoux, and J. �ilhan. Second order symmetries of the conformal Laplacian. arXiv:

1308.1046, 2013.
[35] A. G. Nikitin and A. I. Prilipko. Generalized Killing tensors and the symmetry of the Klein-Gordon-Fock

equation. Akad. Nauk Ukrain. SSR Inst. Mat. Preprint, (23):59, 1990.
[36] J.-P. Ortega and T.S. Ratiu. Momentum maps and Hamiltonian reduction, volume 222 of Progress in

Mathematics. Birkhäuser, Basel, 2004.
[37] F. Radoux. An explicit formula for the natural and conformally invariant quantization. Lett. Math. Phys.,

89(3):249�263, 2009.
[38] J. �ilhan. Conformally invariant quantization - towards complete classi�cation. Di�er. geom. appl. (in

press), 2013.
[39] P. Somberg. Deformations of quadratic algebras, the Joseph ideal for classical Lie algebras, and special

tensors. In Symmetries and overdetermined systems of partial di�erential equations, volume 144 of IMA
Vol. Math. Appl., pages 527�536. Springer, New York, 2008.

[40] Z. Vlasáková. Symmetries of CR sub-Laplacian. arXiv:1201.6219, 2012.
[41] H. Weyl. The classical groups. Princeton Landmarks in Mathematics. Princeton University Press, Prince-

ton, NJ, 1997. Their invariants and representations, Fifteenth printing, Princeton Paperbacks.
[42] J. A. Wolf. Representations associated to minimal co-adjoint orbits. In Di�erential geometrical methods in

mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), volume 676 of Lecture Notes in Math.,
pages 329�349. Springer, Berlin, 1978.

[43] V. Wünsch. On conformally invariant di�erential operators. Math. Nachr., 129:269�281, 1986.

University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6, rue Richard

Coudenhove-Kalergi, L-1359 Luxembourg City, Grand Duchy of Luxembourg

University of Liège, Sart-Tilman, 12 grande traverse, B-4000 Liège, Belgium

E-mail address: jean-philippe.michel@ulg.ac.be


