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Abstract

This paper analyzes the stability of the discrete model proposed by Richard et al. [1, 2] to study the self-excited axial

and torsional vibrations of deep drilling systems. This model, which relies on a rate-independent bit/rock interaction

law, reduces to a coupled system of state-dependent delay differential equations governing the axial and angular

perturbations to the stationary motion of the bit. A linear stability analysis indicates that, although the steady-state

motion of the bit is always unstable, the nature of the instability depends on the nominal angular velocity Ω0 of the

drillstring imposed at the rig. On the one hand, if Ω0 is larger than a critical velocity Ωc, the angular dynamics

is responsible for the instability. However, on the timescale of the resonance period of the drillstring viewed as a

torsional pendulum, the system behaves like a marginally stable one, provided that exogenous perturbations are of

limited magnitude. The instability then only appears on a much larger timescale, in the form of slowly growing

oscillations that ultimately lead to an undesired drilling regime such as bit-bouncing or stick-slip vibrations. On

the other hand, if Ω0 is smaller than Ωc, the instability manifests itself on the timescale of the bit motion due to a

dominating unstable axial dynamics; perturbations to the steady-state motion then rapidly degenerate into stick-slip

limit cycles or bit-bouncing. For typical deep drilling field conditions, the critical angular velocity Ωc is virtually

independent of the axial force acting on the bit and of the bit bluntness. It can be approximated by a power law

monomial, a function of known parameters of the drilling system and of the intrinsic specific energy (a quantity

characterizing the energy required to drill a particular rock). This approximation holds on account that the dissipation

in the drilling structure is negligible with respect to that taking place through the bit/rock interaction, as is typically

the case. These findings are further illustrated on an example of deep drilling and shown to match the trends observed

in the field.
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1. Introduction

Rotary drilling systems that are used to drill deep boreholes for hydrocarbon exploration and production often

exhibit complex self-excited vibratory behaviors. In particular, according to down-hole measurements [3], drilling

structures continually experience torsional vibrations. For drag bit equipped systems, these vibrations frequently

degenerate into torsional stick-slip oscillations that are characterized by (i) sticking phases during which the drill bit

stops rotating, and (ii) slipping phases during which the tool sees its angular velocity increase up to two times the

imposed velocity on the ground surface. Stick-slip oscillations are detrimental to the bit and the drillstring, as they

are responsible for an accelerated wear of the drill bit and fatigue of the drill pipe connections. Their understanding is

thus fundamental to the improvement of the drilling process. 0 The stick-slip vibrations experienced by rotary drilling

systems are conventionally analyzed by modeling the drillstring as a torsional pendulum and the bit/rock interaction

as a reactive torque that decreases with the bit angular velocity, in apparent accordance with measurements from field

experiments [4–10]. However, an alternative approach to predict stick-slip oscillations of the bit was proposed by

Richard et al. [1, 2]. This model, here referred to as the RGD model, relies instead on a rate-independent bit/rock

interaction law that reflects not only the nature of the regenerative cutting and frictional contact processes taking place

at the bit/rock interface [11], but that also introduces a coupling between the axial and angular motions of the bit.

Formulation of the RGD model leads to a coupled system of nonlinear state-dependent delay differential equations

governing the axial and angular perturbations to the stationary motion of the bit, with the axial dynamics typically

developing on a much smaller timescale than the torsional one, due mainly to the large torsional compliance of

the drillstring. Interestingly, the RGD model predicts a decrease of the resisting torque under an imposed angular

velocity at the rig; thus the velocity weakening response of the bit is an outcome of the RGD model, rather than a

starting hypothesis as in the classical approach. Models built on the same rate-independent bit/rock interface law,

but that include additional degrees of freedom and viscous dissipation in the representation of the drillstring and/or

consider alternate boundary conditions at the rig, have recently been studied [12–15]; they yield similar although

richer responses than the basic RGD model. Also, comparable state-dependent delay models to analyze regenerative

chatter in metal turning processes have been independently developed by Insperger et al. [16–18].

The motivation to revisit the RGD model, in particular in regard to stability issues, stems from two apparently

contradictory results. On the one hand, the RGD model is always unstable according to a recently published linear

stability analysis [14]. Previous stability analyses [2, 19] neglected the dynamics of the delay based on the assumption

of a timescale separation between the axial and torsional dynamics, and concluded that the steady-state solution is

unstable only if the prescribed angular velocity is below a critical velocity. Under these conditions, any perturbation

will lead the system to diverge from its equilibrium solution, ultimately leading to bit-bouncing, stick-slip limit cycling

or anti-resonance, a regime in which large amplitude axial vibrations of the bit stabilize its angular motion [19]. On

the other hand, there is evidence from numerical simulations that quasiperiodic perturbations to the angular motion

exist for particular parametric configurations [2, 19].
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Figure 1: Deep drilling system, adapted from [20]. The sketch is not to scale, in particular, in regard to the length Lb of the bottom-hole-assembly
(BHA) relative to the combined length Lp of the drill pipes. Typically, Lb = O(100 m) and Lp = O(1000 m).

This paper aims therefore at clarifying the nature of the instabilities in the RGD model of the drilling system.

After a brief presentation of this two degree of freedom model [1, 2], we formulate the stability problem of the steady-

state motion of the drill bit, taking into account the state dependency of the delay when linearizing the governing

equations. We then confirm that the trivial motion is indeed always unstable, as reported in [14]. However, by

studying the location of the linearized system poles in the complex plane, we prove the existence of two regimes of

instability, on either side of a critical angular velocity, the nominal rotation speed at the rig at which the transition

takes place. One regime (slow) corresponds to a very slow growth of torsional oscillations and the other (fast) to a fast

increase of axial perturbations that rapidly lead to stick-slip torsional oscillations, bit bouncing or anti-resonance. For

typical field conditions, the critical velocity is shown to be well approximated by the expression obtained by assuming

that the delay is constant and neglecting the influence of the axial force on the bit (the so-called “weight on bit”).

Further exploring the slow regime by use of transient numerical simulations, we demonstrate the possible coexistence

of drilling responses; that is, the coexistence of apparently stable steady drilling and instabilities like stick-slip limit

cycles or bit-bouncing, depending on the magnitude of the externally-applied perturbations. Finally, we illustrate our

findings by application to a configuration typical of deep drilling and summarize them in the last section of this article.

Extended results and details of calculations are also provided in the appendices.

2. Mathematical formulation

The RGD model is a discrete representation of a rotary drilling structure with boundary conditions at the rig and

at the bit/rock interface. Figure 1 proposes an illustrative sketch of such a structure.
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2.1. Model of the Drilling System

A rotary drilling structure consists essentially of a rig, a drillstring, and a bit. The principal components of the

drillstring are the bottom-hole-assembly (BHA) composed of heavy tubes, and a set of drill pipes made of thinner

tubes. The lumped mechanical model of the drillstring consists of a torsional pendulum of polar mass moment of

inertia I and stiffness C, and a punctual mass M free to move axially, see Figure 2(a). The mass M and the moment of

inertia I are taken to represent the BHA, and the stiffness C the set of drill pipes.

Denoting the weight and torque on bit by W and T , the equations of motion read

I
d2Φ

dt2 + C(Φ −Ω0t) = −T (Ut,Φt), (1)

M
d2U
dt2 = W0 −W(Ut,Φt), (2)

where Φ and U represent the angular and axial positions of the bit, Ω0 is the constant imposed angular velocity of

the rig rotary table and W0 = Ws − H0 is the apparent weight of the drillstring acting on the bit, i.e., the difference

between the submerged weight Ws of the drilling system and the prescribed hook load H0 at the rig. Due to the

regenerative cutting taking place at the bit/rock interface, the reacting weight and torque on bit depend on the history

of the bit motion, as indicated by the subscript t in Ut and Φt.Thus, equations (1)-(2) are actually functional differential

equations.

Figure 2: (a) Lumped model of the drilling system – (b) Section of the bottom-hole profile located between two successive blades of a drill bit,
after [2].
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2.2. Bit/Rock Interaction Law

The drilling action of a drag bit results from a pure cutting process taking place on the cutting face of the bit blades

and from a frictional contact process at the interface between the rock and the cutter wear flats [11]. When drilling,

the weight and torque on bit consist therefore of two components,

W = Wc + W f , T = Tc + T f , (3)

where the subscripts c and f refer to the cutting and frictional contact processes.

Consider now the idealized bit of Figure 2(b), which is characterized by a radius a and n identical blades, sym-

metrically distributed around its axis of revolution. A bit/rock interaction law for such a bit, i.e., a set of relationships

between the dynamical variables W and T and the kinematical variables Ut and Φt, can be constructed from experi-

mental results obtained from single cutter tests [11, 21, 22].

The cutting components of W and T are given by

Wc(t) = aζεd(t), Tc(t) =
a2

2
εd(t), (4)

where ε is the intrinsic specific energy of the rock, namely the amount of energy required to remove a unit volume

of rock by cutting, ζ characterizes the inclination of the force acting on the blade cutting face, and d = ndn is the bit

depth of cut with dn the depth of cut per blade, i.e., the height of rock ahead of a blade. (For stationary bit motions,

d represents the depth of cut per revolution.) As the bit experiences axial and torsional vibrations when drilling, the

depth of cut d varies with time t. Due to the bit angular motion, regenerative cutting takes place and d(t) depends on

the past motion of the bit according to

d(t) = n [U(t) − U(t − tn(t))] , (5)

where the delay tn(t) is the time required for the bit to rotate by an angle of 2π/n to its current position at time t. The

delay tn(t) is thus implicitly defined by (see Figure 2(b))

2π = n [Φ(t) − Φ(t − tn(t))] . (6)

Assuming that the bit is rotating forward (dΦ/dt > 0), the expressions for the frictional contact components of W

and T depend on the axial velocity dU/dt. If the bit moves downwards (dU/dt > 0), a constant normal stress σ and

thus a constant shear stress µσ act on the wear flat surfaces in contact with the rock, with µ denoting a rate-independent

friction coefficient. Hence, when dU/dt > 0, W f = a`σ and T f = 1
2 a2γµ`σ, where ` = n`n with `n denoting the width

of the contact surface underneath each blade, and γ is the bit number that globally characterizes the spatial distribution

and orientation of the wear flats along the bit profile [11]. If the bit moves upwards (dU/dt < 0), there is no frictional

contact and thus W f = T f = 0. Finally, the bit sticks axially (dU/dt = 0) as long as the contact force W f (t), then

determined by the vertical equilibrium conditions, remains in the range [0, a`σ], with the lower and upper limits

respectively corresponding to the transition to upwards and downwards motion of the bit. Similarly, provided that

dΦ/dt > 0, the frictional torque T f (t) that is proportional to W f (t) ranges in [0, 1
2 a2γµ`σ].
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Given their set-valued nature during axial stick, the frictional contact components of the weight and torque on

bit can be elegantly represented via an inclusion formalism. Following Germay et al. [19], the above assumptions

summarize as

W f (dU/dt) ∈ 1
2 a`σ

[
1 + Sign(dU/dt)

]
, T f (dU/dt) = 1

2γµaW f (dU/dt) , (7)

with the set-valued Sign operator defined by

Sign(x) := ∂ |x | ∈


1 x > 0,

[−1, 1] x = 0,

−1 x < 0.

(8)

These inclusions can be interpreted as the convexification of the contact force and torque for positive and negative

velocities. Such convexified representations are common in mechanical problems involving friction. When considered

at the level of the governing differential equation, they are referred to as Filippov inclusions. Leine and van de

Wouw [23] provide an introduction to this formalism.

2.3. Scaling

The RGD model depends on a set of 13 parameters (M, I, C, n, a, ε, σ, ζ, µ, `, γ, Ω0, W0), which can be reduced

through scaling to 6 dimensionless quantities (n, λ, β, ψ, ω0,W0) [2]. First introduce a timescale t∗ and a length scale

d∗ as

t∗ =

√
I
C
, d∗ =

2C
εa2 , (9)

where 2πt∗ represents the resonant period of the torsional pendulum and d∗ is the depth of cut if drilling with a

perfectly sharp bit subjected to a torque that induces a twist of 1 radian in the drillstring. Typically, t∗ = O(1 s) and

d∗ = O(1 mm). The dimensionless time as well as the scaled kinematic and dynamical quantities at the bit can then be

defined as

τ =
t
t∗
, u =

U − U0

d∗
, v =

t∗
d∗

dU
dt
, ϕ = Φ − Φ0, ω = t∗

dΦ

dt
, W =

W
ζaεd∗

, T =
T
C
, (10)

where U0 and Φ0 denote the stationary solutions of system (1)-(2) given by

U0(t) = V0t =
(W0 −W f (V0))

aζε
Ω0

2π
t, Φ0 = Ω0t −

1
C

(
T f (V0) +

a
2ζ

(W0 −W f (V0))
)
. (11)

The axial and angular displacements, U0 and Φ0, correspond to steady drilling (V0 > 0) in the absence of vibrations,

while u and ϕ represent perturbations of the axial and angular positions of the bit with respect to the stationary solution.

The six numbers defining the RGD model consist of two control variables, namely the rotation speed at the surface

and the weight on bit,

ω0 = Ω0t∗, W0 =
W0

ζaεd∗
, (12)
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the number of blades n, and three lumped parameters

β = µγζ, λ =
σ`

ζεd∗
, ψ =

ζεaI
MC

, (13)

that respectively represent the bit geometry, the bit bluntness state and the design of the drillstring. Except for the

system number ψ that takes large values O(10-103), the other lumped parameters and the control variables ω0 andW0

are O(1). It is convenient, however, to replace ω0 andW0 by τn0 and α0, the surrogate control variables defined as

τn0 =
2π

nω0
, α0 =

W0 − λ

2π
. (14)

The constant delay τn0 is the dimensionless time required to rotate the bit by the angle 2π/n between two blades at

steady state and α0 is a measure of the active weight on bit at steady state, i.e., the weight on bit minus the axial force

transmitted by the bit wear flats. Since α0 = v0/ω0, α0 is proportional to the bit penetration per revolution while

drilling in steady state; indeed, α0 = d0/2πd∗ with d0 = 2πV0/Ω0. Both τn0 and α0 are typically O(0.1).

After scaling, the RGD model can then be formulated as two coupled state-dependent delay differential inclusions

governing the evolution of axial and angular perturbations u(τ) and ϕ(τ)

ü ∈ nψ
{[

(ũ − u) − α0 (ϕ̃ − ϕ)
]
+ g (u̇)

}
, (15)

ϕ̈ + ϕ ∈ n
{[

(ũ − u) − α0 (ϕ̃ − ϕ)
]
+ βg (u̇)

}
, (16)

where the overhead dot denotes differentiation with respect to the scaled time, i.e., ẋ := dx/dτ, and the tilde a delayed

quantity, i.e., x̃ := x(τ − τn). The set-valued function g (u̇(τ)) models the frictional contact and is defined as

g (u̇(τ)) ∈
λ

2
[
1 − Sign(u̇(τ) + v0)

]
, (17)

with the Sign operator given in equation (8). In case the bit sticks axially, i.e., u̇ = −v0, the magnitude of g(u̇) is given

by the condition of axial equilibrium of the system,

g (u̇ = −v0) = u − ũ + α0(ϕ̃ − ϕ). (18)

The implicit condition for the delay, given in equation (6), has been directly incorporated in the system of equations

(15)-(16), noting that the perturbation to the steady-state delay, τn − τn0, can directly be expressed in terms of the

current and delayed perturbations of the bit angular position

ϕ̃ − ϕ = ω0(τn − τn0). (19)

Thus, if the delay is constant and equal to its steady-state value τn0, i.e., the angular velocity of the bit is constant,

the angular perturbation is constant, ϕ = ϕ̃, and the term in α0 disappears from the evolution equations (15)-(16).

Conversely, a constant angular perturbation leads to a constant delay, τn = τn0.

Equations (15)-(16) are valid as long as the bit is drilling. They lose their physical significance, otherwise. Specif-

ically, the bit/rock interaction laws lose their validity when the bit experiences backward rotation (ϕ̇(τ) < −ω0),
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torsional stick or bouncing. In handling stick-slip oscillations, we assume that the vertical motion sticks as well

whenever the bit enters a phase of torsional stick. The vanishing velocities thus correspond to

ϕ̇(τ) = −ω0, u̇(τ) = −v0, (20)

as long as the bit sticks. The stick phase ends when the torque built up by the twisting of the drillstring becomes

sufficient to overcome the resisting cutting and frictional torques. Bit-bouncing takes place when the axial vibrations

experienced by the bit are large enough for the bit to disengage completely from the rock; in which case, the depth of

cut becomes negative,

δ(τ) = n (v0τn + (u − ũ)) < 0, (21)

and the bit is free to move in the borehole, according to the drillstring dynamics.

Modeling stick-slip vibrations or bit-bouncing dynamics requires equations (15) to (19) to be complemented by

specific dynamics whenever the system is in stick-slip or bit-bouncing motion. Such extensions are not considered in

the stability analysis presented next, as it focuses on the stability of the steady-state response corresponding to drilling

at constant velocity.

3. Linear Stability Analysis of the Coupled Dynamics with State-Dependent Delay

3.1. Preamble

The RGD model takes the form of a system of discontinuous state-dependent delayed differential inclusions.

Nonlinearities of two natures are present in the governing equations, namely (i) the discontinuity associated with

the function g(u̇(τ)), and (ii) the dependency of the delay on the state of the system. Whereas the former vanishes

from the equations upon consideration of trajectories sufficiently close to the steady-state one, an assumption that

simultaneously reduces the differential inclusions to differential equations, the second requires specific treatment to

ensure that the linearized problem is the variational equivalent of the original nonlinear one and that the stability

analysis based on the linear system extends to the nonlinear one.

In this respect, we follow the linearization approach presented in [16, 17], which is itself based on the proof pro-

posed in [24]. It relies on the stability assessment by localization in the complex plane of the roots of the characteristic

equation associated with an equivalent linear system, i.e., a system with constant delay that has stability properties

identical to those of the original system. Starting from the equations stated in the neighborhood of the steady-state

(trivial) solution, that is, the governing equations linearized with respect to inclusion g(u̇(τ)),

ü = nψ
[
(ũ − u) − α0 (ϕ̃ − ϕ)

]
,

ϕ̈ + ϕ = n
[
(ũ − u) − α0 (ϕ̃ − ϕ)

]
,

(22)

with the delayed quantities function of the actual delay x̃ := x(τ−τn), linearization with respect to the state-dependent

delay can be performed under the cover of three different assumptions. Nevertheless, only one proves to be equivalent
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to the original one when it comes to assessing the stability from numerically computed time responses, as will be

shown.

Timescale separation: Assuming ψ � 1, the axial and torsional dynamics can be shown to evolve on different

timescales. Indeed, under that hypothesis, the equation ruling the axial dynamics takes the form of a singularly

perturbed problem, and it ensues that the evolution of the axial dynamics takes place on a faster timescale than

that of the angular motion. Accordingly, the axial motion can be studied independently of the torsional one for

the latter appears constant on the fast timescale. The timescale separation is thus equivalent to a decoupling

of the system, which now has a constant delay on the fast timescale, and the study of the response stability

amounts to the stability analysis of two uncoupled oscillators [2, 19].

The torsional pendulum

ϕ̈ + ϕ = 0 (23)

is marginally stable while the axial motion, governed by equation

ü = nψ(ŭ − u), (24)

with ŭ := u(τ − τn0), is asymptotically stable provided the steady-state delay (rotation speed ω0) is smaller

(larger) than the critical value τ0
c = π/

√
2nψ (ω0

c =
√

8ψ/n). Details of the analysis can be found in [2], while

some of its shortcomings are demonstrated in [19] where trajectories of the system are shown to slowly diverge

from the trivial solution for configurations of stable axial motion.

Constant delay: According to equation (19), the assumption τn = τn0, ∀τ > 0 implies a constant angular velocity of

the bit and ϕ = ϕ̃. The equivalent problem then reads

ü = nψ (ŭ − u) ,

ϕ̈ + ϕ = n (ŭ − u) ,
(25)

and it appears that the assumption of constant delay leads to a partial decoupling of the axial and torsional

dynamics. They are now serially connected, with the independent axial motion driving the torsional one. This

formulation neglects the dynamics of the state-dependent delay. It is analyzed in Section 3.3.

State-dependent delay: For the linearized equations to hold as the variational equivalent of the original state-dependent

delayed differential equations (SD-DDE), the dynamics of the delay must be accounted for during linearization.

Starting from the generic first-order representation of an autonomous system of SD-DDE,

ẋ(t) = f(x(t), x(t − τ(xt)), τ(xt)), (26)

with state vector x ∈ Rm, the variational equivalent around the constant solution x̄ is given by Insperger et

al. [16, 17] as

ẏ(t) = D1f(x̄, x̄, τ(x̄t))y(t) + D2f(x̄, x̄, τ(x̄t))y(t − τ(x̄t)) + D3f(x̄, x̄, τ(x̄t))Dτ(x̄t)yt, (27)
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where y ∈ Rm denotes the vector of perturbations around the constant solution, and Dif, i = 1, 2, 3 refer to

the derivative of the vector field f with respect to its ith argument. Operator Dτ must be understood as the

Frchet derivative of the time-delay with respect to the xt. Thus, the linearized problem has a constant delay

but accounts for the delay dynamics through the last term of equation (27). Application of the linearization

procedure to equations (22) comes down to evaluating them at the steady-state delay

ü = nψ
[
(ŭ − u) − α0 (ϕ̆ − ϕ)

]
,

ϕ̈ + ϕ = n
[
(ŭ − u) − α0 (ϕ̆ − ϕ)

]
,

(28)

for the dynamics of the delay is already stated in terms of the state variables in the governing equations. This

linearized formulation is in line with the approach proposed in [24] and will appear as the correct one for the

assessment of the steady-state response stability.

As a notation convention, for the remainder of this section, we denote by subscript 0 all quantities that refer to the

steady-state; the superscript 0 is used for reference to the formulation with constant delay.

Further details on the stability analysis of state-dependent delayed differential equations and their applications can

be found, among others, in [16, 18, 25–29] and the references therein.

3.2. Characteristic Equation

Similarly to the stability analysis of the equilibria of a linear ordinary differential equation, the stability of the

stationary response of a linear delayed differential equation can be studied by considering the location of its associated

poles in the complex plane; that is, the zeros of its characteristic equation resulting from the typical exponential

Ansatz. Any pole having a positive real part will then be responsible for the instability of the equilibrium whereas

asymptotic stability will be concluded if all poles have a negative real part.

Following the developments of Appendix A, the characteristic equation based on the formulation including the

delay dynamics, i.e., the system of equations (28), is given by the following exponential-polynomial

P(s) :=
(
s2 + 1

) (
s2 + nψ

(
1 − e−sτn0

))
− nα0s2 (

1 − e−sτn0
)

= 0. (29)

Exponential-polynomials of the above type admit infinitely many roots [30, 31]. Nonetheless, only a finite number

of them have a positive real part. Investigating the stability of the system can then be performed by tracking the

crossings of the imaginary axis by the system poles as a parameter is varied, the steady-state delay τn0 or nominal

rotation speed ω0 = 2π/nτn0 in the present case. Calculations show that there is always at least one pair of poles

with positive real part for τn0 > 0. Accordingly, steady drilling is never stable as already noted in [14, 32]. However,

two regimes of instability can be distinguished: a “slow” one and a “fast” one. We respectively associate them with

a dominant torsional or axial instability, by reference to the torsional and axial poles of the uncoupled system. The

boundary between these two regimes can be expressed in terms of a critical delay τnc = τnc(nψ, nα0), with τn0 < τnc

corresponding to the slow regime, and τn0 > τnc to the fast one.
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Before studying the influence of the delay τn0 and of the parameters (nψ, nα0) on the location in the complex plane

of the characteristic roots of P(s) = 0, it is useful to note that P(s) can be expressed as

P(s) = P0(s) − nα0∆P(s) (30)

where

P0(s) ≡
(
s2 + 1

) (
s2 + nψ

(
1 − e−sτno

))
(31)

and

∆P(s) ≡ s2 (
1 − e−sτn0

)
. (32)

This particular decomposition of P(s) enables the study of the stability of the coupled axial/torsional dynamics with

state-dependent delay by reference to the dynamics with the delay assumed to be constant, cf. (25), whose stability is

associated with the characteristic equation P0(s) = 0.

3.3. Stability of the Axial/Torsional Dynamics with Constant Delay

The exponential-polynomial P0(s) consists of the product of two functions: the characteristic polynomial (s2 + 1)

relative to the undamped torsional pendulum ϕ̈ + ϕ = 0 and the characteristic function Pa(s) := s2 + nψ (1 − e−sτno )

associated with the axial dynamics. The latter is indeed recovered from equation (24), under the assumption of

timescale separation. Thus, under the assumption of constant delay, a decoupling of the axial and torsional degrees

of freedom takes place in the assessment of the steady-state response stability, as was already noted from the serial

connection observed in equations (25).

Associated with the torsional dynamics are two imaginary poles at st = ±j, whereas the axial dynamics has

infinitely many. Their location depends on the delay τn0 and parameter nψ, and is limited to some left part of the

complex plane. The exponential-polynomial Pa(s) belongs to the general class studied in [30, 31, 33] and closely

relates to those arising in the study of tool chatter in machining processes [34, 35]. Its stability analysis can be found

in [2, 13]. These studies show that Pa(s) = 0 has a root at the origin of the complex plane, regardless of the positive

values nψ and τn0 take, and that this pole is to be related to the fact that the solution to equation (24) is undefined with

respect to a position offset. As such, it can be discarded in the assessment of the steady-state stability. They also prove

that Pa(s) = 0 admits one pair of imaginary conjugate poles sc = ±j$0
∗, at discrete values τ0

m of the delay τn0 given by

τ0
m =

(2m − 1)π
$0
∗

, m ∈ Z+ := {1, 2, · · · }, (33)

with $0
∗ =

√
2nψ. Treating the delay τn0 as a bifurcation parameter, it can readily be shown that the axial system is

stable if and only if the delay is smaller than the critical value

τ0
nc = τ0

1 =
π√
2nψ

, (34)

at which the rightmost pair of conjugated roots of Pa(s) (besides the pole at the origin) crosses the imaginary axis to

enter the half-plane Re(s) > 0. In other words, all the roots of P0(s) = 0 but the two torsional poles st and the one
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at the origin are located in the half-plane Re(s) < 0, if τn0 < τ0
nc. Accordingly, the formulation assuming a coupled

system with constant delay predicts that steady drilling is either unstable or marginally stable depending on whether

the delay τn0 is larger or smaller than the critical delay τ0
nc. The instability is associated with the axial dynamics poles,

which we refer to as axial instability.

Since the freezing of the delay uncouples the axial and torsional motions, the criterion for instability matches the

one predicted under the hypothesis of timescale separation between the axial and torsional dynamics.

3.4. Stability of the Axial/Torsional Dynamics with State-Dependent Delay

To analyze the stability of system (28), we track the location in the complex plane of the most unstable poles of

its characteristic equation (30), i.e., the ones with the largest positive real part, as the steady-state delay is varied. As

usual, the analysis starts by computing the conditions for which there are critical eigenvalues of the form sc = ±j$.

These occur for specific values of the steady-state delay.

Searching for imaginary roots to P(s) = 0 leads to the following system of equations to be solved for the pulsation

$ > 0 and for the delay τn0 > 0(
1 −$2

) (
nψ (1 − cos$τn0) −$2

)
+ nα0$

2 (1 − cos$τn0) = 0,(
nψ

(
1 −$2

)
+ nα0$

2
)

sin$τn0 = 0.
(35)

Besides the existence of a pole at the origin of the complex plane, again related to the invariance of the steady-state

response to a displacement offset, there are three pairs of possible crossing points. The first one corresponds to the

location of the torsional poles under a decoupling assumption

sc = ±j, (36)

and occurs at critical delays

τ2m = 2mπ, m ∈ Z+. (37)

The two other crossings take place at sc = ±j$+
∗ and sc = ±j$−∗ , with pulsations and critical delays given by

$±∗ =

√
1/2 + n (ψ − α0) ±

√
n2 (ψ − α0)2 − n (α0 + ψ) + 1/4,

τ±m =
(2m − 1)π

$±∗
, m ∈ Z+,

(38)

where the superscript ± sign is associated with the ± sign in the definition of the pulsation $±∗ . The existence of

the crossings at sc = ±j$±∗ is contingent, however, on the positiveness of the square root arguments in (38). Two

conditions thus exist: C1 := n2 (ψ − α0)2 − n (α0 + ψ) + 1/4 > 0 and C2 := 1/2 + n (ψ − α0) −
√

C1 > 0. It can readily

be shown that C1 is indeed positive if 0 < α0 < α−0 or α0 > α+
0 , with nα±0 = 1/2 + nψ ±

√
2nψ. Furthermore, we also

have C2 > 0 under the restriction that 0 < α0 < α
−
0 .

Figure 3 illustrates the division of the parametric space (nψ, nα0) according to the signs of C1 and C2; the dashed

line denotes the oblique asymptote to which nα±0 converge when nψ � 1. It is divided in three regions I, II, III that
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Figure 3: The number of crossing points of the eigenvalue root locus on the imaginary axis of the complex plane depends on the value of parameters
(nψ, nα0). Region I corresponds to 3 crossing points at sc = ±j, sc = ±j$+

∗ and sc = ±j$−∗ . The sole crossing point sc = ±j is to be found in
regions II and III.

are separated by the loci α0 = α±0 corresponding to C1 = 0. These regions are associated with different qualitative

behaviors of the root locus of the characteristic equation, with three pairs of crossing points for region I (0 < α0 < α
−
0 ),

but only crossings at sc = ±j in regions II and III (α0 > α−0 ). Region I further subdivides into Ia and Ib at nψ = 1/2,

which corresponds to α−0 = 0.

Whatever the parametric configuration or region, the analysis of the eigenvalue rootlocus shows that the system

is always unstable, due to the permanent presence of poles in the right-hand side (RHS) of the complex plane for a

positive delay τn0 > 0; see next section and Appendix B. Moreover, it appears that, for a vanishing delay (τn0 = 0),

there are always two poles located at sc = st = ±j and that these poles move into the RHS of the complex plane as

the delay is increased from zero. By reference to the analysis of the uncoupled equations, we define these two poles

as the torsional or angular poles and the infinitely many remaining ones as the axial poles. We then relate the type

of instability to the set to which the dominant unstable poles belong, as explained in the next section that refines the

stability analysis in region Ia.

4. Modes of Instability in Deep Drilling Systems

Deep drilling systems are typically characterized by α0 = O(10−1), ψ = O(10−103), and n ≥ 4. Thus, clearly only

region Ia (0 < α0 < α−0 , nψ > 1/2) of the parameter space (nψ, nα0) is relevant for these systems. Other regions might

be of interest for other applications, such as metal turning, in which case the system parameter ψ would be much

smaller given the stiffer nature of the tool [17]. The reader is referred to Appendix D for the qualitative description of

the root locus of the system poles in the complex plane, when the parameters (nψ, nα0) are outside region Ia.
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Symmetric

Axial poles

Torsional pole

Figure 4: Qualitative sketch of the pole trajectories upon variation of delay τn0, for parameters (nψ, nα0) belonging to region Ia (see Figure 3). As
the delay is increased from 0, the torsional poles leave sc = ±j towards sc = ±j$−∗ . Simultaneously, one pole moves from the origin toward the
LHS of the complex plane while the axial poles approach sc = ±j$+

∗ from the LHS. Further increasing the delay leads to crossings from LHS to
RHS at sc = ±j$+

∗ and sc = ±j for delays τn0 = τ+
m and τn0 = τ2m with m = 1, 2, · · · , respectively. Crossings from RHS to LHS take place at

sc = ±j$−∗ for τn0 = τ−m, m = 1, 2, · · · ; the first one corresponds to the return of the torsional poles in the LHS. Given the inequality τ+
1 < τ−1 , the

system instability is dominated by the axial poles once τn0 > τnc ' τ+
1 , whereas it is the torsional dynamics that rules the unstable behavior for

τn0 < τnc. These define two instability regimes: a fast one associated with the axial dynamics (unstable poles with a large real part) and a slow one
related to the torsional dynamics (unstable poles with a small real part).

4.1. Influence of Rotation Speed

If 0 < α0 < α
−
0 , the roots of the characteristic equation (29), P(s) = 0, cross the imaginary axis at three conjugated

locations, namely, sc = ±j, sc = ±j$+
∗ , and sc = ±j$−∗ . In addition, for parameters belonging to region Ia, we can

show that $+
∗ > $−∗ > 1 and the crossings at sc = ±j and at sc = ±j$+

∗ are from the left-hand side (LHS) to the

right-hand side (RHS) of the complex plane, whereas those at sc = ±j$−∗ are from RHS to LHS. The calculation of

the crossing directions is given in Appendix B.

We are now in a position to study the motion of the eigenvalues of the linearized system in the complex plane as

the delay τn0, or equivalently the angular velocity ω0, changes. Figure 4 provides a qualitative representation of the

eigenvalue trajectories as the delay τn0 is increased from 0 to positive values. They move as follows.

1. At the limit τn0 = 0 (corresponding to an infinitely fast rotation speed of the bit), there is a double pole at the

origin and a pair of conjugated poles located at st = ±j. One of the poles at the origin is to be discarded in the

stability analysis.

2. With τn0 increasing from 0, the poles associated with the torsional dynamics, originally at st = ±j, move slightly

to the right of the imaginary axis, i.e., Re(st) = ε, with 0 < ε(τn0, nψ, nα0) � 1. One of the poles at the origin

enters the LHS of the complex plane.

3. At τn0 = τ+
1 := π/$+

∗ , a first conjugated pair of axial poles crosses the imaginary axis at sc = ±j$+
∗ . For all

practical purposes, this pair of axial poles can be treated as the most unstable poles, i.e., they can be considered

to be on the right of the torsional poles, once τn0 > τ
+
1 .
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4. At τn0 = τ−1 := π/$−∗ (> τ+
1 ), the torsional poles, which have left st = ±j when τn0 increased from 0, return to

the half-plane Re(s) < 0 by crossing the imaginary axis at sc = ±j$−∗ . The pair will reside in Re(s) < 0 until

τn0 = τ2 := 2π where it returns to the half-plane Re(s) > 0 at sc = ±j.

5. At τn0 = τ+
3 , a second pair of axial poles crosses the imaginary axis at sc = ±j$+

∗ , moving from left to right.

6. As τn0 increases from τ+
1 to τ−3 , the first pair of axial poles moves further to the right of Re(s) = 0 to eventually

turn around and move towards the imaginary axis, which they cross at sc = ±j$−∗ from right to left at τn0 =

τ−3 := 3π/$−∗ . The second pair of axial poles follows a similar trajectory as τn0 increases from τ+
3 to τ−5 .

7. The pairs of axial poles (in infinite number) located in Re(s) < 0 move to the right, with sequential crossings

of the imaginary axis taking place at τn0 = τ+
5 , τ

+
7 , · · · ; these pairs follow a trajectory similar to that of the first

pair, as they eventually cross again the imaginary axis from right to left at sc = ±j$−∗ at delays corresponding

to τn0 = τ−7 , τ
−
9 , · · · and return to the half-plane Re(s) > 0 at sc = ±j at delays τn0 = τ4, τ6, · · · .

A systematic parametric exploration of the influence of nψ and nα0 on the solution confirms the above narrative on

the dependence of the two sets of characteristic roots on the delay τn0.

In particular, in view of the fact that $+
∗ > $−∗ > 1 in region Ia, there will always be axial dynamics poles in the

RHS for τn0 > τ
+
1 , with τ+

1 (the delay at which the first pair of axial poles crosses the imaginary axis) given by

τ+
1 =

π√
1/2 + n (ψ − α0) +

√
n2 (ψ − α0)2 − n (α0 + ψ) + 1/4

. (39)

Moreover, for τn0 > τnc, with τnc denoting the critical delay at which the angular and rightmost axial poles have

the same (positive) real part, the axial poles are always the most unstable ones. Finally, given the proximity of the

angular poles to the imaginary axis, τnc can be approximated by the delay τ+
1 corresponding to the first crossing of the

imaginary axis by axial poles. Appendix C provides an approximate expression for the real part of the most unstable

slow pole when τn0 < τ
+
1 ; that is, when torsional poles are responsible for the instability of the steady-state.

These important results can be summarized in terms of the angular velocity ω0. There is a critical velocity ωc,

which marks the transition between two regimes of instability: unstable axial dynamics (ω0 < ωc) and unstable

torsional dynamics (ω0 > ωc). This transition rotation speed can be approximated by ω+
1 = 2π/nτ+

1 , i.e.,

ωc '
2
n

√
1/2 + n (ψ − α0) +

√
n2 (ψ − α0)2 − n (α0 + ψ) + 1/4, (40)

which can be further simplified to

ωc ' ω
0
c =

√
8ψ
n

(41)

since α0 � ψ in deep drilling applications. In other words, the transition rotation speedωc corresponds for all practical

purposes to ω0
c , the angular velocity at which the axial dynamics becomes unstable when the delay remains constant.
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Figure 5: Influence of parameter ψ on the rightmost pole of the system, (n, α0) = (6, 0.1). Insets (a) and (b): Comparison of the three linearized
forms given by equations (24) to (28): axial dynamics (dotted line), constant delay (dashed line) and state-dependent delay (solid line). While the
analysis based on the sole axial dynamics predicts stability for rotation speeds above the critical velocity (negative real part of dominant pole),
the formulation based on the constant delay predicts marginal stability (zero real part of dominant pole), whereas the formulation with the state-
dependent delay predicts instability (positive real part of dominant pole); the latter result is the one observed in numerical simulations of the system
behaviors by direct time integration. Insets (b) and (c): Two instability regimes can then be identified based on the magnitude of the real part of the
dominant unstable pole: a “slow” and a “fast” unstable regimes. The transition from one regime to the other takes place at a critical rotation speed
that is well approximated by equation (41).

4.2. Fast and Slow Regimes of Instability

The above stability analysis has demonstrated the influence of the nominal rotation speed on the positions of the

system poles in the complex plane and the existence of a critical rotation speed corresponding to a change of influence

on the system response between the torsional and axial poles. Moreover, it has been shown that, for the range of

parameters relevant to deep drilling, the torsional poles remain in the close neighborhood of the imaginary axis upon

variation of the rotation speed, while the axial poles exhibit larger excursions from this axis. The dominance of

unstable poles of one category or the other therefore defines two types of system behavior in response to external

perturbations. Namely, the system will exhibit slow divergence if the angular poles dominate and fast divergence if

the axial ones do, as the rapidity and strength with which the system reacts to an external perturbation is directly

related to the magnitude of the real part of its dominant poles—similarly to non-delayed systems. We refer to these

two categories as slow and fast instabilities and consider the associated configuration as a slow or a fast one.

The profound difference between the two modes of instability, as well as the sharp transition between the two

regimes that is taking place at ω0 = ωc ' ω
0
c ≡

√
8ψ/n is well illustrated by Figure 5. For four values of the system

parameter ψ, it depicts the variation of the real part of the system rightmost pole with the nominal speed ω0 = 2π/nτn0;

that is, the dominant unstable pole. The curves obtained when considering the sole axial dynamics or neglecting the

delay dynamics in assessing the steady-state stability have also been included for comparison. For rotation speeds
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above the critical velocity, the rightmost pole has a negative real part when considering the axial dynamics only (dotted

lines), a stable steady-state is thus predicted, while the formulation with constant delay predicts marginal stability due

to the presence of the torsional poles at st = ±j (dashed lines), i.e., it is inconclusive. The formulation accounting for

the delay dynamics predicts the instability of the steady-state response due to the presence of the torsional poles in the

RHS (solid lines). The real part of the torsional poles remains, however, very limited; see inset (b) of Figure 5. The

latter result is numerically demonstrated to be correct in the next section.
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Figure 6: Locations of the system poles in the complex plane for a fast configuration (ω0 = 10, left) and a slow one (ω0 = 20, right), with
(n, ψ, α0) = (6, 100, 0.1). The fast configuration is dominated by two axial poles with real part 2.05 while the slow one is lightly unstable due to
two torsional poles with real part 1.6 · 10−5. Red disks denote unstable poles while green squares correspond to marginally stable ones. Level-set
curves reflect the magnitude of the characteristic function |P(s)|. The roots of the characteristic equation have been computed using Matlab toolbox
DDE-BIFTOOL [36]. The respective insets represent the neighborhood of the origin of the complex plane.

This difference in behavior is further illustrated in Figure 6 that shows the poles of the linearized system (28) for

both a fast and a slow parametric configurations. For the particular set of parameters used, (n, ψ, α0) = (6, 100, 0.1),

the approximation of the transition speed is given by ωc ' 11.5. Accordingly, ω0 = 10 and ω0 = 20 correspond to a

fast and a slow configurations respectively, as can be seen from the magnitude of the dominant poles real part, 2.05

for the former case and 1.6 · 10−5 for the latter one. In the presence of external perturbations, the fast instability leads

to the rapid apparition of self-excited oscillations that can degenerate into stick-slip, bit-bouncing or the backward

rotation of the bit, contrary to the regime of slow instability where the amplification of external perturbations is a

lengthy process on the timescale of bit motion.

5. Self-Excited Vibrations in Deep Drilling Systems: Coexistence of Drilling Regimes

In actual drilling conditions, the assumption of homogeneous rock does not hold as the drill bit could experience

changing mechanical properties while it penetrates the rock medium; that is, parameters ε and σ vary continuously

with the bit depth, resulting in a change of the torque and forces acting on the bit.

A convenient way to assess the influence of perturbations on the system steady-state response is to consider an
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exogenous torque perturbation. In the following, we show that such a perturbation can lead to a change of drilling

regime, i.e., an apparently stable drilling configuration could rapidly become the subject of stick-slip vibrations. We

consider the slow parametric configuration of Figure 6, namely (ω0, n, ψ, α0) = (20, 6, 100, 0.1), and the application

to the bit of an exogenous perturbation under the form of a drag torque of constant magnitude and finite duration; that

is, the equations governing the evolution of the perturbations to the steady-state response become

ü = nψ (ũ − u + α0 (ϕ − ϕ̃)) , ϕ̈ + ϕ = n (ũ − u + α0 (ϕ − ϕ̃)) − Tp(τ), (42)

with

Tp(τ) =


T 0

p if τ ∈ [τin, τout],

0 otherwise.
(43)

The state-dependent delay is computed according to equation (19). Time integration is carried out on the basis of the

algorithm described in Appendix C of [2]. Two perturbations of equal duration τout − τin = 7.5 are considered; one

with large amplitude and the other one with a moderate amplitude, T 0
p = 0.9ω0 and T 0

p = 0.25ω0 respectively. The

resulting responses are shown in Figure 7. In case no external torque is applied to the system, perturbations remain

zero (gray), contrary to what is observed for fast configurations where numerical errors are sufficient to trigger the

instability [37]. Application of a large external torque rapidly leads to the apparition of stick-slip vibrations (ϕ̇ = −ω0)

after its application (red), with a periodic motion (limit cycle) taking place after the first sticking phase. The second

perturbed case leads to a quasiperiodic solution (blue), in the sense that motion is close to periodic on the timescale

of bit motion—taken to correspond to the resonance period of the drillstring viewed as a torsional pendulum—but

transient on a slower timescale; the trajectory ultimately converges to the stick-slip limit cycle observed in the case

of the large perturbation (up to a constant displacement, as the system is invariant under an offset of displacement u).

This observation concurs with that of Germay et al. [12], who have concluded, using a finite element model for the

drillstring, that an increased rotation speed at the rig delays the emergence of stick-slip oscillations. This increase, in

fact, corresponds to bringing the drilling system in a regime of slow instability. It also meets the conclusion of the

experimental investigations of Ledgerwood et al. [38] who showed that increasing the surface rotation speed of the

drillstring at constant weight on bit reduces the occurrence of stick-slip oscillations; they note, however, that a too

large increase can be responsible for the appearance of backward whirl, a drilling dysfunction during which the bit

instantaneous center of rotation rotates backwards around the hole axis.

Accordingly, the model predicts that, on the timescale of the bit motion, different types of motion can be observed

for an unstable but slow configuration: (i) perturbations are close to zero, the steady-state response is observed; (ii) per-

turbations are moderate, the bit exhibits limited-amplitude self-excited oscillations around its stationary trajectory; and

(iii) large perturbations can trigger instabilities such as stick-slip oscillations, backward rotation or bit-bouncing. The

apparent coexistence of drilling regimes, observed in both laboratory experiments and field, is thus a consequence of

the drilling system slow dynamics inherent to a specific parametric configuration or drilling conditions.

18



0

0

19075

0

Angular phase space Time evolution of rotation speed

5

12.5

20

10025

10045

19055

0

Stick-slip

Figure 7: The occurrence of external perturbations while drilling may trigger unstable behaviors. However, for slow configurations, e.g.,
(ω0, n, ψ, α0) = (20, 6, 100, 0.1), the magnitude of the perturbations is critical to the observed regime of motion: moderate perturbations lead
to a quasiperiodic oscillatory response around steady drilling (blue) that ultimately converges toward a stick-slip limit cycle, limit cycle to which
the trajectory converges rapidly in case of large perturbations (red). The left plot depicts the projection of the trajectory in the angular space while
the right one shows the evolution of the angular velocity with time. During the application of the external perturbation (whatever its magnitude),
the angular dynamics experiences a projected circular trajectory in its phase space; see the shaded segments along the curves.

This transient analysis also confirms the necessity of taking the delay dynamics into account when assessing the

stability of steady drilling. The steady-state response is, indeed, unstable for rotation speeds above the critical one,

ω0 > ωc, contrary to what is predicted by a stability analysis based on the linearized equations (24) or (25).

To make a parallel between the model and a realistic drilling situation, we consider the deep drilling system

depicted in Figure 1, with the characteristics given in Table 1. Such a configuration is typical of the drilling conditions

encountered by the oil and gas industry.

Building on these parameters, it is straightforward to compute the reference scales and dimensionless numbers

required by the model definition. These are listed at the bottom of Table 1. Noting the scale separation between α0 and

ψ, the approximation ω0
c to the critical rotation speed ωc can be used. However, it is useful to convert equation (41)

for ω0
c into an explicit expression for the dimensional critical rotation speed Ω0

c = ω0
c/t∗ in terms of the physical

parameters of the system, i.e.,

Ω0
c =

√
8ζεa
nM

= 112 RPM, (44)

for the particular example under consideration.

Interestingly, the critical rotation speed at which the system switches from the fast instability regime to the slow

one depends, within the framework of the RGD model, on a very limited set of parameters, namely: the interface

parameter ζ, the intrinsic specific energy ε, the bit radius a, the number of blades n on the bit, and the mass M of the

BHA. Its apparent independence of the weight on bit and of the bit bluntness state results from (i) the scale difference

between the system number ψ and α0 (ψ � α0) that enables the simplification of the approximation of Ωc, and (ii) the

linearization of the governing equations that removes any explicit dependency on parameter λ. The neighborhood of
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Figure 8: According to the model, in given drilling conditions, adjusting the rotation speed at the rig is likely to change the dynamics of the drilling
process, as increasing it can bring the system from a fast to a slow instability regime. The representations above depict the locations in the complex
plane of the system poles for two velocities Ω0 = 100 RPM (left) and Ω0 = 120 RPM (right) below and above the critical speed estimated at
Ω0

c = 112 RPM. Parameters of Table 1 have been used. White crossed markers denote poles with a negative real part, red disks the ones with a
positive real part and the green squares those with zero real part, respectively. Level-set curves reflect the magnitude of the characteristic function
|P(s)|. The roots of the characteristic equation have been computed using Matlab toolbox DDE-BIFTOOL [36]. The respective insets represent the
neighborhood of the origin of the complex plane.

the steady-state solution in which the linearized equations and, a fortiori, the stability analysis hold does nonetheless

depend on these parameters. The larger α0 ∼ W0 − λ, the larger this neighborhood and the region of validity of the

present analysis.

Following our developments, it is thus expected that operating the drilling rig at velocities below this threshold

leads to an unstable process, prone to detrimental regimes such as bit-bouncing or stick-slip, whereas operating it

above the critical velocity would mitigate the risk of the bit experiencing undesired vibration regimes. Figure 8

represents the poles associated with the example configuration for Ω0 = 100 RPM < Ω0
c (left) and Ω0 = 120 RPM >

Ω0
c (right). It confirms that the lower velocity configuration corresponds to a fast instability regime whereas the larger

velocity one is to a slow instability regime.

Figure 9 further explores the stability properties of the system for the two rotation speeds. It represents a measure

of the drilling process robustness to the perturbation of the sort defined by equation (43) by showing the type of

motion the system converges to within 400t∗ = 188 seconds. Simulations are stopped once bit-boucing or stick-

slip is detected. The blue, light blue, yellow and red colors respectively denote a quasiperiodic oscillatory motion

of the type illustrated in Figure 7, the convergence to a stick-slip limit cycle, the occurrence of backward rotation

(due to a too long applied perturbation torque), and the onset of bit-bouncing. For the kind of perturbation that has

been considered, the results confirm the prediction of the stability analysis. While any small perturbation triggers

bit-bouncing instabilities for the fast configuration, larger and longer ones are required for an unstable drilling regime

to be detected with the slow configuration.

Although the above results are specific to a particular family of exogenous perturbations, the stability analysis
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Table 1: List of the parameter values utilized for the example of Section 5.

Parameter Symbol Value Unit

Weight on bit W0 15 kN

Rotation speed Ω0 {100, 120} RPM

Drill pipe outer radius rp,o 21/2 in

Drill pipe inner radius rp,i 21/8 in

Drill pipe length Lp 2000 m

BHA outer radius rb,o 3 in

BHA inner radius rb,i 11/8 in

BHA length Lb 250 m

Steel shear modulus G 77 GPa

Steel density ρ 8000 kg/m3

Drill pipe rotary inertia Jp = 1
2π

(
r4

p,o − r4
p,i

)
1.22 · 10−5 m4

Drill pipe torsional stiffness C =
GJp

Lp
470 N m

BHA mass M = πρ
(
r2

b,o − r2
b,i

)
Lb 31.35 T

BHA inertia I = 1
2 M

(
r2

b,o + r2
b,i

)
103.8 kg m2

Bit radius a 4.25 in

Bit geometry parameter γ 1 1

Total wear flat length ` 1.8 · 10−3 m

Rock specific strength ε 60 MPa

Bit/rock contact stress σ 60 MPa

Cutting force inclination ζ 0.5 1

Bit/rock friction coefficient µ 0.6 1

Timescale t∗ 0.47 s

Length scale d∗ 1.34 · 10−3 m

Number of blades n 6 1

Frictional torque parameter β 0.3 1

Bluntness parameter λ 2.68 1

System parameter ψ 22.82 1

Rotation speed ω0 {4.92, 5.91} 1

Steady depth of cut per radian α0 0.12 1
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Figure 9: Reaction to a perturbation of type (43) in the case of a fast or slow configuration. Blue: the system experiences oscillatory response
that has not converged to a dysfunction regime after 400t∗ = 188 seconds. Light blue: the system has converged to a stick-slip limit cycle within
400t∗ = 188 seconds. Red: bit-bouncing has been detected within 400t∗ = 188 seconds. Yellow: Backward rotation has been detected within
400t∗ = 188 seconds (consequence of a too long applied perturbation). Clearly, the slow configuration is less sensitive to perturbations (see
perturbation magnitude required to set off bit-bouncing).

remains general. Its validity with respect to the actual drilling process is only contingent upon the adequacy of the

RGD model and also the evaluation of its parameters.

The adequacy of the model has been discussed in the literature. Germay et al. [12] compared the RGD model with

a finite element representation of the drillstring using rod elements. They concluded that the model is representative of

the process, as long as the drillstring behaves like a torsional pendulum; that is, provided only the first torsional mode

of the structure is excited during the vibrating process. This is dependent on the drillstring geometry and the operating

conditions but nonetheless proves a good approximation in many circumstances. Variants of the RGD model have

also been studied by Besselink et al. [13], and Nandakumar and Wiercigroch [14]. They considered a velocity rather

than a force boundary condition on the axial degree of freedom at the rig. Accordingly, they introduced a linear spring

in the axial direction, to account for the elasticity of the drillstring as well as structural damping. They also showed

that stability of the steady-state solution is guaranteed if there is sufficient structural damping. We note, however, that

the actual nature of the axial boundary condition at the rig is closer to a force control by design of the hoisting system

and that the achieved penetration rate is a consequence of the applied force and not an input at the rig. Also, we

understand that most dissipation takes place at the bit/rock interface, through the penetration of the bit in the rock. We

therefore do not expect structural damping to fundamentally change the stability of steady drilling. At best, damping

will contribute to alleviating bit-bouncing and stick-slip oscillations or delay their apparition.

Furthermore, the dimensional expression of the critical velocity (44) can be of inspiration in bit and BHA designs.

As the critical velocity is inversely proportional to the square root of the BHA mass and the number of blades, we

expect that, for a given rock formation and well diameter, a heavier BHA and a bit with numerous PDC cutters

organized in blades will contribute toward the mitigation of stick-slip oscillations and other instabilities.
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6. Conclusions

This paper has focused on the linear stability analysis of a model of a deep drilling system originally introduced by

Richard et al. [1, 2] to study self-excited vibrations that could degenerate into stick-slip oscillations and bit-bouncing.

The RGD model essentially reduces to two coupled state-dependent delay differential inclusions that govern the

evolution of the axial and angular perturbations to the bit stationary motion.

This analysis has confirmed that the trivial solution characterized by a constant penetration rate and constant rota-

tion speed of the bit is indeed unstable at any prescribed angular velocity Ω0, without consideration of any dissipation

other than the rate-independent one that takes place at the bit/rock interface during drilling. However, we have shown

that there exists in fact two regimes of instability, slow and fast, with a sharp transition taking place at a critical angular

velocity Ωc. The slow regime (Ω0 > Ωc) is characterized by an extremely slow growth of the torsional oscillations,

while the fast regime (Ω0 < Ωc) is associated with a rapid growth of the axial perturbations. For parametric configu-

rations associated with the slow regime, the system behaves almost like a marginally stable system and its response

is strongly influenced by external perturbations that could be encountered while drilling a rock formation, which are

the cause of drilling regime transitions. For such drilling configurations, steady drilling coexists with almost periodic

motion and potentially stick-slip oscillations, bit-bouncing or anti-resonance.

For typical field conditions, Ωc can be approximated by the critical velocity computed by neglecting the delay

dynamics, Ω0
c , which is a monomial function of a limited number of parameters; namely, the interface parameter ζ,

the intrinsic specific energy ε, the bit radius a, the number of blades n on the bit, and the mass M of the BHA. Though

the weight on bit and the bit bluntness state do not explicitly enter the expression of the critical velocity approximation,

they play a role in the definition of the domain of validity of the presented stability analysis; the larger the penetration

rate at steady state, the larger this domain.

These findings have been illustrated by an application example. It shows that knowing the current configuration

of the drilling system, i.e., the model parameters, proper adjustment of the rotational speed imposed at the rig rotary

table can help mitigate the drilling instabilities encountered in practice, e.g., stick-slip vibrations.
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Appendix A. Derivation of the Characteristic Equation

Let the state vector x be defined by

x(τ) = [u(τ), u̇(τ), ϕ(τ), ϕ̇(τ)]T , (A.1)
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To derive the characteristic equation associated with the drilling model and assess the stability of its steady state, we

rewrite the linearized delay differential equations (28) as a system of first order differential equations. In matrix form,

this system reads

ẋ(τ) = Ax(τ) + Ăx(τ − τn0) (A.2)

where A and Ă are the matrices containing the coefficients of the current and delayed state variables, respectively

A =



0 1 0 0

−nψ 0 nψα0 0

0 0 0 1

−n 0 nα0 − 1 0


, Ă =



0 0 0 0

nψ 0 −nψα0 0

0 0 0 0

n 0 −nα0 0


. (A.3)

The characteristic equation (29), P(s) = 0, is then obtained by setting to zero the determinant of the characteristic

function

∆(s) = sI − A − Ăe−sτn0 , (A.4)

obtained by either postulating an exponential Ansatz in (A.2) or Laplace transforming it.

The same procedure applies to calculate P0(s) given in equation (31). The corresponding matrices A and Ă are

given by (A.3) with α0 = 0.

Appendix B. Crossing Direction of the Imaginary Axis by the System Poles

To further understand the root locus of the system poles as the steady-state delay is varied, we compute the crossing

directions at its intersections with the imaginary axis. We do so by computing the total derivative of the characteristic

function with respect to the delay at a crossing point sc = ±j$∗, namely

∂sc

∂τn0
= −

∂P/∂τn0

∂P/∂s
; (B.1)

hence,
∂sc

∂τn0
= −

ns
(
ψ + s2

c(ψ − α0)
)

nsc (ψ − α0) (scτn0 − 2 + 2eτn0 sc ) − nψτn0 − 2sceτn0 sc
(
1 + 2s2

c
) · (B.2)

First, we consider the crossings taking place at (sc, τn0) = (±j, 2mπ), with m ∈ Z+. Evaluating (B.1) at this critical

point, we find
∂sc

∂τn0
=

nα0

2
1 ∓ jmπnα0

1 + (mπnα0)2 , (B.3)

from which it readily appears that

sign
(
Re

(
∂sc

∂τn0

))
= 1 and sign

(
Im

(
∂sc

∂τn0

))
= ∓1 (B.4)
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as long as α0 > 0. Thus, roots crossing at sc = ±j do so from the LHS to the RHS and from the poles (±j∞) to the

equator (0j) by symmetry of the system. The case α0 = 0 is equivalent to the uncoupling of the axial and torsional

dynamics, in which case the torsional poles are insensitive to variations of the delay and remain at st = ±j.

We then apply the same reasoning at (sc, τn0) = (±j$±∗ , (2m − 1)π/$±∗ ), with m ∈ Z+. We get

∂sc

∂τn0
=

n$±,2∗
(
ψ − (ψ − α0)($±∗ )2

)
2($±∗ )2 (

1 + 2n(ψ − α0) − 2($±∗ )2) + j(2m + 1)πn
(
ψ − (ψ − α0)($±∗ )2) , (B.5)

from which we have

sign
(
Re

(
∂sc

∂τn0

))
= sign

(
ψ − (ψ − α0)($±∗ )2

)
· sign

(
1 + 2n(ψ − α0) − 2($±∗ )2

)
, (B.6)

sign
(
Im

(
∂sc

∂τn0

))
= ∓

(
sign

(
ψ + (α0 − ψ)($±∗ )2

))2
. (B.7)

It can be shown that, under the constraint 0 < α0 < α
−
0 , the sign of term ψ+ (α0 −ψ)($±∗ )2 ≶ 0 follows the magnitude

of nψ ≶ 1/2 and that the sign of −
(
1 − 2($±∗ )2 − 2n(α0 − ψ)

)
corresponds to that of the $±∗ root superscript. We

therefore have that crossings at sc = ±j$+
∗ are from LHS to RHS and those at sc = ±j$−∗ are from RHS to LHS

when nψ > 1/2 and in the opposite direction when nψ < 1/2; plus, the poles are moving towards the equator during the

crossings.

Furthermore, the order of the crossing points can be shown to depend on the magnitude of nψ. If the configuration

corresponds to region Ia (nψ > 1/2), we have $+
∗ > $−∗ > 1. However, the reverse identity holds if the system

configuration is in region Ib (nψ < 1/2), namely $−∗ < $
+
∗ < 1. The root loci associated with regions Ia and Ib are thus

topologically non-equivalent.

Finally, we mention that the torsional poles leave sc = ±j orthogonally to the imaginary axis as the delay is

increased from 0
∂sc

∂τn0
=

nα0

2

∣∣∣∣∣
(sc,τn0)=(±j,0)

. (B.8)

Appendix C. Approximated Expression for the Real Part of the Unstable Slow Poles

In Section 4.1, we have derived two approximations to the critical rotation speed ωc. These are given by equa-

tions (40) and (41) and approximate the transition speed by the one corresponding to the first crossing of the imaginary

axis by axial poles, accounting or not for the dynamics of the delay. They are valid for parameters that reflect condi-

tions for deep drilling systems. We refer to them as approximations 1 and 2, respectively.

Further exploiting the proximity of the angular poles to the imaginary axis, we estimate the location of the torsional

poles, s±t , by expanding to first-order the characteristic equation around s = ±j, location of the angular poles of the

uncoupled system. This yields

s±t ' ±j + nα0
∆P(s)(

P0(s) − nα0∆P(s)
)′ ∣∣∣∣∣∣

s=±j
, (C.1)
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Figure C.1: Under the condition ψ � α0, the approximations of the transition delay (left) and of the real part of the torsional poles (right) show a
good match with the exact values. The graphs are in log-log scale.

with

∆P(±j) = e∓jτnc − 1,

P0 ′ (±j) = ±2j
(
nψ

(
1 − e∓jτnc

)
− 1

)
, (C.2)

∆P′(±j) = ±2j
(
1 − e∓jτnc

)
− τnce∓jτnc ,

and τnc given by approximation 1, i.e., equation (39). Following the assumption of approximation 2, i.e., ψ � α0, the

approximation of the torsional poles further simplifies and their real part can be approximated by

Re(s±t ) =
τnc (nα0)2 (1 − cos τnc) + 2nα0 sin τnc

4 − 8nψ + n2
(
(α0τnc)2 + 8ψ2

)
+ 8nψ cos τnc (1 − nψ) + 4nα0τnc sin τnc (1 − nψ)

, (C.3)

with τnc defined in equation (34).

Comparison of the set of approximations 1 and 2 with the exact transition delay and the real part of the torsional

poles are shown in Figure C.1 for α0 ∈ [0.01, 1] and four values of the parameter ψ. It is seen that the approximations

provide a good estimation of the exact solution, in particular when ψ � α0. In that case, the transition delay is almost

insensitive to α0 and the real part of the torsional pole increases linearly with α0. The approximation ceases to be

valid when α0 becomes of the order of magnitude of ψ, precisely when α0 becomes larger than α−0 (n, ψ), a parametric

configuration that leads to a change of the root locus topology and an alteration of the number of crossing points on

the imaginary axis (see Section 3.4 and Appendix D).

Appendix D. Root locus of the System Poles in Complex Plane for Regions Ib, II and III

In Section 4.1, we have described the trajectory in the complex plane of the system poles when the steady-state

delay is varied from 0 to positive values, for a configuration corresponding to deep drilling applications. This qualita-

tive description does not hold, however, when considering parametric configurations outside the region Ia defined in
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Figure 3. It is the purpose of this section to qualitatively describe the root locus of the system poles upon variation of

the delay, for regions Ib, II, and III, as well as the limiting cases (except α0 = 0 that is equivalent to 0 penetration).

The graphs presented in the sequel are to be understood as follows:

• The initial configuration corresponds to the undelayed situation, i.e., τn0 = 0. Though this case is not physically

relevant (it corresponds to an infinite rotation speed of the bit), it is mathematically speaking, and we use it as

the starting point of our description.

• Upon monotonous increase of the steady-state delay from τn0 = 0, the system poles move in the complex plane.

Their trajectory might intersect or become tangent to the imaginary axis at a certain number of locations. This

number depends on the parametric configuration under scrutiny. All configurations present at least one pair of

crossing points at sc = ±j.

• Increasing the delay from 0 drives a pole from the origin to the LHS of the complex plane, whatever the

parametric configuration. The pole that remains at the origin can be discarded from the stability analysis, for

the steady-state response is defined up to a displacement offset.

• In the following figures, the origin of the trajectory is indicated by the ellipsis and the direction of motion is

provided by an arrow at the end of the curve representing a pole trajectory. Torsional poles always originate at

sc = ±j while axial ones originate in the LHS of the complex plane. We do not represent all pole trajectories, as

there is an infinite number of them.

• Trajectories of the torsional poles are indicated using dashed lines while the ones of axial poles are represented

using solid lines. In case the torsional poles may exhibit topologically different trajectories, they are superim-

posed on the same graph. They do however correspond to different parameter sets.

These qualitative descriptions are based on numerical investigations combined with algebraic developments. They

are proposed as indicators of the different behaviors to be expected from the RGD model, should it be applied to

parametric configurations other than related to deep drilling. As these configurations are not the main focus of this

research, our investigations are not as complete as for the region Ia, relevant to deep drilling configurations.

Appendix D.1. Region Ib: (nψ, nα0) ∈ (0, 1/2) × (0, α−
0
)

Similarly to region Ia, pole trajectories cross the imaginary axis at three pairs of conjugated locations, sc = ±j and

sc = ±j$±∗ , with $±∗ given by equation (38). However, we now have $−∗ < $+
∗ < 1, so that axial poles first cross

the imaginary axis at sc = ±j, then at sc = ±j$+
∗ , and finally at sc = ±j$−∗ when the delay is increased from 0. The

crossing directions at sc = ±j$±∗ are opposite to those of region Ia, with a crossing from RHS to LHS at sc = ±j$+
∗ ,

and from LHS to RHS at sc = ±j$−∗ . The critical delays at which crossings occur are given by equation (38) and

τm = 2mπ, with m ∈ Z+.

Figure D.1 illustrates the root locus of the system poles.
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Axial poles

Torsional pole

Figure D.1: Root locus of the system poles for parametric configurations in region Ib. Pole trajectories intersect the imaginary axis at three
locations. Both the axial and torsional poles converge to the origin of the complex plane.

Symmetric

Axial poles

Torsional pole

Figure D.2: Root locus of the system poles for parametric configurations in region II. Only one conjugated crossing point exists, at sc = ±j.

Appendix D.2. Region II: (nψ, nα0) ∈ (0,+∞) × (nα+
0 ,+∞)

For parametric configurations in region II, arguments C1 and C2 are respectively positive and negative, C1 > 0

and C2 < 0. Accordingly, the pulsations $±∗ defined in equations (38) are complex numbers and are not solutions of

equations (35). The only crossing points are thus sc = ±j and the crossings take place at τm = 2mπ, with m ∈ Z+.

Again, the torsional poles leave sc = ±j orthogonally to the imaginary axis when the delay is increased from zero.

They govern the instability of the system that is unstable for any τn0 > 0.

Figure D.2 illustrates the root locus of the system poles.

Appendix D.3. Region III: (nψ, nα0) ∈ (0,+∞) × (nα−0 , nα
+
0 )

In region III, arguments C1 and C2 are both negative, C1,C2 < 0, leading to complex pulsations $±∗ that are not

solutions of equations (35). Similarly to region II, there is only one pair of conjugated crossing points at sc = ±j, for
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Figure D.3: Root locus of the system poles for parametric configurations in region III. Only one conjugated crossing point exists, at sc = ±j.
Depending on the magnitude of nψ, the torsional poles either converge to the origin or to a focus point in the RHS of the complex plane. The graph
displays three possible trajectories for the torsional poles (dashed lines). They are each specific to one parametric configuration.

critical delays τm = 2mπ, with m ∈ Z+. Depending on the magnitude of nψ, our investigations have revealed that the

torsional poles can follow trajectories of different natures. Either they converge to the origin of the complex plane,

following a trajectory that remains close to the imaginary axis, or they converge to some focus point in the RHS of

the complex plane, in the vicinity of which they remain once the delay is large enough. Instabilities are governed by

the torsional poles. The system is unstable for any positive delay.

This is illustrated in Figure D.3 where three possible trajectories for the torsional poles are shown. They each

occur for a different value of parameter nψ.

Appendix D.4. Limit cases: nα0 = nα±0

When nα0 = nα−0 , pulsations $±∗ become equal, $+
∗ = $−∗ = $∗. As a consequence, the root locus becomes

tangent to the imaginary axis at sc = ±j$∗, with a conjugated crossing point still located at sc = ±j where poles go

from the LHS to the RHS of the complex plane. Depending on the magnitude of nψ ≶ 1/2, we have $∗ ≶ 1, which

affects the topology of the root locus, as depicted in Figure D.4. Again, the torsional poles either converge to the

origin of the complex plane or to some focus point, depending on the magnitude of parameter nψ. The steady-state

response is unstable for any positive delay and is ruled by the torsional poles.

The limit case nα0 = nα+
0 yields a root locus similar to that of region III and is not repeated here.
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Figure D.4: Root locus of the system poles for parametric configurations with nα0 = nα−0 = 1/2 + nψ −
√

2nψ. The left figure pertains to range
nψ < 1/2 and the right one to nψ > 1/2. Only one pair of conjugated crossing points exists, at sc = ±j, in combination with a tangency point at
sc = ±j (2nψ)1/4. Depending on the magnitude of nψ, the torsional poles either converge to the origin or to a focus point in the RHS of the complex
plane.
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