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We summarize the latest achievements about the extraction of the transversity parton

distribution and proton tensor charge based on an analysis of pion-pair production in

deep-inelastic scattering off transversely polarized targets. Recently released data for
proton and deuteron targets by HERMES and COMPASS allow for a flavor separation

of the valence components of transversity. At variance with the Collins effect, this ex-

traction is performed in the framework of collinear factorization and relies on di-hadron
fragmentation functions. The latter have been taken from the first recent analysis of the

semi-inclusive production of two pion pairs in back-to-back jets in e+e− annihilation.

We also comment on the possibility of isolating new azimuthally asymmetric correlations
of opposite pion pairs, which could arise when a fragmenting quark crosses parity-odd

domains localized in Minkowski space-time and induced by the topologically nontrivial

QCD background (the so-called θ vacuum).
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1. Introduction

In a parton model picture, parton distribution functions (PDFs) describe combi-

nations of number densities of quarks and gluons in a fast-moving hadron and are

a crucial ingredient for our understandings of high-energy experiments involving

hadrons. At leading twist, the quark structure of spin-half hadrons is described by
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three PDFs: the unpolarized distribution f1(x), the longitudinal polarization (he-

licity) distribution g1(x), and the transverse polarization (transversity) distribution

h1(x). From the phenomenological point of view, h1(x) is the least known one be-

cause, being chiral-odd, it can be measured only in processes with two hadrons in

the initial state (e.g. proton-proton collision) or one hadron in the initial state and

at least one hadron in the final state (e.g. semi-inclusive DIS - SIDIS).

Combining data on polarized single-hadron SIDIS, together with data on almost

back-to-back emission of two hadrons in e+e− annihilations, the transversity distri-

bution was extracted for the first time by the Torino group 1,2. The main difficulty

of such analysis lies in the factorization framework used to interpret the data, since

it involves Transverse Momentum Dependent PDFs (TMDs). QCD evolution of

TMDs must be included to analyze SIDIS and e+e− data obtained at very different

scales, but the computation of its effects is still under active debate. Recently, the

impact of evolution on h1(x) was estimated in the so-called CSS framework 3.

Alternatively, the transversity distribution can be extracted in the standard

framework of collinear factorization using data on SIDIS with two hadrons detected

in the final state. In fact, h1(x) is multiplied with a specific chiral-odd Di-hadron

Fragmentation Function (DiFF) 4,5,6, which can be extracted from the correspond-

ing e+e− annihilation process leading to two back-to-back pion pairs 7. The collinear

framework allows to keep under control the evolution equations of DiFFs 8. Using

two-hadron SIDIS data on proton and deuteron targets from HERMES 9 and COM-

PASS 10, as well as Belle data for the process e+e− → (π+π−)(π+π−)X 11, the

transversity h1(x) was extracted for the first time in the collinear framework 12 and

the valence components of up and down quark were separated 13. In this contribu-

tion to the proceedings, we summarize the parametrization and the error analysis

both for h1(x) and for the DiFFs 14.

We also comment on re-analyzing the e+e− → (π+π−)(π+π−)X process by in-

cluding structures violating parity invariance (P-odd structures). P-odd DiFFs arise

when the fragmenting quark crosses local (in space and time) domains where strong

interactions break parity invariance. These P-odd bubbles can be induced by topo-

logically nontrivial solutions of QCD equations of motion, which suggest that the

physical vacuum is a superposition of degenerate states, the so-called θ vacuum 15,

and that topological fluctuations in this vacuum structure can be equivalently repre-

sented by a local P-odd term in the QCD Lagrangian 16. P-odd DiFFs generate new

azimuthally asymmetric terms in the cross section for the e+e− → (π+π−)(π+π−)X

process, similarly to what happens for the e+e− → π+π−X one 17 but in a collinear

framework. Here, we write the full structure of the leading twist cross section and

we try to estimate the size of the P-odd contributions.

2. Theoretical Framework for Di-hadron Semi-inclusive Production

We consider the process `(k) + N(P ) → `(k′) + H1(P1) + H2(P2) + X, where `

denotes the beam lepton, N the nucleon target with mass M and polarization S,
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H1 and H2 the produced unpolarized hadrons with masses M1 and M2, respectively

(the four-momenta are given in parentheses). We define the total Ph = P1 +P2 and

relative R = (P1 − P2)/2 momenta of the pair, with P 2
h = M2

h � Q2 = −q2 and

q = k − k′ the momentum transferred. We define the azimuthal angles φR and φS
as the angles of RT and ST , respectively, around the virtual photon direction q.

We also define the polar angle θ which is the angle between the direction of the

back-to-back emission in the center-of-mass (cm) frame of the two hadrons, and

the direction of Ph in the photon-proton cm frame. Then, RT = R sin θ and |R|
is a function of the invariant mass only 18. Finally, we usually define the SIDIS

invariants

x =
Q2

2P · q
, y =

P · q
P · k

, z =
P · Ph
P · q

≡ z1 + z2 . (1)

To leading twist, the differential cross section for the two-hadron SIDIS off a trans-

versely polarized nucleon target becomes 13

dσ

dx dy dz dφS dφR dM2
h d cos θ

=
α2

xy Q2

{
A(y)FUU + |ST |B(y) sin(φR+φS)FUT

}
,

(2)

where α is the fine structure constant, A(y) = 1− y + y2/2, B(y) = 1− y, and

FUU = x
∑
q

e2
q f

q
1 (x;Q2)Dq

1

(
z, cos θ,Mh;Q2

)
,

FUT =
|R| sin θ
Mh

x
∑
q

e2
q h

q
1(x;Q2)H^ q

1

(
z, cos θ,Mh;Q2

)
, (3)

with eq the fractional charge of a parton with flavor q. The Dq
1 is the DiFF describing

the hadronization of an unpolarized parton with flavor q into an unpolarized hadron

pair. The H^ q
1 is its chiral-odd partner describing the same fragmentation but for a

transversely polarized parton 19. DiFFs can be expanded in Legendre polynomials in

cos θ 18. After averaging over cos θ, only the term corresponding to the unpolarized

pair being created in a relative ∆L = 0 state survives in the D1 expansion, while

the interference in |∆L| = 1 survives for H^
1

18. Without ambiguity, the two terms

will be identified with D1 and H^
1 , respectively.

Inserting the structure functions of Eq. (3) into the cross section (2), we get the

single-spin asymmetry (SSA) 6,18,20

ASIDIS(x, z,Mh;Q) = −B(y)

A(y)

|R|
Mh

∑
q e

2
q h

q
1(x;Q2)H^ q

1 (z,Mh;Q2)∑
q e

2
q f

q
1 (x;Q2)Dq

1(z,Mh;Q2)
. (4)

For the specific case of production of π+π− pairs, isospin symmetry and charge

conjugation suggest Dq
1 = Dq̄

1 and H^ q
1 = −H^ q̄

1 , with q = u, d, s, with also

H^u
1 = −H^ d

1
20,12. Moreover, from Eq. (4) the x-dependence of transversity is

more conveniently studied by integrating the z- and Mh-dependences of DiFFs.
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So, the actual combinations of transversity used in the SIDIS analysis are, for the

proton target 13,

xhp1(x;Q2) ≡ xhuv
1 (x;Q2)− 1

4 xh
dv
1 (x;Q2)

= −
ApSIDIS(x;Q2)

n↑u(Q2)

A(y)

B(y)

9

4

∑
q=u,d,s

e2
q nq(Q

2)xfq+q̄1 (x;Q2) , (5)

and, for the deuteron target,

xhD1 (x;Q2) ≡ xhuv
1 (x;Q2) + xhdv1 (x;Q2)

= −A
D
SIDIS(x;Q2)

n↑u(Q2)

A(y)

B(y)
3
∑

q=u,d,s

[
e2
q nq(Q

2) + e2
q̃ nq̃(Q

2)
]
xfq+q̄1 (x;Q2) ,

(6)

where hqv1 ≡ hq1 − h
q̄
1, fq+q̄1 ≡ fq1 + f q̄1 , q̃ = d, u, s if q = u, d, s, respectively (i.e. it

reflects isospin symmetry of strong interactions inside the deuteron), and

nq(Q
2) =

∫ zmax

zmin

∫ Mhmax

Mhmin

dz dMhD
q
1(z,Mh;Q2)

n↑q(Q
2) =

∫ zmax

zmin

∫ Mhmax

Mhmin

dz dMh
|R|
Mh

H^ q
1 (z,Mh;Q2) . (7)

The latter quantities can be determined by extracting DiFFs from the e+e− →
(π+π−)(π+π−)X process. In fact, after the annihilation a quark and an antiquark

are emitted back-to-back, each one fragmenting into a residual jet and a (π+π−)

pair. The leading-twist cross section in collinear factorization, namely by integrating

upon all transverse momenta but RT and R̄T , can be written as 14

dσ =
1

4π2
dσ0

(
1 + cos(φR + φR̄)Ae+e−

)
, (8)

where dσ0 is the symmetric term corresponding to the production of unpolarized

quark and antiquark, and the azimuthal angles φR and φR̄ give the orientation of

the planes containing the momenta of the pion pairs with respect to the lepton

plane (see Fig.1 of Ref. 14 for more details). The azimuthally asymmetric term

is generated from the production of the quark and antiquark being transversely

polarized. We define the so-called Artru-Collins asymmetry 7

Ae+e− ∝
|RT |
Mh

|R̄T |
M̄h

∑
q e

2
qH

^ q
1 (z,Mh;Q2)H^ q̄

1 (z̄, M̄h;Q2)∑
q e

2
q D

q
1(z,Mh;Q2)Dq̄

1(z̄, M̄h;Q2)
. (9)

Before the measurement of the Artru-Collins asymmetry by the Belle collabo-

ration 11, the only information available on DiFFs were coming from model calcu-

lations in the context of the spectator approximation 21,6,20, which have produced

solid predictions successfully compared with data for the asymmetry (4) recently

released by the COMPASS collaboration 10.
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Since a measurement of the unpolarized e+e− cross section dσ0 is still missing,

the unpolarized DiFF D1 was parametrized to reproduce the two-pion yield of the

PYTHIA event generator tuned to the Belle kinematics 14. The fitting expression

at the starting scale Q2
0 = 1 GeV2 was inspired by the above mentioned specta-

tor model calculations 20,6,21,22 and it contains three resonant channels (pion pair

produced by ρ, ω, and K0
S decays) and a continuum. For each channel and for

each flavor q = u, d, s, c, a grid of data in (z,Mh) was produced using PYTHIA

for a total amount of approximately 32000 bins. Each grid was separately fitted

using the corresponding parametrization of D1 and evolving it to the Belle scale of

Q2 = 100 GeV2. An average χ2 per degree of freedom (χ2/dof) of 1.62 was reached

using in total 79 parameters (see Ref. 14 for more details). In Fig. 1, the Dq
1 for

q = u(= d), s, c flavors at Q2
0 = 1 GeV2 and Mh = 0.8 GeV is reported as a function

of z (left panel).

Then, the chiral-odd DiFF H^
1 was extracted from the Artru-Collins asymmetry

by using the above mentioned isospin symmetry and charge conjugation of DiFFs

and by integrating upon the hemisphere of the antiquark jet 14. The experimental

data for Ae+e− are organized in a (z,Mh) grid of 64 bins 11. They were fitted

starting from an expression for H^u
1 at Q2

0 = 1 GeV2 with 9 parameters, and then

evolving it to the Belle scale. The final χ2/dof was 0.57 14. In the right panel of

Fig. 1, the ratio (|R|/Mh) (H^u
1 /Du

1 ) at Q2
0 = 1 GeV2 is reported as a function of

Mh for three different z = 0.25, 0.45, 0.65 (for a more detailed discussion also of

errors, see Ref. 14).

3. Extraction of Transversity

The knowledge of DiFFs in Eq. (5) allowed us to get a glimpse of the combination

huv
1 −h

dv
1 /4 directly from the HERMES data for ApSIDIS

12. Recently, the COMPASS

collaboration has released new data for ApSIDIS on a proton target and for ADSIDIS
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on a deuteron target 10. Thus, the combination of Eqs. (5) and (6) made it possible

to separately parametrize for the first time each valence flavor of the transversity

distribution 13. Here, we summarize the fitting procedure and error analysis, and

comment some significant results.

3.1. Fitting procedure and error analysis

The main theoretical constraint on transversity is Soffer’s inequality 23. If the Soffer

bound is fulfilled at some initial Q2
0, it will hold also at higher Q2 ≥ Q2

0. We impose

this condition by multiplying the functional form by the corresponding Soffer bound

SBq(x;Q2) at the starting scale Q2
0 = 1 GeV2. The Soffer bound is built from the

MSTW08 set 24 for f1, and from the DSSV parameterization 25 for g1. Our analysis

was carried out at LO in αS ; the explicit form of SBq is reported in Appendix of

Ref. 13. The functional form for the valence transversity distributions at Q2
0 = 1

GeV2 reads

xhqv1 (x;Q2
0) = tanh

[
x1/2

(
Aq +Bq x+Cq x

2 +Dq x
3
)]
x
[
SBq(x;Q2

0) + SBq̄(x;Q2
0)
]
.

(10)

The hyperbolic tangent is such that the Soffer bound is always fulfilled. The low-x

behavior is determined by the x1/2 term, which is imposed by hand to grant the

integrability of Eq. (10) and a finite tensor charge. Present fixed-target data do not

allow to constrain it. The functional form is very flexible and can contain up to

three nodes. Here, we show the results employing all the parameters, the so-called

extra-flexible scenario (for results with other choices, see Refs. 13).

The fit and the error analysis were carried out in two different ways: using

the standard Hessian method and using a Monte Carlo approach. The latter was

introduced because it does not rely on the assumptions of a quadratic dependence of

χ2 and a linear expansion of the theoretical quantity around the minimum, which

are prerequisites for the Hessian method. This freedom is essential whenever the

minimization pushes the theoretical function towards its upper or lower bounds.

The Monte Carlo approach is inspired to the work of the NNPDF collaboration 26,

although our results are not based on a neural-network fit. The approach consists

in creating N replicas of the data points by shifting them by a Gaussian noise

with the same variance as the measurement. Each replica, therefore, represents a

possible outcome of an independent measurement. Then, the standard minimization

procedure is applied to each replica separately (for details, see Ref. 13). The number

of replicas is chosen so that the mean and standard deviation of the set of replicas

accurately reproduces the original data points. In our case, it turns out to be 100.

The N theoretical outcomes can have any distribution, not necessarily Gaussian. In

which case, the 1σ confidence interval is in general different from the 68% interval.

The latter can be easily obtained by rejecting the largest and lowest 16% of replicas

for each experimental point.
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3.2. Results

In Fig. 2, the left panel displays the q = uv contribution in Eq. (10) for the extra-

flexible scenario, while q = dv is in the right one. For each panel, the outcome with

the standard Hessian method is represented by the uncertainty band with solid

boundaries, the central thick solid line visualizing the central value. The partially

overlapping band with dashed boundaries is the outcome when adopting the Monte

Carlo approach, where the band width corresponds to the 68% of all the 100 replicas,

produced by rejecting the largest and lowest 16% among the replicas’ values in each

x point. For sake of comparison, each panel displays also the corresponding results

in the framework of the Collins effect 1, depicted as a band with short-dashed

boundaries. Since the latter was extracted at the scale Q2 = 2.4 GeV2, our results

are properly evolved at the same scale. Finally, the dark thick solid lines indicate

the Soffer bound, also evolved at the same scale.

The uncertainty bands in the standard and Monte Carlo approaches are quite

similar within the x-range where data exist, namely 0.0064 ≤ x ≤ 0.28, and are in

agreement with the other extraction based on the Collins effect. Outside this range,

the standard approach tends to saturate the Soffer bound, and the boundaries of

the band can occasionally cross it because the assumed quadratic dependence of

χ2 on the parameters around its minimum is not reliable. On the contrary, in the

Monte Carlo approach each replica is built such that it never violates the Soffer

bound. For x ≥ 0.4, the replicas entirely fill the area between the upper and lower

Soffer bounds, giving an explicit visualization of the realistic degree of uncertainty

where there are no experimental data points. In the right panel, for x ≥ 0.1 our

results tend to saturate the lower limit of the Soffer bound because they are driven

by the COMPASS deuteron data, in particular by the bins number 7 and 8. No

such trend is evident in the parametrization corresponding to the single-hadron
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Fig. 2. Left panel: the uv contribution to the transversity in the extra-flexible scenario. The
standard Hessian method gives the uncertainty band with solid boundaries, the central thick solid

line visualizing the central value. The band with dashed boundaries is the outcome when adopting

the Monte Carlo approach. The band with short-dashed boundaries is the parametrization obtained
in Ref. 1 from the Collins effect. The dark thick solid lines indicate the Soffer bound. All results

at the scale of Q2 = 2.4 GeV2. Right panel: same notations for the dv contribution.
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measurement of the Collins effect. As a matter of fact, this is the only source of

significant discrepancy between the two extractions. This statement remains valid

also for the other scenarios, indicating that this is not an artifact of the chosen

functional form.

The tensor charge, a fundamental quantity of hadrons at the same level as the

vector, axial, and scalar charges, is related to the transversity by

δqv(Q
2) =

∫
dxhqv1 (x,Q2) . (11)

The region of validity of our fit is restricted to the experimental data range. We can

therefore give a reliable estimate for the tensor charge by truncating the integral to

the interval 0.0064 ≤ x ≤ 0.28. For the extra-flexible scenario, we find at Q2
0 = 1

GeV2

δuv = 0.32± 0.12 δdv = −0.25± 0.15 standard

δuv = 0.34± 0.10 δdv = −0.20± 0.14 Monte Carlo . (12)

These results are compatible with other scenarios and, within errors, with the ex-

traction in the framework of the single-hadron Collins effect 1. We tried also to

extend the range of integration outside the experimental data to 0 < x ≤ 1. The

result is heavily influenced by the adopted functional form, in particular by the

low-x exponent, and this fact reflects again the uncertainty because of missing data

at very low x.

4. Parity Violation in Quark Fragmentation

QCD equations of motion possess topologically nontrivial solutions which suggest

that the physical vacuum is a superposition of degenerate states differing by their

topological charge. This vacuum structure is conventionally addressed as the θ vac-

uum 15. It can be reflected in the QCD Lagrangian by introducing a term propor-

tional to the parameter θ that globally breaks P and CP symmetries of QCD. Exper-

imental findings indicate that θ is very small. Nevertheless, topological fluctuations

in this vacuum structure can be equivalently represented by making θ varying in

space and time, therefore locally breaking P and CP 16. Consequently, during frag-

mentation a quark can cross local domains (P-odd bubbles) where P-invariance of

strong interactions is broken. The most general Lorentz-invariant decomposition of

the leading-twist quark-quark correlator for fragmentation in a pair of pseudoscalar

mesons, depicted in Ref. 19, can then be generalized to include terms violating

parity invariance. In the collinear case, it reads

∆(z, ζ,RT ) =
1

4π

[
D1(z, ζ,RT ) + i

R/T
Mh

H^
1 (z, ζ,RT )

]
1

4
γ+

+
1

4π

[
G̃1(z, ζ,RT )γ5 + γ5

R/T
Mh

H̃^
1 (z, ζ,RT )

]
1

4
γ+ , (13)
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where ζ = (z1−z2)/z. G̃1 and H̃^
1 are new P-odd DiFFs. Similarly to what happens

in the single-hadron fragmentation 17, they are responsible for a new azimuthally

asymmetric term in the cross section for the e+e− → (π+π−)(π+π−)X process, but

in a collinear framework. In fact, after averaging over cos θ the leading-twist cross

section for the semi-inclusive production of collinear pairs reads

dσ =
3α2

4πQ2

∑
q

e2
q

{
1 + cos2 θ2

4

(
Dq

1D
q̄
1 − G̃

q
1G̃

q̄
1

)
+

sin2 θ2

4
〈sin θ〉〈sin θ̄〉 |RT |

Mh

|R̄T |
M̄h

cos(φR + φR̄)
(
H^ q

1 H^ q̄
1 + H̃^ q

1 H̃^ q̄
1

)
+

sin2 θ2

4
〈sin θ〉〈sin θ̄〉 |RT |

Mh

|R̄T |
M̄h

sin(φR + φR̄)
(
H̃^ q

1 H^ q̄
1 −H^ q

1 H̃^ q̄
1

)}
,(14)

where each DiFF now depends on (z,M2
h) or (z̄, M̄2

h), and θ2 is the angle between

the annihilation direction and the ẑ axis (see Fig.1 of Ref. 14).

In a model calculation based on the spectator approximation, both H^
1 and H̃^

1

have the same size and arise from the interference of pion pairs being produced with

relative partial waves with |∆L = 1|. But the former is related to the imaginary part

of this interference, while the latter is given by the real part. As such, H̃^
1 displays

a node at Mh ≈ mρ, the mass of the ρ resonance. In Eq. (14), a new azimuthally

asymmetric term appears that linearly depends on the P-odd H̃^
1 (or its antiquark

partner). The size of the effect should be proportional to (θ̄/2mπ) (H̃^
1 /D̃1)2. The

ratio of P-odd DiFFs is of the same size as that of the P-even partners H^
1 /D1,

as mentioned above, and it turns out to be of the order 0.4 20. From Ref. 17, θ̄

is proportional to the average gradient of the θ field. Using the instanton vacuum

model, Kang and Kharzeev estimate it to be approximately equal to 10 MeV. Then,

we get (θ̄/2mπ)(0.4)2 ≈ 0.006.
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