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The use of information-based measures to assess changes in conscious state is an
increasingly popular topic. Though recent results have seemed to justify the merits of such
methods, little has been done to investigate the applicability of such measures to children.
For our work, we used the approximate entropy (ApEn), a measure previously shown
to correlate with changes in conscious state when applied to the electroencephalogram
(EEG), and sought to confirm whether previously reported trends in adult ApEn values
across wake and sleep were present in children. Besides validating the prior findings that
ApEn decreases from wake to sleep (including wake, rapid eye movement (REM) sleep,
and non-REM sleep) in adults, we found that previously reported ApEn decreases across
vigilance states in adults were also present in children (ApEn trends for both age groups:
wake > REM sleep > non-REM sleep). When comparing ApEn values between age
groups, adults had significantly larger ApEn values than children during wakefulness. After
the application of an 8 Hz high-pass filter to the EEG signal, ApEn values were recalculated.
The number of electrodes with significant vigilance state effects dropped from all 109
electrodes with the original 1 Hz filter to 1 electrode with the 8 Hz filter. The number of
electrodes with significant age effects dropped from 10 to 4. Our results support the
notion that ApEn can reliably distinguish between vigilance states, with low-frequency
sleep-related oscillations implicated as the driver of changes between vigilance states.
We suggest that the observed differences between adult and child ApEn values during
wake may reflect differences in connectivity between age groups, a factor which may be
important in the use of EEG to measure consciousness.

Keywords: electroencephalogram, development, sleep, consciousness, approximate entropy

1. INTRODUCTION
Recent theoretical work has proposed a link between the ability
of the brain to integrate information and its corresponding con-
scious state (Tononi and Sporns, 2003; Tononi, 2004, 2008, 2012;
Balduzzi and Tononi, 2008). Meanwhile, related experimental
work has shown a link between changes in informational process-
ing and conscious state (Massimini et al., 2005, 2007; Ferrarelli
et al., 2010; Casali et al., 2013). These studies have provided
compelling evidence of a causal relationship between the com-
plexity of neural responses to external stimulation, as measured
with the electroencephalogram (EEG), and the conscious state of
the subject. Nevertheless, the benefits (particularly in the clinical
setting) of a metric for conscious state independent of external
stimulation are enough to encourage further work toward such a
measure.

In this search for an EEG-specific measure of conscious-
ness, many information-based measures have been applied. For
this study, we chose the approximate entropy (ApEn), a mea-
sure of regularity in the time domain. Originally designed for
use on physiological data (Pincus, 1991), ApEn quantifies the
predictability of a signal by comparing the number of match-
ing sequences of a given length with the number of matching

sequences one increment (time bin) longer. It has been suggested
as an EEG measure of conscious state, and ties into informational
theories of consciousness. Theoretical analysis has shown that
isolated systems should show decreases in ApEn values (Pincus,
1994). This concurs with findings that non-rapid eye move-
ment (NREM) sleep, associated with decreases in consciousness
(Stickgold et al., 2001), tends to feature long-distance connectiv-
ity decreases and increases in local clustering (Massimini et al.,
2005, 2007; Ferri et al., 2007, 2008; Spoormaker et al., 2010;
Uehara et al., 2013). Rapid eye movement (REM) sleep, a state
similar to wakefulness in its content of conscious experience,
tends to show functional connectivity patterns more similar to
those of wake (Massimini et al., 2010).

Prior applications of ApEn as a measure of conscious state have
successfully shown correlations with anesthetic depth (Rezek and
Roberts, 1998; Bruhn et al., 2000a,b; Zhang et al., 2001; Bruhn
et al., 2003; Li et al., 2008; Hayashi et al., 2012), though these find-
ings were contradicted by Jordan et al. (2006), who failed to report
certain key parameters. Burioka et al. (2005) applied ApEn to data
from adults across wake and sleep, finding a consistent decrease
in ApEn from wake to sleep, with the lowest values occurring
during deep sleep. Gu et al. (2003) also applied ApEn to data
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across multiple stages of sleep, and during epileptic seizure onset,
reporting decreases during sleep and during seizure onset, but
did not use any statistical testing. Attempts to tie ApEn changes
to behavioral changes during wakefulness have found conflict-
ing results: ApEn analysis of subjects driving while sleep deprived
found no significant changes in ApEn preceding driving errors
(Papadelis et al., 2007a), though Flores Vega et al. (2013) recently
showed that ApEn could be used to differentiate between some
of the various mental tasks tested. Papadelis et al. (2007b) found
no significant changes in ApEn as a function of hypoxia, but
ApEn derived metrics did show significant changes. In summary,
though its resolution within the wake state is unclear, when ana-
lyzing subjects between wakefulness and other conscious states,
ApEn values consistently decreased with loss of consciousness.
Comparisons of ApEn with other information-based measures
typically showed it to be of comparable accuracy and reliability
(Rezek and Roberts, 1998; Zhang et al., 2001; Bruhn et al., 2003;
Abásolo et al., 2008; Li et al., 2008; Anier et al., 2012).

Past work has documented changes in EEG power across devel-
opment, during both sleep (Feinberg, 1983; Buchmann et al.,
2010; Feinberg and Campbell, 2010; Kurth et al., 2010) and wake
(Whitford et al., 2007). To our knowledge, no group has yet
applied ApEn to the EEG data of children. Therefore, to fur-
ther assess the merits of ApEn as a measure of conscious state,
we applied ApEn to EEG data recorded across sleep and wake,
from both adults and children. Besides replicating the finding that
ApEn can mark changes in vigilance state due to sleep in adults,
we sought to verify that similar ApEn trends were present across
wake and sleep in children, while also assessing any impact of age
on ApEn values across both wake and sleep.

2. MATERIALS AND METHODS
2.1. SUBJECTS
For this study, subjects were pooled into two age groups of six
subjects each, hereafter referred to as adults (age range: 19.4–25.1
years; mean age ± SD: 23.2 ± 2.06 years; 0 females), and children
(age range: 10.6–12.6 years; mean age ± SD: 11.4 ± 0.691 years;
2 females). Subjects wore wrist actigraphs and kept sleep diaries
to ensure sleep schedule compliance. Napping, alcohol consump-
tion, and taking medication were all forbidden for the 24 h
preceding the recording. Informed written consent was obtained
from all subjects or their legal guardians. All procedures were
performed with approval of the local ethics committee, and in
accordance with the Declaration of Helsinki.

2.2. DATA ACQUISITION
All data (EEG, electrooculogram, and electromyogram) were
gathered previously by our group at the University Children’s
Hospital Zurich during one evening, night, and morning. All
sleep data used were originally published in earlier studies from
our group (Kurth et al., 2010, 2012). Of the data recorded previ-
ously, subjects within the selected age range and with minimally-
artifacted data were used, particularly during wakefulness and
REM sleep. Wake data have not yet been used for publica-
tion, and were recorded during an auditory oddball task that
was performed shortly before and after full night sleep record-
ing. Subjects were awoken at a time allowing for normal school

or work attendance. A 128-electrode high-density EEG array
(Electrical Geodesics, Eugene, OR, USA) was used for recording,
with a sampling frequency of 500 Hz. Electrodes were referenced
to the vertex during recording, which was used for filtering,
downsampling, and artifact rejection. Impedences were set below
50 k�. Data were divided into 20 s epochs, the sleep stages of
which were categorized using standard criteria (Iber et al., 2007).
For the scoring of sleep stages, the recordings were referenced to
the mastoid electrodes.

For analysis with the ApEn algorithm, data were then bandpass
filtered at frequencies of 1 and 35 Hz, respectively, and down-
sampled to 250 Hz before being corrected for artifacts. Artifact
correction for sleep data involved visual inspection of the power
between 0.75–4 Hz, and 20–30 Hz, rejecting individual channels
for a given epoch if the power exceeded a mean band power
value. Artifact correction for wake data was based on independent
component analysis, as presented by Jung et al. (2000). Finally,
data were referenced to the average activity of all non-rejected
channels above the ears for analysis. To investigate better the
role of low-frequency EEG activity on ApEn, we later refiltered
our original data with an 8 Hz high-pass filter, and recalculated
the ApEn.

ApEn analysis used all 109 electrodes above the ears not
rejected during artifact correction. Data preprocessing and all
analyses were done using Matlab (The MathWorks, Natick, MA,
USA), statistical testing used Matlab, as well as R (R Foundation
for Statistical Computing, Vienna, Austria). Data series of 4000
points, corresponding to 16 s of EEG signal, were used for anal-
ysis. Because wake epochs were scored in epochs of 4 s duration,
analysis used aggregate 16 s epochs comprised of four consecu-
tive artifact-free epochs, taken from the evening recording session
preceding sleep. Sleep data was drawn from the first 16 s of unarti-
facted 20 s epochs. Sleep epochs used were preceded and followed
by at least 1 min (three epochs) of sleep all of the same stage, to
minimize the influence of stage transitions. For one adult subject,
only two epochs (40 s) preceded and followed the epoch for the
N3 sleep stage used for all analyses.

2.3. APPROXIMATE ENTROPY (ApEn)
The development of ApEn was driven by the need for a
distribution-free measure of signal regularity. Unlike the Shannon
entropy, the calculation of ApEn is not predicated on the underly-
ing distribution of the data; it is instead based on sequence recur-
rence. This allows ApEn to be applied to signals of shorter length,
and makes model estimation wholly unnecessary, removing the
risk for misestimation based on poor model selection.

ApEn can be understood as the logarithmic ratio of
component-wise matching sequences from a signal of length
N. The other relevant parameters are r, a factor based on the
standard deviation of the signal being analyzed, and used for
comparison. The final parameter is m, the length of sequences
compared. It is measured as an integer count of discrete time bins.
The ApEn is computed as follows:

1. The first sequence of length m, is compared with all other
sequences of the same length in a point-wise manner.
Those sequences for which all points are within r of their
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corresponding point in the original sequence are counted as
a match (including the base sequence with itself). This count
is used in step 3.

2. The same comparison is made for sequences of length m + 1,
starting with the first sequence of m + 1 points. This count is
used in step 3.

3. The count from step 2 is divided by step 1, and the natural
logarithm of this ratio is taken.

4. This process is then repeated for all possible sequences (the
final m points of the signal cannot be used, as there would be
no m + 1 sequence for comparison).

5. All logarithm results are then summed, divided by N − m
(the total number of possible base sequences), and multiplied
by −1.

The minimum value for ApEn is 0, suggesting a fully predictable
sequence. ApEn values are heavily dependent on parameter
choice, and values calculated with different parameter choices
cannot be compared. Because the filter factor, r, typically has its
values pegged to the standard deviation of the sequence, the ori-
gin of ApEn’s robustness to noise and scale invariance can be
seen. Our parameters were set per the suggestion of Pincus and
Goldberger (1994), as well as other groups applying ApEn to EEG
data (Bruhn et al., 2000a; Li et al., 2008; Hayashi et al., 2012),
specifically Burioka et al. (2005), to m and r values of 2 and
0.2 · SD, respectively. Our N value, the length of the data series
used, was 4000 points.

To confirm the proper functioning of the ApEn algorithm,
we computed ApEn values for six regular sine curve sequences
of 4000 points, with a simulated sampling rate of 250 Hz. The
sine frequencies used were 1, 2, 4, 8, 16, and 32 Hz, frequen-
cies all within the range used in our EEG ApEn analysis. Each
sine curve sequence was then randomly shuffled twenty times.
ApEn values were calculated for all six sine curve sequences, and
all 120 random sequences (twenty random ApEn values per sine
curve).

For an excellent appendix detailing the steps in ApEn cal-
culation (including a simple by-hand walkthrough of the steps
involved in ApEn calculation, as well as a sample implementation
in Visual Basic), please see Bruhn et al. (2000a).

2.4. STATISTICAL ANALYSIS
As mentioned above, statistical analyses were performed using
Matlab and R. Values were imported into R and log-transformed,
to better approximate a normal distribution. A linear mixed
model for the subject age groups (independent factor) and vig-
ilance states (repeated-measures factor) was then generated and
tested using a repeated-measures ANOVA.

All multiple comparisons corrections were performed using
the Holm–Bonferroni method. Because EEG electrodes are not
independent, the Holm–Bonferroni correction is overly conser-
vative. For this reason, in order to provide the most informative
results, p-values and significance results from comparisons using
all electrodes are reported both with and without correction.
To better investigate differences between age groups, unpaired
independent-samples t-tests were performed between each age
group within each vigilance state.

3. RESULTS
As described above, we analyzed a set of simulated data to validate
our ApEn algorithm. ApEn values for the simulated data ranged
between 0.07 and 0.29 for the sine curves. Mean ApEn values for
the shuffled sequences were all 1.94, with standard deviations of
less than 0.01. These results were in line with expectations.

Figure 1 shows the topographical distribution of mean ApEn
per electrode in adults and children. ApEn value trends across vig-
ilance states were similar for both age groups, and were as follows:
wake ApEn > REM sleep ApEn > N2 sleep ApEn > N3 sleep
ApEn, though REM sleep and N2 sleep were often overlapping,
especially in children. Figure 2 displays the ANOVA results for
all factors. All 109 tested electrodes had significant vigilance state
effects after post-hoc correction. Ninety-three electrodes, widely
distributed across the scalp, showed a significant age effect before
correction. Ten electrodes had a significant age effect after cor-
rection. These ten electrodes were largely clustered over the left
parietal and the area between the occipital and temporal lobes,
with one isolated over the right temporal lobe.

To better discern the causes of the observed age effects, within-
vigilance state pairwise t-tests were calculated across all elec-
trodes. These results are shown in Figure 3, where 66 electrodes
had significant age effects during wakefulness before correction,
of which 28 electrodes were still significant following correction.
N2 sleep and REM sleep had large clusters of significant electrodes
before correction; none were significant after correction.

FIGURE 1 | Topography of across-subject mean ApEn values across

vigilance state in adults and children (for both groups, n = 6).

FIGURE 2 | ANOVA p-value distributions; electrodes with factor effect

p-values less than 0.05 are those displayed in black on the white

background. Electrodes with significant p-values following
Holm–Bonferroni correction are depicted in orange. The nasion electrode
(not shown) was significant for the vigilance state effect post-hoc, and was
not significant at any level for the other effects.
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To fully explore the possibility that sleep regulatory differ-
ences between age groups may influence our results (Carskadon
et al., 1980; Carskadon and Acebo, 2002), and to verify that ApEn
wake values are not influenced by potential changes in over-
all synaptic weighting during sleep [as proposed by Tononi and
Cirelli (2003)], we compared ApEn from both the evening and
morning recording sessions, averaged across all 109 electrodes.
A Two-Way ANOVA for age and recording session found a sig-
nificant age effect (p < 0.001), as expected from earlier testing,
but found no significant effect for the recording session, nor
for the interaction of the two (p > 0.1 for both effects). For all
other ApEn analysis, evening wakefulness was used to represent
wakefulness.

To assess the origin of the observed ApEn differences between
children and adults, a high-pass filter of 8 Hz was applied to the
data, and ApEn values were again calculated. Two-Way ANOVA
results from the high-pass-filtered data of all electrodes are
depicted in Figure 4. Forty-two electrodes had significant age
effects before correction, of which four electrodes were significant
following correction. Vigilance state effects were almost entirely
abolished; seven electrodes were significant before correction; one
electrode was significant after correction.

To check for changes in the regional distribution of ApEn,
electrode values were normalized to the within-subject-within-
vigilance-state mean across all electrodes. One electrode (located
near the posterior end of the right frontal area) showed a signif-
icant vigilance state effect after correction. No other electrodes
were significant for any effect (age, vigilance state, or the interac-
tion of the two), even before post-hoc correction.

Finally, to investigate individual differences in ApEn values, we
averaged ApEn across all electrodes, and plotted values for each
stage as Figure 5. The minimum values from wakefulness were
invariably higher than the maximum observed ApEn value from

FIGURE 3 | Within vigilance state t-test p-values across all electrodes,

electrodes for which p < 0.05 are displayed in black on the white

background, values significant following Holm–Bonferroni correction

are depicted in orange. The nasion electrode (not shown) was significantly
different during wakefulness after post-hoc correction.

sleep (including both NREM and REM sleep) within the same age
group. Comparison of all subjects showed some adult sleep values
(especially during REM sleep) greater than some or all wake ApEn
values for children.

4. DISCUSSION
Our analysis showed significant ApEn effects due both to vig-
ilance state and age, with age differences being predominantly
driven by differences during wakefulness. As a measure of vigi-
lance state, ApEn showed strongly significant results across wake
and sleep, with ApEn values in adults following the same trend
as those previously reported (Burioka et al., 2005). ApEn results
from children followed similar trends between vigilance states,
with the only significant age differences occuring during wakeful-
ness. As demonstrated in Figure 5, within age group minimum
ApEn values for wakefulness were higher than maximum ApEn
sleep values for the same age group, supporting the notion that

FIGURE 4 | ANOVA p-value distributions from 8 Hz high pass filtered

data; electrodes with factor effect p-values less than 0.05 are those

displayed in black on the white background. Electrodes with significant
p-values following Holm–Bonferroni correction are depicted in orange. The
nasion electrode (not shown) was not significant at any level for any effect.

FIGURE 5 | Scatter plot of ApEn values per subject per vigilance state,

averaged across all 109 electrodes. Red bars indicate the minimum
values observed for each age group during wakefulness.
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ApEn can reliably detect changes in vigilance state. The almost
complete abolition of significant vigilance state effects observed
following application of the 8 Hz high pass filter to our data pro-
vide evidence that slow wave activity, the key EEG oscillation of
deep (NREM) sleep (Steriade et al., 2001; Buzsaki, 2006), is also
the key driver behind the increased regularity observed during
sleep.

Pincus (1994) observed that isolated systems have lower ApEn
values. If the brain is indeed a more segregated one during NREM
sleep, as suggested by experimental work (Massimini et al., 2005,
2007), then one would expect to see decreases in ApEn during
NREM sleep, as we did. These findings concur with the proposal
presented in Tononi and Massimini (2008), which drew a link
between slow wave activity during deep sleep and an interrup-
tion in information processing, leading to loss of consciousness.
That ApEn differences due to vigilance state mostly disappeared
after the removal of the lower frequency bands connects ApEn
changes to the presence of sleep oscillations, specifically slow
waves. Our results therefore suggest the possibility of a causal rela-
tionship between EEG signal changes, as measured via ApEn, and
the hyperpolarization phase associated with the slow oscillation
(Steriade et al., 2001). This hyperpolarization has been implicated
in the induction of loss of consciousness (Massimini et al., 2005).

The almost complete lack of significant vigilance state dif-
ferences following normalization to the mean value across all
electrodes indicates that changes in ApEn values across wake
and sleep are not the result of changing topographical distri-
bution. These results were therefore unlike previously observed
age-dependent topographical changes in sleep slow wave activ-
ity (Kurth et al., 2010), and rather suggest that changes in signal
regularity are of a more global nature.

Besides the widely distributed nature of changes due to sleep
stage, changes between wake adults and children were also found
to be global: Pairwise t-tests found a broad distribution of
electrodes with significant increases in wake ApEn values across
development. These results concur with those of Gasser et al.
(1988), who found absolute EEG band power decreases in the
delta and theta bands (both of which were below 7.5 Hz), and
the overall spectrum, across adolescence when measuring during
eyes-closed wake. Our findings also agree with the EEG results
of Whitford et al. (2007), who found global power decreases dur-
ing wakefulness across age, especially in the lower frequency range
(0.5–7.5 Hz).

While EEG power changes between adults and children have
also been observed during sleep [as reviewed in Feinberg (1983);
Feinberg and Campbell (2010), also Buchmann et al. (2010);
Kurth et al. (2010)], we only observed age differences in ApEn
values during wakefulness. This discrepancy may potentially be
explained by the large increase in EEG power during sleep. EEG
power differences caused by sleep-related oscillations may be of a
large enough scale relative to those due to developmental changes
that ApEn age differences are obscured. Figure 5, the scatter plot
of individual mean ApEn values shows a tendency for ApEn
values to be lower in children during sleep (the largest ApEn
values for any given stage are invariably from adults; the low-
est from children), even though statistical testing reveals no age
differences.

Our results from wakefulness may also be in line with this
claim; if ApEn age differences during wakefulness reflect anatom-
ical connectivity changes, then the lack of significant differences
at occipital and temporal electrodes is in line with what would
be expected based on prior developmental research work. The
review of Feinberg (1983) drew parallels between their work mea-
suring changes in sleep EEG activity across development, and
anatomical work, which showed regional variation in synaptic
densities across development [Huttenlocher (1979); Huttenlocher
et al. (1982), expanded in Huttenlocher and Dabholkar (1997)].
These works independently demonstrated that primary sensory
cortices were first to reach adult-level values, both when measured
via EEG power during sleep, and histological synaptic density
counts. Coupled MRI and EEG work from our group found cor-
relations between slow-wave activity decreases during sleep and
gray matter volume decreases (Buchmann et al., 2010). Similar
work during wakefulness from other groups showed correla-
tions between gray matter volume decreases and low-frequency
EEG decreases from late childhood through adulthood (subjects
ranged between 10 and 30 years of age, Whitford et al., 2007),
particularly in the parietal and frontal regions, where our sig-
nificant differences were focused. Developmental changes in the
topographical distribution of low-frequency sleep oscillations fol-
lowed similar trends; regions converging to adult-level synaptic
densities earlier were also the first to converge to adult-level EEG
activity (Kurth et al., 2010). Without the use of other tools, such
as single-unit recording or transcranial magnetic stimulation, it
is difficult to separate EEG slow wave activity from the changes
in functional connectivity observed on the neuronal level dur-
ing slow wave sleep. Nevertheless, the decrease in ApEn observed
between wakefulness in children and in adults matches with
the increased local anatomical connectivity observed in children.
That changes in both vigilance state and sleep result in decreased
ApEn values supports the notion that changes in ApEn values may
reflect connectivity changes, both anatomical and functional.

Though this claim must be further tested, if true, it would
mean that ApEn changes reflect both functional (between wake
and sleep) and anatomical (across development) connectivity
changes in the brain. As we have shown, ApEn can reliably
distinguish between wake and sleep within subject age groups.
However, having demonstrated that age has an uneven influence
on ApEn values across changes in vigilance state, we highlight the
need for future research to fully explore the influence of age on
proposed information-based EEG measures of consciousness.

AUTHOR CONTRIBUTIONS
Gerick M. H. Lee, Anne-Laure Mouthon, Quentin Noirhomme,
and Reto Huber designed research; Gerick M. H. Lee and Sara
Fattinger performed research; Gerick M. H. Lee, Sara Fattinger,
and Reto Huber analyzed data; and Gerick M. H. Lee and Reto
Huber wrote the paper.

ACKNOWLEDGMENTS
The authors would like to thank Salomé Kurth, Maya Ringli, and
Anja Geiger for data collection; Caroline Lustenberger, Daniel
Heersink, and Mattia Molinaro for statistical advice; and David
Balduzzi for helpful input and discussion.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 33 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Lee et al. EEG ApEn across development and sleep

FUNDING
This work was funded by Swiss National Science Foundation
grant PP00P3-135438 to Reto Huber.

REFERENCES
Abásolo, D., Escudero, J., Hornero, R., Gómez, C., and Espino, P. (2008).

Approximate entropy and auto mutual information analysis of the electroen-
cephalogram in Alzheimer’s disease patients. Med. Biol. Eng. Comput. 46,
1019–1028. doi: 10.1007/s11517-008-0392-1

Anier, A., Lipping, T., Ferenets, R., Puumala, P., Sonkajärvi, E., Rätsep, I., et al.
(2012). Relationship between approximate entropy and visual inspection of
irregularity in the EEG signal, a comparison with spectral entropy. Br. J. Anaesth.
109, 928–934. doi: 10.1093/bja/aes312

Balduzzi, D., and Tononi, G. (2008). Integrated information in discrete dynamical
systems: motivation and theoretical framework. PLoS Comput. Biol. 4:e1000091.
doi: 10.1371/journal.pcbi.1000091

Bruhn, J., Bouillon, T. W., Radulescu, L., Hoeft, A., Bertaccini, E., and Shafer,
S. L. (2003). Correlation of approximate entropy, bispectral index, and spec-
tral edge frequency 95 (SEF95) with clinical signs of anesthetic depth during
coadministration of propofol and remifentanil. Anesthesiology 98, 621–627. doi:
10.1097/00000542-200303000-00008

Bruhn, J., Röpcke, H., and Hoeft, A. (2000a). Approximate entropy as an electroen-
cephalographic measure of anesthetic drug effect during desflurane anesthesia.
Anesthesiology 92, 715–726. doi: 10.1097/00000542-200003000-00016

Bruhn, J., Röpcke, H., Rehberg, B., Bouillon, T., and Hoeft, A. (2000b).
Electroencephalogram approximate entropy correctly classifies the occurrence
of burst suppression pattern as increasing anesthetic drug effect. Anesthesiology
93, 981–985. doi: 10.1097/00000542-200010000-00018

Buchmann, A., Ringli, M., Kurth, S., Schaerer, M., Geiger, A., Jenni, O. G., et al.
(2010). EEG sleep slow-wave activity as a mirror of cortical maturation. Cereb.
Cortex 21, 607–615. doi: 10.1093/cercor/bhq129

Burioka, N., Miyata, M., Cornélissen, G., Halberg, F., Takeshima, T., Kaplan, D. T.,
et al. (2005). Approximate entropy in the electroencephalogram during wake
and sleep. Clin. EEG Neurosci. 36, 21–24. doi: 10.1177/155005940503600106

Buzsaki, G. (2006). Rhythms of the Brain. New York, NY: Oxford University Press.
doi: 10.1093/acprof:oso/9780195301069.001.0001

Carskadon, M. A., and Acebo, C. (2002). Regulation of sleepiness in adolescents:
update, insights, and speculation. Sleep 25, 606–614.

Carskadon, M. A., Harvey, K., Duke, P., Anders, T. F., Litt, I. F., and Dement, W. C.
(1980). Pubertal changes in daytime sleepiness. Sleep 2, 453–460.

Casali, A. G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K. R.,
et al. (2013). A theoretically based index of consciousness independent of
sensory processing and behavior. Sci. Transl. Med. 5, 198ra105. doi: 10.1126/sci-
translmed.3006294

Feinberg, I. (1982/1983). Schizophrenia: caused by a fault in programmed
synaptic elimination during adolescence? J. Psychiatr. Res. 17, 319–334. doi:
10.1016/0022-3956(82)90038-3

Feinberg, I., and Campbell, I. G. (2010). Sleep EEG changes during adolescence:
an index of a fundamental brain reorganization. Brain Cogn. 72, 56–65. doi:
10.1016/j.bandc.2009.09.008

Ferrarelli, F., Massimini, M., Sarasso, S., Casali, A., Riedner, B. A., Angelini, G.,
et al. (2010). Breakdown in cortical effective connectivity during midazolam-
induced loss of consciousness. Proc. Natl. Acad. Sci. U.S.A. 107, 2681–2686. doi:
10.1073/pnas.0913008107

Ferri, R., Rundo, F., Bruni, O., Terzano, M. G., and Stam, C. J. (2007). Small-world
network organization of functional connectivity of EEG slow-wave activity dur-
ing sleep. Clin. Neurophysiol. 118, 449–456. doi: 10.1016/j.clinph.2006.10.021

Ferri, R., Rundo, F., Bruni, O., Terzano, M. G., and Stam, C. J. (2008). The
functional connectivity of different EEG bands moves towards small-world
network organization during sleep. Clin. Neurophysiol. 119, 2026–2036. doi:
10.1016/j.clinph.2008.04.294

Flores Vega, C. H., Noel, J., and Fernández, J. R. (2013). “Cognitive task discrim-
ination using approximate entropy (ApEn) on EEG signals,” in Biosignals and
Biorobotics Conference (BRC), 2013 ISSNIP (Rio de Janerio), 1–4.

Gasser, T., Verleger, R., Bächer, P., and Sroka, L. (1988). Development of
the EEG of school-age children and adolescents. I. Analysis of band
power. Electroencephalogr. Clin. Neurophysiol. 69, 91–99. doi: 10.1016/0013-
4694(88)90204-0

Gu, F., Meng, X., Shen, E., and Cai, Z. (2003). Can we measure con-
sciousness with EEG complexities? Int. J. Bifurcat. Chaos 13, 733–742. doi:
10.1142/S0218127403006893

Hayashi, K., Shigemi, K., and Sawa, T. (2012). Neonatal electroencephalog-
raphy shows low sensitivity to anesthesia. Neurosci. Lett. 517, 87–91. doi:
10.1016/j.neulet.2012.04.028

Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex —develop-
mental changes and effects of aging. Brain Res. 163, 195–205. doi: 10.1016/0006-
8993(79)90349-4

Huttenlocher, P. R., and Dabholkar, A. S. (1997). Regional differences in synap-
togenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178. doi:
10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z

Huttenlocher, P. R., de Courten, C., Garey, L. J., and Van der Loos, H. (1982).
Synaptogenesis in human visual cortex - evidence for synapse elimination
during normal development. Neurosci. Lett. 33, 247–252. doi: 10.1016/0304-
3940(82)90379-2

Iber, C., Ancoli-Israel, S., Chesson, A. L., and Quan, S. F., editors (2007). The AASM
Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and
Technical Specification, 1st Edn. Westchester, IL: American Academy of Sleep
Medicine.

Jordan, D., Schneider, G., Hock, A., Hensel, T., Stockmanns, G., and Kochs,
E. F. (2006). EEG parameters and their combination as indicators of depth of
anaesthesia. Biomed. Tech. 51, 89–94. doi: 10.1515/BMT.2006.016

Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V., et al.
(2000). Removing electroencephalographic artifacts by blind source separation.
Psychophysiology 37, 163–178. doi: 10.1111/1469-8986.3720163

Kurth, S., Ringli, M., Geiger, A., LeBourgeois, M., Jenni, O. G., and Huber, R.
(2010). Mapping of cortical activity in the first two decades of life: a high-
density sleep electroencephalogram study. J. Neurosci. 30, 13211–13219. doi:
10.1523/JNEUROSCI.2532-10.2010

Kurth, S., Ringli, M., LeBourgeois, M. K., Geiger, A., Buchmann, A., Jenni, O. G.,
et al. (2012). Mapping the electrophysiological marker of sleep depth reveals
skill maturation in children and adolescents. Neuroimage 63, 959–965. doi:
10.1016/j.neuroimage.2012.03.053

Li, X., Cui, S., and Voss, L. J. (2008). Using permutation entropy to measure
the electroencephalographic effects of sevoflurane. Anesthesiology 109, 448–456.
doi: 10.1097/ALN.0b013e318182a91b

Massimini, M., Ferrarelli, F., Esser, S. K., Riedner, B. A., Huber, R., Murphy, M.,
et al. (2007). Triggering sleep slow waves by transcranial magnetic stimulation.
Proc. Natl. Acad. Sci. U.S.A. 104, 8496–8501. doi: 10.1073/pnas.0702495104

Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., and Tononi, G.
(2005). Breakdown of cortical effective connectivity during sleep. Science 309,
2228–2232. doi: 10.1126/science.1117256

Massimini, M., Ferrarelli, F., Murphy, M. J., Huber, R., Riedner, B. A., Casarotto, S.,
et al. (2010). Cortical reactivity and effective connectivity during REM sleep in
humans. Cogn. Neurosci. 1, 176–183. doi: 10.1080/17588921003731578

Papadelis, C., Chen, Z., Kourtidou-Papadeli, C., Bamidis, P. D., Chouvarda, I.,
Bekiaris, E., et al. (2007a). Monitoring sleepiness with on-board electro-
physiological recordings for preventing sleep-deprived traffic accidents. Clin.
Neurophysiol. 118, 1906–1922. doi: 10.1016/j.clinph.2007.04.031

Papadelis, C., Kourtidou-Papadeli, C., Bamidis, P. D., Maglaveras, N., and
Pappas, K. (2007b). The effect of hypobaric hypoxia on multichannel EEG
signal complexity. Clin. Neurophys. 118, 31–52. doi: 10.1016/j.clinph.2006.
09.008

Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proc.
Natl. Acad. Sci. U.S.A. 88, 2297–2301. doi: 10.1073/pnas.88.6.2297

Pincus, S. M. (1994). Greater signal regularity may indicate increased system
isolation. Math. Biosci. 122, 161–181. doi: 10.1016/0025-5564(94)90056-6

Pincus, S. M., and Goldberger, A. L. (1994). Physiological time-series analysis; what
does regularity quantify? Am. J. Physiol. 266, H1643–H1656.

Rezek, I. A., and Roberts, S. J. (1998). Stochastic complexity measures for
physiological signal analysis. IEEE Trans. Biomed. Eng. 45, 1186–1191. doi:
10.1109/10.709563

Spoormaker, V. I., Schröter, M. S., Gleiser, P. M., Andrade, K. C., Dresler, M.,
Wehrle, R., et al. (2010). Development of a large-scale functional brain network
during human non-rapid eye movement sleep. J. Neurosci. 30, 11379–11387.
doi: 10.1523/JNEUROSCI.2015-10.2010

Steriade, M., Timofeev, I., and Grenier, F. (2001). Natural waking and sleep states:
a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 33 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Lee et al. EEG ApEn across development and sleep

Stickgold, R., Malia, A., Fosse, R., Propper, R., and Hobson, J. A. (2001). Brain-
mind state: I. longitudinal field study of sleep/wake factors influencing menta-
tion report length. Sleep 24, 171–179.

Tononi, G. (2004). An information integration theory of consciousness. BMC
Neurosci. 5:42. doi: 10.1186/1471-2202-5-42

Tononi, G. (2008). Consciousness as integrated information: a provisional mani-
festo. Biol. Bull. 215, 216–242. doi: 10.2307/25470707

Tononi, G. (2012). Integrated information theory of consciousness: an updated
account. Arch. Ital. Biol. 150, 293–329. doi: 10.4449/aib.v149i5.1388

Tononi, G., and Cirelli, C. (2003). Sleep and synaptic homeostasis: a
hypothesis. Brain Res. Bull. 62, 143–150. doi: 10.1016/j.brainresbull.2003.
09.004

Tononi, G., and Massimini, M. (2008). Why does consciousness fade in early sleep?
Ann. N.Y. Acad. Sci. 1129, 330–334. doi: 10.1196/annals.1417.024

Tononi, G., and Sporns, O. (2003). Measuring information integration. BMC
Neurosci. 4:31. doi: 10.1186/1471-2202-4-31

Uehara, T., Yamasaki, T., Okamoto, T., Koike, T., Kan, S., Miyauchi, S., et al. (2013).
Efficiency of a ”small-world” brain network depends on consciousness level:
a resting-state fMRI study. Cereb. Cortex. doi: 10.1093/cercor/bht004. [Epub
ahead of print].

Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., and
Williams, L. M. (2007). Brain maturation in adolescence: concurrent changes

in neuroanatomy and neurophysiology. Hum. Brain Mapp. 28, 228–237. doi:
10.1002/hbm.20273

Zhang, X.-S., Roy, R. J., and Jensen, E. W. (2001). EEG complexity as a measure of
depth of anesthesia for patients. IEEE Trans. Biomed. Eng. 48, 1424–1433. doi:
10.1109/10.966601

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 November 2013; accepted: 19 November 2013; published online: 05
December 2013.
Citation: Lee GMH, Fattinger S, Mouthon A-L, Noirhomme Q and Huber R (2013)
Electroencephalogram approximate entropy influenced by both age and sleep. Front.
Neuroinform. 7:33. doi: 10.3389/fninf.2013.00033
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2013 Lee, Fattinger, Mouthon, Noirhomme and Huber. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 33 | 7

http://dx.doi.org/10.3389/fninf.2013.00033
http://dx.doi.org/10.3389/fninf.2013.00033
http://dx.doi.org/10.3389/fninf.2013.00033
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Electroencephalogram approximate entropy influenced by both age and sleep
	Introduction
	Materials and Methods
	Subjects
	Data Acquisition
	Approximate Entropy (ApEn)
	Statistical Analysis

	Results
	Discussion
	Author Contributions
	Acknowledgments
	Funding
	References


