
Prepared for submission to JHEP

Unified framework for generalized and

transverse-momentum dependent parton distributions

within a 3Q light-cone picture of the nucleon
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1 Introduction

The investigation how the composite structure of a hadron, consisting of near massless con-

stituents, results from the underlying quark-gluon dynamics, is a challenging problem, as

it is of non-perturbative nature, and displays many facets. What are the longitudinal mo-

mentum distributions of partons in a fast moving unpolarized or polarized hadron? What

amount of transverse momentum do these partons carry, and how large is the resulting

amount of orbital angular momentum? What is the spatial distribution of quarks inside a

hadron as seen by a vector probe (coupling to the charge of the system), by an axial vector

probe (coupling to the axial charge), or even seen by a more complicated probe?

The Generalized Parton Correlation Functions (GPCFs) provide a unified framework

to address and quantify such questions. The GPCFs parametrize the fully unintegrated
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off-diagonal quark-quark correlator, depending on the full 4-momentum k of the quark and

on the 4-momentum ∆ which is transferred by the probe to the hadron; for a classification

see refs. [1, 2]. They have a direct connection with the Wigner distributions of the parton-

hadron system [3–5], which represent the quantum mechanical analogues of the classical

phase-space distributions.

When integrating the GPCFs over the light-cone energy component of the quark mo-

mentum one arrives at generalized transverse-momentum dependent parton distributions

(GTMDs) which contain the most general one-body information of partons, corresponding

to the full one-quark density matrix in momentum space. The GTMDs reduce to different

parton distributions and form factors as is shown in figure 1. The different arrows in this

figure represent particular projections in the hadron and quark momentum space, and give

the links between the matrix elements of different reduced density matrices.

Such matrix elements can in turn be parametrized in terms of generalized parton distri-

butions (GPDs), transverse-momentum dependent parton distributions (TMDs) and gen-

eralized form factors (FFs). These are the quantities which enter the description of various

exclusive (GPDs), semi-inclusive (TMDs), and inclusive (PDFs) deep inelastic scattering

processes, or parameterize elastic scattering processes (FFs). At leading twist, there are

sixteen complex GTMDs, which are defined in terms of the independent polarization states

of quarks and hadron. In the forward limit ∆ = 0, they reduce to eight TMDs which de-

pend on the longitudinal momentum fraction x and transverse momentum ~k⊥ of quarks,

and therefore give access to the three-dimensional picture of the hadrons in momentum

space. On the other hand, the integration over ~k⊥ of the GTMDs leads to eight GPDs

which are probability amplitudes related to the off-diagonal matrix elements of the parton

density matrix in the longitudinal momentum space. After a Fourier transform of ~∆⊥ to

the impact-parameter space, they also provide a three-dimensional picture of the hadron

in a mixed momentum-coordinate space [6–8]. The common limit of TMDs and GPDs is

given by the standard parton distribution functions (PDFs), related to the diagonal matrix

elements of the longitudinal-momentum density matrix for different polarization states of

quarks and hadron. The integration over x leads to a bilocal operator restricted to the

plane transverse to the light-cone direction and brings to the lower plane of the box in Fig 1.

The off-forward matrix elements of this operator can be parametrized in terms of so-called

transverse-momentum dependent form factors (TMFFs). Starting from the TMFFs, we

can follow the same path as in the case of the GTMDs, and at each vertex of the basis of

the box of figure 1 we find the restricted version of the operator defining the distributions

in the upper plane. Therefore, integrating out the dependence on the quark transverse

momentum, we encounter matrix elements parametrized in terms of form factors (FFs),

while the forward limit of TMFFs leads to transverse-momentum dependent spin densities

(TMSD). Both FFs and TMSDs have the charges as common limit.

Although a variety of models has been employed to explore separately the different

observables related to GTMDs, a unifying formalism for modeling the GTMDs is still

missing. In order to achieve that, we will exploit the language of light-cone wave functions

(LCWFs), providing a representation of nucleon GTMDs which can be easily adopted in

many model calculations. In order to simplify the derivation, we will focus on the three-

– 2 –



FF(∆)

GTMD(x,~k⊥, ∆)
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∆ = 0
∫
dx

∫
d2k⊥

(~k⊥, ∆)

Figure 1. Representation of the projections of the GTMDs into parton distributions and form factors.

The arrows correspond to different reductions in the hadron and quark momentum space: the solid (red)

arrows give the forward limit in the hadron momentum, the dotted (black) arrows correspond to integrating

over the quark transverse-momentum and the dashed (blue) arrows project out the longitudinal momentum

of quarks. The different objects resulting from these links are explained in the text.

quark (3Q) contribution to nucleon GTMDs, postponing to future works the inclusion of

higher-Fock space components. In this way, we can express the GTMDs in a compact

formula as overlap of LCWFs describing the quark content of the nucleon in the most

general momentum and polarization states. Then, using the projections illustrated in

figure 1, we can discuss the complementary aspects encoded in the different distributions

and form factors.

The plan of the paper is as follows. In section 2, we discuss the formal derivation of

the LCWF overlap representation of the quark contribution to GTMDs, specializing the

results to two light-cone quark models, namely the chiral quark-soliton model (χQSM) and

the light-cone constituent quark model (LCCQM). In section 3, we focus the discussion on

the TMDs, GPDs, PDFs, FFs and charges. In particular, we derive the general formulas

obtained from the projections of GTMDs, and then we discuss and compare the predictions

from both the χQSM and the LCCQM. In the last section, we draw our conclusions.

Technical details and explanations about the derivation of the formulas are collected in

three appendices.

2 Formalism

2.1 Parton Correlation Functions

The maximum amount of information on the quark distributions inside the nucleon is

contained in the fully-unintegrated quark-quark correlator W̃ for a spin-1/2 hadron [2–5],
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defined as

W̃
[Γ]
Λ′Λ(P, k,∆, N ; η) =

1

2

∫

d4z

(2π)4
eik·z 〈p′,Λ′|ψ(− z

2 )ΓW ψ(z2 )|p,Λ〉. (2.1)

This correlator is a function of the initial and final hadron light-cone helicities Λ and Λ′,

the average hadron and quark four-momenta P = (p′ + p)/2 and k, respectively, and the

four-momentum transfer to the hadron ∆ = p′ − p. In this paper, we choose to work in

the symmetric light-cone frame, see figure 2. The corresponding kinematics is given in

appendix A. The superscript Γ stands for any element of the basis {1, γ5, γµ, γµγ5, iσµνγ5}

P − ∆/2 P + ∆/2

k − ∆/2 k + ∆/2

Figure 2. Kinematics for the fully-unintegrated quark-quark correlator in a symmetric frame.

in Dirac space. A Wilson line W ≡ W(− z
2 ,

z
2 |n) ensures the color gauge invariance of the

correlator, connecting the points − z
2 and z

2 via the intermediary points − z
2 + ∞ · n and

z
2 +∞·n by straight lines. This induces a dependence of the Wilson line on the light-cone

direction n. Since any rescaled four-vector αn with some positive parameter α could be

used to specify the Wilson line, the correlator actually only depends on the four-vector

N =
M2n

P · n, (2.2)

where M is the hadron mass. The parameter η = sign(n0) gives the sign of the zeroth

component of n, i.e. indicates whether the Wilson line is future-pointing (η = +1) or

past-pointing (η = −1).

The quark-quark correlators defining TMDs, GPDs, PDFs, FFs and charges corre-

spond to specific limits or projections of eq. (2.1). These correlators have in common the

fact that the quark fields are taken at the same light-cone time z+ = 0. Let us then focus

our attention on the k−-integrated version of eq. (2.1)

W
[Γ]
Λ′Λ(P, x,

~k⊥,∆, N ; η) =

∫

dk− W̃
[Γ]
Λ′Λ(P, k,∆, N ; η)

=
1

2

∫

dz− d2z⊥
(2π)3

eixP
+z−−i~k⊥·~z⊥ 〈p′,Λ′|ψ(− z

2 )ΓW ψ(z2 )|p,Λ〉
∣

∣

z+=0
,

(2.3)

where we used for a generic four-vector aµ = [a+, a−,~a⊥] the light-cone components a± =

(a0 ± a3)/
√
2 and the transverse components ~a⊥ = (a1, a2), and where x = k+/P+ and

~k⊥ are the average fraction of longitudinal momentum and average transverse momentum
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of the quark. A complete parametrization of this object in terms of GTMDs has been

achieved in ref. [2]. GTMDs can be considered as the mother distributions of GPDs and

TMDs. Even though in the present paper we restrict our discussions to TMDs, GPDs,

PDFs, FFs and charges, the formalism can readily be applied to the case of GTMDs and

will be the subject of an upcoming paper.

2.2 Overlap Representation

Following the lines of refs. [9, 10], we obtain in the light-cone gauge A+ = 0 an overlap rep-

resentation for the correlator (2.3) at the twist-2 level. Moreover, this being a preliminary

study, we restrict ourselves to the 3Q Fock sector1 (and therefore to the region ξ ≤ x ≤ 1

with ξ = −∆+/2P+). Many theoretical approaches like e.g. [11] suggest that higher Fock

components yield at best a 20% correction to quark observables with up and down flavors.

We then write the correlator (2.3) as the following overlap

W
[Γ]
Λ′Λ(P, x,

~k⊥,∆, N ; η) =
1

√

1− ξ2

∑

β′,β

∫

[dx]3 [d
2k⊥]3 δ̄(k̃)ψ

∗
Λ′β′(r′)ψΛβ(r)M

[Γ]β′β, (2.4)

where the integration measures are defined as

[dx]3 ≡
[

3
∏

i=1

dxi

]

δ

(

1−
3
∑

i=1

xi

)

,

[d2k⊥]3 ≡
[

3
∏

i=1

d2ki⊥
2(2π)3

]

2(2π)3 δ(2)

(

3
∑

i=1

~ki⊥

)

.

(2.5)

The indices β and β′ refer collectively to initial and final quark light-cone helicities λi
and λ′i, respectively. The tensor M [Γ]β′β then represents the transition from the initial

configuration to the final configuration of quark light-cone helicities and depends naturally

on the Dirac operator Γ. The 3Q LCWF ψΛβ(r) depends on r which refers collectively to the

momentum coordinates of the quarks in the hadron frame k̃i = (yi, ~κi⊥), see appendix A.

The function δ̄(k̃) selects the active quark average momentum

δ̄(k̃) ≡
3
∑

i=1

Θ(x) δ(x − xi) δ
(2)(~k⊥ − ~ki⊥).

Since the labeling of quarks is arbitrary, we choose to label the active quark with i = 1

and the spectator quarks with i = 2, 3. We can then write

δ̄(k̃) = 3Θ(x) δ(x − x1) δ
(2)(~k⊥ − ~k1⊥) (2.6)

and

M [Γ]β′β =M [Γ]λ′
1
λ1 δλ

′
2
λ2 δλ

′
3
λ3 with M [Γ]λ′λ ≡ u(p′, λ′)Γu(p, λ)

2P+
√

1− ξ2
, (2.7)

where u(p, λ) is the free light-cone Dirac spinor. The light-cone helicity of a spectator

quark is always conserved.

1We consider here only transitions which are diagonal in both flavor and color spaces. Flavor and color

indices are then omitted for clarity.
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2.3 Helicity and Four-Component Bases

There are only four twist-two Dirac structures Γtwist-2 = {γ+, iσ1+γ5, iσ2+γ5, γ+γ5}. They
correspond to the four kinds of transition the light-cone helicity of the active quark can

undergo, see e.g. [13–15]

M [γ+]λ′λ = δλ
′λ, M [iσj+γ5]λ′λ = (σj)

λ′λ, M [γ+γ5]λ′λ = (σ3)
λ′λ (2.8)

with σi the three Pauli matrices. For further convenience, we associate a four-component

vector2 to every quantity with superscript Γ

a[Γ] 7→ aν =
(

a0, a1, a2, a3
)

≡
(

a[γ
+], a[iσ

1+γ5], a[iσ
2+γ5], a[γ

+γ5]
)

. (2.9)

With this notation, the correspondence (2.8) takes the simple form

Mνλ′λ = (σ̄ν)λ
′λ, (2.10)

where σ̄ν = (1, ~σ). One can think of σ̄νλ
′λ ≡ (σ̄ν)λ

′λ as the matrix of a mere change of

basis, the one being labeled by the couple λλ′ and the other by ν

aν =
∑

λ′λ

σ̄νλ
′λ aλλ′ . (2.11)

In the literature one often represents correlators in the helicity basis, i.e. in terms of

helicity amplitudes

WΛ′λ′,Λλ ≡ 1

2
W ν

Λ′Λσνλλ′ , (2.12)

where σν = gνρ σ
ρ with σν = (1,−~σ). The symbols σ̄µ and σµ satisfy the relations

1

2
σ̄νλ

′λσνττ ′ = δλ
′

τ ′ δ
λ
τ ,

1

2
Tr [σ̄µσν ] =

1

2

∑

λ′λ

σ̄µλ
′λσνλλ′ = δµν . (2.13)

We find however more convenient to work in the four-component basis. We then introduce

tensor correlators

W µν ≡ 1

2
Tr [σ̄µW ν ] =

1

2

∑

Λ′Λ

σ̄µΛΛ
′
W ν

Λ′Λ. (2.14)

Helicity amplitudes and tensor correlators are related as follows

WΛ′λ′,Λλ =
1

2
W µνσµΛ′Λσνλλ′ , W µν =

1

2

∑

Λ′Λλ′λ

σ̄µΛΛ
′
σ̄νλ

′λWΛ′λ′,Λλ. (2.15)

2.4 3Q LCWF from Constituent Quark Models

So far, the exact 3Q LCWF ψΛβ(r) cannot be derived directly from the QCD Lagrangian.

Nevertheless, we can try to reproduce the gross features at low scales using constituent

quark models. We focus here on two phenomenologically successful models which also have

the advantage of incorporating consistently relativistic effects: the light-cone constituent

quark model (LCCQM) [13–15] and the chiral quark-soliton model (χQSM) [16–24]. In the

2Note this is not a Lorentz four-vector but Einstein’s summation convention still applies.
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Table 1. Expression of the 3Q LCWF in the LCCQM and the χQSM. In the LCCQM, m is the constituent

quark mass, M0 is the free invariant mass of the 3Q state, and ω is the free quark energy. In the χQSM,

κ⊥ = |~κ⊥|, MN is the soliton mass, and Elev is the energy of the one-quark discrete level. The functions

f//(y, κ⊥) and f⊥(y, κ⊥) are shown in appendix B.

Model Ψ(r) Kz
~K⊥ κz

LCCQM ψ̃(r) m+ yM0 ~κ⊥ yM0 − ω

χQSM
∏3

i=1 | ~Ki| f//(y, κ⊥) ~κ⊥ f⊥(y, κ⊥) yMN − Elev

LCCQM, one describes the baryon system in terms of the overlap of the baryon state with

a state made of three free on-shell valence quarks. The 3Q state is however not on-shell

M 6= M0 =
∑

i ωi, where ωi is the energy of free quark i and M is the physical mass of

the bound state. Since the exact baryon state is unknown, one approximates the overlap

by a simple analytic function and fits the free parameters in order to reproduce at best

some experimental observables, like e.g. the anomalous magnetic moment and the axial

charge. In the χQSM quarks are not free but bound by a relativistic chiral mean field

(semi-classical approximation). This chiral mean field creates a discrete level in the one-

quark spectrum and distorts at the same time the Dirac sea. It has been shown that the

distortion can be represented by additional quark-antiquark pairs in the baryon [20]. Even

though the χQSM naturally incorporates higher Fock states, we restrict the present study

to the 3Q sector. The inclusion of higher Fock states is postponed to a future work.

Despite the apparent differences between the LCCQM and the χQSM, it turns out that

the corresponding LCWFs are very similar in structure. In both models, the spin-flavor

part of the wave function is separated from the momentum part. Moreover, canonical spin

and light-cone helicity are simply connected by an SU(2) rotation. We can take advantage

of this similarity in structure and develop a formalism in terms of the generic 3Q LCWF

(remember that β = {λi})

ψΛβ(r) = N Ψ(r)
∑

σi

Φσ1σ2σ3

Λ

3
∏

i=1

Dλiσi
(k̃i), (2.16)

where N is a (real) normalization factor, Ψ(r) is a symmetric momentum wave function,

Φσ1σ2σ3

Λ is the SU(6) spin-flavor wave function, and D(k̃) is an SU(2) matrix relating

light-cone helicity λ to canonical spin σ

D(k̃) =
1

| ~K|

(

Kz KL

−KR Kz

)

, KR,L = Kx ± iKy. (2.17)

In order to specify the forthcoming expressions to one of the models, one has to perform

the substitutions given in table 1. In the LCCQM, the quarks are free and the matrix D(k̃)

then simply corresponds to the Melosh rotation Rcf [25]

Dλσ(k̃) := D
1/2∗
σλ (Rcf (k̃)) =

〈λ|m+ yM0 + i~σ · (êz × ~κ⊥)|σ〉
√

(m+ yM0)2 + ~κ2⊥

. (2.18)
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In the χQSM, the quarks are bound and the matrix D(k̃) is related to the one-quark

discrete-level wave function Fλσ(k̃) created by the mean field [21]

| ~K|Dλσ(k̃) := Fλσ(k̃). (2.19)

The relation between light-cone helicity and canonical spin then involves the dynamics

which is encoded in the functions f//(y, κ⊥) and f⊥(y, κ⊥). Note that in both models the

rotation is about the axis3 κ̂⊥ × êz. For more details on the 3Q LCWF in the LCCQM

and the χQSM, see appendix B.

Connecting light-cone helicity to canonical spin (and consequently light-cone wave

functions to instant-form wave functions) is usually an extremely difficult task since it

involves boosts which contain the interaction. Only in simplified pictures is this connection

tractable. In the two models we consider here, quarks are free or interact with a relativistic

mean field, i.e. they are quasi-independent. The main effect of boosts is creating an angle

between instant-form and light-cone polarizations. This angle vanishes when the particle

has no transverse momentum. An equivalent point of view is to say that a quark state

with definite light-cone helicity corresponds to a linear combination of quark states with

both canonical spin ↑ and ↓, responsible for the non-diagonal elements in D(k̃).

2.5 3Q Proton Amplitude

Inserting the LCWF given by eq. (2.16) in the overlap representation of the correlator

tensor W µν (2.4), we obtain

W µν(P, x,~k⊥,∆, N ; η) =
N 2

√

1− ξ2

∫

[dx]3 [d
2k⊥]3 δ̄(k̃)Ψ

∗(r′)Ψ(r)Aµν(r′, r), (2.20)

where Aµν(r′, r) stands for

Aµν(r′, r) = AOµν
1 (l2 · l3) +B [lµ2 (l3 ·O1)

ν + lµ3 (l2 ·O1)
ν ] . (2.21)

The coefficients A and B are flavor factors. We used lµi = Oµ0
i with the matrix Oµν given

by

Oµν =
1

| ~K ′|| ~K |



















~K ′ · ~K i
(

~K ′ × ~K
)

x
i
(

~K ′ × ~K
)

y
−i
(

~K ′ × ~K
)

z

i
(

~K ′ × ~K
)

x

~K ′ · ~K − 2K ′
xKx −K ′

xKy −K ′
yKx K ′

xKz +K ′
zKx

i
(

~K ′ × ~K
)

y
−K ′

yKx −K ′
xKy

~K ′ · ~K − 2K ′
yKy K ′

yKz +K ′
zKy

i
(

~K ′ × ~K
)

z
−K ′

zKx −K ′
xKz −K ′

zKy −K ′
yKz − ~K ′ · ~K + 2K ′

zKz



















.

(2.22)

Details on the derivation can be found in appendix C.

Let us interpret this master formula. The correlator tensor W µν has two indices µ

and ν which refer to the transition undergone by the hadron and active quark light-cone

3This is not surprising by noticing that the generators of transverse boosts on the light cone are given

by ~BLC
⊥ = 1√

2

(

~B⊥ + ~J⊥ × êz
)

, where ~B⊥ and ~J⊥ are the ordinary boost and rotation generators [26].
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helicities, respectively. eq. (2.20) expresses the tensor correlator in terms of the 3Q overlap
N 2√
1−ξ2

∫

[dx]3 [d
2k⊥]3 of initial Ψ(r) and final Ψ∗(r′) symmetric momentum wave functions

with the tensor Aµν(r′, r) for a fixed mean momentum of the active quark ∆(k̃). The

tensor Aµν(r′, r) corresponds to the overlap of the three initial quarks with the three final

ones. In the SU(6) spin-flavor wave function Φσ1σ2σ3

Λ one of the quark canonical spins σi is

always aligned with the hadron helicity Λ. Hence Aµν is the sum of two contributions: the

hadron helicity can be aligned with the canonical spin of either the active quark i = 1 or

one of the spectator quarks i = 2, 3. Since the spectator quarks are equivalent, they enter

in a symmetric way in eq. (2.21). The coefficients A and B then give the weight of each

contribution and depend on the flavor of the active quark and the nature of the spin-1/2

hadron. In a proton, we have

Au
p = 4, Bu

p = 1, Ad
p = −1, Bd

p = 2. (2.23)

Finally, the matrix Oµν in eq. (2.22) describes the overlap of an initial quark with a final

quark. Rows and columns correspond to the type of transition undergone by the quark

canonical spin and light-cone helicity, respectively.

For example, consider the vector operator Γ = γ+. eq. (2.8) tells us that this operator

is not sensitive to the active quark light-cone helicity. To see what happens in terms of

active quark canonical spin, we have to look at the first column of eq. (2.22). It appears that

the vector operator is generally sensitive to the canonical spin (Oj0 6= 0 for j = 1, 2, 3).

Note that in absence of momentum transfer ~K ′ = ~K, the vector operator becomes also

insensitive to the active quark canonical spin. This can be easily understood as follows.

The orientation of canonical polarization relative to light-cone polarization depends on the

momentum of the particle. In presence of momentum transfer, the initial and final SU(2)

rotations D(k̃) are different and the vector operator effectively sees the difference between

canonical spin ↑ and ↓.

3 Results and Discussion

We now apply and specialize the general formalism described in the previous sections to

the extraction of TMDs, GPDs, PDFs, FFs and charges. The normalization constant N
for each model has been fixed so as to satisfy the valence-quark sum rules. Namely, there

are (in an effective way) two up quarks and one down quark in a proton. In the χQSM,

the one-quark discrete level wave function is given by the sum of a bare discrete level

contribution F lev and a relativistic contribution F sea due to the distortion of the Dirac sea.

The latter one is usually not discussed because it is expected to give only a small correction.

Here we calculate this contribution for the first time, as explained in appendix B, and we

explcitly check that it is in general not relevant. Therefore, except for the charges, all the

results in the χQSM will refer only to the F lev contribution.
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3.1 Transverse Momentum-Dependent Distributions

The forward limit ∆ = 0 of the correlatorW is given by the quark-quark correlator, denoted

as Φ

Φ
[Γ]
Λ′Λ(P, x,

~k⊥, N ; η) =W
[Γ]
Λ′Λ(P, x,

~k⊥, 0, N ; η)

=
1

2

∫

dz− d2z⊥
(2π)3

eixP
+z−−i~k⊥·~z⊥ 〈P,Λ′|ψ(− z

2 )ΓW ψ(z2 )|P,Λ〉
∣

∣

∣

z+=0
.

(3.1)

It is parametrized by TMDs at leading twist in the following way

Φµν =













f1
ky
M h⊥1 −kx

M h⊥1 0
ky
M f⊥1T h1 +

k2x−k2y
2M2 h⊥1T

kxky
M2 h

⊥
1T

kx
M g1T

−kx
M f⊥1T

kxky
M2 h

⊥
1T h1 − k2x−k2y

2M2 h⊥1T
ky
M g1T

0 kx
M h⊥1L

ky
M h⊥1L g1L













. (3.2)

TMDs are functions of x and ~k2⊥ only. The multipole pattern in ~k⊥ is clearly visible in

eq. (3.2). The TMDs f1, g1L and h1 give the strength of monopole contributions and

correspond to matrix elements without a net change of helicity between the initial and

final states. The TMDs f⊥1T , g1T , h
⊥
1 , and h⊥1L give the strength of dipole contributions

and correspond to matrix elements involving one unit of helicity flip, either on the nucleon

side (f⊥1T and g1T ) or on the quark side (h⊥1 and h⊥1L). Finally, the TMD h⊥1T gives the

strength of the quadrupole contribution and corresponds to matrix elements where both

the nucleon and quark helicities flip, but in opposite directions. Conservation of total

angular momentum tells us that helicity flip is compensated by a change of orbital angular

momentum [27] which manifests itself by powers of ~k⊥/M with M the mass of the nucleon.

In the spirit of [28], we define the transverse (0)-, (1/2)- and (1)-moments of a generic

TMD j(x,~k2⊥) as

j(0)(x) ≡
∫

d2k⊥ j(x,~k
2
⊥),

j(1/2)(x) ≡
∫

d2k⊥
k⊥
M

j(x,~k2⊥),

j(1)(x) ≡
∫

d2k⊥
k2⊥
2M2

j(x,~k2⊥).

(3.3)

The transverse (1/2)- and (1)-moments are chosen such that they directly represent the

strength of the dipole and quadrupole distributions as function of x, respectively. Note

that our definition of the (1/2)-moment is twice larger than in [28].
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In absence of momentum transfer, i.e. ∆ = 0, the matrix Oµν in (2.22) reduces to4

Oµν ∆=0
=

1

~K2











~K2 0 0 0

0 ~K2 − 2K2
x −2KxKy 2KxKz

0 −2KyKx
~K2 − 2K2

y 2KyKz

0 −2KzKx −2KzKy − ~K2 + 2K2
z











, (3.4)

and the tensor Aµν of eq. (2.21) becomes

A00 = (A+ 2B) , A0j = Aj0 = 0, Aij = AOij . (3.5)

Note that A0j = Aj0 = 0 because we are not considering gluon degrees of freedom, i.e. the

generic quark wave function (2.16) leads to vanishing Sivers and Boer-Mulders functions.

Moreover, the distributions for different flavors are just proportional, which is a consequence

of the underlying SU(6) spin-flavor symmetry. Let us then introduce the spin-flavor factors

N q and P q for a flavor q as follows

N q = (Aq + 2Bq) /3 and P q = Aq/3. (3.6)

With this definition N q and P q can be identified, respectively, with the number of quarks

of flavor q in the baryon and the non-relativistic contribution to the total spin of the baryon

coming from quarks of flavor q. For a proton, we have

Nu
p = 2, Nd

p = 1, P u
p = 4/3, P d

p = −1/3. (3.7)

Our model results for some transverse moments of TMDs are shown in Fig 3. The

shape of the curves within the χQSM and the LCCQM are very similar. The size of

the longitudinal and transversity distributions is somewhat smaller for the LCCQM. On

the other hand, the peak of the distributions for the transverse moments of the polarized

TMDs is larger in the LCCQM than in the χQSM, especially for h
⊥(1)
1T . This pattern for

the magnitude of TMDs in the two models indicates that there is more orbital angular

momentum in the LCWF of the LCCQM than in the χQSM. This can be understood as

follows. In these two models, the instant-form wave functions do not contain any orbital

angular momentum. The proton spin originates solely from the quark spins. However, the

corresponding light-cone wave functions do involve orbital angular momentum since quark

canonical spin and light-cone helicity do not coincide in general. The proton spin originates

from both the quark light-cone helicities and orbital angular momentum. In other words,

all the orbital angular momentum that appears in this paper comes from the generalized

Melosh rotation of eq. (2.17), or more precisely from its non-diagonal elements ~K⊥. As

one can see from eqs. (3.2) and (3.4), all the functions (g1L − h1), g1T , h
⊥
1L and h⊥1T vanish

identically in the limit K⊥ → 0, i.e. in absence of orbital angular momentum. It is then

4This matrix is orthogonal and composed of two blocks O = ( 1 0
0 R ) where R is an SO(3) matrix. This is

hardly surprising since in this case the transformation O = D†(k̃)MD(k̃) is just the well-known homomor-

phism between SU(2) and SO(3).
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Figure 3. Some examples of transverse moments of TMDs as function of x (see text for their definition).

In all panels the results are for the “flavorless” TMDs. TMDs of definite flavor follow from multiplication

by the spin-flavor factor Nq in the unpolarized case and P q in the polarized case (see eq. 3.7). Solid curves:

results in the χQSM. Dashed curves: results from the LCCQM of ref. [27]. All the results are at the

hadronic scale of the models.

hardly surprising that the TMDs we obtained are not all independent. There exist three

relations among polarized TMDs, which are flavor independent and read

g1T + h⊥1L = 0, (3.8)

g1L −
[

h1 +
k2⊥
2M2

h⊥1T

]

= 0, (3.9)

g21T + 2h1h
⊥
1T = 0. (3.10)

One further flavor-dependent relation involves both polarized and unpolarized TMDs, and

is given by

Dqf q1 + gq1L = 2hq1, (3.11)

where Dq = P q/N q. For example, from the relation (3.9) we see that the difference between

helicity and transversity distributions g1L − h1 is directly connected to the pretzelosity

distribution h⊥1T . The difference being smaller in the χQSM, it follows immediately that

the pretzelosity distribution is also smaller compared to the LCCQM.

The relations in eqs. (3.8)-(3.11) actually hold in a large class of quark models (see

refs. [28, 29] and references therein). Their physical origin has been briefly discussed in

[30] and will be explained in more details in a forthcoming publication. Although such

quark model relations are appealing, one should keep in mind that they break down in

models with gauge-field degrees of freedom and are not preserved under QCD evolution.
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Despite these limitations, they can provide useful guidelines for TMD parametrizations

to be further tested in experiments. An interesting result comes from recent lattice cal-

culations [31, 32], which give h
⊥(1)
1L ≈ −g(1)1T , in favor of the relation (3.8). In particular,

they obtained for the average dipole deformation (along the direction of the nucleon po-

larization) of the k⊥ density for longitudinally polarized quarks in a transversely polarized

nucleon 〈kux(g1T )〉 = M g
(1) u
1T /f

(0) u
1 = 67(5) MeV, for up quarks, and 〈kdx(g1T )〉 = −30(5)

MeV, for down quarks. The corresponding values for transversely polarized quarks in a

longitudinally polarized nucleon are 〈kux(h⊥1L)〉 = M h
⊥(1) u
1L /f

(0)u
1 = −60(5) MeV, for up

quarks, and 〈kdx(h⊥1L)〉 = 16(5) MeV, for down quarks. These results are remarkably sim-

ilar to our quark model calculations: 〈kux(g1T )〉 = −〈kux(h⊥1L)〉 = 54.10 and 55.8 MeV,

and 〈kdx(g1T )〉 = −〈kdx(h⊥1L)〉 = −27.05 and −27.9 MeV in the χQSM and the LCCQM,

respectively.

Note also that, in the χQSM, the structure functions do not vanish at x = 0 while they

do vanish in the LCCQM. In the LCCQM, the functional form of 3Q LCWF is assumed on

the basis of phenomenological arguments. Using the simple power-law Ansatz, the LCWF

itself vanishes when any yi → 0 (see appendix B). This is at variance with the wave

function of the χQSM which comes from the solution of the Dirac equation describing the

motion of the quarks in the solitonic pion field. We should also mention that the χQSM

was recently applied in ref. [33] to calculate the unpolarized TMDs, taking into account

the whole contribution from quarks and antiquarks without expansion in the different Fock

components, and obtaining results for the isoscalar combination u + d which corresponds

to the leading contribution in the 1/Nc expansion.

3.2 Generalized Parton Distributions

When integrating the correlator W over ~k⊥, one obtains the quark-quark correlator, de-

noted as F

F
[Γ]
Λ′Λ(P, x,∆, N) =

∫

d2k⊥W
[Γ]
Λ′Λ(P, x,

~k⊥,∆, N ; η)

=
1

2

∫

dz−

2π
eixP

+z− 〈p′,Λ′|ψ(− z
2 )ΓW ψ(z2 )|p,Λ〉

∣

∣

∣

z+=z⊥=0
.

(3.12)

Note that the integration over ~k⊥ removes the dependence on η, and we are left with

a Wilson line connecting directly the points − z
2 and z

2 by a straight line. Furthermore,

working in the light-cone gauge A+ = 0, the gauge link can be ignored. The correlator F

is parametrized by GPDs at leading twist in the following way

Fµν =













H i
∆y

2M ET −i ∆x
2M ET 0

i
∆y

2M E HT +
∆2

x−∆2
y

2M2 H̃T
∆x∆y

M2 H̃T
∆x
2M Ẽ

−i ∆x
2M E ∆x∆y

M2 H̃T HT − ∆2
x−∆2

y

2M2 H̃T
∆y

2M Ẽ
0 ∆x

2M ẼT ∆y

2M ẼT H̃













, (3.13)
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where we used the “natural” combinations of standard GPDs5

H =
√

1− ξ2
(

H − ξ2

1− ξ2
E

)

, E =
E

√

1− ξ2
,

H̃ =
√

1− ξ2
(

H̃ − ξ2

1− ξ2
Ẽ

)

, Ẽ =
ξ Ẽ

√

1− ξ2
,

HT =
√

1− ξ2





(

HT − ξ2

1− ξ2
ET

)

+

~∆2
⊥

4M2 H̃T + ξ ẼT

1− ξ2



 , ET =
2H̃T + ET − ξ ẼT

√

1− ξ2
,

H̃T = − H̃T

2
√

1− ξ2
, ẼT =

ẼT − ξ ET
√

1− ξ2
.

(3.14)

Comparing eq. (3.13) with eq. (3.2), one notices a strong analogy. Essentially, the same

multipole pattern appears, where the role of ~k⊥ in eq. (3.2) is played by ~∆⊥ in eq. (3.13).

Going to impact-parameter space representation does not change the multipole structure

[34]. This suggests that there might be relations or dynamical connections between GPDs

and TMDs, e.g. between E and f⊥1T or between 2H̃T +ET and h⊥1 [35, 36]. There is however

no direct link since GPDs and TMDs often originate from different mother distributions

[2, 37], but one might still expect some correlation between signs or similar orders of

magnitude from dynamical origin (there are after all deep connections with quark orbital

angular momentum).

Results for the GPDs as function of x and different values of ξ and t are shown in

figures 4-7. Since we are considering only quark degrees of freedom, the calculations are

restricted to the DGLAP region for x ≥ ξ. The χQSM was already applied to obtain

predictions for the GPDs within a different framework [38–44], i.e. using the instant-form

quantization and incorporating the full contribution from the discrete level and Dirac sea,

without expansion in the different Fock-space components. In this way the full range

of x was explored, but only for the flavor combinations which correspond to the leading

contribution in the 1/Nc expansion.

For all the GPDs we show the separate up and down-quark contributions. Note that

in contrast to TMDs, GPDs for different quark flavors are not simply proportional. As

long as the momentum transfer t = ∆2 is not vanishing, the two terms in eq. (2.21) are

usually different and non-zero.

The point x = ξ corresponds to vanishing longitudinal momentum for the active quark

in the final state (see eq. (A.2) in appendix A). Therefore, similarly to the case of the TMDs,

it is a node for the wave function in the LCCQM, but not for the χQSM. Accordingly, all

the GPDs from the LCCQM are vanishing in this point.

The distributions of unpolarized quarks are described by the GPDs H and E, the last

one being non-vanishing only in the presence of orbital angular momentum. Comparing

the results from the LCCQM and the χQSM in figure 4, we see that they are very similar

5The fundamental physical object is the matrix element. The GPDs are defined according to a specific,

but not unique, parametrization of matrix elements. Therefore they have no a priori simple interpretation.

Combinations at ξ = 0 appeared already in [34] .
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Figure 4. Results for the spin averaged (Hq, three upper panels) and the helicity flip (Eq, three lower

panels) generalized parton distributions for the up (left panels) and down (right panels) flavors, at fixed

values of ξ and t as indicated. Solid curves: results in the χQSM. Dashed curves: results from the LCCQM

of ref. [13].

in size and in the behavior at large x. The faster fall off of Eq with respect to Hq for x→ 1

is due to the decreasing role of the orbital angular momentum for increasing longitudinal

momentum of the active quark. This feature is common also to the other GPDs which

arise from a transfer of orbital angular momentum between the initial and final state, like

the chiral-odd GPDs ET and ẼT shown in figures 6 and 7, respectively. For longitudinally

polarized quarks, we only show the results for the GPD H̃q in figure 5. We refrain from

presenting the quark contribution to the Ẽq without discussing also the pion-pole term.

As a matter of fact, the pion-pole is by far the largest contribution to this GPD and the

differences between the LCCQM and the χQSM for the quark contribution would not be

relevant for the total results. For the chiral-odd GPDs in figures 6 and 7, at ξ = 0 there
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Figure 5. Results for the helicity-dependent generalized parton distribution H̃q with the same notation

as in figure 4. Results for the LCCQM are from ref. [14].

is no Ẽq
T because it vanishes identically being an odd function of ξ as consequence of

time-reversal invariance.

Another common property to the model results for all GPDs concerns the t-dependence.

In general it is more pronounced in the low x region and it affects the position of the peak,

especially in the LCCQM calculation where we observe a shift to larger x for increas-

ing values of t. On the other hand, the distributions show a very weak t-dependence at

large x < 1, and are all vanishing at the end point x = 1 as expected from momentum

conservation.

3.3 Parton Distribution Functions

Considering the forward limit ∆ = 0 of the correlator F or, equivalently, integrating the

correlator Φ over the quark transverse momentum ~k⊥ yields the quark-quark correlator F

F [Γ]
Λ′Λ(P, x,N) = F

[Γ]
Λ′Λ(P, x, 0, N)

=

∫

d2k⊥ Φ
[Γ]
Λ′Λ(P, x,

~k⊥, N ; η)

=

∫

d2k⊥W
[Γ]
Λ′Λ(P, x,

~k⊥, 0, N ; η)

=
1

2

∫

dz−

2π
eixP

+z− 〈P,Λ′|ψ(− z
2 )ΓW ψ(z2 )|P,Λ〉

∣

∣

∣

z+=z⊥=0
.

(3.15)
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alized parton distributions with the same notation as in figure 4. Results for the LCCQM are from

ref. [15].

It is parametrized by PDFs at leading twist in the following way

Fµν =











f1 0 0 0

0 h1 0 0

0 0 h1 0

0 0 0 g1











. (3.16)
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T (lower panels) generalized

parton distributions with the same notation as in figure 4. Results for the LCCQM are from ref. [15].

Naturally, only the monopoles in ~k⊥ and ~∆⊥ survive and one obtains the well known

relations between PDFs, GPDs and TMDs

f1(x) = H(x, 0, 0) =

∫

d2k⊥ f1(x,~k
2
⊥),

g1(x) = H̃(x, 0, 0) =

∫

d2k⊥ g1L(x,~k
2
⊥),

h1(x) = HT (x, 0, 0) =

∫

d2k⊥ h1(x,~k
2
⊥).

(3.17)

In figures 8-10 we show the results for the unpolarized, helicity and transversity dis-

tributions from the χQSM and the LCCQM after appropriate evolution from the hadronic
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Figure 8. Results for the unpolarized PDF xf1 for up (left panel) and down (right panel) quark. The

solid (dashed) curves are the results from the χQSM (LCCQM) after NLO evolution from the model scale

Q2
0 = 0.259 GeV2 to Q2 = 5 GeV2. The crosses are the fit to the experimental data from the CTEQ

analysis at NLO of ref. [45].
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Figure 9. Results for the polarized PDF xg1 for up (left panel) and down (right panel) quark. The

solid (dashed) curves are the results from the χQSM (LCCQM) after NLO evolution from the model scale

Q2
0 = 0.259 GeV2 to Q2 = 5 GeV2. The crosses are the fit to the experimental data from the analysis of

Ref. [46].

scale of the models to the relevant experimental scales. A key question emerging not

only here but in any nonperturbative calculation concerns the scale at which the model

results for the parton distributions hold. From the point of view of QCD where both

quarks and gluon degrees of freedom contribute, the role of low-energy quark models is

to provide initial conditions for the QCD evolution equations. Therefore, we assume the

existence of a low scale Q2
0 where glue and sea-quark contributions are suppressed, and

the dynamics inside the nucleon is described in terms of three valence quarks confined by

an effective long-range interaction. The actual value of Q2
0 is fixed by evolving back the

unpolarized data, until the valence distribution matches the condition that its first moment

< x >v is equal to the momentum fraction carried by the valence quarks as computed in

the model. Since in our models only valence quarks contribute, the matching condition is

< x(Q2
0) >v= 1. Starting from the initial value < x(Q2) >v≈ 0.36 at Q2 = 10 GeV2 and

fixing the values of ΛQCD and heavy-quark masses as in Ref. [45], we find Q2
0|LO = 0.172

GeV2 and Q2
0|NLO = 0.259 GeV2 after LO and NLO backward evolution, respectively [47].
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Figure 10. Results for the transversity distribution xh1 for up (left panel) and down (right panel) quark.

The solid (dashed) curves are the results from the χQSM (LCCQM) after NLO evolution from the model

scale Q2
0 = 0.259 GeV2 to Q2 = 2.5 GeV2. The shaded area corresponds the uncertainty band due to the

statistical error of the parametrization of refs. [48, 49].

In the case of the unpolarized and polarized PDFs in figures 8 and 9, respectively, we show

the results only for the non-singlet (valence) contribution after NLO evolution to Q2 = 5

GeV2, since the models at the hadronic scale consider valence quarks, and the gluon and sea

contribution at higher scales are generated only perturbatively. The results of the χQSM

and the LCCQM are very similar, for both up and down quarks, and overall reproduce the

behavior of the PDFs as obtained from phenomenological parametrizations for unpolar-

ized [45] and polarized [46] PDFs fitted to experimental data. However, we notice a faster

falloff of the tail of the up-quark distributions at larger x in our models with respect to the

parametrizations. For the transversity distribution in figure 10, we show the model results

after NLO evolution to Q2 = 2.5 GeV2, in comparison with the available parametrization

from refs. [48, 49]. In this case, since there is no gluon counterpart and the sea can not be

generated perturbatively, the model results after evolution correspond to the pure valence

contribution. Compared with the phenomenological parametrization, our results are larger

for both up and down quarks. However, we find that h1 is smaller than the Soffer bound [50]

calculated from the model predictions for f1 and g1, i.e. |hq1(x)| ≤ 1
2 [f

q
1 (x) + gq1(x)]. The

results within the LCCQM for the transversity were also used in ref. [51] to predict the

Collins asymmetry in semi-inclusive deep inelastic (SIDIS) scattering. By using the Collins

fragmentation function H⊥
1 of ref. [54], the work of ref. [51] obtained a very good agreement

with available HERMES [52] and COMPASS [53] data. However other extractions of H⊥
1

in the literature [48, 49, 54, 55] are based on different assumptions. In particular, issues

concerning evolution effects [56] in the extraction of the Collins function from data span-

ning a large range of Q2 are not yet settled. The Collins function from [54] was extracted

from a fit to SIDIS data [52, 53]. On the other hand, the authors of Refs. [48, 49] per-

formed a simulatenous fit of SIDIS and e+e− annihilation data from BELLE [57], including

approximately effects of the evolution in Q2. The difference in the results for H⊥
1 from the

two analyses explains why both the results for h1 in figure 10, within the LCCQM and

from the extraction [48, 49], are consistent with the data.

We also mention that the calculation of the helicity and tansversity distribution in the

χQSM, without expansion in the Fock space and using instant-forn quantization, can be

found in references [58, 59].
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3.4 Form Factors

When integrating the correlator F over x, one obtains the quark-quark correlator A

A
[Γ]
Λ′Λ(P,∆) =

∫

dxF
[Γ]
Λ′Λ(P, x,∆, N)

=

∫

dxd2k⊥W
[Γ]
Λ′Λ(P, x,

~k⊥,∆, N ; η)

=
1

2P+
〈p′,Λ′|ψ(0)Γψ(0)|p,Λ〉.

(3.18)

Since in this case we deal with a local operator, the Wilson line drops out together with

the dependence on the light-cone direction n. This correlator A is parametrized by FFs in

the following way

Aµν =













F1 i
∆y

2M H2 −i ∆x
2M H2 0

i
∆y

2M F2 H1 +
∆2

x−∆2
y

2M2 H3
∆x∆y

M2 H3 ξ ∆x
2M GP

−i ∆x
2M F2

∆x∆y

M2 H3 H1 − ∆2
x−∆2

y

2M2 H3 ξ
∆y

2M GP

0 0 0 GA













. (3.19)

FFs appear as the lowest x-moment of GPDs and are scale independent

F1(t) =

∫ 1

−1
dxH(x, ξ, t), F2(t) =

∫ 1

−1
dxE(x, ξ, t),

GA(t) =

∫ 1

−1
dx H̃(x, ξ, t), GP (t) =

∫ 1

−1
dx Ẽ(x, ξ, t),

H1(t) =

∫ 1

−1
dx

[

HT (x, ξ, t) +
~∆2

⊥

4M2
H̃T (x, ξ, t)

]

,

H2(t) =

∫ 1

−1
dx
[

2H̃T (x, ξ, t) + ET (x, ξ, t)
]

, H3(t) = −
∫ 1

−1
dx

H̃T (x, ξ, t)

2
.

(3.20)

They are also independent of ξ as a consequence of Lorentz invariance (polynomiality of

GPDs). There is no FF associated to ẼT because time-reversal invariance implies that ẼT

is odd in ξ, i.e. ẼT (x,−ξ, t) = −ẼT (x, ξ, t). By polynomiality, its lowest x-moment must

then vanish6 [60]. For illustration, the calculated nucleon electromagnetic Sachs FFs

GE(Q
2) = F1(Q

2)− τF2(Q
2), GM (Q2) = F1(Q

2) + F2(Q
2) (3.21)

with τ ≡ Q2/4M2 are compared with existing experimental data in figure 11. In particular

we plot the results for GM/(µGD) of the proton and neutron (upper panels), with the

standard dipole form factor GD = 1/(Q2 +Λ2
D)

2 and Λ2
D = 0.71 GeV2, and the results for

µpGp
E/G

P
M and Gn

E (lower panels), for the proton and neutron, respectively. The values for

the magnetic moments are those of the models (see table 2 and subsequent discussion).

6Note that the matrix element from which GP can be extracted has an explicit ξ factor. By analogy,

we might define formally a fourth tensor structure function as H4(t, ξ) =
∫ 1

−1
dx ẼT (x, ξ, t)/ξ which is not

forced to vanish. It does however not correspond to any known Lorentz structure in the parametrization

of the correlator A. In this case, the polynomiality argument does not apply a priori, and H4 might also

depend on ξ.
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Figure 11. The four nucleon electromagnetic Sachs FFs compared to the world data: MIT (purple stars),

MAMI (red circles), JLab (blue squares), as well as older results (black triangles and open symbols). The

references to the data can be found in [61]. Solid curves: results in the χQSM. Dashed curves: results from

the LCCQM of Ref. [62]. The values for the anomalous magnetic moments are given in table 2.

The LCCQM reproduces rather well the trend of the proton data up to Q2 ≈ 1

GeV2. At higher values of the momentum transfer, the slope of Gp
M is too steep and

the curve deviates from the data. This effect is somehow compensated if we look at the

ratio µpGp
E/G

p
M . Here the combined effect of a slightly overestimated Gp

M and a slightly

underestimated Gp
E gives a result for the ratio which follows the fall-off of the data up to

Q2 ≈ 2 GeV2. In the neutron case, the description of the form factors within the LCCQM

is less satisfactory. In particular Gn
E is largely underestimated and we are not able to

reproduce the slope at low Q2. The neutron radius originates as a partial cancellation

between the Dirac radius and the contribution of the anomalous magnetic moment (the

so-called Foldy term) which dominates. In the LCCQM, the Dirac radius is much larger

as compared with the χQSM, leading to a larger cancellation in the neutron radius, which

reaches only 2/3 of the value in the χQSM. As it was shown in Ref. [62], the description in

the LCCQM can be improved by taking into account the contribution of the meson cloud
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of the nucleon and by relaxing the approximation of SU(6) symmetry in the model. The

combined effects of a small percentage of mixed-symmetric terms in the nucleon LCWF

and of the pion-cloud, which mainly acts at very small Q2, provides a much improved

understanding of Gn
E within that model. Those effects are much less significant on the

other nucleon form factors.

The results within the light-cone χQSM exhibit a peculiar behavior for the magnetic

form factors. Both in the proton and neutron case the results rise faster than the dipole

form at low Q2, while have a steeper fall off at higher Q2. The deviation is within 10%, but

it goes in the opposite directions in the two ranges of 0 < Q2 < 1 GeV2 and 1 < Q2 < 2

GeV2, in such a way that the global curvature is quite different from the data. On the

other hand, the results for Gn
E are in much better agreement with the data. The slope at

low Q2 is much steeper than in the LCCQM, going in the direction of the experimental

data which support even a steeper rise. Finally, the results for µpGp
E/G

p
M have a too fast

falloff with Q2, and deviate from the experimental data by ≈ 20% in the whole range of

Q2.

3.5 Charges

Considering the forward limit ∆ = 0 of the correlator A or, equivalently, integrating the

correlator F over x yields the quark-quark correlator Q

Q[Γ]
Λ′Λ(P ) = A

[Γ]
Λ′Λ(P, 0)

=

∫

dxF [Γ]
Λ′Λ(P, x,N)

=

∫

dxF
[Γ]
Λ′Λ(P, x, 0, N)

=

∫

dxd2k⊥Φ
[Γ]
Λ′Λ(P, x,

~k⊥, N ; η)

=

∫

dxd2k⊥W
[Γ]
Λ′Λ(P, x,

~k⊥, 0, N ; η)

=
1

2P+
〈P,Λ′|ψ(0)Γψ(0)|P,Λ〉,

(3.22)

which is parametrized by the charges in the following way

Qµν =











q 0 0 0

0 δq 0 0

0 0 δq 0

0 0 0 ∆q











. (3.23)

The vector charge q = F q
1 (0) =

∫

dx f q1 (x) represents the (effective) number of quarks

with flavor q. The normalization constant N of the models has been chosen such that

u = 2 and d = 1 for the proton. The axial charge ∆q = Gq
A(0) =

∫

dx gq1(x) represents the

fraction of baryon helicity carried by the spin of quarks with flavor q. Finally, the tensor

charge δq = Hq
1(0) =

∫

dxhq1(x) represents the fraction of baryon transversity due to the

spin of quarks with flavor q. From eq. (3.4), one can see that the axial and tensor charges
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Table 2. Results for the axial charge ∆q, tensor charge δq, anomalous magnetic moment κq, and

tensor anomalous magnetic moment κq
T in the χQSM and the LCCQM, compared with experimental and

phenomenological values. χQSM I refers to the calculation with F lev only, while the results labeled χQSM II

and III include the effects of the Dirac sea on the discrete level, without and with Pauli-Villars regularization,

respectively (see appendix B). The results within the LCCQM are from refs. [62–64]. The experimental

data for the axial charges at Q2 = 5 GeV2 are from [65] and the anomalous magnetic moments are from [66].

The model results for the tensor charges are evolved at LO to Q2 = 0.8 GeV2 for comparison with the

values from the phenomenological extraction of Ref. [49] .

Model ∆u ∆d δu δd κu κd κuT κdT
LCCQM 0.995 −0.249 0.90 −0.23 1.867 −1.579 3.98 2.60

χQSM I 1.148 −0.287 0.96 −0.24 1.766 −1.551 3.83 2.58

χQSM II 1.055 −0.264 0.93 −0.23 2.072 −1.785 4.43 2.94

χQSM III 1.118 −0.279 0.95 −0.24 1.902 −1.647 4.09 2.74

Exp. Value 0.825 −0.444 0.54+0.09
−0.22 −0.23+0.09

−0.16 1.673 −2.033 – –

are usually different. Only in the non-relativistic limit, i.e. when there is no appreciable

orbital angular momentum κ⊥ ≈ 0 and thus no distinction between canonical spin and

light-cone helicity, they do coincide. This is the origin of the claim that the difference

between axial and tensor charges is a measure of quark orbital angular momentum. One

should however keep in mind that this is not completely true in general because of higher

Fock components. The FFs F2(t), H2(t), H3(t) and GP (t) being associated with dipole

or quadrupole structures in ~∆⊥ do not have corresponding charges. Nevertheless, one can

still define their limit for vanishing momentum transfer t = 0 (as long as it is finite). For

example, the anomalous magnetic moments and anomalous tensor magnetic moments are

defined by κq = F q
2 (0) and κ

q
T = Hq

2(0), respectively.

In table 2, we compare the calculated charges and anomalous moments for a proton

with the corresponding experimental values and phenomenological extractions. For the

χQSM we quote the results with the bare discrete-level contribution only (χQSM I) and

with the relativistic contribution coming the distortion of the Dirac sea, without (χQSM

II) and with Pauli-Villars regularization (χQSM III), see appendix B for more details. The

corrections due to the effects of the sea are in general small, especially after regularization.

Therefore, in the following discussion of the results we will refer to the values of χQSM I

only.

Since the isovector combination of the axial charge gA = ∆u−∆d is scale independent

(as a consequence of current conservation) and since the isoscalar combination ∆u + ∆d

is weakly scale dependent, we did not evolve the model results for the axial charges. The

last ones and the anomalous magnetic moments tend to overestimate the contribution from

up quark and, vice-versa, to underestimate the down quark contribution. The deviations

are such that they compensate in the results for the isovector axial charge gA. We find

gA = 1.24 and gA = 1.44 for the LCCQM and the χQSM, respectively, to be compared with

the experimental value gA = 1.269 obtained from the HERMES data [65], in agreement

with the value obtained from β-decay measurements [66]. On the other hand, for the
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isoscalar contribution ∆u + ∆d, the deviations go in the opposite direction, such that

about 75% (85%) of the nucleon helicity is carried by the quark helicities in the LCCQM

(χQSM). This has to be contrasted with the much smaller experimental result of about

37% at a scale around 10 GeV2 [67].

For the anomalous magnetic moments, the deviation is bigger for down quarks than

for up quarks. This mainly affects the neutron results, for which the discrepancy from the

experimental data is bigger than in the proton case. In particular, we find µp = 2.78 and

µn = −1.69, within the LCCQM, and µp = 2.69 and µn = −1.62, within the χQSM, to

be compared with the experimental values µp = 2.793 and µn = −1.913. A significant

improvement is obtained for µn in the LCCQM by taking into account the meson-cloud

contribution as in Ref. [62]. This is at the price of slightly worse results for gA and

µp. As a matter of fact, it is in general a challenging task in light-cone quark models to

reproduce simultaneously all the three quantities, see e.g. refs. [68–71]. While it has already

been shown in refs. [21–23] that higher Fock components within the χQSM contribute

significantly to the axial charges, it remains to be checked explicitly that the same holds

for the magnetic moments.

For the tensor charges, we evolved the model results at LO to Q2 = 0.8 GeV2 for

comparison with the corresponding results of the phenomenological extraction of Ref. [49].

In this case, both the LCCQM and the χQSM agree very well with the phenomenological

value for the down quark, while the up-quark contribution is larger by ≈ 40%. We note

however that the values of the quark tensor charges are strongly scale dependent and may

depend crucially on the choice of the initial scale of the models [42]. A safer quantity to

compare with is the ratio δd/δu which is scale independent. In our models, the assumption

of SU(6) symmetry implies δd/δu = −1/4, which is compatible, within error bars, with

δd/δu = −0.42+0.0003
−0.20 from the fit of [49]. We note that the deviation of the experimental

data from the SU(6) limit of 1/4 for the ratio ∆d/∆u is much more significant. The

experimental data at Q2 = 5 GeV2 give ∆d/∆u = −0.54, and this value is weakly scale

dependent. Therefore we expect that the inclusion of SU(6) symmetry breaking terms can

play an important role for the description of the longitudinal spin degrees of freedom, while

it is less relevant for observables related to the transverse spin. Note that in the χQSM the

SU(6) symmetry holds only at the 3Q level. Let us mention that the instant-form version

of the χQSM of Ref. [72], which includes in principle all Fock components, gives the ratios

δd/δu = −0.3 and ∆d/∆u = −0.45 at the model scale Q2
0 = 0.36 GeV2.

Finally, the results for the tensor anomalous magnetic moments are very similar in

the LCCQM and the χQSM. The values of κuT /2M and κdT /M are a measurement of the

average distortion of the density describing the distribution in impact-parameter space

of transversely polarized quarks in unpolarized nucleons. Therefore, although the model

results give κuT > κdT , the distortion in the spin density is larger for down quarks than for

up quarks by about 30%. The corresponding quantity in the transverse-momentum space

is given by the average dipole distortion induced by the Boer-Mulders function. In this

case, using the recent LCCQM calculation of Ref. [73], we find the same results for the

relative size of the distortion in the down-quark distribution with respect to the up-quark

distribution. The same arguments apply for the dipole distortions in the distributions of
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unpolarized quarks in transversely polarized nucleons as seen in impact-parameter space

and momentum space. In this case the correspondence is between the average distortion

measured through the anomalous magnetic moment κ and the Sivers function. For κqT there

exist also lattice calculations [74] which refer to a renormalization scale µ2 = 4 GeV2, and

give the results κuT = 3.0 and κdT = 1.9. The instant-form version of the χQSM of Ref. [75]

give κuT = 3.56 and κdT = 1.83. Considering the ratio of up to down contribution, which

is renormalization scale independent, we find a very good agreement between the lattice

calculations (1.51) and our model results (1.53 in the LCCQM and 1.48 in the χQSM).

4 Conclusions

In this work we presented a first study of GTMDs, which are quark-quark correlators where

the quark fields are taken at the same light-cone time. By taking specific limits or pro-

jections of these GTMDs, they yield PDFs, TMDs, GPDs, FFs, and charges, accessible in

various inclusive, semi-inclusive, exclusive, and elastic scattering processes. The GTMDs

therefore provide a unified framework to simultaneously model these different observables.

We took a first step in this modeling, by considering a light-cone wave function (LCWF)

overlap representation of the GTMDs and by restricting ourselves to the 3Q Fock compo-

nents in the nucleon LCWF. At twist-two level, we studied the most general transition

which the active quark light-cone helicity can undergo in a polarized nucleon, correspond-

ing to the general helicity amplitudes of the quark-nucleon system. We develop a formalism

which is quite general and can be applied to many quark models as long as the nucleon

state can be represented in terms of 3Q without mutual interactions. For the radial wave

function of the quark in the nucleon, we studied two phenomenological successful models

which include relativistic effects : the light-cone constituent quark model (LCCQM) and

the chiral quark-soliton model (χQSM). In the LCCQM, the nucleon LCWF was approx-

imated by its leading Fock component, consisting of free on-shell valence quarks. In the

χQSM, the quarks are not free but bound by a relativistic chiral mean field, which creates

on the one hand a shift of the discrete level in the one-quark spectrum, and on the other

hand also a distortion of the Dirac sea. The latter can be interpreted as arising due to the

presence of additional quark-antiquark pairs in the nucleon LCWF. Therefore, the χQSM

has the potential to systematically go beyond a description in terms of the leading 3Q Fock

component in the nucleon LCWF. Restricting ourselves to the 3Q component in the present

work, the quarks in both models being either free or interacting with a relativistic mean

field, allowed us to connect light-cone helicity to canonical spin, and thus relate LCWFs

with equal-time wave functions. It was shown that the resulting boosts, which connect

both, in general introduce an angle between the light-cone helicity and the canonical spin

for a quark with non-zero transverse momentum.

We firstly obtained the various TMDs in the forward limit, involving either no helicity

flip, one unit of helicity flip of either quark or nucleon, or transitions where both quark

and nucleon helicities flip. As the helicity flip processes are accompanied by a change of

orbital angular momentum, the TMDs reveal such orbital angular momentum in the nu-

cleon LCWF. We provided predictions for the various TMDs in both models, within the
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3Q framework, and found several relations between TMDs for both models. The amount

of orbital angular momentum in the LCCQM in general was found to be larger than in the

χQSM. In particular, the TMD where both quark and nucleon helicities flip (pretzelosity)

was found to be about twice as large in the LCCQM as compared with the χQSM.

We next applied our formalism to describe the GPDs entering hard exclusive processes.

We found a strong analogy in the multipole patterns in TMDs and GPDs, where the role of

the quark transverse momentum ~k⊥ in TMDs is played by the momentum transfer to the

hadron ~∆⊥ in the case of GPDs. We found a qualitative difference between both models

for PDFs or GPDs at x = 0 (for ξ = 0), or in general for GPDs at x = ξ, corresponding

to zero longitudinal momentum for the active quark in the final state. In the LCCQM all

distributions vanish at this point, in contrast to the χQSM. We also compared PDFs in

both models, and found that the non-singlet (valence) components of unpolarized (polar-

ized) PDFs f1 (g1) compare reasonably with the phenomenological extractions after NLO

evolution to 5 GeV2, but systematically undershoot the large-x tail for the u-quark dis-

tribution. For the transversity distribution, our results were found to be larger than the

available parameterizations for both up and down quarks.

We also compared the results obtained in both models for form factors and charges.

For the electromagnetic FFs of the proton, and the neutron magnetic FF, the LCCQM was

found to reproduce relatively well the Q2 dependence up to about Q2 ∼ 1 GeV2, whereas

the χQSM shows too small magnetic radii. For the neutron electric FF, the χQSM gives

here a description in good agreement with the data, whereas the LCCQM falls short of the

data, by about a factor 2 in the range up to Q2 ∼ 1 GeV2. This behaviour can be improved

by considering SU(6) breaking terms or higher Fock components, describing the physics of

the pion cloud. Finally we found for the isovector axial charges as values gA = 1.24 (1.44)

within the LCCQM (χQSM) respectively. Furthermore, the quark helicities carry 75 % (85

%) of the nucleon helicity in the LCCQM (χQSM) respectively. For the tensor charges,

both LCCQM and the χQSM results evolved at LO to Q2 = 0.8 GeV2 agree well for the

down quark with the available phenomenological extraction, whereas the model result for

the up quark is larger by ≈ 40% compared to the phenomenological value.

As discussed above, the presented LCWF overlap framework for GTMDs can be sys-

tematically extended beyond the 3Q LCWF Fock component. Such an extension to the

5-quark Fock component and its application on the different observables discussed in this

work, is an interesting subject for future work.
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A Light-Cone Kinematics

In this paper, we work in the symmetric infinite momentum frame, where P+ is large,
~P⊥ = ~0⊥ and ∆ · P = 0. The four-momenta involved are then

P =
[

P+, P−,~0⊥

]

,

k =
[

xP+, k−, ~k⊥

]

,

∆ =
[

−2ξP+, 2ξP−, ~∆⊥

]

,

n =
[

0,±1,~0⊥

]

,

(A.1)

with P− =
M2+∆2

⊥/4

2(1−ξ2)P+ . Note that the form used for n is not the most general one but

leads to an appropriate definition of TMDs for semi-inclusive deep inelastic scattering and

Drell-Yan processes.

For the active quark (i = 1) the momentum coordinates in initial and final hadron

frames are then given by

k̃1 = (y1, κ1⊥) =

(

x1 + ξ

1 + ξ
,~k1⊥ − 1− x1

1 + ξ

~∆⊥

2

)

,

k̃′1 = (y′1, κ
′
1⊥) =

(

x1 − ξ

1− ξ
,~k1⊥ +

1− x1
1− ξ

~∆⊥

2

)

,

(A.2)

while for the spectator quarks (i = 2, 3) they are given by

k̃i = (yi, κi⊥) =

(

xi
1 + ξ

,~ki⊥ +
xi

1 + ξ

~∆⊥

2

)

,

k̃′i = (y′i, κ
′
i⊥) =

(

xi
1− ξ

,~ki⊥ − xi
1− ξ

~∆⊥

2

)

.

(A.3)

In Eqs. (A.2) and (A.3), ~ki⊥ is the average quark transverse momentum and xi the average

quark longitudinal momentum fraction in the symmetric frame.

B LCCQM and χQSM

We collect in this appendix all the necessary material for the model evaluations. The

normalizations of the wave functions are fixed by requiring that there are two up and one

down quarks in the proton.

B.1 LCCQM

In the numerical evaluations within the LCCQM, we adopted a power-law form for the

momentum wave function ψ̃(r) [76]

ψ̃(r) = 2(2π)3
√

ω1ω2ω3

y1y2y3M0

1

(M2
0 + β2)γ

, (B.1)
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with the parameters β = 0.607 GeV and γ = 3.5, and the quark mass m = 0.263 GeV.

These parameters have been fitted to reproduce at best the proton magnetic moment and

the axial charge. Since γ > 2, this wave function clearly vanishes as any yi → 0, see

Figure 12. Power-law 3Q LCWF ψ̃(r) used in the LCCQM as function of y1 and y2 with κ1⊥ = 0.2 GeV

and κ2⊥ = 0.4 GeV.

figure 12. In eq. (B.1) and in figure 12 the normalization factor is left out. The intrinsic

scale of the LCCQM is considered to be about Q2
0 = 0.259 GeV2, see section 3.3.

B.2 χQSM

The one-quark discrete-level wave function in the χQSM [21] appears as the sum of a

bare discrete-level wave function F lev
λσ (k̃) and a relativistic contribution F sea

λσ (k̃) due to the

distortion of the Dirac sea

Fλσ(k̃) = F lev
λσ (k̃) + F sea

λσ (k̃). (B.2)

The index λ refers to the light-cone helicity of the bound quark and σ to its canonical

spin7.

The bare discrete-level wave function is given by

F lev
λσ (k̃) =

[

h(κ) + (κz + i~κ⊥ × ~σ⊥)
j(κ)

κ

]

λσ

, (B.3)

where κ ≡ |~κ| and the z component of the three-vector ~κ is given by κz = yMN −Elev with

the classical soliton mass MN = 1.207 GeV and the energy of the discrete level Elev = 0.2

GeV. The functions h(κ) and j(κ) are the upper and lower components, in momentum

7In Ref. [21] one writes the quark wave function as F̃ jσ, where j is the quark isospin and σ the light-cone

helicity (merely referred to as “spin”). In the model, canonical spin s and isospin j are coupled into grand-

spin equal to zero. This means that any rotation in spin space can be compensated by a rotation in isospin

space. One can then interchange canonical spin and isospin indices provided a multiplication by ǫjs. Our

quark wave function is then related to the quark wave function F̃ jλ of Ref. [21] as Fλσ ≡
√

MN

2π
ǫjσF̃

jλ.
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space, of the Dirac spinor for a bound quark. Up to a global normalization factor, we

found that they are very well approximated by the following forms

h(κ) =
Ah

1 +Bh κ2
e−Ch κ2

and j(κ) =
1 +Aj κ+Bj κ

2

1 + Cj κ+Dj κ2
κ e−Ej κ

Fj
, (B.4)

with the parameters

Ah = 0.64, Aj = 0.72, Dj = 12.40,

Bh = 12.77, Bj = 4.20, Ej = 3.48, (B.5)

Ch = 1.11, Cj = −1.06, Fj = 1.17,

all in appropriate GeV units (see figure 13 for a comparison with the exact numerical

solutions).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

Κ @GeVD

hHΚ L

jHΚ L

Figure 13. Comparison between the exact numerical functions h(κ) and j(κ) (thin solid) and their

approximate form given by eq. (B.4) (thick dashed). The normalization factor is left free.

The relativistic contribution to the discrete-level wave function due to the distortion

of the Dirac sea is given by

F sea
λσ (k̃) = −

∫

d3k̃′Wλσ,λ′σ′(k̃, k̃′)

[

σ3 h(κ
′)− ~κ′ · ~σ j(κ

′)

κ′

]λ′σ′

, (B.6)

where d3k̃′ ≡ dy′ d2κ′⊥/(2π)
2. It depends linearly on the quark-antiquark pair wave func-

tion Wλσ,λ′σ′(k̃, k̃′) whose approximate expression is

Wλσ,λ′σ′(k̃, k̃′) =
MQMN

2πZ

[

Σλσ,λ′σ′(k̃, k̃′)−Πλσ,λ′σ′(k̃, k̃′)
]

,

Σλσ,λ′σ′(k̃, k̃′) = Σ(q) δσ′σ

[

MQ(y
′ − y)σ3 + ~Q⊥ · ~σ⊥

]

λλ′
,

Πλσ,λ′σ′(k̃, k̃′) =
Π(q)

q
(~q · ~σ)σ′σ

[

−MQ(y + y′) + i ~Q⊥ × ~σ⊥

]

λλ′
,

(B.7)

where MQ = 0.345 GeV is the constituent quark mass and ~q = (~κ⊥ + ~κ′⊥, (y + y′)MN )

is the total momentum of the quark-antiquark pair. In order to simplify the notation we
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Figure 14. Scalar (dashed blue) and pseudoscalar (solid red) parts of the relativistic mean field in the

baryon.

used
~Q⊥ = y~κ′⊥ − y′~κ⊥ and Z = yy′MN

[

qz + ω̄ + ω̄′
]

(B.8)

with ω̄ = (M2
Q + κ2⊥)/yMN and ω̄′ = (M2

Q + κ′2⊥)/y
′MN . The functions Σ(q) and Π(q),

shown in figure 14, correspond respectively to the scalar and pseudoscalar parts of the

relativistic mean field in the baryon. Note that, in principle, the constituent quark mass

MQ(p) in the model depends on the quark momentum p. This can be seen as a form factor

that cuts off momenta at some characteristic scale which corresponds in the instanton

picture to the inverse average size of instantons 1/ρ̄ ≈ 0.6 GeV. One then usually considers

the scale of the χQSM to be about Q2
0 = 0.36 GeV2. However, since in this study we

restrict ourselves to the 3Q component only, we may consider that the effective scale of our

calculations is actually about Q2
0 = 0.259 GeV2 like in the LCCQM. In actual calculations,

the constituent quark mass is replaced by a constant MQ =MQ(0) and the decrease of the

function MQ(p) is mimicked by the UV Pauli-Villars cutoff at MPV = 0.557 GeV [77, 78].

This value has been chosen from the requirement that the pion decay constant Fπ = 93

MeV is reproduced from MQ = 0.345 GeV. The integrals in eq. (B.6) are convergent and

do not require regularization. Nevertheless, it is not clear to us whether one should still

apply the Pauli-Villars prescription or not. For this reason, when studying the effects of

the relativistic contribution F sea, we performed calculations both without and with Pauli-

Villars prescription.

The discrete-level wave function Fλσ(k̃) seems to be a quite complicated function of k̃,

λ and σ. Fortunately, its structure is a bit simpler than at first sight

Fλσ(k̃) =

(

f//(y, κ⊥) κL f⊥(y, κ⊥)

−κR f⊥(y, κ⊥) f//(y, κ⊥)

)

, (B.9)

where κR,L = κx ± iκy . The discrete-level wave function has just two independent com-

ponents f//(y, κ⊥) and f⊥(y, κ⊥) which are functions of y and κ⊥ only. If we neglect the

relativistic contribution F sea
λσ (k̃), these functions can be written as

f//(y, κ⊥) = h(κ) + κz j(κ)/κ and f⊥(y, κ⊥) = j(κ)/κ. (B.10)
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Three-dimensional plots of these functions are shown in figure 15. Unless mentioned ex-

plicitly, all the results presented in this paper for the χQSM have been obtained with this

wave function. One expects the relativistic contribution F sea
λσ (k̃) to change Eq. (B.10) in

fparaHy,Κ¦L
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Figure 15. The two independent components f//(y, κ⊥) and f⊥(y, κ⊥) of the bare discrete-level wave

function F lev(k̃). They are normalized so as to have two up and one down quarks in the proton. As long as we

neglect the relativistic contribution F sea(k̃), f⊥(y, κ⊥) is actually a function of κ =
√

(yMN − Elev)2 + κ2
⊥

only, as one can see from Eq. (B.10). The thick elliptic curves represent constant values of κ.

an appreciable manner only around y = 0. This is confirmed by an explicit calculation

of the complete discrete-level wave function Fλσ(k̃), both without and with Pauli-Villars

prescription. In figure 16 the discrete-level wave function in three versions of χQSM are

compared.

B.3 Generalized Melosh rotation

There are striking similitudes at the 3Q level between the χQSM and the LCCQM. For ex-

ample, both models exhibit the SU(6) spin-flavor symmetry and are based on a completely

symmetric momentum wave function. In the LCCQM the quarks are free while they are

bound by a relativistic mean field in the χQSM. This means that in both cases the quarks

are considered without mutual interactions. Usually, it is an incredibly difficult task to

relate the (instant-form) canonical spin to the light-cone helicity. But since in the models

we considered here there are no mutual interactions, the relation turns out to be rather

simple. In the LCCQM, the quarks being free, it is well known that their canonical spin

and light-cone helicity are just related by a Melosh rotation [25], which is a special case of

Wigner rotation. The amplitude and the axis of rotation depend on the quark momentum.

Is it the same in the χQSM? Since here the quarks are not free, it is clear that one cannot

use the Melosh rotation. In this model, it is the discrete-level wave function Fλσ(k̃) that

tells us how to relate the canonical spin σ to the light-cone helicity λ, and that this relation

depends on the quark momentum k̃. Dividing Fλσ(k̃) by f
2
//+κ

2
⊥f

2
⊥ in Eq. (B.9), we obtain

a unitary 2× 2 matrix, i.e. here also light-cone helicity and canonical spin are just related

by a rotation. This explains the introduction of the generalized Melosh rotation given by

Eq. (2.17).
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Figure 16. Comparison between different versions of the discrete-level wave function, see text. Solid red

curves: F lev only (χQSM I). Dashed blue curves: F lev +F sea (χQSM II). Dotted black curves: F lev +F sea

with Pauli-Villars regularization (χQSM III). The light bands give the range of possible values for the

discrete level, depending on the treatment of the sea contribution. Clearly, only the region around y = 0 is

affected in an appreciable manner by the relativistic contribution F sea.

If we consider the limit of vanishing mean field in the χQSM, the quarks become free

and we expect the generalized Melosh rotation to reduce to the ordinary Melosh rotation.

Let us check this explicitly. The relativistic contribution F sea is directly proportional to the

mean field represented by Σ(q) and Π(q). This means that in the limit of vanishing mean

field F sea → 0. Let us then focus on F lev. Since quarks becomes free, we have to replace

in Eq. (B.3) the discrete-level energy Elev, the soliton mass MN and the constituent quark

mass MQ by the free quark energy ω, the free invariant mass M0 and the free constituent

quark mass m, respectively. Moreover one obtains that the upper and lower components

are simply proprotional j(κ) → κh(κ)/(ω +m). Collecting all the parts, we find

Fλσ(k̃) → h(κ) [m+ yM0 + i~σ · (êz × ~κ⊥)]λσ = f(k̃)D
1/2∗
σλ (Rcf (k̃)), (B.11)

where f(k̃) is some momentum wave function and D
1/2∗
σλ (Rcf (k̃)) is the matrix element

of the Melosh rotation, see Eq. (2.18). As announced, we naturally recover the Melosh

rotation in the limit of vanishing mean field.

C LCWF overlap

We derive in this appendix the master formula written in section 2.5. Using the expression

for the LCWF given by Eq. (2.16) for the overlap representation of the correlator tensor
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W µν , we obtain Eq. (2.20) with the tensor Aµν given by

Aµν(r′, r) =
1

2

∑

Λ′,Λ,σ′
i,σi

(σ̄µ)ΛΛ
′
Φ
σ′
1
σ′
2
σ′
3

Λ′ Φσ1σ2σ3

Λ Nν
σ′
1
σ1
(k̃′1, k̃1)N

0
σ′
2
σ2
(k̃′2, k̃2)N

0
σ′
3
σ3
(k̃′3, k̃3),

(C.1)

where Nν(k̃′, k̃) ≡ D†(k̃′) σ̄ν D(k̃) are 2 × 2 matrices. We decompose D(k̃) and Nν(k̃′, k̃)

on the basis σµ = σ̄µ and introduce the corresponding components dµ and Oµν

D(k̃) = σµ d
µ, dµ =

(

êz · K̂, i êz × K̂
)

, (C.2)

Nν(k̃′, k̃) = σµO
µν , (C.3)

where we used the notation â = ~a/|~a|. Since 1
2Tr [σ̄

µσν ] = gµν , the components of the

matrices Nν(k̃′, k̃) in the basis σµ are given by

Oµν =
1

2
Tr
[

σ̄µD†(k̃′)σ̄νD(k̃)
]

=
1

2
Tr
[

σ̄µσασ̄νσβ
]

d′∗αdβ.
(C.4)

Now using the identity (ǫ0123 = +1)

1

2
Tr
[

σ̄µσν σ̄ασβ
]

= gµνgαβ + gµβgαν − gµαgνβ − i ǫµναβ , (C.5)

we obtain

Oµν = d′∗µdν + d′∗νdµ −
(

d′∗ · d
)

gµν + i ǫµναβd′∗αdβ, (C.6)

or more explicitly8

Oµν =
1

| ~K ′|| ~K |



















~K ′ · ~K i
(

~K ′ × ~K
)

x
i
(

~K ′ × ~K
)

y
−i
(

~K ′ × ~K
)

z

i
(

~K ′ × ~K
)

x

~K ′ · ~K − 2K ′
xKx −K ′

xKy −K ′
yKx K ′

xKz +K ′
zKx

i
(

~K ′ × ~K
)

y
−K ′

yKx −K ′
xKy

~K ′ · ~K − 2K ′
yKy K ′

yKz +K ′
zKy

i
(

~K ′ × ~K
)

z
−K ′

zKx −K ′
xKz −K ′

zKy −K ′
yKz − ~K ′ · ~K + 2K ′

zKz



















.

(C.7)

Let us come back to Aµν . We can now write

Aµν(r′, r) =
1

2

∑

Λ′,Λ,σ′
i,σi

(σ̄µ)ΛΛ
′
Φ
σ′
1σ

′
2σ

′
3

Λ′ Φσ1σ2σ3

Λ (σα)σ′
1
σ1

(σβ)σ′
2
σ2

(σγ)σ′
3
σ3
Oαν

1 lβ2 l
γ
3 , (C.8)

8Note that the elements of this matrix have already been obtained some years ago using the Melosh

rotation in the LCCQM. With the notations of refs. [13–15], the matrix Oµν reads

Oµν =
1

| ~K′|| ~K|











A −iBTx −iÃT −iB̃z

iBx AT B̃Tx B̃y

iBy BTz B̃Ty B̃x

iBz BTy B̃Tz Ã











.
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where we defined the four-component vectors lµi = Oµ0
i . We have to sum over all the

polarizations Λ′,Λ, σ′i, σi which seems a priori quite involved. We can however already

guess the actual form of the result by standard tensorial analysis. Indeed we must end up

with a tensor with indices µ and ν, and this tensor has to be constructed out of Oαν
1 , lβ2

and lγ3 . There are only three possible terms and Aµν then takes the form

Aµν = AOµν
1 (l2 · l3) +B lµ2 (l3 ·O1)

ν + C lµ3 (l2 · O1)
ν . (C.9)

Since spectator quarks are equivalent, we should have B = C. If one is not interested in

the quark flavor, then all the three quarks are equivalent and we have A = B = C which

can be absorbed in the normalization of the LCWF.

For the purpose of the present paper, let us determine the flavor coefficients A and B

in the case of a proton target. Since in the process considered each individual quark flavor

is conserved, it is convenient to divide the SU(6) spin-flavor wave function Φσ1σ2σ3

Λ into

three terms

Φσ1σ2σ3

Λ = Φσ1σ2σ3

Λ,uud +Φσ1σ2σ3

Λ,udu +Φσ1σ2σ3

Λ,duu . (C.10)

Up to an overall normalization factor, Φσ1σ2σ3

Λ,uud can be written in terms of Kronecker and

Levi-Civita symbols (see e.g. [21, 23])

Φσ1σ2σ3

Λ,uud = δσ1

Λ ǫσ2σ3 + δσ2

Λ ǫσ1σ3 . (C.11)

The udu and duu terms are obtained from the uud term by permuting the labels (2, 3)

and (1, 3), respectively. Using the relation (σµ)σ′σ ǫ
σ′λ′

ǫσλ = (σ̄µ)λλ
′
and then the iden-

tity (C.5), we get the coefficients

Ap Bp Cp

uud 2 2 −1

udu 2 −1 2

duu −1 2 2

(C.12)

Since the first quark was chosen to be the active one, the sum of the two first lines corre-

sponds to the contribution of the up flavor, while the last line corresponds to the contri-

bution of the down flavor.

References

[1] S. Meissner, A. Metz, M. Schlegel and K. Goeke, Generalized parton correlation functions for

a spin-0 hadron, JHEP 0808 (2008) 038 [arXiv:0805.3165].

[2] S. Meissner, A. Metz and M. Schlegel, Generalized parton correlation functions for a

spin-1/2 hadron, JHEP 0908 (2009) 056 [arXiv:0906.5323].

[3] X. d. Ji, Viewing the proton through “color”-filters, Phys. Rev. Lett. 91 (2003) 062001

[hep-ph/0304037].

[4] A. V. Belitsky, X. d. Ji and F. Yuan, Quark imaging in the proton via quantum phase-space

distributions, Phys. Rev. D69 (2004) 074014 [hep-ph/0307383].

– 35 –

http://arxiv.org/abs/0805.3165
http://arxiv.org/abs/0906.5323
http://arxiv.org/abs/hep-ph/0304037
http://arxiv.org/abs/hep-ph/0307383


[5] A. V. Belitsky and A. V. Radyushkin, Unraveling hadron structure with generalized parton

distributions, Phys. Rept. 418 (2005) 1 [hep-ph/0504030].

[6] D. E. Soper, The parton model and the Bethe-Salpeter wave function, Phys. Rev. D15 (1977)

1141.

[7] M. Burkardt, Impact parameter dependent parton distributions and off-forward parton

distributions for zeta → 0, Phys. Rev. D62 (2000) 071503 [Erratum-ibid. D66 (2002)

119903] [hep-ph/0005108].

[8] M. Burkardt, Impact parameter space interpretation for generalized parton distributions, Int.

J. Mod. Phys. A18 (2003) 173. [hep-ph/0207047].

[9] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, The overlap representation of skewed quark

and gluon distributions, Nucl. Phys. B596 (2001) 33 [Erratum-ibid. B605 (2001) 647]

[hep-ph/0009255].

[10] S. J. Brodsky, M. Diehl and D. S. Hwang, Light-cone wavefunction representation of deeply

virtual Compton scattering, Nucl. Phys. B596 (2001) 99 [hep-ph/0009254].

[11] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Skewed parton distributions in real and

virtual Compton scattering, Phys. Lett. B460 (1999) 204 [hep-ph/9903268].

[12] S. Boffi and B. Pasquini, Generalized parton distributions and the structure of the nucleon,

Riv. Nuovo Cim. 30 (2007) 387 [arXiv:0711.2625].

[13] S. Boffi, B. Pasquini and M. Traini, Linking generalized parton distributions to constituent

quark models, Nucl. Phys. B649 (2003) 243 [hep-ph/0207340].

[14] S. Boffi, B. Pasquini and M. Traini, Helicity-dependent generalized parton distributions in

constituent quark models, Nucl. Phys. B680 (2004) 147 [hep-ph/0311016].

[15] B. Pasquini, M. Pincetti and S. Boffi, Chiral-odd generalized parton distributions in

constituent quark models, Phys. Rev. D72 (2005) 094029 [hep-ph/0510376].

[16] D. Diakonov and V. Y. Petrov, Chiral condensate in the instanton vacuum, Phys. Lett. B147

(1984) 351.

[17] D. Diakonov and V. Y. Petrov, A theory of light quarks in the instanton vacuum, Nucl. Phys.

B272 (1986) 457.

[18] D. Diakonov and V. Y. Petrov, Chiral theory of nucleons, JETP Lett. 43 (1986) 75 [Pisma

Zh. Eksp. Teor. Fiz. 43 (1986) 57].

[19] D. Diakonov, V. Y. Petrov and P. V. Pobylitsa, A chiral theory of nucleons, Nucl. Phys.

B306 (1988) 809.

[20] V. Y. Petrov and M. V. Polyakov, Light cone nucleon wave function in the quark soliton

model, hep-ph/0307077.

[21] D. Diakonov and V. Petrov, Estimate of the Θ+ width in the relativistic mean field

approximation, Phys. Rev. D72 (2005) 074009 [hep-ph/0505201].
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