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Abstract: The present paper looks into the problem of optimising the loading of boxes
into containers. The goal is to minimise the unused volume. This type of problem belongs
to the family of Multiple Bin Size Bin Packing Problems. The approach includes an exten-
sive set of constraints encountered in real-world applications in the three-dimensional case:
the stability, the fragility of the items, the weight distribution and the possibility to rotate
the boxes. It also includes the specific situation in which containers are truncated paral-
lelepipeds. This is typical in the field of air transportation. While most papers on cutting
and packing problems describe ad-hoc procedures, this paper proposes a mixed integer linear
program. The validity of this model is tested on small instances.
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1 Introduction

The aim of this paper is to develop a mathematical linear model for the problem of packing a
strongly heterogeneous assortment of boxes into a selection of containers of various shapes.
The objective is to minimise the unused volume.

This problem belongs to the family of cutting and packing problems. We can label it as
a three dimensional Multiple Bin Size Bin Packing Problem (MBSBPP) using the typology
defined by Wäscher et al. (2007). Indeed, this is an input minimisation problem for which
the dimensions of all objects are fixed, the small items being strongly heterogeneous and the
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assortment of large objects, i.e. the containers, weakly heterogeneous. Since our problem is
a packing problem in three dimensions, it therefore also belongs to the family of Container
Loading Problems according to the definition given in Bortfeldt and Wäscher (2013).

In this work, we extend the definition of the MBSBPP to include the situations in which
the large objects may be truncated parallelepipeds. This is of particular importance in the
field of air transportation. In this context, containers are called unit load devices (ULD).
A ULD is an assembly of components consisting of a container or of a pallet covered with
a net, so as to provide standardised size units for individual pieces of baggage or cargo,
and to allow for rapid loading and unloading (Limbourg et al. (2012)). ULDs may have
specific shapes to fit inside aircraft. Several common ULDs are illustrated in Figure 1.

Figure 1: Different shapes of ULDs

Papers on Cutting and Packing problems start by defining geometric constraints to en-
sure that the small items lie entirely and without overlap inside the large objects. Bortfeldt
and Wäscher (2013), on the basis of the paper by Bischoff and Ratcliff (1995), present a
broad set of additional constraints that might be encountered in practical packing situa-
tions. Out of these, our model takes the following into account: the container weight limit,
the orientation constraints, the load stability, the load-bearing strength or fragility of items
and the weight distribution within a container. These constraints are explained in more
details in Section 2. Some of the remaining constraints are not relevant in our situation;
e.g. shipment priorities and multi-drop situations. We indeed assume that all the boxes
must be loaded and grouped by destination, as it is typically the case with ULDs. As
announced, we also take into account the specific shape of the containers.

Our approach differs from the existing works by the set of constraints integrated into
the model but also by other factors like the type of problem, its representation, its method
of resolution and its dimensionality. Some related problems do not correspond to MBSBPP
but fall in other categories of Wäscher et al. (2007)’s typology. The three dimensional Single
Bin Size Bin Packing Problem (SBSBPP) arises when only one type of container is allowed.
The Multiple Stock Size Cutting Stock Problem (MSSCSP) differs from the MBSBPP by
a weakly heterogeneous assortment of small items. The Single Knapsack Problem (SKP)
is an output maximisation problem. In this case, the goal is to select within a strongly
heterogeneous set of small items those to pack inside a single large object. We label it a
Single Large Object Placement Problem (SLOPP) when the set of small items is weakly
heterogeneous.
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Several papers treated the problems in two dimensions either with exact approaches as
in Herz (1972), Beasley (1985), Hadjiconstantinou and Christofides (1995) or with heuristics
as in Christofides and Whitlock (1977) for the SLOPP. More recently, exact approaches
have been developed for the three dimensional SKP (Tsai et al. (1993), Padberg (2000),
Junqueira et al. (2012)) but few for the MBSBPP (Chen et al. (1995), Westerlund et al.
(2005)). Most of the papers about three-dimensional MBSBPP present heuristics (Martello
et al. (2000), Terno et al. (2000), Jin et al. (2003), Techanitisawad and Tangwiwatwong
(2004), Brunetta and Gregoire (2005), Lin et al. (2006), Almeida and Figueiredo (2010),
Ceschia and Schaerf (2013)). In the previously cited papers, only those presenting exact
methods provide a mathematical formulation. Chen et al. (1995) and Westerlund et al.
(2005) are the only ones to consider mathematical formulations for the MBSBPP. However,
some parts of other SKP models could also be reused in this context. The main features
of the previously cited papers are summarised in Table 1.
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Tsai et al. (1993) SKP exact
Padberg (2000) SKP exact
Junqueira et al. (2012) SKP exact × × ×
Chen et al. (1995) MBSBPP exact × ×
Martello et al. (2000) SBSBPP heur. ×
Terno et al. (2000) MBSBPP heur. × × × ×
Jin et al. (2003) MBSBPP heur. × ×
Techanitisawad and Tangwiwatwong
(2004)

MBSBPP heur. × × × ×

Westerlund et al. (2005) MBSBPP exact
Lin et al. (2006) MBSBPP heur. × × ×
Chan et al. (2006) MBSBPP heur. × × × × ×
Almeida and Figueiredo (2010) MBSBPP heur. ×
Ceschia and Schaerf (2013) MBSBPP heur. × × × ×

Table 1: Constraints considered in publications on packing problems

Our main aim is to provide a rich and realistic mathematical representation of this
extended MBSBPP. To the best of our knowledge, we are the first to propose a linear
mathematical formulation taking into account all the mentioned constraints. Moreover, we
test the validity of this linear mathematical model on small instances. These results can
bring some insights on the way of using this formulation for building new heuristics.

This paper is organised as follows. In Section 2, the MBSBPP and the constraints
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considered within our scope are briefly described. The mathematical model is depicted in
Section 3. In Section 4, some comments on the implementation and results are discussed.
Finally, conclusions are drawn in Section 5 as well as some perspectives about the future
research.

2 Problem definition

The aim of this paper is to give a mathematical formulation for the following problem:

min unused space
s.t. each box assigned to exactly one used bin

each box within the limits of the bin
the total weight of the boxes inside a ULD ≤ maximum capacity
orthogonal placement
no overlap
orientation constraints
special shape of the ULDS
stability
fragility
weight distribution.

In more details, the boxes are assumed to be placed orthogonally, i.e. the edges of
the boxes have to be either parallel or perpendicular to those of the containers. In prac-
tice, however, some boxes may not rotate in all directions because of their content; e.g.
some products may not turn upside-down (Chen et al. (1995), Terno et al. (2000), Chan
et al. (2006), Almeida and Figueiredo (2010), Junqueira et al. (2012), Ceschia and Schaerf
(2013)). These constraints are called orientation constraints.

As mentioned already, some ULDs may have a special shape to fit in the fuselage of the
aircraft: some of them look like parallelepipeds that have been cut as shown in Figure 2.
On the left-hand side of Figure 2, one can see an aircraft cross-section where three ULDs
are represented; two of them are on the lower deck and the third one on the upper deck.
On the right-hand side, two ULDs are loaded on the lower deck of a Boeing 747 aircraft.

Figure 2: Special shapes of some ULDs to fit in the fuselage
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On the aircraft cross-section of Figure 2, these special ULDs look like rectangles where
one (or more) corner has been cut. For example, the bins with a shape similar to the two
on the left-hand side of the Figure 3 can fit on the lower deck whereas the two on the
right-hand side can fit on the upper deck. It is obvious that the boxes must lie within
the containers and therefore we should pay attention to their particular shapes (e.g. Chan
et al. (2006)).

Figure 3: Special shapes of ULDS (Projection on the XZ plane)

Cargo stability involves the vertical (or static) and the horizontal (or dynamic) stability
(Terno et al. (2000), Jin et al. (2003), Techanitisawad and Tangwiwatwong (2004), Lin et al.
(2006), Chan et al. (2006), Junqueira et al. (2012), Ceschia and Schaerf (2013)). For the
sake of vertical stability, the bottom side of each box needs to be supported by the top
face of other boxes, by a cut in the case of a special shape or by the container floor. This
constraint is also called static stability as it deals with static containers. The vertical
stability excludes floating boxes. The horizontal stability refers to the capacity of the box
to withstand the inertia of its own body when being moved. The boxes remain in their
position with respect to x and y axes, hence the name of horizontal stability. This paper
only considers vertical stability because horizontal stability could be obtained by adding a
special sheet increasing the friction coefficient or by bounding unstable boxes.

Load bearing strength refers to the maximum number of boxes that can be stacked up.
More generally, it refers to the maximum pressure that can be applied over the top face of a
box without damaging it. Different strategies have been developed to manage this feature
of the cargo (Terno et al. (2000), Junqueira et al. (2012), Ceschia and Schaerf (2013)).
For instance, a box is said to be fragile if no box can be placed upon its top face. This
constraint is quite important in practice because it prevents damaging products contained
in a fragile box. This paper takes box fragility into account.

Once filled, these ULDs are loaded into a compartmentalised cargo aircraft with some
technical and safety constraints. The structure of the Boeing 747 is shown on Figure 4.
Each rectangle represents a possible position for several ULDs.

The ULDs are loaded in such a way that the centre of gravity (CG) of the loaded
plane is as close as possible to a recommended position determined by safety and fuel
economy considerations (Amiouny et al. (1992), Mongeau and Bès (2003), Fok and Chun
(2004), Limbourg et al. (2012), Vancroonenburg et al. (2013)). According to the control
and loading manual of some airline companies such as Boeing (Boeing (2006)), the centre
of gravity of each ULD should lie in a determined area around the geometrical centre of the
ULD. Based on this idea, to calculate the centre of gravity of the plane and to ensure some
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Figure 4: Possible position for the ULDs inside a Boeing 747

weight constraints, the centre of gravity of each ULD is considered as a point in the centre
of the position occupied. This implies some uniformity about the weight distribution inside
the ULDs. Therefore, this assumption is integrated as a constraint in the model as in Chen
et al. (1995), Gehring and Bortfeldt (1997), Davies and Bischoff (1999), Techanitisawad
and Tangwiwatwong (2004), Chan et al. (2006), Kaluzny and Shaw (2009), Baldi et al.
(2012), Moon and Nguyen (2013). Moreover, ULDs have to be loaded in such a way that a
limit weight is satisfied at each slice of one inch of the aircraft. Satisfying the assumption
of uniform weight distribution inside a ULD is therefore crucial.

For more details on the MBSBPP and literature about it, please refer to Bortfeldt and
Wäscher (2013).

3 Mathematical formulation

The description of the problem is as follows. A set of n rectangular boxes of dimensions
li × wi × hi and weight mi (i ∈ {1, ..., n}) has to be packed into m available ULDs of
dimensions Lj ×Wj ×Hj, a maximal capacity, also called maximum gross weight, Cj and
a volume Vj while minimising the unused volume. The packing has to satisfy different
geometric and specific constraints which will be specified later. This paper proposes a
mathematical model for packing the boxes into the ULDs.

3.1 Parameters

The following data is known: the number of boxes to be packed, the dimensions and weight
of each box and the dimensions, maximum gross weight and volume of each container. We
assume that all these numbers are integer even if this means changing the scale. These
parameters are referred to as:

n Total number of boxes to be packed,

m Total number of available ULDs,

li × wi × hi Length × width × height of box i, ∀i,
mi Weight of box i, ∀i,

Lj ×Wj ×Hj Length × width × height of container j, ∀j,
Cj Maximum gross weight of container j, ∀j,

6



Vj Volume of container j, ∀j,

i ∈ {1, ..., n}, j ∈ {1, ..., m}.
To ensure at least one feasible solution, some conditions are assumed to be satisfied:

e.g., the weight of each box is supposed to be less than or equal to the maximum capacity
of the bins: mi ≤ maxj Cj ∀i ∈ {1, ..., n}.

3.2 Variables

Let’s represent the situation in 3D geometric space.

Figure 5: Representation of some parameters and variables: the container is shown in black
lines, the boxes i and k are shown in grey, the coordinate system is on the right.

Without loss of generality, the axes of the coordinate system are assumed to be placed
so that the length Lj (resp. width Wj , height Hj) of the container j lies on the x-axis
(resp. y-axis, z-axis) ∀j ∈ {1, ..., m}. The origin of this coordinate system lies on the front
left bottom corner of the containers. A representation is given in Figure 5.

Here are the various variables used in the model. Note that the subscripts relate to
indices and the superscripts relate to fixed objects.

pij =

{
1 if box i is in container j,

0 otherwise,
∀i, j,

uj =

{
1 if container j is used,

0 otherwise,
∀j,

(xi, yi, zi) Location of the front left bottom corner of box i, ∀i,
(x′

i, y
′
i, z

′
i) Location of the rear right top corner of box i, ∀i,

riab =

{
1 if the side b of box i is along the a-axis,

0 otherwise,
∀i,
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xp
ik =

{
1 if box i is on the right of box k(x′

k ≤ xi),

0 otherwise(xi < x′
k),

∀i,

ypik =

{
1 if box i is behind box k(y′k ≤ yi),

0 otherwise(yi < y′k),
∀i,

zpik =

{
1 if box i is above k(z′k ≤ zi),

0 otherwise(zi < z′k),
∀i,

i, k ∈ {1, ..., n}, j ∈ {1, ..., m}, a, b ∈ {1, 2, 3}.
Note that the variables (xi, yi, zi) and (x′

i, y
′
i, z

′
i) are also assumed to be integer. These

variables describe the position of the box i inside the container. They are represented in
Figure 5.

Since the boxes can rotate orthogonally, the variables riab are introduced to describe the
orientation of the box i inside the container. The index b indicates the side of the box, i.e.
b ∈ {l := 1, w := 2, h := 3}, whereas a indicates the axis, i.e. a ∈ {x := 1, y := 2, z := 3}.
They specify which side of the box i is along which axis. For example, these variables are
equal to

ri11 = 1 ri12 = 0 ri13 = 0 rj11 = 0 rj12 = 0 rj13 = 1
ri21 = 0 ri22 = 0 ri23 = 1 rj21 = 0 rj22 = 1 rj23 = 0
ri31 = 0 ri32 = 1 ri33 = 0 rj31 = 1 rj32 = 0 rj33 = 0

in Figure 5.
To ensure that there is no overlap, we need to know the relative position of two boxes.

To this purpose, the variable xp
ik (resp. ypik, z

p
ik) is equal to 1 if the box i is on the right

(resp. behind, above) of box k. These variables describe all the situations. Indeed, for
instance if the box i is on the left of box k, it means that box k is on the right of box i
and then xp

ki = 1.
In Figure 5, one has

xp i k yp i k
i 0 1 i 0 0
k 0 0 k 0 0

Even if the definition of the zpik is the same as xp
ik and ypik, we will see in subsection 3.4.1

they are not fully determined since it is not necessary. Indeed, only half of the definition
will be guaranteed by the constraints: if zpik = 1, then we are sure that z′k ≤ zi. In the
opposite, if zpik = 0, then we have no information.

3.3 Objective function

The objective function consists in minimising the unused volume of the ULDs

m∑
j=1

ujVj −
n∑

i=1

li wi hi. (1)
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Since li, wi, hi are parameters that are initially given, the term
∑n

i=1 li wi hi is a constant.
Therefore, the volume of the used containers is minimised:

m∑
j=1

ujVj. (2)

If the parameters Vj , ∀j, represented the cost of a ULD, then the objective function
would become a cost minimisation.

3.4 Constraints

According to Bortfeldt and Wäscher (2013), some constraints are considered to be basic
constraints (the geometric ones) and the others to be specific ones. The fact that each
box lies within exactly one ULD and that they do not overlap represents the geometric
constraints. The specific constraints include the orientation constraints, the special shapes
of the ULDs, the stability, the fragility and the even weight distribution.

Before going into any more detail, some parameters are introduced:

L = max
j∈{1,...,m}

Lj , W = max
j∈{1,...,m}

Wj , H = max
j∈{1,...,m}

Hj .

3.4.1 Geometric constraints

Here are the geometric constraints of the model:

n∑
i=1

mi pij ≤ Cj uj, ∀j, (3)

m∑
j=1

pij = 1, ∀i, (4)

x′
i ≤

m∑
j=1

Lj pij , ∀i, (5)

y′i ≤
m∑
j=1

Wj pij , ∀i, (6)

z′i ≤
m∑
j=1

Hj pij , ∀i, (7)

x′
i − xi = ri11 li + ri12 wi + ri13 hi, ∀i, (8)

y′i − yi = ri21 li + ri22 wi + ri23 hi, ∀i, (9)

z′i − zi = ri31 li + ri32 wi + ri33 hi, ∀i, (10)∑
a

riab = 1, ∀i, b, (11)
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∑
b

riab = 1, ∀i, a, (12)

i ∈ {1, ..., n}, j ∈ {1, ..., m}, a, b ∈ {1, 2, 3}.
The maximum capacity of each container j cannot be exceeded, which is ensured by

constraints (3). This set of constraints, in conjunction with the minimisation of the objec-
tive function, fully determines the values of the variables uj. Constraints (4) verify that
each box is allocated to exactly one container. Constraints (5)-(7) ensure that the boxes
do not exceed their container size. Constraints (8)-(12) describe that the boxes can rotate
orthogonally in the container. Note that (8)-(10) imply xi < x′

i, yi < y′i, zi < z′i.
The following constraints ensure that there is no overlap, i.e. two boxes cannot occupy

a same portion of the space

xp
ik + xp

ki + ypik + ypki + zpik + zpki ≥ (pij + pkj)− 1, ∀i, k, j, (13)

x′
k ≤ xi + (1− xp

ik) L, ∀i, k, (14)

xi + 1 ≤ x′
k + xp

ik L, ∀i, k, (15)

y′k ≤ yi + (1− ypik) W, ∀i, k, (16)

yi + 1 ≤ y′k + ypik W, ∀i, k, (17)

z′k ≤ zi + (1− zpik) H, ∀i, k, (18)

i, k ∈ {1, ..., n}, j ∈ {1, ..., m}.
When the variables xp

ik, x
p
ki, y

p
ik, y

p
ki, z

p
ik or zpki equal 1, the two boxes i and k do not

overlap along any of the axes. To prevent having two boxes occupying a same portion of
space, it is sufficient to allow no overlap along at least one of the axes, i.e. at least one
of these variables must equal 1. It leads to constraints (13). An overlap can happen only
if two boxes are in the same bin, which is expressed by the right-hand side of constraints
(13). We have not fully determined the variables xp

ik, y
p
ik and zpik so far. It is not required

to manage the geometric constraints. However, a full determination of xp
ik, y

p
ik will be

necessary for handling some specific constraints. For this reason, constraints (14) and (15)
are added to the model. These constraints ensure that xp

ik = 1 (resp. ypik = 1) if and only
if xi ≥ x′

k (resp. yi ≥ y′k).
Note that the parameters L, W, H are used in these constraints because we do not

know in which container the boxes i and k lie.

3.4.2 Specific constraints

As mentioned already, applying the MBSBPP to the real world situations implies some
specific constraints.

Orientation constraints Some boxes may not rotate in all directions because of their
contents; for instance, some products may not turn upside-down. For this purpose, some
new parameters are introduced for each box i, i ∈ {1, ..., n}:
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l+i =

{
1 if the length of box i could be in a vertical position,

0 otherwise,

w+
i =

{
1 if the width of box i could be in a vertical position,

0 otherwise,

h+
i =

{
1 if the height of box i could be in a vertical position,

0 otherwise.

If all these parameters are set to one, each box is free to rotate in any direction. More
precisely, constraints (8)-(12) allow in this case six orientations for each box. If one pa-
rameter is set to zero, the goal is to forbid two of these six configurations. For example,
only the four configurations depicted in Figure 6 should remain feasible with l+i set to 0.

Figure 6: Possible configurations for the box i if the length of the box could not be along
the z-axis

Likewise, if two parameters equal 0, only two configurations of the box remain possible.
Unless at least one of these parameters equals one, there is no possible configuration.
Keeping in mind that the variables ri3b describe which side of the box i is along the z-axis,
i.e. determine the value of z′i, constraints (19)-(21) come naturally

ri31 ≤ l+i , ∀i, (19)

ri32 ≤ w+
i , ∀i, (20)

ri33 ≤ h+
i , ∀i, (21)

i ∈ {1, ..., n}.

Special shapes of the ULDs As explained in the introduction, some ULDs may have
a special shape to fit into the fuselage of the aircraft. There exist four possible cuts for a
container. Each cut can be described by the linear equation z = ax+ b, where a, b ∈ R and
the left bottom corner of the container before truncation lies at the origin of the coordinate
system as shown in Figure 7. To describe these cuts, eight new parameters (two for each
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cut σ, σ ∈ {1, ..., 4}) are added for each bin j, j ∈ {1, ..., n}: aσj , bσj ∈ R
+ as shown in

Figure 7.

Figure 7: Possible cuts (Projection on the XZ plane)

To lie inside these types of ULDs, each box has to satisfy constraints associated to the
cuts of the bin it is put in:

cut 1: zi + a1jxi ≥ b1j −M(1− pij), ∀i, j, (22)

cut 2: zi − a2jx
′
i ≥ −b2j −M(1 − pij), ∀i, j, (23)

cut 3: z′i + a3jx
′
i ≤ b3j +M(1 − pij), ∀i, j, (24)

cut 4: z′i − a4jxi ≤ b4j +M(1− pij), ∀i, j, (25)

i ∈ {1, ..., n}, j ∈ {1, ..., m}, where M = b1+H +max{a2, a3, 1}L. If a ULD j has not cut
σ, σ ∈ {1, ...4}, then the corresponding constraints are deleted from the model before the
optimisation.

Note that cuts 1 and 2 will influence the vertical stability since a box can be supported
by these cuts as shown on Figure 8.

Figure 8: A box supported by another box and a cut

Vertical stability As explained in section 2, the bottom face of each box has to be
supported by the top face of other boxes, by a cut or by the container floor. Thus, the
boxes are not displaced with respect to z-axis. Especially, the vertical stability excludes
floating boxes.

In this model, we do more than just verify if a box is supported. Physically speaking,
an object is stable if its centre of gravity (CG) lies within its support basis. The weight
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inside the boxes is assumed to be uniform, therefore the CG corresponds to the geometric
centre of the box. By definition, the support basis is the convex hull of all the contact
points. The stability constraints of this model rely on this idea: if a box is not on the
ground, then at least three vertices of its basis must be supported. In this way, the CG will
always lie in the support basis. We chose a layer reasoning: when a box is added, we ensure
that this is stable with respect to the layer below, we do not take into account the boxes
that can be stacked above. This is a simplified assumption and in some rare situations,
an unstable configuration could arise. To avoid these situations, the model could be easily
adapted to ensure that the four vertices of the basis are supported. However it would
imply that the constraints become stronger and that some stable configurations based on
only three vertices would be rejected. To achieve the stability, thanks to some variables,
we determine whether a box is on the ground and whether a vertex of the bottom face is
correctly supported. A vertex of the bottom face of a box i is correctly supported if there is
another box k that has the suitable height to support the vertex, i.e. the coordinate along
the z-axis of the top face of box k equals the coordinate along the z-axis of the bottom face
of box i (z′k = zi), and with a particular overlap of the projections of these two boxes on
the XY plane. To define this overlap, we consider that the vertices of box i are assigned
to a number in the following way: (xi, yi) := 1, (x′

i, yi) := 2, (x′
i, y

′
i) := 3 and (xi, y

′
i) := 4.

As shown on Figure 9, the vertex 1 (resp. 2, 3, 4) is supported if there exists a box k in
the same bin, with the suitable height, such that

xk ≤ xi < x′
k and yk ≤ yi < y′k (resp. xk < x′

i ≤ x′
k and yk ≤ yi < y′k,

xk < x′
i ≤ x′

k and yk < y′i ≤ y′k,
xk ≤ xi < x′

k and yk < y′i ≤ y′k).

Figure 9: The vertex (xi, yi) from box i (in solid lines) is supported by the box k (in dashed
lines) (projection on the XY plane)

For this purpose, new variables are introduced:

gi =

{
1 if box i is on the ground(zi = 0),

0 otherwise,
∀i,

hik =

{
0 if box k has the suitable height to support box i(zi = z′k),

1 otherwise,
∀i, k,
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oik =

⎧⎪⎨
⎪⎩
0 if the projections on the XY plane of the boxes

i and k have a non empty intersection,

1 otherwise,

∀i, k,

sik =

{
1 if box k supports box i and are in the same bin,

0 otherwise,
∀i, k,

η1ik =

{
0 if xk ≤ xi,

1 otherwise,
∀i, k,

η2ik =

{
0 if yk ≤ yi,

1 otherwise,
∀i, k,

η3ik =

{
0 if x′

i ≤ x′
k,

1 otherwise,
∀i, k,

η4ik =

{
0 if y′i ≤ y′k,

1 otherwise,
∀i, k,

βl
ik =

{
1 if the vertex l is supported by box k,

0 otherwise,
∀i, k, l,

γ1
i =

{
1 if the box i lays on cut 1 of the bin in which it lies,

0 otherwise,
∀i,

γ2
i =

{
1 if the box i lays on cut 2 of the bin in which it lies,

0 otherwise,
∀i,

i, k ∈ {1, ..., n}, l ∈ {1, ..., 4}.
Variables sik and oik seem to be unnecessary at first sight, but they will be useful for

the fragility constraints hereunder.
As developed previously, stability constraints could be written as follows

4∑
l=1

n∑
k=1

βl
ik + 2γ1

i + 2γ2
i ≥ 3(1− gi) ∀i ∈ {1, ..., n}. (26)

If the box i is not on the ground, constraints (26) ensure that at least three vertices
are supported, either by another box k, or by a cut. Indeed, if

∑n
k=1 β

l
ik = 1, then it

means that vertex l is supported by box k. Besides, if a box i relies on a cut, then two
vertices are supported. If we want to require four supported vertices, then the factor 3 in
the right-hand side of constraints (26) has to be equal to 4.

To define these new variables, constraints (27)-(48) are added:

zi ≤ (1− gi) H, ∀i, (27)
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z′k − zi ≤ vik, ∀i, k, (28)

zi − z′k ≤ vik, ∀i, k, (29)

vik ≤ z′k − zi + 2H(1−mik), ∀i, k, (30)

vik ≤ zi − z′k + 2Hmik, ∀i, k, (31)

hik ≤ vik, ∀i, k, (32)

vik ≤ hik H, ∀i, k, (33)

oik ≤ xp
ik + xp

ki + ypik + ypki ≤ 2oik, ∀i, k, (34)

(1− sik) ≤ hik + oik ≤ 2(1− sik), ∀i, k, (35)

pij − pkj ≤ 1− sik, ∀i, j, k, (36)

pkj − pij ≤ 1− sik, ∀i, j, k, (37)

βl
ik ≤ sik, ∀i, k, l, (38)

η1ik + η2ik ≤ 2(1− β1
ik), ∀i, k, (39)

η2ik + η3ik ≤ 2(1− β2
ik), ∀i, k, (40)

η3ik + η4ik ≤ 2(1− β3
ik), ∀i, k, (41)

η1ik + η4ik ≤ 2(1− β4
ik), ∀i, k, (42)

xk ≤ xi + η1ik L, ∀i, k, (43)

yk ≤ yi + η2ik W, ∀i, k, (44)

x′
i ≤ x′

k + η3ik L, ∀i, k, (45)

y′i ≤ y′k + η4ik W, ∀i, k, (46)

(1− γ1
i )M ≥ zi + a1jxi − b1j − (1− pij)M, ∀i, j, (47)

(1− γ2
i )M ≥ zi − a2jx

′
i + b2j − (1− pij)M, ∀i, j, (48)

i, k ∈ {1, ..., n}, j ∈ {1, ..., m}, l ∈ {1, ..., 4}.
By constraints (27), if gi equals 1, then box i is on the ground. Constraints (28)-

(33) define the variables hik by using vik which represent the absolute value |z′k − zi| and
mik which is equal to 1 if z′k ≥ zi and 0 otherwise. Constraints (34) are based on the
fact that boxes i and k share a part of their orthogonal projection on the XY plane if
xp
ik + xp

ki + ypik + ypki = 0. A full determination of the variables oik is required in the
hereinafter. If the bottom face of box i is supported by the top face of a box k, it implies
hik + oik = 0. This is represented by constraints (35). A full determination of the variables
sik is also required. A box i can be supported by a box k only if these two boxes are in
the same bin, which is guaranteed by constraints (36)-(37). Constraints (38) certify that a
box k support one vertex of the basis of box i only if this one is supported by box k, i.e.
if sik = 1. The idea of constraints (39)-(42) is depicted in Figure 9. Constraints (43)-(46)
are similar to constraints (15) and (17). Constraints (47) and (48) express that a box i is
supported by a cut if this box satisfies the cut at equality. If the ULD j is a parallelepiped
that has no cut, then the value of γ1

i and γ2
i should equal 0 for all the boxes i located in
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ULD j. For this reason, the following constraints are added:

pij + γ1
i ≤ a1j + b1j + 1 ∀i, j, (49)

pij + γ2
i ≤ a2j + b2j + 1 ∀i, j. (50)

Fragility As explained above, some boxes can be fragile, i.e. they cannot support boxes
on their top face. This can be caused by the nature of the contents of these boxes. To
express that a box i is fragile, a new set of parameters is introduced:

fi =

{
1 if box i is fragile

0 otherwise
∀i ∈ {1, ..., n}.

Constraints (51) ensure that if a box is fragile, then it does not support any other box
on its top face: ∑

i

sik ≤ n(1 − fk) ∀k ∈ {1, ..., n}. (51)

Indeed, the term
∑

i sik represents the number of boxes supported by box k.

Weight distribution In this paragraph, the index i, i ∈ {1, ..., n} denotes the boxes
and the index j, j ∈ {1, ..., m} denotes the ULDs.

As said in the definition of the problem, we would like to ensure some uniformity about
weight distribution. More exactly, according to the control and loading manual of Boeing,
the CG of the ULDs must lie within a specific area. Horizontally, this area is defined
around the geometric centre of the ULD basis. Vertically, the CG must lie below a given
level.

Physically speaking, one has

1. A system of particles moves as if the resultant external force were ap-
plied to a single particle of mass M (mass of the system) located at its
centre of gravity.

2. The x coordinate of the centre of gravity of n particles is defined to be

xCG =

∑
i mixi∑
i mi

(52)

where xi is the x-coordinate of the ith particle and mi its mass.

As a consequence of the first quotation, each box i can be considered as a point located

at the coordinate (
xi+x′

i

2
,
yi+y′i

2
,
zi+z′i

2
) of massmi, because the weight is uniformly distributed

in the boxes. The second quotation states that the CG of the contents of ULD j is located
at the coordinate

1∑
i|pij=1

mi

⎛
⎝ ∑

i|pij=1

mi(
xi + x′

i

2
),
∑

i|pij=1

mi(
yi + y′i

2
),
∑

i|pij=1

mi(
zi + z′i

2
)

⎞
⎠ := (xCGj

, yCGj
, zCGj

),

(53)
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the sums being applied only to the boxes i inside ULD j.
Here is the approach for the x-axis. Since

Lj

2
is the x-coordinate of the geometric centre

of ULD j, we want xCGj
to lie in the neighbourhood of

Lj

2
. To define the allowable range

of the xCGj
, a new parameter αL

j depending on the type of container and on the type of

aircraft is introduced. Then, xCGj
must fall into the interval [

Lj

2
− αL

j ,
Lj

2
+ αL

j ]. To select
only the boxes which are in bin j, some new real variables are introduced

Xij ≡ pij

(
xi + x′

i

2

)
.

According to this definition, they have to satisfy the following constraints

Xij ≤ L pij , ∀i, j, (54)

Xij ≤ xi + x′
i

2
, ∀i, j, (55)

Xij ≥ xi + x′
i

2
− L (1− pij), ∀i, j, (56)

which are linear. To ensure that xCGj
is in the neighbourhood of Lj/2, constraints (57)

are added(
Lj

2
− αL

j

) (∑
i

mipij

)
≤
∑
i

Xij mi ≤
(
Lj

2
+ αL

j

) (∑
i

mipij

)
∀j. (57)

The weight distribution along the y-axis can be managed in the same way. A parameter
αW
j is introduced and yCGj

must lie within the interval [
Wj

2
− αW

j ,
Wj

2
+ αW

j ]. Therefore,
the real variables Yij defined as

Yij ≡ pij

(
yi + y′i

2

)

are introduced. The corresponding constraints, similar to (54)-(57), are

Yij ≤ W pij , ∀i, j, (58)

Yij ≤ yi + y′i
2

, ∀i, j, (59)

Yij ≥ yi + y′i
2

−W (1− pij), ∀i, j, (60)(
Wj

2
− αW

j

) (∑
i

mipij

)
≤
∑
i

Yij mi ≤
(
Wj

2
+ αW

j

) (∑
i

mipij

)
, ∀j. (61)

About the weight distribution along the z-axis, the reasoning is the same except that
the CG can lie as low as possible. Then, a parameter αH

j , which is the maximal value of

17



zCGj
, is introduced. This means that zCGj

must lie within the interval [0, αH
j ]. Therefore,

the real variables Zij defined as

Zij ≡ pij

(
zi + z′i

2

)

are introduced. The corresponding constraints, similar to (54)-(57), are

Zij ≤ H pij , ∀i, j, (62)

Zij ≤ zi + z′i
2

, ∀i, j, (63)

Zij ≥ zi + z′i
2

−H (1− pij), ∀i, j, (64)

0 ≤
∑
i

Zij mi ≤ αH
j

(∑
i

mipij

)
, ∀j. (65)

The weight distribution along the z-axis can become a problem for the containers with a
cut of type 1 or 2.

3.5 Complexity

Counting all the variables and constraints described above, the number of variables is O(n2)
and the number of constraints is O(n2m).

4 Computational experiments

4.1 Context

We have tested our mathematical model on a set of small instances. The goal is to check
the validity of the model and to get some insights that could help us to develop heuristics
for bigger cases. Since our approach is based on a mixed integer linear program, it can
be handled by a standard optimisation library. We rely here on IBM ILOG CPLEX 12.5
with the default parameters. In order to generate the results, we have written a software
program in Java. The role of this program is to prepare the data, to call the optimisation
library and to analyse the results. It includes a 3D interface that allows us to display the
results from different angles and to zoom in and out.

The tests were carried out on a personal computer (Windows 8, Intel Core i7, 2.40GHz,
8.00 GB of RAM). We have limited the computation time to one hour.

We focus on an air transportation application where the containers are ULDs. We
specifically work with two very common models: ULDs of type LD11 and LD6. Those
two types fit for instance in the lower deck of the Boeing 747 Freighter, one of the most
operated cargo aircraft in the world. A full description of these ULDs can be found in the
control and loading manual of the Boeing 747-400F (Boeing (2006)). We give their main
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characteristics in Table 2 and a representation in Figure 10. Containers of LD11 type are
full parallelepipeds while containers of LD6 type are parallelepipeds with a cut of type 1
and a cut of type 2.

Figure 10: LD11 ULD on the two pictures on the left-hand side and LD6 ULD on the two
pictures on the right-hand side.

Length Width Height Capacity Available volume αL αW αH

[inch] [inch] [inch] [kg] [cu ft] [inch] [inch] [inch]

LD11 125 60,4 64 3125 262 12,5 6 34

LD6 160 60,4 64 3125 322 12,5 6 34

Table 2: Data of LD11 and LD6 ULDs. The dimensions are expressed in inch since it is
the most common unit in the field.

The mathematical equation describing the cut of type 1 (resp. type 2) is z = −166
175

x+166
(resp. z = 166

175
x− 236550

175
).

4.2 Basic cases

We provide three sets of basic experiments. They differ by the set of available ULDs:

� Series 1: all the ULDs are identical and parallelepipeds,

� Series 2: all the ULDs are identical and not parallelepipeds,

� Series 3: the ULDs can be parallelepipeds or not.

4.2.1 Series 1

In order to know beforehand the optimal result and to be able to measure the quality of the
solutions, we have generated the box dimensions starting from the definition of the ULDs.
We have constructed two sets of instances. In the first one, the whole load can fit exactly
inside one LD11 ULD without any unused space. In the second set, we have done the same
but with two LD11 ULDs. To get the dimensions of the boxes, the container has been cut,
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one or several times, along each axis at random locations. Each resulting part is a box. By
repeating this procedure with different seed for the random generator and with different
numbers of cuts, we have got several data sets. For instance, to get 8 boxes out of one LD11
ULD, we have drawn at random a value between 0 and L (resp. W ,H) for l (resp. w, h) and
then the dimensions of the boxes are: l×w×h, (L−l)×w×h, l×(W−w)×h, (L−l)×(W−
w)×h, l×w×(H−h), (L−l)×w×(H−h), l×(W−w)×(H−h), (L−l)×(W−w)×(H−h).
If one tries to optimise the loading of the boxes of the first set inside a pool of containers
of type LD11, the optimal solution is clearly to use only one ULD. We have also split one
ULD in 12 (two cuts along X, one cut along Y and Z), 18 (two cuts along X and Y ,
one cut along Z) and 27 (two cuts along each axis) boxes. When we have built boxes to
fit exactly inside two ULDs, we have considered a mixture of decomposition in 8 and 12
boxes. We have generated at random five sets for each of the configurations.

For the sake of simplicity, boxes of series 1 have their weight proportional to their
volume, with the same density for all boxes. For instance, it would be approximately the
case for boxes filled with a same material. By default, boxes are not fragile and can rotate
in all directions. We have also ensured vertical stability with three vertices of the basis
supported. We have relaxed these assumptions in the subsection 4.3.

Although we know that the optimal solution uses only one ULD in the first case and
two in the second one, this information has not been used during the optimisation. On the
contrary, the process has to select the optimal number of ULDs within a pool of three ones.
Note that the computation time increases when more ULDs are available. The main results
are summarised in Table 3. The first column gives the ID of the instance, the second one the
CPU time in seconds, and the third one the number of ULDs selected/required/available.
The last column shows the relative CPLEX GAP, that is, the relative difference between
the objective value of the best feasible solution and the best known lower bound. The
mathematical model allows us to get feasible results for nearly all these instances. Within
the time limit of one hour, the optimal solution is only found for the smallest instances.
For the other ones, the third column gives information about the quality of the solution.
Since all the ULDs have the same volume in this case, the objective function is determined
by the number of ULDs selected by the process. One or two additional ULDs are selected
in the worst cases.

4.2.2 Series 2

We have managed the case of the LD6 truncated containers by decomposing each of them
into two parallelepipeds as illustrated in Figure 11. Then, we have applied separately the
same procedure to those parallelepipeds as for the LD11 type. The instances with 8 boxes
have been composed of both parts cut into 4 boxes. The instances made of 12 boxes have
been built by slicing either the big parallelepiped (in dark grey in Figure 11) into 8 boxes
and the small one (in light grey in Figure 11) in 4 boxes, or the opposite. The former five
instances are denoted “4s+8B” in Table 4 and the latter ones are denoted “8s+4B”. For the
last case, both parallelepipeds have been cut into 8 boxes.

The main results are summarised in Table 4. The first column gives the ID of the
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Inst. Time s/r/a GAP Inst. Time s/r/a GAP

1ULD × 8 boxes 2ULDs × 8 boxes

1 1.017 1/1/3 0% 1 38.408 2/2/3 0%

2 0.922 1/1/3 0% 2 60.509 2/2/3 0%

3 0.532 1/1/3 0% 3 713.373 2/2/3 0%

4 0.923 1/1/3 0% 4 317.340 2/2/3 0%

5 1.235 1/1/3 0% 5 312.452 2/2/3 0%

1ULD × 12 boxes (1ULD × 8) + (1ULD × 12) boxes

1 26.230 1/1/3 0% 1 3600.000 3/2/3 33%

2 30.915 1/1/3 0% 2 1453.679 2/2/3 0%

3 71.357 1/1/3 0% 3 3600.000 -/2/3 –

4 5.532 1/1/3 0% 4 3600.000 3/2/3 33%

5 22.244 1/1/3 0% 5 3600.000 3/2/3 33%

1ULD × 18 boxes 2ULDs × 12 boxes

1 559.588 1/1/3 0% 1 3600.000 3/2/3 33%

2 663.751 1/1/3 0% 2 3600.000 -/2/3 –

3 3600.000 2/1/3 50% 3 3600.000 3/2/3 33%

4 3600.000 2/1/3 50% 4 3600.000 -/2/3 –

5 3600.000 2/1/3 50% 5 3600.000 -/2/3 –

1ULD × 27 boxes

1 3600.000 2/1/3 50%

2 3600.000 -/1/3 –

3 3600.000 -/1/3 –

4 3600.000 -/1/3 –

5 3600.000 -/1/3 –

Table 3: Results of series 1

Figure 11: Decomposition of LD6
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Inst. Time s/r/a GAP Inst. Time s/r/a GAP

1ULD × (4+4) boxes 1ULD × (4s+8B) boxes

1 1.952 1/1/3 0% 1 3600.000 –/1/3 –

2 1.534 1/1/3 0% 2 3600.000 –/1/3 –

3 3.113 1/1/3 0% 3 1278.400 1/1/3 0%

4 3.352 1/1/3 0% 4 133.880 1/1/3 0%

5 1.994 1/1/3 0% 5 2736.852 1/1/3 0%

1ULD × (8s+4B) boxes 1ULD × (8+8) boxes

1 3600.000 –/1/3 – 1 3600.000 -/1/3 –

2 44.885 1/1/3 0% 2 3600.000 -/1/3 –

3 235.490 1/1/3 0% 3 3600.000 -/1/3 –

4 101.724 1/1/3 0% 4 3600.000 -/1/3 –

5 3600.000 –/1/3 – 5 3600.000 -/1/3 –

Table 4: Results of series 2

instance, the second one the CPU time in seconds and the third one the number of ULDs
selected/required/available. The last column shows the CPLEX GAP. All the solutions
satisfy the constraints. However, this series is more complex and the process is not al-
ways able to find a feasible solution within the time limit. The small instances remain
manageable.

4.2.3 Series 3

For the third series, we have generated more complex configurations by mixing the overall
dimensions of both types of containers. We have first started by defining a virtual container
as the smallest parallelepiped able to contain a LD6 container. Then, we have sliced this
virtual container into boxes using the same methodology as the one used for the LD11
type. We have built instances with 8, 12 and 18 boxes. This implies that two containers
are required in the optimal solution. However, in this case neither their type nor the unused
volume can be predicted. In order to strengthen the problem, we have completed these
sets with one additional box generated randomly such as it can fit inside a LD11 container.

For each instance, the optimisation process worked with a pool of two LD6 and two
LD11 ULDs. The main results are summarised in Table 5. The first column gives the
ID of the instance, the second one the CPU time in seconds, the third one the number,
type and filling rate of the ULDs selected in the solution and the fourth column represents
the CPLEX GAP. Considering both types of containers increases the computation times.
Figure 12 shows the configuration of the solution found for the second instance of 13 boxes.
These pictures are screenshots of the 3D interface.
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Figure 12: Optimal solution of the second instance of 13 boxes of the series 3

Inst. Time Filling rate GAP

9 boxes

1 18.839 2 LD11s (68.56%; 59.57%) 0%

2 3.033 2 LD11s (68.23%; 60.15%) 0%

3 30.824 2 LD11s (51.91%; 76.32%) 0%

4 4.018 2 LD11s (69.03%; 60.24%) 0%

5 3600.000 1 LD6 (42.42%); 2 LD11s (39.84%; 37.42%) 36.87%

13 boxes

1 29.960 2 LD11s (62.04%; 66.18%) 0%

2 35.768 2 LD11s (36.57%; 97.85%) 0%

3 157.055 2 LD11s (85.45%; 51.91%) 0%

4 11.712 2 LD11s (58.96%; 86.77%) 0%

5 67.867 2 LD11s (733.84%; 63.31%) 0%

19 boxes

1 3600.000 – –

2 3600.000 – –

3 3600.000 – –

4 3600.000 – –

5 3600.000 – –

Table 5: Results of series 3

4.3 Additional cases

We present some variants of the previous cases. We relax several specific constraints one
at a time. The detailed results are available in the appendix.
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4.3.1 Fragility

To test the impact of the fragility constraints, we have considered some new sets of five
instances composed of 12 boxes randomly cut out of a LD11 ULD. Each box has a given
probability (15%, 20%, 25%, 30%, 40%, 50%) to be fragile. The number of fragile boxes
seems to increase slightly the computation times for some instances and sometimes the
optimal solution can not be reached within an hour. It also seems to influence the number
of selected ULDs. Indeed, when the number of fragile boxes is large, there is sometimes no
more possibility to stack them and we have to use more ULDs.

4.3.2 Orientation

Some boxes may not be allowed to rotate in some directions. To express this situation,
parameters l+i , w+

i and h+
i have been introduced in the formulation. We have built three

new instances composed of 12 non fragile boxes randomly cut out of a LD11 ULD. For each
box of those instances, each of the three parameters is set to zero, i.e. the corresponding
side cannot be in a vertical position, according to a predefined probability (10%, 20% or
30%). For few instances, the optimal solution can not be reached within an hour. As for
the fragility, the number of forbidden rotations seems to influence the number of selected
ULDs.

4.3.3 Weight distribution

We initially make the assumption that the weight of a box is proportional to its volume
and that the density is the same for each box. The weight distribution constraint is easier
to satisfy in this case since the whole load is uniform. Let’s now imagine that all boxes
can have different types of content and different densities, leading to a more heterogeneous
assortment. In the new instances, the 12 non fragile boxes, which have randomly cut out
of a LD11 ULD, can be made of material with three distinct densities. For each box, the
density has been drawn at random. Two triplets of possible densities have been considered.
The difference between the three densities of the first set is smaller than the one between
the three densities of the second set.

For each instance of the sets, three LD11 ULDs are available. The optimisation process,
based on our model, always found the optimal solutions. For these instances, only one ULD
is necessary to pack all the boxes and the computation times do not seem to be influenced
by the different densities of the load.

4.3.4 High vertical stability

In Section 3.4.2, the stability is achieved by supporting either three or four vertices of each
box. Three vertices are sufficient most of the time. It was the case with all the previous
experiments. Requesting four vertices is stronger and more restrictive. In this paragraph,
we measure the impact of this choice. The configuration of the new experiments is the same
as the one for series 1 and 3, excepted for the number of supported vertices requested. Let’s
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note that the optimal solutions of the first series satisfy more easily the stability constraints
with four vertices than the ones of the third series.

In comparison with the results of the series 1, the instances with 8 or 12 boxes are
solved within the same computation times. For the sets of instances with 18 and 27 boxes,
some instances are solved while they were not in the series 1. It seems to be the same for
the series 3. More tests should be carried out to confirm or not this tendency.

No major conclusion can be drawn based on these small tests. Indeed, the aim is to
show the diversity and flexibility of the developed model. However, these observations, and
some insights on the branching scheme, may help to define heuristics in a future work.

Note that all the instances can be found on the following website

http://www.quantom.hec.ulg.ac.be/projects.php.

5 Conclusion

The bin packing problem is a current problem encountered in transport. This paper
presents a mixed integer programming formulation for the three dimensional bin pack-
ing problem deriving from an air cargo application. This formulation deals with some
constraints inherent to transport such as cargo stability and fragility as well as some con-
ditions on the weight distribution. Based on an air cargo application, another distinctive
feature is the special shape of the containers, which are called the Unit Load Devices.
Some of these shapes can influence the stability of the cargo. Our contribution consists
in developing a new mathematical model taking these specificities into account. Besides
minimising the unused space inside the containers, it also proposes an actual loading pat-
tern. We have tested this formulation on small instances and looked at some variants of
the problem.

The MBSBPP problem is known to be NP-hard, opening the way to heuristics. The
obtained results would help to test the more suitable techniques and new procedures com-
bining heuristics and exact algorithms.
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Appendix

Fragility Table 6 contains the results of experiments with fragile boxes. The first column
represents the ID of the instance, the second one the actual number of fragile boxes, the
third one the CPU time in seconds, the fourth one the number of selected LD11s, the fifth
column the CPLEX GAP and the sixth one the filling rate of the selected ULDs.

Frag. Time Sel. GAP Fill. Frag. Time Sel. GAP Fill.

Probability of fragility: 15% Probability of fragility: 20%

1 2 27.339 1 0% 100% 1 2 14.891 1 0% 100%

2 1 986.307 1 0% 100% 2 3 3.551 2 0% 100%

3 2 8.928 1 0% 100% 3 2 35.476 2 0% 80.99%; 19.01%

4 1 25.592 1 0% 100% 4 3 29.172 1 0% 100%

5 2 60.93 1 0% 100% 5 3 32.155 1 0% 100%

Probability of fragility: 25% Probability of fragility: 30%

1 3 3600.000 2 50% 61.88%; 38.12% 1 4 33.164 2 0% 81.69%; 18.31%

2 3 33.018 1 0% 100% 2 3 1981.831 2 0% 77.58%; 22.42%

3 3 25.970 1 0% 100% 3 3 19.540 1 0% 100%

4 3 3600.000 2 50% 60.85%; 39.15% 4 3 28.297 1 0% 100%

5 3 29.737 1 0% 100% 5 4 1328.851 2 0% 25.41% 74.59%

Probability of fragility: 40% Probability of fragility: 50%

1 4 8.870 1 0% 100% 1 6 23.201 2 0% 75.51%; 24.49%

2 4 10.600 1 0% 100% 2 6 594.620 2 0% 39.72%; 60.28%

3 5 79.486 2 0% 58.02%; 41.98% 3 6 136.131 2 0% 27.61%; 72.39%

4 5 70.151 2 0% 77.87%; 22.13% 4 6 58.893 2 0% 61.17%; 38.83%

5 5 30.700 2 0% 13.99%; 86.01% 5 6 12.996 2 0% 23.90%; 76.10%

Table 6: Numerical results for fragile boxes

Orientation Table 7 contains the results of experiments for which some boxes are not
allowed to rotate along the vertical axis. The first column represents the ID of the instance,
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the second one the CPU time in seconds, the third one the number of selected LD11s, the
fourth column the CPLEX GAP and the fifth one the filling rate of the selected ULDs.

Time Sel. GAP Fill. Time Sel. GAP Fill.

Probability of non verticality: 10% Probability of non verticality: 20%

1 16.065 2 0% 66.43%; 33.57% 1 3600.000 2 50% 13.50%; 86.50%

2 13.929 2 0% 81.94%; 18.06% 2 119.821 2 0% 16.97%; 83.03%

3 36.183 2 0% 33.27%; 66.73% 3 123.478 2 0% 17.63%; 82.37%

4 96.916 2 0% 64.54%; 35.46% 4 271.901 2 0% 59.82%; 40.18%

5 44.721 2 0% 47.55%; 52.45% 5 57.507 2 0% 51.39%; 48.61%

Probability of non verticality: 30%

1 4.113 2 0% 58.21%; 41.79%

2 3600.000 2 50% 49.59%; 50.41%

3 3.715 2 0% 40.45%; 59.55%

4 27.622 2 0% 50.63%; 49.37%

5 70.36 2 0% 27.56%; 72.44%

Table 7: Numerical results for forbidden rotations

Weight distribution The density of each box is drawn at random. Table 8 shows the
impact on the results. The first column represents the ID of the instance, the second one
the CPU time in seconds, the third one the number of LD11 selected, the fourth column
the CPLEX GAP and the filling rate in last column.

Time Sel. GAP Fill.

density0=150,000 density1=200,000 density2=250,000

1 36.737 1 0% 100%

2 41.848 1 0% 100%

3 35.491 1 0% 100%

4 30.742 1 0% 100%

5 19.814 1 0% 100%

density0=150,000 density1=300,000 density2=450,000

1 46.151 1 0% 100%

2 37.187 1 0% 100%

3 407.100 1 0% 100%

4 180.541 1 0% 100%

5 158.599 1 0% 100%

Table 8: Numerical results for different densities

High vertical stability Four vertices are required to support each box. This is com-
pared with the first and third series for which only three vertices were required to be
supported. The first column of Table 9 gives the ID of the instance, the second one the
CPU time in seconds, the third one the number of selected ULDs and the fourth column
represents the CPLEX GAP.
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Inst. Time Sel. GAP Inst. Time Sel. GAP

Series 1 Series 3

8 boxes 9 boxes

1 0.812 1 0% 1 6.623 2 LD11s (59.44%; 68.70%) 0%

2 0.814 1 0% 2 7.850 2 LD11s (52.25%; 76.12%) 0%

3 0.923 1 0% 3 26.152 2 LD11s (53.28%; 74.95%) 0%

4 1.815 1 0% 4 2.846 2 LD11s (69.03%; 60.24%) 0%

5 0.830 1 0% 5 3600.000 2 LD11s (51.27%; 14.66%); 1 LD6 (51.91%) 30.96%

12 boxes 13 boxes

1 29.419 1 0% 1 2381.134 2 LD11s (44.19%; 84.97%) 0%

2 6.824 1 0% 2 125.496 2 LD11s (58.37%; 76.06%) 0%

3 50.581 1 0% 3 31.999 2 LD11s (64.38%; 72.98%) 0%

4 3.191 1 0% 4 43.42 2 LD11s (62.44%; 83.29%) 0%

5 27.395 1 0% 5 18.459 2 LD11s (79.74%; 57.42%) 0%

18 boxes 19 boxes

1 516.052 1 0% 1 3600.000 2 LD11s (37.17%; 42.09%); 1 LD6 (40.61%) 69.03%

2 354.786 1 0% 2 1754.217 2 LD11s (81.36%; 58.76%) 0%

3 3600.000 2 50% 3 3600.000 – –

4 3600.000 2 50% 4 3600.000 – –

5 1050.527 1 0% 5 3600.000 – –

27 boxes

1 3600.000 2 50%

2 3600.000 – –

3 3600.000 – –

4 3600.000 3 66%

5 3600.000 – –

Table 9: Numerical results for four supported vertices
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