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The pretzelosity TMD and quark orbital angular momentum
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We study the connection between the quark orbital angular momentum and the pretzelosity transverse-
momentum dependent parton distribution function. We discuss the origin of this relation in quark
models, identifying as key ingredient for its validity the assumption of spherical symmetry for the
nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular
momentum obtained from this relation cannot be interpreted as the intrinsic contributions, but include
the contribution from the transverse centre of momentum which cancels out only in the total orbital
angular momentum.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

One of the novel information contained in the transverse-
momentum dependent parton distributions (TMDs) is the or-
bital motion of the partons inside the nucleon. Most of these
TMDs would simply vanish in absence of quark orbital angu-
lar momentum (OAM). However, there exists no direct quantita-
tive connection between the OAM and an observable related to
TMDs. Any relation in this direction is bound to be model depen-
dent.

Recently, it has been suggested, on the basis of some quark-
model calculations, that the TMD h⊥

1T (also called pretzelosity TMD
due to the typical shapes it produces in the proton rest frame [1])
may be related to the quark OAM as follows [2–4]

Lz = −
∫

dx d2k
k2

2M2
h⊥

1T

(
x,k2). (1)

As emphasized in Ref. [3], the identification in Eq. (1) is valid at
the amplitude level, but not at the operator level. Note also that
the lhs is chiral even and charge even, while the rhs is chiral odd
and charge odd. This means that Eq. (1) can only hold numerically
because of some simplifying assumptions in quark models. In this
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Letter we review this relation in the context of quark models, elu-
cidating its physical origin and the underlying model assumptions
for its validity.

The plan of the Letter is as follows. In Section 2 we introduce
the representations for the quark OAM and the pretzelosity TMD
in terms of overlap of light-cone wave functions (LCWFs), show-
ing that they are in general different. As discussed in Section 3,
the key ingredient to identify the two representations is to assume
spherical symmetry for the nucleon in its rest frame. Within this
assumption, we further show in Section 4 that for the individual
quark contributions the OAM calculated from the pretzelosity can-
not be identified with the intrinsic contribution. The difference is
due to the contribution coming from the transverse centre of mo-
mentum which cancels out only in the total OAM. We conclude
with a section summarizing our results.

2. Overlap representation

In this section we discuss the validity of Eq. (1) comparing
the overlap representations of the quark OAM and the pretzelos-
ity TMD in terms of light-cone wave functions (LCWFs).

In the nucleon Fock space, the N-parton state is described by
the LCWF Ψ Λ

Nβ(r), with Λ the nucleon helicity, the index β la-
beling the quark light-cone helicities λi , flavours qi , and colours.
The LCWFs depend on r = {r1, . . . , rn} which refers collectively to
the momentum coordinates of the partons relative to the nucleon
momentum, i.e. ri = (xi,ki) with xi the longitudinal momentum
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fraction and ki the transverse momentum. An important property
of the LCWFs is that they are eigenstates of the total OAM (ob-
tained from the sum over the N parton contributions)

−i
N∑

n=1

(kn × ∇kn)zΨ
Λ
Nβ(r) = lzΨ

Λ
Nβ(r) (2)

with eigenvalue lz = (Λ − ∑
n λn)/2. As a consequence, the total

OAM can be simply expressed as

Lz =
∑
N,lz

lzρNlz , (3a)

where

ρNlz ≡
∑
β ′

δlzl′z

∫
[dx]N

[
d2k

]
N

∣∣Ψ +
Nβ ′(r)

∣∣2
(3b)

is the probability to find the nucleon with light-cone helicity
Λ = + in an N-parton state with eigenvalue lz of the total OAM.
In Eq. (3b), the integration measures are given by

[dx]N =
[

N∏
i=1

dxi

]
δ

(
1 −

N∑
i=1

xi

)
, (4)

[
d2k

]
N =

[
N∏

i=1

d2ki

2(2π)3

]
2(2π)3δ(2)

(
N∑

i=1

ki

)
. (5)

The LCWF overlap representation of the rhs of Eq. (1) has been
derived for the three-quark contribution in Refs. [5–7] and can be
generalized to the N-parton LCWF as

−
∫

dx d2k
k2

2M2
h⊥

1T

(
x,k2) =

∑
N,β

N∑
n=1

ANβ
n (6a)

with

ANβ
n = −1

2

∑
λ′

n

(σL)λ′
nλn

×
∫

[dx]N
[
d2k

]
Nk̂2

nRΨ ∗+
Nβ ′(r)Ψ

−
Nβ(r) (6b)

representing the contribution of the nth quark in the N-parton
state. Here, β ′ is the same as β except that λn is replaced by λ′

n .
We used also the notations σR,L = σx ± iσy with σi the Pauli ma-

trices and k̂nR,L = knR,L/|kn| with knR,L = kx
n ± iky

n .
As one can see from the overlap representations (3) and (6),

the lhs of Eq. (1) involves no helicity flip and therefore no change
of the total OAM (|
lz| = 0), while the rhs involves two helic-
ity flips in opposite directions (one at the quark level and one at
the nucleon level) leading to a change by two units of total OAM
(|
lz| = 2). This clearly indicates that one should not expect Eq. (1)
to hold in general. We will show however that non-mutually inter-
acting quark models with spherical symmetry in the nucleon rest
frame necessarily satisfy Eq. (1).

3. Spherically symmetric quark models

As argued in Ref. [7], the models of Refs. [2–4] belong to the
class of SU(6) symmetric quark models where the three-quark (3Q)
LCWFs can generically be written as

Ψ Λ
3β(r) = φ(r)

∑
Φ

Λ,q1q2q3
σ1σ2σ3

3∏
D(1/2)∗

σnλn
(r), (7)
σ1,σ2,σ3 n=1
with φ(r) a symmetric momentum wave function normalized as∫ [dx]3[d2k]3|φ(r)|2 = 1, Φ
Λ,q1q2q3
σ1σ2σ3 the SU(6) spin-flavour wave

function satisfying Λ = ∑
n σn , and D(1/2)∗

σnλn
(r) an SU(2) Wigner ro-

tation matrix relating the quark light-cone helicity λn to the quark
canonical spin σn given by

D(1/2)∗
σnλn

(r) =
(

cos θ(r)
2 −k̂nR sin θ(r)

2

k̂nL sin θ(r)
2 cos θ(r)

2

)
σnλn

. (8)

The angle θ(r) between the light-cone and canonical polarizations
is usually a complicated function of the quark momentum k and
is specific to each model. The only general property is that θ → 0
as k → 0. Note also that the general relation between light-cone
helicity and canonical spin is usually quite complicated, as the
dynamics is involved (see for example Ref. [8]). Only in the case
where the target is described in terms of quarks without mutual
interactions, the LCWF can be cast in the form of Eq. (7).

Since the functions φ(r) and θ(r) depend on the quark trans-
verse momenta only through k2

n , one has

−i(kn × ∇kn )z

{
φ(r)
θ(r)

}
=

(
knR

∂

∂knR
− knL

∂

∂knL

){
φ(r)
θ(r)

}
= 0. (9)

Using the 3Q LCWF in Eq. (7), we find that the total quark OAM
can be expressed as

Lz =
∫

[dx]3
[
d2k

]
3

∣∣φ(r)
∣∣2

sin2 θ(r)

2
(10)

which implies that 0 � Lz < 1. Using now the results of Ref. [7]
we find that the isosinglet axial charge 
Σ = ∑

q 
q is given by


Σ =
∫

[dx]3
[
d2k

]
3

∣∣φ(r)
∣∣2

(
1 − 2 sin2 θ(r)

2

)
. (11)

It is then straightforward to check the conservation of the total
angular momentum

J z = 1

2

Σ +Lz = 1

2
. (12)

The way the total angular momentum J z is shared between the
quark OAM and spin contributions is driven only by the rotation
(8) which is a typical relativistic effect. In the non-relativistic limit,
there is no distinction between light-cone helicity λ and canonical
spin σ , and the spin rotation matrix (8) reduces to the identity,
with θ(r) → 0. One then recovers the well-known result that in
a non-relativistic picture, the nucleon spin arises only from the
quark spins J z = 1

2 
ΣNR since LNR
z = 0. Using again the results of

Ref. [7], we find for the rhs of Eq. (1),

−
∫

dx d2k
k2

2M2
h⊥

1T

(
x,k2)

=
∫

[dx]3
[
d2k

]
3

∣∣φ(r)
∣∣2

sin2 θ(r)

2
, (13)

which agrees with the expression for Lz in Eq. (10).
As long as the LCWF keeps a structure similar to Eq. (7), one

can proceed in the same way for any N-quark state and reach the
same conclusion. We also note that the SU(6) symmetry is not
necessary as long as spherical symmetry in the nucleon rest frame
is assumed.
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4. Flavour separation

Since the transverse-position operator r̂n is represented in
transverse momentum space by i∇kn , we may interpret −i(kn ×
∇kn )z as the operator giving the OAM contribution due to the nth
quark. The total OAM can then be decomposed as

Lz =
∑
N,β

N∑
n=1

LNβ
nz , (14)

where

LNβ
nz = −i

∫
[dx]N

[
d2k

]
NΨ ∗+

Nβ (r)(kn × ∇kn )zΨ
+
Nβ(r) (15)

represents the contribution of the nth quark in the N-parton state
characterized by β . The contribution due to quarks of flavour q is
then given by

Lq
z =

∑
N,β

N∑
n=1

δqqnL
Nβ
nz . (16)

Note that this is the expression that was used in the model calcu-
lations of Refs. [2–4].

Similarly, we have

−
∫

dx d2k
k2

2M2
h⊥q

1T

(
x,k2) =

∑
N,β

N∑
n=1

δqqnA
Nβ
n (17)

with ANβ
n given by Eq. (6b). Using the generic 3Q LCWF in Eq. (7),

we obtain the flavour-dependent version of Eq. (1)

Lq
z = −

∫
dx d2k

k2

2M2
h⊥q

1T

(
x,k2). (18)

We have therefore reproduced the result of Refs. [2–4] and ex-
tended its validity to the whole class of models where the 3Q
LCWF has the generic structure (7).

However, it is important to note that Lq
z does not repre-

sent the intrinsic OAM contribution due to quarks of flavour q.
While kn represents the intrinsic transverse momentum of the nth
quark (we consider a target with vanishing transverse momentum,
P = ∑

n kn = 0), i∇kn does not represent the intrinsic transverse-
position operator of the nth quark in momentum space. In order
to define an operator for the intrinsic transverse position, one has
to specify a privileged point which is identified with the centre of
the target. In a non-relativistic description, the centre of the target
is identified with the centre of mass of the system. In a relativistic
description, the transverse centre of the target R is identified with
the transverse centre of momentum i

∑
j x j∇k j in the light-front

form [9–11]. The operator giving the intrinsic OAM contribution
due to the nth quark is therefore −i

∑
j(δnj − x j)(kn × ∇k j )z . The

intrinsic contribution of the nth quark in the N-parton state char-
acterized by β then reads

�
Nβ
nz = −i

N∑
j=1

(δnj − x j)

×
∫

[dx]N
[
d2k

]
NΨ ∗+

Nβ (r)(kn × ∇k j )zΨ
+
Nβ(r). (19)

Note that the expression for �
q
z = ∑

N,β

∑
n δqqn �

Nβ
nz coincides with

the OAM computed directly from the quark phase-space distribu-
tion [12,13]

�
q
z =

∫
dx d2k d2r(r × k)zρ

[γ +]q
++ (r,k, x), (20)
where ρ
[γ +]q
++ (r,k, x) is the Wigner distribution for unpolarized

quarks with flavour q in a longitudinally polarized nucleon. This
supports the interpretation of the Wigner functions defined in
Ref. [12] as intrinsic phase-space distributions of quarks inside the
target. Eq. (19) also corresponds to the LCWF overlap representa-
tion of the Jaffe–Manohar OAM [13].

In general we have �
q
z �= Lq

z while �z = Lz , as it was observed
in Ref. [12] for the light-cone version of the chiral quark-soliton
model and a light-cone constituent quark model. This can be un-
derstood with simple classical arguments. If the coordinates of the
nth parton with respect to some origin O are rn , the coordinates of
the same parton with respect to another origin O ′ are r′

n = rn − d,
where d is the vector connecting the two origins in the transverse
plane. We then have

∑
n

r′
n × kn =

∑
n

rn × kn − d ×
∑

n

kn =
∑

n

rn × kn, (21)

since
∑

n kn = P = 0. In other words, the fact that the nucleon
has no transverse momentum removes the dependence of the total
OAM on the choice of the privileged point. One can also directly
see that once summed over n, Eqs. (15) and (19) become identical.

5. Conclusions

We showed that, for a large class of quark models based on
spherical symmetry, the orbital angular momentum can be ac-
cessed via the pretzelosity transverse-momentum dependent par-
ton distribution. The individual quark contributions to the orbital
angular momentum obtained in this way do however not corre-
spond to the intrinsic quark orbital angular momentum. On the
other hand, the intrinsic contributions can be obtained from the
Wigner distributions as recently shown in Ref. [13]. The two calcu-
lations agree for the total OAM, since in the sum over the individ-
ual quark contributions the spurious terms due to the transverse
centre of momentum cancel out.
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