<u>12th EMS – 9th ECAC meeting</u>

On the possibility to develop a rainfall data set over Belgium and Europe for climate monitoring using SEVIRI data :

Validation and application of Cloud Physical Properties algorithm from the KNMI

Beaumet, J.¹, Clerbaux, N.², Fettweis, X.¹ and Erpicum, M.¹ ¹Laboratory of Climatology and Topoclimatology, University of Liège, Belgium ²Royal Meteorologic Institute of Belgium, section Remote Sensing, Uccle, Belgium

Bi-spectral method and CPP-PP algorithm

- Rvis (0.6 µm) ∝ Cloud optical thickness (COT)
- RNIR (1.6 μm, 2.1 μm or 3.8 μm) 1/∝ effective radii of particles (Re)
- R0,6µm and R1,6µm \rightarrow LUT(DAK) \rightarrow Re and COT \rightarrow CWP (g.m⁻²)

Delineation of precipitation areas :

CWP>CWP_T (160 g.m⁻², Wentz & Spencer, 1997) & phase = ice or CWP>CWP_T et Re > Re_T (14 μ m, Rosenfeld & Gutman, 1994)

Bi-spectral methods and CPP-PP algorithm

Rain Rates :

- Cloud column height : н = (СТТтах СТТ)/6,5 + dH
- Rain rate (mm/h) :

R = c/H . [CWP-CWPT/ CWPT] $^{\alpha}$

- Previous validation :
 - Validation of cloud physical properties with ground measurements (Roebeling *et al.,* 2006)
 - Validation with weather radar from KNMI (Roebeling & Holleman, 2009)
 ! Two months, only convectives precipitations (May-June 2007)!
- GOAL of this study : Validation over a longer period (2005-2011) + Test algorithm performances through yearly, daily cycles, for different kinds of precipitation → highlight limitation for potential applications

Processing and parallax shift correction

- Reprojection of radar data → satellite data projection
- Parallax shift correction

 <u>Delineation of precipitation area</u>: Contingency matrix

Estimated	Dbserved no rain	rain
no rain	r	m
rain	f	h

FAR = f / (h + f)POD = h / (h + m)CSI = h / (h + f + m)

POD	25-30°	30-35°	35 - 40°	40-45°	45-50°	50-55°	55-60°	60-65°	65-70°	70 - 75°	75 - 80°
Jan									54,2 ± 0,312	45,7±0,140	40,0±0,222
Feb							49,0±0,375	39,3±0,194	48,4±0,147	46,4±0,174	41,9±0,237
Mar					49,7±0,207	52,1 ± 0,163	56,3±0,154	53,9 ± 0,181	49,9 ± 0,194	44,9±0,200	41,3±0,259
Apr		59,1 ± 1,820	70,5±0,275	57,7±0,189	52,5±0,195	56,5±0,227	56,2±0,237	54,8±0,244	50,5 ± 0,252	47,0±0,253	43,7 ± 0,321
May	49,8±0,288	57,1±0,142	59,6±0,150	60,2±0,174	60,5±0,184	59,7±0,187	58,6±0,189	56,6±0,188	54,1 ± 0,189	51,1±0,188	48,8±0,236
Jun	59,8±0,155	62,3±0,177	63,0±0,203	62,0±0,213	60,2±0,222	58,2±0,225	55,2±0,225	52,1 ± 0,225	50,0±0,228	47,7±0,231	45,9±0,292
Jul	50,3±0,177	53,4±0,135	53,3±0,166	52,8±0,179	52,5±0,188	50,8±0,195	50,1 ± 0,200	48,9±0,204	47,9±0,206	46,1±0,208	43,6±0,262
Aug		49,7±0,268	61,3±0,137	59,4±0,142	60,8±0,168	61,3±0,177	59,9±0,185	58,2±0,188	56,2±0,190	52,3±0,192	49,4±0,246
Sep				75,5±0,287	64,9±0,224	63,4±0,264	58,2±0,290	56,3±0,331	49,6±0,344	43,4±0,356	37,2±0,480
Oct						67,7±0,333	58,6±0,162	51,1 ± 0,113	46,3±0,094	43,4±0,086	40,1 ± 0,123
Nov								51,0±0,499	44,3±0,093	40,8±0,071	38,0 ± 0,110
Dec										50,2±0,125	46,8± 0,154

Delineation of precipitation area

Delineation of precipitation areas

Spatial extent of precipitation (in %) - comparison image per image (slots)

	Mean RAD	Mean SAT(CPP)	Mean err.	Corr. Coeff (R ²)
DJF	6,47%	5,64%	+0,84%	0,69
MAM	6,05%	6,34%	-0,29%	0,83
JJA	6,81%	7,49%	-0,68%	0,87

Good correlation + low mean error \rightarrow ability of the algorithm for the delimitation of precipitation areas

Estimation of rain rates

Winter (11-13 UTC)

Estimation of rain rates : daily mean

MAM (10-15 UTC) Mean RAD : 0,09 mm/h Mean SAT : 0,12 mm/h Mean err. : + 33% !? JJA (09-16 UTC) Mean RAD : 0,16 mm/h Mean SAT : 0,20 mm/h Mean err. : + 25% !?

Estimation of rain rates

- MEDIAN sat/MEDIAN rad and PC95 sat/PC95 rad.

- Strong toward highest sza.

- PC95 always > 1

- Overestimation of «extreme values» for every sza conditions
- Systematic overestimation for high values of sza (> 60°)

Discussion - Conclusion

 \rightarrow Overestimation of extreme values with CPP; systematic overestimation for high sza values - WHY ?

- Strongest effects of instrument uncertainties on reflectance measurement (Cattani et al., 2007)
 → SEVIRI saturates for clouds with LWP > 700 g.m⁻² (Roebeling et al., 2006)
- Bias on measurements for high values of SZA: Shadows effect, 3D cloud effects, lateral transfer of photon,...
- Delineation of precipitation areas with CPP accurate and reliable (! effects of sza > 65-70° !)
- Overestimation of rain rates for very thick clouds and/or when sza is high (> 60°). Reliable and unbiased assessment of rain rates for March to September at mid-day hours at our latitudes.

Discussion - Conclusion

Potential applications :

 Data assimilation/validation for models, climate monitoring (! limitations on high sza values !)

- Near real-time

- Climate monitoring, data on cloud physical properties

(COT, Re, LWP)

Summer time : 10-15 UTC

Winter time : 11-13 UTC

Frequency of 'non precipitating clouds' – High values of LWP (> 160g.m-2) and low values of Re (< 14 μ m) \rightarrow Effects of strong updrafts VS **aerosols indirect effect** \rightarrow Earth radiation budget, onset of precipitation, delay of cloud clearance,...

<u>Bibliography</u>

- Cattani, E., Melani, S., Levizzani, V., & Costa, J.M. (2007). The retrieval of cloud top properties using VIS-IR channels. In measuring precipitation from space, EURAINSAT and the future, 79-95. Springer (eds.)
- Roebeling, R., Feijt, A.J. & Stammes, P. (2006). Cloud property retrieval for climate monitoring : Implications of differences between Spinning Enhanced Visible and Infrared Imager on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geoph. Res, 111, doi:10.1029/2005JD006990
- Roebeling, R., Deneke, H.M. & Feijt, A.J. (2008). Validation of Cloud Liquid Water Path retrievals from SEVIRI using one year of CloudNet Observations. *J. App. Meteorol. and Clim.*, **47**, 206-222.
- Roebeling, R., & Holleman, I. (2009). SEVIRI rainfall retrieval and validation using using weather radar observations. J. Geophys. Res., 114, doi:10.1029/2009JD01212

Questions?

Contact : julien.beaumet@student.ulg.ac.be beaumetjulien@gmail.com nicolas.clerbaux@oma.be