
Time-dependent Marangoni-Bénard instability of an evaporating binary-liquid layer

including gas transients

H. Machrafi,1, a) A. Rednikov,2 P. Colinet,2 and PC. Dauby1
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We are here concerned with Bénard instabilities in a horizontal layer of a binary

liquid, considering as a working example the case of an aqueous solution of ethanol

with a mass fraction of 0.1. Both the solvent and the solute evaporate into air (the

latter being insoluble in the liquid). The system is externally constrained by impos-

ing fixed “ambient” pressure, humidity and temperature values at a certain effective

transfer distance above the liquid-gas interface, while the ambient temperature is

also imposed at the impermeable rigid bottom of the liquid layer. Fully transient

and horizontally homogeneous solutions for the reference state, resulting from an in-

stantaneous exposure of the liquid layer to ambient air, are first calculated. Then, the

linear stability of these solutions is studied using the frozen-time approach, leading to

critical (monotonic marginal stability) curves in the parameter plane spanned by the

liquid layer thickness and the elapsed time after initial contact. This is achieved for

different ratios of the liquid and gas thicknesses, and in particular yields critical times

after which instability sets in (for given thicknesses of both phases). Conversely, the

analysis also predicts a critical thickness of the liquid layer below which no instability

ever occurs. The nature of such critical thickness is explained in details in terms of

transient mass fraction profiles in both phases, as it indeed appears that the most

important mechanism for instability onset is the solutal Marangoni one. Importantly,

besides the result obtained previously under the quasi-steady assumption in the gas

phase [Machrafi et al, Eur. Phys. J. Special Topics 192, 71 (2011)], it is shown

that relaxing this assumption may yield essentially lower values of the critical liquid

thickness, especially for large gas-to-liquid thickness ratios. A good-working analyt-

ical model is developed for the description of such delicate transient effects in the

gas. The analysis reveals that the system considered in this paper is generally highly

unstable, the instability setting in even for very small times and liquid thicknesses.

a)Electronic mail: H.Machrafi@ulg.ac.be
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I. INTRODUCTION

In general, Bénard instabilities in horizontal liquid layers are those associated with im-

posed vertical temperature or concentration gradients1−4. The system is destabilized by

means of the buoyancy and/or surface-tension-gradient mechanisms, the corresponding in-

stabilities being named, respectively, Rayleigh-Bénard or Marangoni-Bénard. They are said

to be thermal if caused by temperature gradients and solutal if caused primarily by con-

centration gradients. Moreover, it is also possible that the temperature gradients cause a

solutal effect (the Soret effect) or that concentration gradients cause a thermal effect (the

Dufour effect), even though the latter is typically considered negligible in the context of

Bénard layers.

In the case of evaporating liquid layers, vertical temperature gradients occur naturally

inside the system (even in isothermal surroundings) due to an evaporation-induced cooling

of the interface. For binary mixtures, concentration gradients generally also occur due to dif-

ferent volatilities of the components. In short, evaporation is potentially able to induce both

thermal and solutal Rayleigh-Marangoni-Bénard instabilities. The case of one-component

liquids has been studied rather thoroughly in the literature (e.g. the papers5,6, to mention a

few). However, fewer studies exist as far as the case of two-component liquids is concerned.

In the case the liquid is evaporating into its vapor, one can mention some works7,8, where the

importance of sidewall effects, surface deflection and of an imposed temperature gradient was

analyzed. For the case the liquid is evaporating into an inert gas (which is of interest in the

present paper), one can mention a theoretical study for a droplet with thermal and/or solutal

Marangoni effects9, a scaling analysis10 for the solutal Bénard-Marangoni instability, studies

of thermal and solutal Bénard problems on evaporating polymer solutions11−13, an analysis

of buoyancy-driven solutal instabilities in water-alcohol mixtures14 and experiments were

also reported14−17. Besides, the Bénard problem for an evaporating binary-mixture layer

(10 %wt ethanol in water as a concrete example) was considered in our previous works18,19

using quite a detailed physical model that includes the thermal and solutal Rayleigh and

Marangoni effects, the Soret effect, and accounts for an active role of the gas phase (with-

out merely describing using heat and mass transfer coefficients). The focus was on the

critical liquid-layer thicknesses for the onset of monotonic instability. In18, stability of

quasi-stationary reference states was analyzed. Comparing the Marangoni and Rayleigh,
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thermal and solutal effects with one another, it has been shown that the Marangoni effect

is much more important than the Rayleigh effect and that the solutal effect is also by far

more important than the thermal effect at least as far as the instability onset is concerned

(for the system treated in this paper). The instability mechanism at the onset was thus

concluded to be primarily of the solutal Marangoni type. Given the extremely small critical

liquid layer thicknesses obtained in our analysis18, we have also deduced that an initially

well mixed binary liquid with a realistic thickness of, say, 1 mm should become unstable

very shortly after its exposure to air, much before the transient diffusional boundary layers

developing from the interface have reached the bottom of the liquid. This was confirmed in19

by considering transient concentration reference profiles in the liquid, even though the other

reference profiles were still considered as quasi-stationary. However, on the other hand, the

small critical thickness values previously obtained18,19 signal that the time scales associated

in the instability development may be so small (i.e., fast) that the partial relaxation of the

quasi-stationarity assumption adopted in19 may not be overall sufficient. In particular, it

would be interesting to examine if and when the transient behaviour in the gas phase should

be taken into account in modeling the evaporation system of a binary mixture in contact

with air. Thus, studying the instability with time-dependent reference profiles for both the

temperature and the concentration in both the liquid and the gas layers is in principle of

essential interest here. It is this kind of analysis that will be carried out in the present paper

by means of the frozen-time approach, the focus being on both the critical time for instability

onset (for given thicknesses of both layers) and on the critical thickness of the liquid layer

(for a given ratio gas/liquid) below which no instability ever occurs. Nevertheless, as in the

majority of works in the literature, we here still rely upon the quasi-stationary assumption

as far as the variation of the liquid-layer thickness due to evaporation is concerned, in the

sense that this variation is considered slow as compared to the diffusive and/or thermal

time scales of the system. This essentially means that the thickness is assumed to remain

effectively constant on the relevant time scales of the problem. In general, the influence of

the ratio of the gas thickness to that of the liquid is then expected to play an important role.

A parametric study will be carried out here for a number of gas/liquid thicknesses ratios. A

significant departure from the results of19 is actually expected first of all when these ratios

are high, as will be detailed in this work.

The paper is organized as follows. First, the formulation is given in section II, describing
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the physics of the problem. Then, the general results of the reference-state behavior and

the stability analysis are presented in section III. Subsequently, these results are discussed,

focusing on the predominant instability onset mechanism and on inessential effects (section

IV.A), on the behavior at relatively small gas-to-liquid thickness ratios (section IV.B), and

at relatively large ones (section IV.C), for which the importance of transients in the gas

phase is identified (section IV.D). Conclusions are summarized in section V. Note that most

technical details and mathematical developments, largely similar to those presented in18 are

presented in appendices A-E, which are provided as supplementary material20. The full

mathematical description of the system is provided in appendix A, whereas appendices B

and C describe its application to the reference state and to the problem for perturbations,

respectively. Appendix D is dedicated to an approximate, Pearson-like model, widely used

in the discussion of section IV. Finally, appendix E considers the small-time limit of this

latter model, which is also widely referred to in sections III and IV. The present paper has

been written, however, in order to be understandable without necessarily consulting this

supplementary material.

II. FORMULATION

FIG. 1. Sketch of the system.

A sketch of the physical system is presented in Fig. 1. It consists of a horizontal binary

(solvent and solute) liquid layer of thickness dl evaporating into an inert gas through an

undeformable interface. A discussion on the justification of assuming an undeformable

interface can be found in previous work18 and applies here as well, since we are here interested
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in non-longwave modes of instability, for which the surface deformability is well suppressed

by the capillarity (cf.18). Inert-gas absorption into the liquid is neglected. The gas layer

thickness is here given by a certain “transfer distance”, dg. It can be described as a typical

equivalent (effective) diffusion length in the gas phase at which the diffusive transport is

formally of the same magnitude as the convective transport in a real setup, as determined

by air currents which may be naturally present (e.g. due to buoyancy) or deliberately

created (ventilation). In this approach, the gas located above the gas layer, of thickness dg,

is considered as perfectly mixed while ensuring given “ambient” values of temperature and

mass fractions (humidity) at the effective upper boundary of the gas layer. The total pressure

is also imposed there. More details on such an approach are given in5,18. Other boundary

conditions imposed at the top of the gas phase are a constant normal stress and a zero shear

stress18. At the liquid-gas interface, the following conditions are considered: the tangential

stress balance including the thermal and solutal Marangoni stresses, the no-slip condition,

the temperature continuity, the heat flux balance including the heat of evaporation, the mass

flux conservation (for each species) and the local equilibrium (Henry’s law for the solute and

Raoult’s law for the solvent, assuming a sufficiently dilute case). At the bottom of the liquid

layer we consider a constant temperature Tb (the same as at the top of the gas layer), the

index “b” formally indicating the bottom boundary (even though Tb is actually the ambient

temperature here), the no-slip condition and a zero normal velocity. As for the mass fraction

condition at the bottom, it is governed by a zero-flux condition, expressing that the bottom

boundary is impermeable. The Boussinesq approximation is adopted for both phases of the

system, implying that the material properties of the fluids are treated as constant except

for the density in the buoyancy terms, where it depends linearly on the temperature and

mass fractions. In full, the equations and boundary conditions are provided in appendix

A1. This model is in fact quite similar to the one used previously18,19 and for this reason a

step-by-step development of the equations is not repeated here in the main text.

Initially, the liquid is at rest (v⃗l = 0, with v⃗ the barycentric velocity), with an initial

temperature Tl = Tb and an initial mass fraction cl = cb. The gas has an initial temperature

Tg = Tb and initial solvent and solute vapor mass fractions cg1 = ct1 and cg2 = ct2. The

subscripts “l” and “g” relate to the liquid and gas phases, respectively. The subscripts “1”

and “2” stand for the solvent and the solute, respectively. The subscript “t” refers to the top

boundary (of the gas layer), and thus ct1 and ct2 actually correspond to the ambient humidity
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expressed in terms of the mass fractions. Let us define the moments before evaporation is

allowed as t < 0 and the time it is enabled as t = 0. From t = 0+ on, the time-evolving

temperature and mass fraction profiles in the liquid and gas phases start to develop in the

form of boundary layers growing from the interface. After a certain time, this transient

state may become unstable and this instability is the main question analyzed in the present

paper. In the present analysis, the liquid will be a mixture of water (solvent) and ethanol

(solute). The inert gas is air. We shall also choose Tb = 300K, cb = 0.1, ct1 = 0 and

ct2 = 0. The physical properties used in this paper can be found in Table I of appendix A3.

The references to the sources of these physical properties can be found in previous work18.

Note that we have chosen here a zero humidity for the air far from the interface, with zero

concentrations for both solvent and solute (ct1 = 0 and ct2 = 0). Should water evaporate

slower, due to a larger humidity in the gas, the concentration gradients in the liquid become

stronger, obtaining a more unstable system. In the present paper, we have chosen not to

make a parametric study versus the humidity, focusing on other pertinent issues.

First, one has to determine the horizontally uniform reference state of which the stability

will be analyzed later on. The corresponding formulation is easily deduced from the general

one. Certain details are provided in appendix B. In the present work, the problem for the

reference state is solved numerically, using a standard finite-difference method.

Then, small perturbations are superimposed over the reference solution and their evo-

lution is studied. The linearized formulation for perturbations is given in appendix C. It

is here obtained under the so-called frozen-time approach, which consists in carrying out

the stability analysis of the reference solution at a certain instant as if this reference so-

lution were stationary, as previously used18,19,21. Therefore, normal modes are introduced

and the growth rates σ of these modes are calculated by solving an eigenvalue problem,

using a spectral Tau-Chebyshev method (a classical spectral method that is described in

the literature18,22−26 and explained in27). The marginal condition is then determined by

σ = 0 (here it turns out that the eigenvalues σ are all real and thus the instability is always

monotonic).

Chosen the solute, solvent and inert gas and given the ambient conditions, the main

control parameters we are left with are dl and dg or, equivalently, dl and H ≡ (dl + dg)/dl.

In the present paper, we consider H as a fixed parameter and for a given dimensionless

time t (and the corresponding instantaneous reference profiles), we calculate the critical
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liquid thickness dl corresponding to σ = 0. The results (for a fixed H) can also be (more

intuitively) interpreted inversely by plotting the critical time t at which a layer of a given

thickness dl possesses a marginal frozen-time perturbation.

III. RESULTS

We present here the general results of our work. First, the evolution of the reference

solution is described and some of its characteristics are emphasized for later use. Then, the

results of the linear stability analysis are considered. Further discussion and details will be

provided in section IV.

A. Reference state

When evaporation starts at t = 0, the evolution of the reference solution consists first

and foremost in the development of five diffusive boundary layers in the originally spatially

uniform liquid and gas layers: the temperature Tl and solute mass fraction cl in the liquid

phase (1 − cl is then that of the solute) and the temperature Tg as well as the solute

and solvent mass fractions cg1 and cg2 in the gas phase (1 − cg1 − cg2 is then that of air).

The development of these boundary layers is also accompanied by a decrease of the liquid

thickness due to evaporation, but the latter is assumed to be very slow at the relevant time

scales here, and hence the thickness variation is neglected (or, in other words, treated quasi-

stationarily). Later on in this paper, we will also show that the reference profiles of the

temperature field do not play a significant role. For all these reasons, our comments in the

present section will mainly focus on the mass fraction reference profiles in the gas and liquid

phases.

Fig. 2 shows the time evolution of the reference profiles for the solute mass fraction in

the liquid and for the solute and solvent mass fractions in the gas for three values of the

parameter H. The time variable is here dimensionless, the scale being d2l /Dl, where Dl is

the diffusion coefficient in the liquid. As a first observation, let us stress that the mass

fractions on both sides of the liquid-gas interface present a certain instantaneous “jump”

at t = 0, a consequence of suddenly bringing into contact two uniform media that are not

in equilibrium with each other. For whatever H value, the interface values suddenly jump
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to cl ≈ 0.0979, cg1 ≈ 0.0210 and cg2 ≈ 0.0211 from the initial values cl = 0.1, cg1 = 0 and

cg2 = 0, respectively. The jump and the development of the boundary layers at these small

times can actually be described by standard self-similar solutions (appendix E), for which

the mass fractions at the interface remain constant. After some time, these boundary layers

will however reach the limits of the system and the self-similar description loses its validity

(hence leading to a departure from the interfacial values of cl, cg1 and cg2 just mentioned as

seen in Fig. 2). Depending on the value of parameter H, either the liquid boundary layers

will first attain the bottom (sufficiently large H) or the gas boundary layers will first attain

the top (sufficiently small H), or both simultaneously (in some intermediate range of H).

FIG. 2. The reference solution for the solvent mass fraction in the gas (upper), the solute mass

fraction in the gas (intermediate) and the solute mass fraction in the liquid (lower) for H = 2 (left),

11 (middle) and 101 (right) at an initial mass fraction of cb = 0.1 in the liquid and ct1 = ct2 = 0

in the gas, for several dimensionless times.

Let us speak first in further detail about the gas boundary layers. After they have reached

the top of the system, where the mass fractions are assumed to be fixed, the corresponding

profile becomes almost linear (in view of a small Péclet number of the Stefan flow in the gas,

justifying its neglecting18) with respect to the vertical coordinate, with a slope of this profile,

and hence a mass flux, being determined by the values of the mass fraction at the interface
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and at the top of the layer. The term “quasi-stationary” is appropriate to characterize the

corresponding evolution in the gas, driven by an active evolution in the liquid phase. In

general, a model involving transient reference profiles in the liquid but yet quasi-stationary

ones in the gas (irrespective of whether the latter is justified or not) will be here referred to

as partially transient19. Since the ethanol boundary layer in the gas phase attains the top

boundary later than the water boundary layer (Dg1 > Dg2), the quasi-stationarity character

in the gas is to be assessed by the ethanol vapor distribution. A certain time can thus

be defined that distinguishes the self-similar stage (sufficiently below this time) from the

quasi-stationary state (sufficiently above this time). It scales in the gas with the typical

diffusion time d2g/Dg2 in dimensional terms and δ−1
D (H − 1)2 in dimensionless terms (non-

dimensionalized with the diffusion time d2l /Dl in the liquid). Similarly, the time for the

liquid boundary layer to reach the bottom scales as d2l /Dl in dimensional terms and as O(1)

in dimensionless terms.

The self-similar solution takes place for t sufficiently smaller than both these times and

is first violated from the gas side for relatively small H, and from the liquid side for rel-

atively large H. These considerations are of interest when discussing the evolution of the

overall mass fraction difference across the liquid layer, which plays an important role in

the instability development, as seen later. This quantity is plotted in Fig. 3 for various H

values.

FIG. 3. The overall mass fraction difference ∆c = cb − ci,ref,l across the liquid layer versus the

dimensionless time for a number of H values and an initial mass fraction of cb = 0.1 in the liquid

and ct1 = ct2 = 0 in the gas.

As a first observation of Fig. 3, we note that for all H, the mass fraction difference tends
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to a unique constant value for t going to 0. This value is determined by the initial “jump”

described above and is given by ∆c = cb − ci,ref,l ≈ 0.0021. Secondly, Fig. 3 manifests a

small initial time period where the mass fraction difference across the liquid layer remains

nearly constant. This period corresponds to the self-similar evolution. Note also that the

left side of this “plateau” is not perfectly flat due to numerical difficulties at the beginning of

the calculation resulting from the discontinuous initial jump. Just after the initial plateau,

it is important to note that a certain maximum mass fraction difference across the liquid

layer occurs for sufficiently small values of H. Note that for these H values, the gas reaches

quasi-stationarity before the liquid boundary layer reaches the bottom. After the gas mass

fraction profiles have become quasi-stationary, the self-similar solution is not valid anymore

and the ethanol flux in the gas stops its fast t−1/2 decrease (characterizing the self-similar

solution) to saturate to some quasi-constant value. The liquid layer is then progressively

not able to supply ethanol sufficiently fast anymore, which depletes ethanol at the interface

and thus increases the mass fraction difference in question. This increase reverses when the

liquid boundary layer reaches the bottom of the system and the ethanol depletion starts

to occur at the bottom as well. The time corresponding to the maximum mass fraction

difference, t∆c,max, is given as a function of H in Table I. The inevitability of such a reversal

can readily be understood from the consideration that, for any H, the overall mass fraction

difference must tend to zero at large times, due to the progressive depletion of ethanol. Of

course, this entails also a diminution of the liquid layer thickness, which is neglected in this

study and therefore it is not consistent to pursue the calculations up to such advanced stages

of the process. It is also important to stress that this maximum actually exists for H < 46

only, meaning that, for higher H values, the depletion of ethanol from the bottom starts

relatively earlier than a sufficient degree of quasi-stationarity is attained in the gas.

B. Global results of the stability analysis

As explained previously, for a fixed H and at a given instant of time t (corresponding

to given “frozen” reference profiles), the stability analysis as carried out here consists in

calculating the critical liquid depth above which the layer is unstable (in the frozen-time

sense). This actually turns out to be equivalent to determining the critical time at which

a layer of a given thickness dl changes its stability status, as illustrated in Fig. 4, which
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TABLE I. Several dimensionless (scale d2l /Dl) characteristic times for different H values. Namely,

t∆c,max for the maximum overall mass fraction difference across the liquid layer; tTP1 for the turning

point of the first type and tTP2 for the turning point of the second type, see also section III B. For

n/a entries, the corresponding values cannot be defined.

H 2 11 21 31 41 46 49 50 51 52 53 56 61 101

t∆c,max 0.17 0.39 0.42 0.44 0.44 0.51 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+

tTP1 0.16 0.37 0.4 0.4 0.4 0.15 n/a n/a n/a n/a n/a n/a n/a n/a

tTP2 n/a n/a n/a n/a n/a 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

presents the general results of our work. Here, the results are presented in terms of both

dimensional and dimensionless times. The dimensionless time used on the left plot of Fig.

4 allows relating the instability thresholds with the corresponding reference profiles (i.e.

for a given liquid thickness) in Fig. 2. Since we will proceed with dimensional times, the

general results are also presented with dimensional times on the right plot of Fig. 4. We

continue with the critical curves (marginal stability) that are plotted in the plane spanned

by the (dimensional) time t and the liquid thickness dl for different H values. We notice

that for all H, a minimum critical liquid depth exists below which no instability ever occurs.

This minimum value is determined by what we shall call the turning point (TP) of the

corresponding curve and the value of the liquid depth at this point will be denoted as dl,TP .

Thus the present evaporative Bénard-Marangoni instability must not occur in liquid layers

with depths dl < dl,TP , whatever the time elapsed. The TP can also be considered as a

separatrix between the “upper” and “lower” parts of each curve. For a given dl > dl,TP ,

the lower part of the curve gives the critical time at which perturbations to the frozen-time

profile begin to grow. These perturbations start to decay once again at t corresponding

to the upper branch, of course, unless the instability setting in at shorter times has had

enough time to develop into a manifest convection considerably altering the reference state.

It is also interesting to emphasize that the position of the TP changes with H, at least

for sufficiently small values of H. For H around 41, a second TP actually emerges on the

critical curve. This second TP appears to be largely independent of H at H > 41, while

the first one progressively disappears as H is increased above H > 41. Note also that the

lower parts of the different curves tend to one another for increasing values of the liquid
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thickness dl. This is not clearly visible for H = 2 due to numerical difficulties. However,

using an approximate solution of the complete model, we show later on in Fig. 9 that the

curve H = 2 joins indeed the other curves as well when dl is increased.

FIG. 4. The critical curves for H = 2, 11, 21, 31, 41, 51, 61 and 101 at an initial ethanol

mass fraction of cb = 0.1 in the liquid and ct1 = ct2 = 0 in the gas, for dimensionless (left) and

dimensional (right) times.

In the next section, these results are analyzed in more detail. First, we determine the

main mechanism responsible for the instability. Then we provide a physical explanation for

the two types of TPs that appear in Fig. 4. We also analyze more thoroughly the meaning

behind the lower parts of the marginal curves of Fig. 4 corresponding to sufficiently small

t. Finally, we compare these results with those presented previously in19 and emphasize the

large influence that the gas-phase transients can have on the instability in these situations.

IV. DISCUSSION

A. Instability mechanism

In this subsection, we discuss the relative role of various physical mechanisms that may

be responsible for the instability. In19, it was already shown in a similar physical situation

that the solutal Marangoni effect was by far the most important destabilizing mechanism as

far as the instability thresholds are concerned. The influence of the temperature field and of

convection in the gas phase was also proven to be insignificant in general. We will now show

that this is still the case in our present problem. To do so, the following simplifications are

introduced into the general formulation. First, the effect of buoyancy (Rayleigh mechanisms)
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is not taken into account. Second, the thermal effects are neglected altogether (including the

thermal Marangoni mechanism). Also, since the gas mass fractions of the solvent and solute

are small, cg1 << 1 and cg2 << 1, actually implying small diffusive Péclet numbers18, we can

neglect convection in the gas phase which is then treated as a purely diffusive medium. The

“approximate” mathematical model obtained from these and other assumptions is presented

in appendix D for the interested reader. The corresponding linear stability analysis takes the

form of a one-layer problem, similar to the standard Pearson’s one2,4, albeit with a nonlinear

reference profile (see the previous subsection), the solutal Marangoni instead of the thermal

one and an appropriately derived solutal Biot number that proves to be a function of the

wavenumber of perturbations18:

BiS(k,H) = ρD
(1− ci,ref,l)Ke + ci,ref,lδMδDpsat1

[1 + ci,ref,l (δM − 1)]2 δ
′
Mpdt

kcoth(k(H − 1))

− ρD

H − 1

((
ci,ref,l

1 + ci,ref,l(δM − 1)

Ke

δ
′
Mpdt

− ct1

)
+ δD

(
1− ci,ref,l

1 + ci,ref,l(δM − 1)

psat1
δ
′
Mpdt

− ct2

))
. (1)

See appendix D for more details. In Eq. (1), ρ = ρg/ρl is the ratio of the gas and liquid

densities, D = Dg2/Dl the ratio of the solute (ethanol) diffusion coefficients in the gas and

liquid phases, Ke the Henry coefficient (in pressure units), δM = M1/M2 the solvent to

solute molecular mass ratio, δD = Dg1/Dg2 the solvent to solute diffusion coefficient ratio

in the gas phase, psat1 the pure solvent saturation pressure, δ
′
M = Ma/M1 the air to solvent

molecular mass ratio and pdt the (dimensional) ambient pressure. The subscripts “i” and

“ref” refer, respectively, to the liquid-gas interface and the reference state. Note that in

(1), the case of a zero ambient humidity considered in the present paper corresponds to

ct1 = 0 and ct2 = 0. The instability mechanism can be quantified by a solutal Marangoni

number, proportional to the liquid-layer thickness and to the corresponding reference state

mass fraction difference ∆c between the bottom and the surface of the liquid layer and given

by

Ms∗ =
γC∆cdl
µlDl

,

where γC ≡ −∂γ/∂cl is the rate of change of the surface tension γ with the solute mass

fraction in the liquid, while µl and Dl are the dynamic viscosity and the diffusion coefficient

in the liquid. Note that here the quantities ci,ref,l and ∆c are functions of t in accordance

with the evolution of the reference profile, but this does not really pose any difficulty in
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the framework of the frozen-time analysis carried out for each instant t. The instability

threshold and the corresponding critical value of the Marangoni number can be obtained by

minimizing, with respect to the wavenumber k, the marginal Marangoni curve Ms∗(k). The

result, depending parametrically on t, is subsequently recasted in terms of the liquid-layer

thickness dl and shown in Fig. 5 together with the corresponding result of the complete

model for H = 11 and H = 101.

FIG. 5. The critical curves for H = 11 (left) and 101 (right) comparing the complete and approx-

imate models (cb = 0.1, ct1 = ct2 = 0).

We observe a good agreement between the complete and the approximate models, even

though we cannot guarantee that the difference is entirely due to the neglected effects given

the finite precision of the computations. Note also that the curves of Fig. 5 cannot be

prolonged to the right more than represented due to the same numerical difficulties. How-

ever, their prolongation can be achieved on the basis of a simplified model presented in IVC

hereafter. This nevertheless shows that thermal (and thus Soret) and Rayleigh effects can

indeed be neglected and that the gas phase can actually be considered as a purely diffusive

medium for the vapors. This also confirms that the solutal Marangoni effect is the actual

physical mechanism triggering the instability onset. Therefore, the subsequent discussions

and physical interpretations will only consider this mechanism. In the next subsections, we

will first comment the results corresponding to small values of H. Then, we will present a de-

tailed analysis of the instabilities that can appear at very small times, just after evaporation

has begun.
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B. Behavior at relatively small H values

From the general observations in section III, we have noticed that there are two types of

TPs in Fig. 4 describing the stability results. From a physical point of view, a TP defines a

limit thickness below which no instability is ever possible. We have also remarked that the

first type of TP appears only for sufficiently small H and the second one for larger values

of H, whilst both eventually appear in a narrow intermediate range.

We begin here by analyzing the first type of TP. Table I shows the (dimensionless) time

tTP1 corresponding to this TP, as a function of H. As mentioned above, this TP appears

only for sufficiently small H, when a quasi-stationary behavior is rapidly established in the

gas. As argued in subsection IIIA, it is this quasi-stationarity that is responsible for a

distinct maximum of ∆c. It is then evident that the system must be most unstable at the

times near t∆c,max, which is confirmed by the fact that tTP1 ≈ t∆c,max in accordance with

Table I. This clarifies the nature of the first TP, associated with the maximum of ∆c. Note

also that the TP appreciably moves as H is changed and disappears approximately together

with the maximum of the overall mass-fraction difference in Fig. 3 for H close to 46.

C. Behavior at small times

The second TP, which appears in Fig. 4 for H larger than about 46 and which is in-

dependent of H, has a completely different nature. Relatively large values of H and the

independence of the second TP from H suggest that it corresponds to a moment when the

reference profiles in the gas phase are still essentially transient and not yet quasi-stationary

(in other words, the top of the gas layer is not yet reached by the boundary layer developing

from the interface). On the other hand, as shown in Table I, the dimensionless values of

time (non-dimensionalized with the scale d2l /Dl) at the second TP are small, which signals

that the liquid boundary layer has not yet quite reached the bottom either. To describe this

turning point and to present other physical results, we shall analyze in some detail the so-

lutions of the stability problem corresponding to small times, i.e. to the moments for which

the evolving boundary layers in the gas and in the liquid are still far from the limits of the

system. These moments are defined by the condition t << tST , where tST is the smallest

of the three diffusion times d2l /Dl, (H − 1)2d2l /Dg2 and (H − 1)2d2l /Dg1 (ethanol diffusion
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times in the liquid and in the gas, and water diffusion time in the gas, respectively). When

H < (1 +
√
DδD) ≈ 160, one has tST = (H − 1)2d2l /Dg1 (water diffusion time in the gas),

while tST = d2l /Dl (ethanol diffusion time in the liquid) for larger H values. Fig. 6 is a plot

of tST as a function of dl, and for several H values, superposed with the earlier obtained

marginal-stability results. In what follows, we analyze in detail the stability results that,

for a given H, appear in this figure sufficiently below the corresponding dashed straight line

tST .

FIG. 6. Results of Fig 4 superimposed with the small-time boundaries tST for a number of H

values.

For the small-time analysis, it is useful to change the length scale used in the non-

dimensionalization: instead of dl, we shall from now on use the penetration depth
√
Dltd of

the boundary layer in the liquid as the length scale. To avoid confusion, here we use the

supercript “d” for a dimensional time variable. Even though the new length scale changes

with time, there are actually no implications in the context of the frozen-time approach.

Moreover, since only small times are considered, this length scale is actually much smaller

than dl and the dimensionless thickness of the liquid layer δ ≡ dl/
√
Dltd is large. Similarly,

the dimensionless total height of the system H̃ ≡ (dl+dg)/
√
Dltd is large as well. Using this

new length scale in the approximate, one-layer approach introduced in subsection IVA, the

appropriate Biot number is BiS(k̃, H̃) as obtained from Eq. (1). Hereafter the tilde marks

the variables pertaining to consideration in the new length scale. Now given that H̃ >> 1

for sufficiently small td, whereas one is never interested in too small k̃ (to be discussed later

on), the expression for the Biot number simplifies to αBik̃, where

αBi =
1

k̃
limH̃→∞BiS(k̃, H̃) = ρD

(1− ci,ref,l)Ke + ci,ref,lδDδMpsat1

[1 + ci,ref,l(δM − 1)]2 δ
′
Mpdt

.
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Given the Biot number, an approximate expression for the Marangoni number valid for

small times can then be obtained as follows. Since the boundary layer remains very thin with

respect to the liquid thickness, the reference solution at small times can be approximated

by standard self-similar solutions whose closed-form expression is well known (see appendix

E). In28, an equivalent expression for the reference profile is used. However, for the stability

analysis, the Biot number in28 was not dependent on the wavenumber. Using the self-similar

solutions for the reference profiles, an analytical expression for the marginal curve in terms

of the Marangoni number M̃s∗ as a function of k̃ can be deduced much as in the original

Pearson problem with a linear reference profile2,4 (see appendix E for some details):

M̃s∗ =
(
4
√
πe3k̃δ

(
αBi cosh[k̃δ] + sinh[k̃δ]

)(
−2k̃δ + sinh[2k̃δ]

))
×((

−1 + e2k̃δ
)(

−1 + e4k̃δ − 4k̃δe2k̃δ−
δ2

4

)
+

k̃
√
π

(
−e4k̃

2
(
2 + e2k̃δ

(
−2 + 4k̃δ − δ2

))
erf

[
2k̃ − δ

2

])
+

k̃
√
π

(
e4k̃(k̃+δ)

(
2− 2e2k̃δ + 4k̃δ + δ2

)
erf

[
2k̃ +

δ

2

]
− δ2e2k̃δ

(
−1 + e2k̃δ

)
erf

[
δ

2

])
−

2k̃
√
πek̃(4k̃+3δ)erf[2k̃]

((
2 + δ2

)
cosh[k̃δ]− 2 cosh[3k̃δ] + 4k̃δ sinh[k̃δ]

))−1

. (2)

Note that boundary conditions have here been expressed at the bottom boundary, as can

be guessed by the fact that Eq. 2 depends on δ. For each δ, the critical Marangoni number

can be determined by numerically minimizing (2) with respect to k̃. The corresponding

results are presented in Fig. 7, where the critical Marangoni number M̃s∗cr(δ) and the

corresponding critical wavenumber are plotted as functions of δ−1. To assess its validity, we

have also compared the small-time solution with the (completely numerical) solutions of the

approximate model and of the complete model. This comparison is presented in Fig. 8 and

shows a very good agreement for small times between the three solutions. For the complete

and approximate model, we have considered H = 101. To actually determine the critical

time corresponding to a given dl using the small-time approach, the equation M̃s∗cr = M̃s∗

is (numerically) solved for δ, where the actual Marangoni number M̃s∗ is given by

M̃s∗ =
γC

√
Dltd∆c

Dlµl

=
γC∆c

Dlµl

dl
δ
, (3)

18



and shown in Fig. 7 as a function of δ for a number of dl values. Here ∆c ≈ 0.0021 (constant

for small times, see subsection IIIA) in the water-ethanol case with cb = 0.1. Then, knowing

δ = dl/
√
Dltd and dl, the critical time can easily be determined.

FIG. 7. The critical Marangoni number as a function of 1/δ and the same for the actual Marangoni

number at three liquid thicknesses (0.5, 0.747 and 1.0 µm) (left), and the critical wavenumber (both

k̃cr and kcr = k̃crδ in the original scaling) as a function of 1/δ (right) for cb = 0.1 and ct1 = ct2 = 0.

FIG. 8. The critical curve according to various models (cb = 0.1, ct1 = ct2 = 0).

As far as the critical wavenumber is concerned, let us mention that k̃cr → 0 as δ → ∞ in

the scaling of the boundary layer, vanishingly thin as compared to the liquid-layer thickness,

but the corresponding kcr tends to infinity. This implies that the quantity k̃crH̃ (= kcrH →

∞) is large as t → 0, which justifies the earlier made simplification of the expression for the

Biot number to BiS = αBik̃. It is valid in the present context and the stability results for

small times are independent of the gas layer thickness, which can be formally considered as

infinite.
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It is also interesting to note that solutions of the equation M̃s∗cr = M̃s∗ for δ cease to

exist for sufficiently small dl. Indeed, as a function of δ−1, the actual Marangoni number is

a straight line, whose slope is proportional to dl. For large enough values of dl, this straight

line intersects the critical Marangoni number curve. The values of δ−1 =
√
Dltd/dl at the

intersections define of course the critical times for this given dl that can be observed in Fig. 8.

For smaller values of dl, there is no intersection between the marginal curve and the straight

line. This means that for sufficiently small dl, the system is always stable. The critical value

of the liquid thickness, for which the actual Marangoni number is just tangent to the critical

curve in Fig. 7, corresponds in fact to the turning point in Fig. 8, here with dl = 0.747

µm. One can then propose the following interpretation of this TP. On the one hand, the

liquid mass fraction boundary layer grows with time (δ−1 ↑), which destabilizes the reference

solution (indeed, the actual Marangoni number (3) increases proportionally to δ−1). On the

other hand, the perturbations which develop have a penetration depth which also grows with

time, hence they become more efficiently dissipated by viscous friction and mass diffusion at

the bottom plate (the critical Marangoni number increases more than proportionally with

δ−1). Whether or not instability sets in therefore depends on the competition between these

two effects, which turns in favor of the former above a certain critical value of the liquid

thickness (corresponding to the turning point).

As a final remark on Fig. 7, let us mention that the latter shows that the critical time

of the instability onset is a decreasing function of dl (see also Fig. 8). After showing above

that there exists a certain limiting value of dl below which no instability ever occurs, we

shall now prove that there exists also a limiting time before which the system remains stable

whatever the value of dl. To do so, we shall analyze the behavior of the system as dl → ∞,

which amounts to considering the limit δ → ∞. Applying this to Eq. (2) yields

M̃s∗ =
(1 + αBi)

√
π

1− 2k̃
√
πe4k̃2erfc(2k̃)

. (4)

The minimum of this expression with respect to the wavenumber corresponds to k̃ = 0 and

yields the critical Marangoni number

M̃s∗cr,dl→∞ = (1 + αBi)
√
π =

(
1 + ρD

(1− ci,ref,l)Ke + ci,ref,lδDδMpsat1

[1 + ci,ref,l(δM − 1)]2 δ
′
Mpdt

)
√
π. (5)
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Making the actual Marangoni number (3) equal to the one above allows to determine the

asymptotic value of the critical time

tdcr,dl→∞ =
1

Dl

(
Dlµl

∆cγC

(
1 + ρD

(1− ci,ref,l)Ke + ci,ref,lδDδMpsat1

[1 + ci,ref,l(δM − 1)]2 δ
′
Mpdt

)
√
π

)2

. (6)

With the previously calculated value for ci,ref,l = cb−∆c (where cb = 0.1 and ∆c ≈ 0.0021),

one obtains M̃s∗cr,dl→∞ ≈ 7.11 and tdcr,dl→∞ ≈ 9.82 ∗ 10−7s (≈ 1µs). The corresponding

asymptote is indicated in Fig. 8. Note that while the general form of the expression (2)

and the corresponding TP consideration make sense only for sufficiently large H (H > 46,

see above), the results (4)-(6) are actually valid in the asymptotic sense for no matter what

value of H = O(1).

D. The importance of transients in the gas phase

In the present analysis of evaporative instabilities in a binary liquid, the transients of

the reference state, and importantly those in the gas, are considered in full. In the previous

work19, only the ethanol mass fraction profile in the liquid phase was considered as transient,

whilst all other profiles (temperatures and mass fractions in the gas) were assumed quasi-

stationary and “slaved” to the time variations of the liquid ethanol mass fraction. This

model will be called here the “partially transient model”, while the model of the present

paper will be referred to as the “complete” model to avoid ambiguity. It is the purpose of

the present subsection to compare the two models.

Fig. 9 presents the comparison of the critical curves (again in the plane t versus dl)

between the complete and the partially transient models for the values of H previously

considered in this paper. Note that for completeness, the asymptote described previously and

the results of the “approximate” fully transient model described in IVA are also incorporated

into the figure. Besides, the time tST (the smallest of the characteristic diffusion times, as

discussed earlier) is shown. This time can be used as well to distinguish qualitatively the

boundary between the self-similar description and the quasi-stationary state in the gas (for

the H values considered). We can notice that, for each H, the partially transient and

complete models correspond well with each other “sufficiently above” the tST lines (keeping

in mind that the upper branch of the figure corresponds to the system getting back to
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stability if the reference solutions had not been perturbed earlier). In particular, the first

type of TP (discussed in section IVB) is correctly described by both models. Of course,

it is because the instability occurs in the system after quasi-stationarity is reached in the

gas that the results of the partially transient model agree well with those of the complete

approach. On the contrary, when the complete model predicts an instability before the gas

has become quasi-stationary, the results of the partially transient model are incorrect and in

particular, the second TP (discussed in section IVC) is not present in this latter approach.

FIG. 9. Critical curves for various H values, comparing the complete and the partially transient

models (cb = 0.1, ct1 = ct2 = 0).

V. CONCLUSIONS

The present paper has been concerned with the analysis of Bénard instabilities in a

layer of an aqueous solution of ethanol undergoing evaporation into air, including transient

reference profiles following initial contact between both phases. The discussion was first

focused on mass-fraction reference profile in both the liquid and the gas phases, since it

appeared that their development bore much more importance on the instability onset than

the temperature profiles. The evaporation process expressed in terms of the mass-fraction

profiles subdivides into four stages. The first one starts with a sudden mass-fraction jump at

the interface at t = 0, typical when putting into contact two homogeneous out-of-equilibrium

media (the liquid and the gas). This first stage continues in a self-similar solution, where the

mass fractions at the interface stay constant and the mass-fraction profiles start to penetrate

both in the liquid and in the gas phases. As soon as the gas mass fraction attains a quasi-

stationary state by reaching the top boundary, the mass fractions at the interface begin to
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decrease, the system entering the second stage. The third stage is characterized by the liquid

mass-fraction boundary layer attaining the bottom of the liquid, and the depletion of the

(most volatile) solute at the bottom begins. Finally, a fourth stage has been identified, where

the liquid mass fraction profile hardly changes its form. In other words, the depletion occurs

at a nearly constant rate. It should be noted, though, that for large H values, the third

stage occurs earlier than the second stage. These successive stages correspond to different

evolutions of the overall mass-fraction difference across the liquid layer. During the first

(self-similar) stage, this difference is constant. Then, if the quasi-stationarity in the gas is

attained earlier than the liquid mass-fraction boundary layer reaches the bottom (i.e. in the

second stage), the overall mass-fraction difference increases. After the liquid mass fraction

has reached the bottom (third stage), considering a certain delay in order to catch up with

the mass-fraction decrease at the interface, the overall mass fraction difference decreases

again. On the contrary, when the liquid mass fraction attains the bottom earlier than quasi-

stationarity is reached in the gas (i.e. third stage occurs earlier than the second one, i.e. for

large H), a monotonic decrease is observed and no maximum overall mass-fraction difference

occurs. These stages are important when analyzing the instability behavior.

First of all, it has been determined that in this paper too (referencing to the previous

papers18,19), the solutal Marangoni mechanism is the main one responsible for triggering

the instability and a number of other effects accounted for in the full model turn out to

be inessential. This has been shown by using an approximate model (along the lines of a

Pearson-like model, albeit with nonlinear reference profiles and a wavenumber-dependent

solutal Biot number), taking into account only the solutal Marangoni effect and implement-

ing simplifications related to the inessential effects. The results agreed well with those of

the complete model. As such, in the discussions, the solutal Marangoni mechanism is the

only one used for understanding the results.

Critical curves have been drawn yielding the time for the onset of instabiliy (in the frozen-

time sense) versus the liquid-layer thickness. This has been done for several H values. For

all H values, a certain critical liquid thickness has been identified (named the turning point),

below which no instability occurs at all times. For small H values, it has been observed that

this turning point occurs circa the moment the overall mass-fraction difference across the

liquid layer is at its maximum (cf. the above discussion for the reference profiles). For large

H values, a different type of turning point emerges (and actually for intermediate values
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of H, both turning points eventually coexist), having a different behavior with respect

to variations of H, because it is induced by different physical mechanisms. Namely, it

was noted that it corresponds to relatively small times, that is to the early stage of the

evaporation process, before the gas reaches quasi-stationarity and the liquid mass-fraction

boundary layer reaches the bottom. For the reference profiles this means that a self-similar

approach can be used, determining thereby the mass fraction jump at the interface. Although

the turning point occurs when the reference-profile boundary layers are still far from the

bottom and top boundaries, the perturbations start nonetheless sensing the bottom of the

liquid, which is what is actually responsible for the occurrence of this turning point. This

was confirmed by obtaining a closed-form analytical expression for the marginal Marangoni

curve and comparing successfully the resulting critical conditions with the results of the

complete model for large H values. It is also worth stressing that this turning point proves

to be independent of the gas-layer thickness. Indeed, the boundary layer in the gas is still

sufficiently close to the interface when the instability sets in and the gas layer can thus be

considered as semi-infinite at this moment, whatever its actual height.

Another important aspect considered in the present paper concerns the critical time be-

fore which the system remains always stable. It appears that as the liquid layer thickness

is increased the time for the instability onset approaches a certain asymptotic value inde-

pendent of H. This can be understood by the observation that for very large thicknesses

the boundary layers in the liquid and gas phases are too far from respectively the bottom

and top boundaries for the former ones to sense the latter ones. The small-time application

of the model of the present paper has been used in order to determine the value of this

asymptotic time, being of the order of 1µs for the 10 %wt solution of ethanol in water.

Finally, the results of the fully transient model of the present paper were compared to

the partially transient model, which assumes quasi-steady mass fraction profiles in the gas

phase19. The analysis performed here has evidenced that the instability onset can occur at

(much) smaller times and for (much) smaller critical thicknesses than predicted under the

assumption of quasi-steadiness in the gas. This seems to be an attribute of a “very unstable”

system, for which the instability can occur before quasi-stationarity sets in in the gas. Since

this decrease of instability thresholds is not predicted by the partially transient model, it

is a direct consequence of the transients in the gas phase. Physically, such destabilization

owes itself to larger concentration gradients (and consequently larger evaporation fluxes)
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occurring for the reference profile in the gas at the initial, self-similar stage as compared to

the later, quasi-stationary stage.
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