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ABSTRACT
We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-
0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve, especially
the perturbation part, allowed us to accurately measure theparallax effect and lens orbital motion. Combining
our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects,
we estimate the physical parameters of the lens system. We find that the event was caused by a 2.73±0.43MJ
planet orbiting a 0.44±0.07M⊙ early M-type star. The distance to the lens is 4.97±0.29 kpc and the projected
separation between the host star and its planet at the time ofthe event is 3.45± 0.26 AU. We find that the
additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to
a more accurate determination of the physical parameters ofthe lens.
Subject headings: gravitational lensing – binaries: general – planetary systems

1. INTRODUCTION

Radial velocity and transit surveys, which primarily target
main-sequence stars, have already discovered hundreds of gi-
ant planets and are now beginning to explore the reservoir of
lower mass planets with orbit sizes extending to a few as-
tronomical units (AU). These planets mostly lie well inside
the snow line1 of their host stars. Meanwhile, direct imag-
ing with large aperture telescopes has been discovering gi-
ant planets tens to hundreds of AUs away from their stars.
The region of sensitivity of microlensing lies somewhere in
between and extends to low-mass exoplanets lying beyond
the snow-line of their low-mass host stars, between∼1 and
10 AU (Tsapras et al. 2003; Gaudi 2012). Although there
is already strong evidence that cold sub-Jovian planets are
more common than originally thought around low-mass stars

∗Royal Society University Research Fellow
1 The snow line is defined as the distance from the star in a protoplanetary

disk where ice grains can form.

(Gould et al. 2006; Sumi et al. 2010; Kains et al. 2013), cold
super-Jupiters orbiting K or M-dwarfs were believed to be
a rarer class of objects2 (Laughlin et al. 2004; Cassan et al.
2012).

The theoretical framework that underpins planetary forma-
tion scenarios that could potentially result in such systems in-
volves parameters that are currently too loosely constrained.
These parameters can be refined by tracing the distributions
of physical and orbital properties of a significant number of
planetary systems. The radial velocity method has been re-
markably successful in tabulating the part of the distribution
that lies within the snow-line but discoveries of super-Jupiters
beyond the snow-line of M-dwarfs have been comparatively
few (Johnson et al. 2010; Montet et al. 2013). By contrast,
this is exactly the type of planet that microlensing is most
sensitive to (Gaudi 2012).

2 although a metal-rich protoplanetary disk might allow the formation of
sufficiently massive solid cores.
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Three brown dwarf and nineteen planet microlensing dis-
coveries have been published to date, including the dis-
coveries of two multiple-planet systems (Gaudi et al. 2008;
Han et al. 2013)3. It is also worth noting that unbound objects
of planetary mass have also been reported (Sumi et al. 2011).

Microlensing involves the chance alignment along an ob-
server’s line of sight of a foreground object (lens) and a back-
ground star (source). This results in a characteristic variation
of the brightness of the background source as it is being grav-
itationally lensed. As seen from the Earth, the brightness of
the source increases as it approaches the lens, reaching a max-
imum value at the time of closest approach. The brightness
then decreases again as the source moves away from the lens.

In microlensing events, planets orbiting the lens star can
reveal their presence through distortions in the otherwise
smoothly varying standard single lens lightcurve. Together,
the host star and planet constitute a binary lens. Binary lenses
have a magnification pattern that is more complex than the
single lens case due to the presence of extended caustics that
represent the positions on the source plane at which the lens-
ing magnification diverges. Distortions in the lightcurve arise
when the trajectory of the source star approaches (or crosses)
the caustics (Mao and Paczyński 1991).

Upgrades to the OGLE4 (Udalski 2003) survey observing
setup and MOA5 (Sumi et al. 2003) microlensing survey tele-
scope in the past couple of years brought greater precision
and enhanced observing cadence, resulting in an increased
rate of exoplanet discoveries. For example, OGLE has reg-
ularly been monitoring the field of the OGLE-2012-BLG-
0406 event since March 2010 with a cadence of 55 minutes.
When a microlensing alert was issued notifying the astro-
nomical community that event OGLE-2012-BLG-0406 was
exhibiting anomalous behavior, intense follow-up observa-
tions from multiple observatories around the world were ini-
tiated in order to better characterize the deviation. This event
was first analyzed by Poleski et al. (2013) using exclusively
the OGLE-IV survey photometry. That study concluded that
the event was caused by a planetary system consisting of a
3.9±1.2MJ planet orbiting a low mass late K/early M dwarf.

In this paper we present the analysis of the event based
on the combined data obtained from 10 different telescopes,
spread out in longitude, providing dense and continuous cov-
erage of the lightcurve.

The paper is structured as follows: Details of the discov-
ery of this event, follow-up observations and image analysis
procedures are described in Section 2. Section 3 presents the
methodology of modeling the features of the lightcurve. We
provide a summary and conclude in Section 4.

2. OBSERVATIONS AND DATA

Microlensing event OGLE-2012-BLG-0406 was discov-
ered at equatorial coordinatesα = 17h53m18.17s, δ =
−30◦28′16.2′′ (J2000.0)6 by the OGLE-IV survey and an-
nounced by their Early Warning System (EWS)7 on the 6th

of April 2012. The event had a baselineI-band magnitude of
16.35 and was gradually increasing in brightness. The pre-
dicted maximum magnification at the time of announcement
was low, therefore the event was considered a low-priority

3 For a complete list consult http://exoplanet.eu/catalog/and references
therein.

4 http://ogle.astrouw.edu.pl
5 http://www.phys.canterbury.ac.nz/moa
6 (l,b) = −0.46◦,−2.22◦
7 http://ogle.astrouw.edu.pl/ogle4/ews/ews.html

target for most follow-up teams who preferentially observe
high-magnification events as they are associated with a higher
probability of detecting planets (Griest and Safizadeh 1998).

OGLE observations of the event were carried out with the
1.3-m Warsaw telescope at the Las Campanas Observatory,
Chile, equipped with the 32 chip mosaic camera. The event’s
field was visited every 55 minutes providing very dense and
precise coverage of the entire light curve from the baseline,
back to the baseline. For more details on the OGLE data and
coverage see Poleski et al. (2013).

An assessment of data acquired by the OGLE team un-
til the 1st of July (08:47 UT, HJD∼2456109.87) which
was carried out by the SIGNALMEN anomaly detector
(Dominik et al. 2007) on the 2nd of July (02:19 UT) con-
cluded that a microlensing anomaly, i.e. a deviation from
the standard bell-shaped Paczyński curve (Paczýnski 1986),
was in progress. This was electronically communicated
via the ARTEMiS (Automated Robotic Terrestrial Exoplanet
Microlensing Search) system (Dominik et al. 2008) to trig-
ger prompt observations by both the RoboNet-II8 collabo-
ration (Tsapras et al. 2009) and the MiNDSTEp9 consortium
(Dominik 2010). RoboNet’s web-PLOP system (Horne et al.
2009) reacted to the trigger by scheduling observations al-
ready from the 2nd of July (02:30 UT), just 11 minutes af-
ter the SIGNALMEN assessment started. However, the first
RoboNet observations did not occur before the 4th of July
(15:26 UT), when the event was observed with the FTS. This
delayed response was due to the telescopes being offline for
engineering work and bad weather at the observing sites. It
fell to the Danish 1.54m at ESO La Silla to provide the first
data point following the anomaly alert (2nd of July, 03:42 UT)
as part of the MiNDSTEp efforts. The alert also triggered au-
tomated anomaly modeling by RTModel (Bozza 2010), which
by the 2nd of July (04:22 UT) delivered a rather broad variety
of solutions in the stellar binary or planetary range, reflecting
the fact that the true nature was not well-constrained by the
data available at that time. This process chain did not involve
any human interaction at all.

The first human involvement was an e-mail circulated to all
microlensing teams by V. Bozza on the 2nd of July (07:26 UT)
informing the community about the ongoing anomaly and
modeling results. Including OGLE data from a subsequent
night, the apparent anomaly was also independently spotted
by E. Bachelet (e-mail by D.P. Bennett of 3rd July, 13:42 UT),
and subsequently PLANET10 team (Beaulieu et al. 2006)
SAAO data as well asµFUN11 (Gould et al. 2006) SMARTS
(CTIO) data were acquired the coming night, which along
with the RoboNet FTS data cover the main peak of the
anomaly. It should be noted that the observers at CTIO de-
cided to follow the event even while the moon was full in
order to obtain crucial data. A model circulated by T. Sumi
on the 5th of July (00:38 UT) did not distinguish between the
various solutions.

However, when the rapidly changing features of the
anomaly were independently assessed by the Chungbuk Na-
tional University group (CBNU, C. Han), the community was
informed on the 5th of July (10:43 UT) that the anomaly is
very likely due to the presence of a planetary companion.
An independent modeling run by V. Bozza’s automatic soft-

8 http://robonet.lcogt.net
9 http://www.mindstep-science.org
10 http://planet.iap.fr
11 http://www.astronomy.ohio-state.edu/∼microfun

http://exoplanet.eu/catalog/
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TABLE 1. OBSERVATIONS

group telescope passband data points

OGLE 1.3m Warsaw Telescope, Las Campanas Observatory (LCO), Chile I 3013
RoboNet 2.0m Faulkes North Telescope (FTN), Haleakala, Hawaii, USA I 83
RoboNet 2.0m Faulkes South Telescope (FTS), Siding Spring Observatory (SSO), Australia I 121
RoboNet 2.0m Liverpool Telescope (LT), La Palma, Spain I 131
MiNDSTEp 1.5m Danish Telescope, La Silla, Chile I 473
MOA 0.6m Boller & Chivens (B&C), Mt. John, New Zealand I 1856
µFUN 1.3m SMARTS, Cerro Tololo Inter-American Observatory (CTIO), Chile V , I 16, 81
PLANET 1.0m Elizabeth Telescope, South African Astronomical Observatory (SAAO), South Africa I 226
PLANET 1.0m Canopus Telescope, Mt. Canopus Observatory, Tasmania, Australia I 210
WISE 1.0m Wise Telescope, Wise Observatory, Israel I 180

ware (5th of July, 10:55 UT) confirmed the result. While the
OGLE collaboration (A. Udalski) notified observers on the 5th

of July that a caustic exit was occurring, a geometry leading
to a further small peak successively emerged from the mod-
els. D.P. Bennett circulated a model using updated data on
the 6th of July (00:14 UT) which highlighted the presence of
a second prominent feature expected to occur∼10th of July.
Another modeling run performed at CBNU on the 7th of July
(02:39 UT) also identified this feature and estimated that the
secondary peak would occur on the 11th of July.

Follow-up teams continued to monitor the progress of the
event intensively until the beginning of September, well after
the planetary deviation had ceased, and provided dense cov-
erage of the main peak of the event. A preliminary model
using available OGLE and follow-up data at the time, circu-
lated on the 31st of October (C. Han, J.-Y. Choi), classified the
companion to the lens as a super-Jupiter. Poleski et al. (2013)
presented an analysis of this event using reprocessed survey
data exclusively. In this paper we present a refined analysis
using survey and follow-up data together.

The groups that contributed to the observations of this
event, along with the telescopes used, are listed in Table 1.
Most observations were obtained in theI-band and some im-
ages were also taken in other bands in order to create a color-
magnitude diagram and classify the source star. We note
that there are also observations obtained from the MOA 1.8m
survey telescope which we did not include in our modeling
because the target was very close to the edge of the CCD.
We also do not include data from theµFUN Auckland 0.4m,
PEST 0.3m, Possum 0.36m and Turitea 0.36m telescopes due
to poor observing conditions at site.

Extracting accurate photometry from observations of
crowded fields, such as the Galactic Bulge, is a challenging
process. Each image contains thousands of stars whose stellar
point-spread functions (PSFs) often overlap so aperture and
PSF-fitting photometry can at best offer limited precision.In
order to optimize the photometry it is necessary to use differ-
ence imaging (DI) techniques (Alard and Lupton 1998). For
any particular telescope/camera combination, DI uses a refer-
ence image of the event taken under optimal seeing conditions
which is then degraded to match the seeing conditions of ev-
ery other image of the event taken from that telescope. The
degraded reference image is then subtracted from the match-
ing image to produce a residual (or difference) image. Stars
that have not varied in brightness in the time interval between
the two images will cancel, leaving no systematic residuals
on the difference image but variable stars will leave eithera
positive or negative residual.

DI is the preferred method of photometric analysis among

microlensing groups and each group has developed custom
pipelines to reduce their observations. OGLE and MOA im-
ages were reduced using the pipelines described in Udalski
(2003) and Bond et al. (2001) respectively. PLANET,µFUN,
and WISE images were processed using variants of the PySIS
(Albrow et al. 2009) pipeline, whereas RoboNet and MiND-
STEp observations were analyzed using customized versions
of the DanDIA package (Bramich 2008). Once the source star
returned to its baseline magnitude, each data set was repro-
cessed to optimize photometric precision. These photometri-
cally optimized data sets were used as input for our modeling
run.

3. MODELING

Figure 1 shows the lightcurve of OGLE-2012-BLG-406.
The lightcurve displays two main features that deviate signif-
icantly from the standard Paczyński curve. The first feature,
which peaked at HJD∼ 2456112 (3rd of July), is produced
by the source trajectory grazing the cusp of a caustic. The
brightness then quickly drops as the source moves away from
the cusp, increases again for a brief period as it passes close to
another cusp at HJD∼ 2456121 (12th of July), and eventually
returns to the standard shape as the source moves further away
from the caustic structure. The anomalous behavior, when
both features are considered, lasts for a total of∼ 15 days,
while the full duration of the event is&120 days. These are
typical lightcurve features expected from lensing phenomena
involving planetary lenses.

We begin our analysis by exploring a standard set of solu-
tions that involve modeling the event as a static binary lens.
The Paczýnski curve representing the evolution of the event
for most of its duration is described by three parameters: the
time of closest approach between the projected position of the
source on the lens plane and the position of the lens photo-
center12, t0, the minimum impact parameter of the source,u0,
expressed in units of the angular Einstein radius of the lens
(θE), and the duration of time,tE (the Einstein time-scale), re-
quired for the source to crossθE. The binary nature of the lens
requires the introduction of three extra parameters: The mass
ratio q between the two components of the lens, their pro-
jected separations, expressed in units ofθE, and the source
trajectory angleα with respect to the axis defined by the two

12 The "photocenter" refers to the center of the lensing magnification pat-
tern. For a binary-lens with a projected separation betweenthe lens compo-
nents less than the Einstein radius of the lens, the photocenter corresponds
to the center of mass. For a lens with a separation greater than the Einstein
radius, there exist two photocenters each of which is located close to each
lens component with an offsetq/[s(1+ q)] toward the other lens component
(Kim et al. 2009). In this case, the referencet0,u0 measurement is obtained
from the photocenter to which the source trajectory approaches closest.
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FIG. 1.— Lightcurve of OGLE-2012-BLG-0406 showing our best-fitbinary-lens model including parallax and orbital motion. The legend on the right of the
figure lists the contributing telescopes. All data were taken in theI-band, except where otherwise indicated.

TABLE 2. LENSINGPARAMETERS

parameters standard parallax orbit orbit+parallax
u0 > 0 u0 < 0 u0 > 0 u0 < 0 u0 > 0 u0 < 0

χ2/dof 6921.019/6383 6850.358/6381 6677.685/6381 6408.371/6381 6408.255/6381 6357.680/6379 6381.358/6379
t0 (HJD’) 6141.63± 0.04 6141.70± 0.05 6141.66± 0.05 6141.24± 0.05 6141.28± 0.04 6141.33± 0.05 6141.19± 0.06
u0 0.532± 0.001 0.527± 0.001 -0.520± 0.001 0.500± 0.002 -0.499± 0.002 0.496± 0.002 -0.497± 0.002
tE (days) 62.37± 0.06 63.75± 0.18 69.39± 0.32 65.33± 0.20 65.53± 0.15 64.77± 0.19 61.91± 0.42
s 1.346± 0.001 1.345± 0.001 1.341± 0.001 1.300± 0.002 1.301± 0.001 1.301± 0.002 1.296± 0.002
q (10−3) 5.33± 0.04 5.07± 0.03 4.45± 0.04 6.97± 0.27 6.63± 0.05 5.92± 0.11 6.82± 0.19
α 0.852± 0.001 0.864± 0.002 -0.906± 0.002 0.861± 0.002 -0.859± 0.001 0.837± 0.002 -0.810± 0.005
ρ∗ (10−2) 1.103± 0.008 1.053± 0.007 0.968± 0.009 1.233± 0.031 1.194± 0.011 1.111± 0.014 1.207± 0.023
πE,N – 0.118± 0.011 -0.414± 0.016 – – -0.143± 0.018 0.358± 0.042
πE,E – -0.033± 0.007 -0.069± 0.009 – – 0.047± 0.007 0.008± 0.006
ds/dt (yr−1) – – – 0.765± 0.046 0.727± 0.017 0.669± 0.028 0.802± 0.033
dα/dt (yr−1) – – – 1.284± 0.159 -1.108± 0.019 0.497± 0.059 -0.732± 0.085

NOTE. — HJD’=HJD-2450000.

components of the lens. A seventh parameter,ρ∗, representing
the source radius normalized by the angular Einstein radius
is also required to account for finite-source effects that are
important when the source trajectory approaches or crossesa
caustic.

The magnification pattern produced by binary lenses is very
sensitive to variations ins,q, which are the parameters that
affect the shape and orientation of the caustics, andα, the
source trajectory angle. Even small changes in these param-
eters can produce extreme changes in magnification as they
may result in the trajectory of the source approaching or cross-
ing a caustic. On the other hand, changes in the other parame-
ters cause the overall magnification pattern to vary smoothly.

To assess how the magnification pattern depends on the pa-
rameters, we start the modeling run by performing a hybrid
search in parameter space whereby we explore a grid ofs,q,α
values and optimizet0,u0, tE and ρ∗ at each grid point by
χ2 minimization using Markov Chain Monte Carlo (MCMC).
Our grid limits are set at−1≤ logs ≤ 1, −5≤ logq ≤ 1, and
0≤ α< 2π, which are wide enough to guarantee that all local
minima in parameter space have been identified. An initial
MCMC run provides a map of the topology of theχ2 surface,
which is subsequently further refined by gradually narrow-
ing down the grid parameter search space (Shin et al. 2012a;
Street et al. 2013). Once we know the approximate locations
of the local minima, we perform aχ2 optimization using all
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seven parameters at each of those locations in order to deter-
mine the refined position of the minimum. From this set of
local minima, we identify the location of the global minimum
and check for the possible existence of degenerate solutions.
We find no other solutions.

FIG. 2.— The bottom panel zooms-in on the anomalous region of the
lightcurve presented in Figure 1. At the top panel we displaythe source tra-
jectory, color coded for the individual contributions of each observatory, and
caustic structure at two different times corresponding to the first and sec-
ond peaks of the anomaly. All scales are normalized byθE, and the size of
the circles corresponds to the size of the source. The first peak deviates the
strongest. This is a result of the trajectory of the source grazing the cusp of
the caustic att1 (HJD∼2456112), shown in red. The second deviation att2
(HJD∼2456121) is significantly weaker and is due to the source trajectory
passing close to another cusp of the caustic, shown in blue. The differences
in the shape of the caustic shown att1 andt2 are due to the orbital motion of
the lens-planet system.

Since our analysis relies on data sets obtained from dif-
ferent telescopes and instruments which use different esti-
mates for the reported photometric precision, we normalize
the flux uncertainties of each data set by adjusting them as
ei = fi(σ2

0 +σ2
i )1/2, where fi is a scale factor,σ0 are the orig-

inally reported uncertainties andσi is an additive uncertainty
term for each data seti. The rescaling ensures thatχ2 per de-
gree of freedom (χ2/dof) for each data set relative to the model
becomes unity. Data points with very large uncertainties and
obvious outliers are also removed in the process.

In computing finite-source magnifications, we take into ac-
count the limb-darkening of the source by modeling the sur-
face brightness asSλ(ϑ) ∝ 1−Γλ(1− 1.5cosϑ) (Albrow et al.
2001), whereϑ is the angle between the line of sight toward
the source star and the normal to the source surface, andΓλ

is the limb-darkening coefficient in passbandλ. We adopt
ΓV = 0.74 andΓI = 0.53 from the Claret (2000) tables. These
values are based on our classification of the stellar type of the

source, as subsequently described.
The residuals contained additional smooth structure that the

static binary model did not account for. This indicated the
need to consider additional second-order effects. The event
lasted for& 120 days, so the positional change of the observer
caused by the orbital motion of the Earth around the Sun may
have affected the lensing magnification. This introduces sub-
tle long-term perturbations in the event lightcurve by causing
the apparent lens-source motion to deviate from a rectilinear
trajectory (Gould 1992; Alcock et al. 1995). Modeling this
parallax effect requires the introduction of two extra param-
eters,πE,N andπE,E , representing the components of the par-
allax vectorπE projected on the sky along the north and east
equatorial axes respectively (Gould et al. 2004).

An additional effect that needs to be considered is the or-
bital motion of the lens system. The lens orbital motion
causes the shape of the caustics to vary with time. To a first or-
der approximation, the orbital effect can be modeled by intro-
ducing two extra parameters that represent the rate of change
of the normalized separation between the two lensing com-
ponentsds/dt and the rate of change of the source trajectory
angle relative to the causticsdα/dt (Albrow et al. 2000).

We conduct further modeling considering each of the
higher-order effects separately and also model their combined
effect. Furthermore, for each run considering a higher-order
effect, we test models withu0 > 0 andu0 < 0 that form a pair
of degenerate solutions resulting from the mirror-image sym-
metry of the source trajectory with respect to the binary-lens
axis. For each model, we repeat our calculations starting from
different initial positions in parameter space to verify that the
fits converge to our previous solution and that there are no
other possible minima.

Table 2 lists the optimized parameters for the models we
considered. We find that higher-order effects contribute
strongly to the shape of the lightcurve. The model includ-
ing the parallax effect provides a better fit than the standard
model by∆χ2 = 243.3. The orbital effect also improves the
fit by ∆χ2 = 512.8. The combination of both parallax and
orbital effects improves the fit by∆χ2 = 563.3. Due to the
u0 > 0 andu0 < 0 degeneracy, there are two solutions for the
orbital motion + parallax model which have similarχ2 values.

In Figure 1, we present the best-fit model lightcurve super-
posed on the observed data. Figure 2 displays an enlarged
view of the perturbation region of the lightcurve along with
the source trajectory with respect to the caustic. The follow-
up observations cover critical features of the perturbation re-
gions that were not covered by the survey data. We note that
the caustic varies with time and thus we present the shape of
the caustic at the times of the first (t1=HJD∼2456112) and
second perturbations (t2=HJD∼2456121). The source trajec-
tory grazes the caustic structure att1 causing a substantial in-
crease in magnification. As the caustic structure and trajec-
tory evolve with time, the trajectory approaches another cusp
att2, but does not cross it. This second approach causes an in-
crease in magnification which is appreciably lower than that
of the first encounter att1. The source trajectory is curved due
to the combination of the parallax and orbital effects.

The mass and distance to the lens are determined by

Mtot =
θE

κπE
; DL =

AU
πEθE +πS

, (1)

whereκ = 4G/(c2AU) and πS is the parallax of the source
star (Gould 1992). To determine these physical quantities we
require the values ofπE andθE. Modeling the event returns
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the value ofπE, whereasθE = θ∗/ρ∗ depends on the angular
radius of the source star,θ∗, and the normalized source ra-
dius,ρ∗, which is also returned from modeling (see Table 2).
Therefore, determiningθE requires an estimate ofθ∗.

To estimate the angular source radius, we use the stan-
dard method described in Yoo et al. (2004). In this proce-
dure we first measure the dereddened color and brightness
of the source star by using the centroid of the giant clump
as a reference because its dereddened magnitudeI0,c = 14.45
(Nataf et al. 2013) and color (V − I)0,c = 1.06 (Bensby et al.
2011) are already known. For this calibration, we use a color-
magnitude diagram obtained from CTIO observations in the
I andV bands. We then convert theV − I source color to
V − K using the color-color relations from Bessell and Brett
(1988) and the source radius is obtained from theθ∗-(V − K)
relations of Kervella et al. (2004). We derive the dereddened
magnitude and color of the source star asI0 = 14.62 and
(V − I)0 = 1.12 respectively. This confirms that the source star
is an early K-type giant. The estimated angular source radius
is θ∗ = 5.94±0.51µas. Combining this with our evaluation
of ρ∗, we obtainθE = 0.53±0.05 mas for the angular Einstein
radius of the lens.

FIG. 3.— ∆χ2 contours for the parallax parameters derived from our
MCMC fits for the best binary-lens model including orbital motion and the
parallax effect.

Our analysis is consistent with the results of Poleski et al.
(2013). We confirm that the lens is a planetary system com-
posed of a giant planet orbiting a low-mass star and we report
the refined parameters of the system. Poleski et al. (2013) re-
ported that there existed a pair of degenerate solutions with
u0 > 0 andu0 < 0, although the positiveu0 solution is slightly
preferred with∆χ2 = 13.6. We find a consistent result that
the positiveu0 solution is preferred but the degeneracy is bet-
ter discriminated by∆χ2 = 23.7.

The error contours of the parallax parameters for the best-fit
model are presented in Figure 3. The uncertainty of each pa-
rameter is determined from the distribution of MCMC chain,
and the reported uncertainty corresponds to the standard devi-

TABLE 3. PHYSICAL PARAMETERS

parameters quantity

Mass of the host star (M⋆) 0.44± 0.07M⊙

Mass of the planet (Mp) 2.73± 0.43MJ
Distance to the lens (DL ) 4.97± 0.29 kpc
Projected star-planet separation (d⊥) 3.45± 0.26 AU
Einstein radius (θE) 0.53± 0.05 milli-arcsec
Geocentric proper motion (µGeo) 3.02± 0.26 milli-arcsec yr−1

ation of the distribution. We list the physical parameters of the
system in Table 3 and their posterior probability distributions
are shown in Figure 4.

The lens liesDL = 4.97± 0.29 kpc away in the direction
of the Galactic Bulge. The more massive component of the
lens has massM⋆ = 0.44±0.07 M⊙ so it is an early M-type
dwarf star and its companion is a super-Jupiter planet with a
massMp = 2.73±0.43MJ. The projected separation between
the two components of the lens isd⊥ = 3.45±0.26 AU. The
geocentric relative proper motion between the lens and the
source isµGeo = θE/tE = 3.02±0.26 milli-arcsec yr−1. In the
Heliocentric frame, the proper motion isµHelio = (µN ,µE ) =
(−2.91±0.26,1.31±0.16) milli-arcsec yr−1.

We note that the derived physical lens parameters are some-
what different from those of Poleski et al. (2013). Specif-
ically, the mass of the lens system derived in Poleski et al.
(2013) is 0.59M⊙, which is∼ 34% greater than our estimate.
Half of this difference comes from the slightly larger Einstein
radius obtained by Poleski et al. (2013) from the OGLE-IV
photometry and the remaining part from the slightly larger
πE,N component of the parallax obtained from modeling the
survey and follow-up photometry as presented in this paper.
It should be noted that the parameters derived by both our and
thePoleski et al. (2013) models are consistent within the 1-σ
level.

To further check the consistency between our model and
that of Poleski et al. (2013), we conducted additional mod-
eling based on different combinations of data sets. We first
test a model based on OGLE data exclusively in order to see
whether we can retrieve the physical parameters reported in
Poleski et al. (2013). From this modeling, we derive physi-
cal parameters consistent with those of Poleski et al. (2013),
indicating that the differences are due to the additional cov-
erage provided by the follow-up observations. We conducted
another modeling run using OGLE observations but also in-
cluded CTIO, FTS and SAAO data, i.e. those datasets cover-
ing the anomalous peak. This modeling run resulted in phys-
ical parameters that are consistent with the values extracted
from fitting all combined data together, as reported in this pa-
per. This indicates that the differences between Poleski etal.
(2013) and this analysis, although consistent within the 1-σ
level, come mainly from follow-up data that provide better
coverage of the perturbation. Therefore, using survey and
follow-up data together, we arrive at a more accurate deter-
mination of theρ andπE,N parameters, which leads to a re-
finement of the physical parameters of the planetary system.

4. CONCLUSIONS

Microlensing event OGLE-2012-BLG-0406 was inten-
sively observed by survey and follow-up groups using 10 dif-
ferent telescopes around the world. Anomalous deviations ob-
served in the lightcurve were recognized to be due to the pres-
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FIG. 4.— The physical parameter uncertainties pertaining to the lens as derived from the MCMC runs optimizing our binary-lens model including parallax and
orbital motion for theu0 > 0 trajectory.

ence of a planetary companion even before the event reached
its central peak. The anomalous behavior was first identified
and assessed automatically via software agents. Most follow-
up teams responded to these alerts by adjusting their observ-
ing strategies accordingly. This highlights the importance of
circulating early models to the astronomical community that
help to identify important targets for follow-up observations
(Shin et al. 2012b).

Our analysis of the combined data is consistent with the re-
sults of Poleski et al. (2013) and we report the refined param-
eters of the system. The primary lens with massM⋆ = 0.44±
0.07M⊙ is orbited by a planetary companion with massMp =
2.73±0.43 MJ at a projected separation ofd⊥ = 3.45±0.26
AU. The distance to the system isDL = 4.97±0.29 kpc in the
direction of the Galactic Bulge.

This is the fourth super-Jupiter planet around a low-
mass star discovered by microlensing (Dong et al. 2009;
Batista et al. 2011; Yee et al. 2012) and the first such system
whose characteristics were derived solely from microlensing
data, without considering any external information.

The precise mechanism of how these objects form and
evolve around low mass stars is still an open question.
Simulations using the core accretion formalism can produce
such objects within reasonable disk lifetimes of a few Myr
(Mordasini et al. 2012) provided the core mass is sufficiently
large or the opacity of the planet envelope during gas
accretion is decreased by assuming that the dust grains have
grown to larger sizes than the typical interstellar values (R.
Nelson, private communication). Furthermore, gravitational
instability models of planet formation can also potentially
produce such objects when the opacity of the protoplanetary
disk is low enough to allow local fragmentation at greater
distances from the host star, and subsequently migrating the
planet to distances of a few AU.
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Paczýnski, B. 1986, ApJ, 304, 1
Poleski, R., Udalski, A., Dong, S., et al. 2013, ApJ, submitted
Shin, I.-G., Choi, J.-Y., Park, S.-Y., et al. 2012, ApJ, 746,127
Shin, I.-G., Han, C., Gould, A., et al. 2012, ApJ, 760, 116
Street, R., Choi, J.-Y., Tsapras, Y., et al. 2013, ApJ, 763, 67
Sumi, T., Abe, F., Bond, I. A., et al. 2003, ApJ, 591, 204
Sumi, T., Bennett, D. P., Bond, I. A., et al. 2010, ApJ, 710, 1641
Sumi, T., Kamiya, K., Bennett, D. P., et al. 2011, Nature, 473, 349
Tsapras, Y., Horne, K., Kane, S., et al. 2003, MNRAS, 343, 1131
Tsapras, Y., Street, R., Horne, K., et al. 2009, Astronomische Nachrichten,

330, 4
Udalski, A. 2003, Acta Astron., 53, 291
Yee, J., Shvartzvald, Y., Gal-Yam, A., et al. 2012, ApJ, 775,102
Yoo, J., DePoy, D. L., Gal-Yam, A., et al. 2004, ApJ, 603, 139


