WP4 - Task 4.2

Parallel measurements of formaldehyde (H₂CO) at the Jungfraujoch station: Preliminary FTIR results and first comparison with MAXDOAS data

B. Franco¹, E. Mahieu¹, M. Van Roozendael², F. Hendrick², J. Stavrakou², I. De Smedt², G. Pinardi², B. Bovy¹, P. Demoulin¹ & C. Servais¹

¹Institute of Astrophysics and Geophysics of the University of Liege, Liège, Belgium ²Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

BIRA-IASB, Brussels, October 17th 2013

The Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.)

- Site of the NDACC network
- Ground-based FTIR measurements performed year-round
- Using high-resolution FTIR spectrometer BRUKER 120HR
- Remote operation of the BRUKER instrument since late 2008

The Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.)

- Site of the NDACC network
- Ground-based FTIR measurements performed year-round
- Using high-resolution FTIR spectrometer BRUKER 120HR
- Remote operation of the BRUKER instrument since late 2008

- FTIR regular cloud-free observations since 1984, ~120 days yr⁻¹ on average since the mid-1990s
- grating spectra recorded from 1976 to 1989, covering narrow IR intervals

→ more than 35 years of uninterrupted IR
monitoring in the Alps
→ more than two dozen stratospheric and/or
tropospheric retrieved species

Formaldehyde: H₂CO

- Sources
- \rightarrow photochemical oxidation of CH₄ and other carbonic compounds
- Sinks
- → photolysis, oxidation by OH and deposition
- Lifetime \rightarrow a few hours
- Absorption \rightarrow <u>very weak</u> in IR domain (< 1%)

Formaldehyde: H₂CO

- Sources \rightarrow photochemical oxidation of CH₄
 - and other carbonic compounds
- Sinks
- → photolysis, oxidation by OH and deposition
- Lifetime \rightarrow a few hours
- Absorption \rightarrow <u>very weak</u> in IR domain (< 1%)

FTIR and MAX-DOAS observations of H₂CO at Réunion Island (21° S, 55° E)

Vigouroux et al., Atmos. Chem. Phys., 9, 9523-9544, 2009.

Microwindows (cm ⁻¹)
2763.425 - 2763.600
2765.725 - 2765.975
2778.200 - 2778.590
2780.800 - 2781.150
2810.000 - 2810.350
2855.650 - 2856.400

Largely influenced by **biomass burning** and **fossil fuel combustion**

Formaldehyde: H₂CO

- Sources \rightarrow photochemical oxidation of CH₄
- Sinks
- and other carbonic compounds
 → photolysis, oxidation by OH and deposition
- Lifetime \rightarrow a few hours
- Absorption \rightarrow <u>very weak</u> in IR domain (< 1%)

FTIR and MAX-DOAS observations of H₂CO at Réunion Island (21° S, 55° E)

Vigouroux et al., Atmos. Chem. Phys., 9, 9523-9544, 2009.

Microwindows (cm ⁻¹)	
2763.425 - 2763.600	Largely influenced by biomass burning and fossil fuel combustion
2765.725 - 2765.975	
2778.200 - 2778.590	
2780.800 - 2781.150	
2810.000 - 2810.350	Jungfraujoch station (46.5° N, 8.0° E, 3580m a.s.l.) $2833\ 070 - 2833\ 350\ \text{cm}^{-1}$
2855.650 - 2856.400	Tunable optical filter improving the S/N ratio since 2005

Broad bandpass optical filter

- from 2400 to 3000 cm⁻¹
- aperture = 1.1 mm

Simulation of formaldehyde window at the Jungfraujoch station Jan 21st 2010 - SZA = 70°

Simulation of formaldehyde window at the Jungfraujoch station Jan 21st 2010 - SZA = 70°

Simulation of formaldehyde window at the Jungfraujoch station Jul 11th 2010 - SZA = 80°

H₂CO retrieval strategy at the Jungfraujoch station

- Retrieval with the SFIT-2 algorithm (v3.91)
- Microwindow: 2833.070 2833.350 cm⁻¹
- Spectral resolution: 0.005 cm⁻¹
- Interfering species: CH_4 , HDO, O_3 and N_2O
- Spectroscopic parameters:
 - HITRAN 2004 for interfering species
 - HITRAN 2008 for H₂CO
- Data set: 2343 solar spectra from December 2005 to April 2013

H₂CO retrieval strategy at the Jungfraujoch station

- Retrieval SFIT-2 algorithm (v3.91)
- Microwindow: 2833.070 2833.350 cm⁻¹
- Spectral resolution: 0.005 cm⁻¹
- Interfering species: CH_4 , HDO, O_3 and N_2O
- Spectroscopic parameters:
 - HITRAN 2004 for interfering species
 - HITRAN 2008 for H₂CO
- Data set: 2343 solar spectra from December 2005 to April 2013
- *A priori* profile from WACCM v.6

Constraint matrix $\mathbf{R} = \alpha \mathbf{L}_1^T \mathbf{x} \mathbf{L}_1$

Determination of α (regularization strength) based on H₂CO retrievals for 2010

 $\begin{array}{|c|c|c|c|}\hline \hline & \underline{\text{New subset:}} & \text{spectra with } & \text{positive } \\ \hline & \text{retrieved profile only, when using } \alpha = 10 \\ \hline \end{array}$

EXAMPLE OF H₂CO EIGEN VECTORS AT JUNGFRAUJOCH

-0,2

0,0

TIME SERIES OF H₂CO COLUMN ABOVE JUNGFRAUJOCH

SEASONAL CYCLE OF $\rm H_2CO$ ABOVE JUNGFRAUJOCH

SEASONAL CYCLE OF H₂CO ABOVE JUNGFRAUJOCH

SEASONAL CYCLE OF $\rm H_2CO$ ABOVE JUNGFRAUJOCH

SEASONAL CYCLE OF H₂CO ABOVE JUNGFRAUJOCH

FTIR total columns appear to be low during summertime...

Forthcoming research and developments

Retrieval strategy with the 2833.070 – 2833.350 cm⁻¹ microwindow

- Spectroscopic parameters \rightarrow contribution to the error budget ? \rightarrow HITRAN 2012 with updated H₂CO line parameters
- Two consecutive runs \rightarrow first run for the interfering species \rightarrow second run to fit H₂CO only
- Optimal Estimation Method instead of Tikhonov regularization ?

Retrieval strategy with 6 microwindows from Vigouroux et al., 2009 ?

... but using broad-band spectra !

Thanks for your attention

Special thanks to Michel Van Roozendael, François Hendrick, Jenny Stavrakou, Isabelle De Smedt and Gaia Pinardi for the IMAGES and MAX-DOAS data

Investigating an Optimal Estimation Method for the H₂CO retrieval strategy

- Making use of climatological conditions
- Applying diagonal covariances deduced from ACE-FTS (v3) occultation measurements

Further experiments to fix the inter-layer correlation are still required

Optimal Estimation Method for the H₂CO retrieval

H₂CO RETRIEVED PROFILES ABOVE JUNGFRAUJOCH FOR 2010

Tikhonov regularization - *alpha* = 25

Tikhonov regularization - alpha = 250

