# Development and maintenance of a laboratory network using NIR for soil properties assessment in Southern Belgium

Genot Valérie<sup>1</sup>, Colinet Gilles<sup>1</sup>, Bock Laurent<sup>1</sup>, <u>Dardenne Pierre<sup>2</sup></u>





<sup>1</sup> University of Liege - Gembloux Agro-Bio Tech — "Soil & Water Systems" Unit Passage des Déportés, 2. B-5030 Gembloux

<sup>2</sup> Walloon Agricultural Research Centre - Valorisation of Agricultural Products Department Chaussée de Namur, 24, B-5030 Gembloux, Belgium – dardenne@cra.wallonie.be

### Context

In Walloon Region (Southern Belgium), five routine soil laboratories are grouped within a network promoting a better quality in analysis (www.requasud.be). The harmonization of protocols as well as methodological or technical prospective are realized under scientifically supervision of our research laboratory.

In this context, a study was conducted to evaluate the ability of the NIRS to predict some soil properties: CEC, TOC, TN and clay content (Genot *et al.*, 2011). The initial models were elaborated upon local PLS regression on set of 1 300 soil samples. The local PLS calibration used allows an accurate prediction of the soil properties and precision of NIRS technique is comparable to reference analytical method (Tables 1 & 2).

Table 1: Accuracy of local PLS model based on a decreased r<sup>2</sup> and on a r<sup>2</sup> fixed to 0.99

SEP: root mean square error of prediction

RPD: ratio of prediction to determination

|                               | TOC content (g 100g <sup>-1</sup> ) | TN content<br>(g kg <sup>-1</sup> ) | Clay<br>content (%) | CEC<br>(cmol(+) kg <sup>-1</sup> |
|-------------------------------|-------------------------------------|-------------------------------------|---------------------|----------------------------------|
| Range of data base            | 0.10 - 24.10                        | 0.20 - 11.00                        | 1.5 – 70.6          | 0.60 - 91.60                     |
| Range of validation set       | 0.10 - 10.40                        | 0.20 - 5.40                         | 1.9 – 54.7          | 0.80 - 37.00                     |
| SEP decreased r <sup>2</sup>  | 0.62                                | 0.66                                | 4.9                 | 3.29                             |
| RPD decreased r <sup>2</sup>  | 3.4                                 | 2.0                                 | 1.7                 | 1.92                             |
| SEP fixed r <sup>2</sup> 0.99 | 0.13                                | 0.08                                | 1.82                | 1.09                             |
| RPD fixed r <sup>2</sup> 0.99 | 6.1                                 | 2.5                                 | 2.6                 | 2.18                             |

## Transfer soil spectral library

Towards an operational use of the NIRS to predict the CEC, TOC, TN and clay content of Walloon soil samples ...



400 – 2498 nm

Transfer the spectral library to the new master spectrophotometer:
© FOSS XDS n°1
400 – 2498 nm

Transfer the spectral library to the <u>slave</u> © FOSS XDS n°2 à 6 XDS n°2 located in the same laboratory and XSQ n°3 to 6 located in other laboratories



Different laboratories

Table 3: Statistics about number of well-predicted samples for the four soil properties

|                                 | Landuca       | TOC content             | TN content            | Clay content | CEC                       |  |
|---------------------------------|---------------|-------------------------|-----------------------|--------------|---------------------------|--|
|                                 | Land use      | (g 100g <sup>-1</sup> ) | (g kg <sup>-1</sup> ) | (%)          | (cmol(+) kg <sup>-1</sup> |  |
| Total of scanned samples        |               | 3249                    |                       |              |                           |  |
| Total of well-predicted samples | Crop          | 2186                    | 989                   | 298          | 1199                      |  |
| Percent of predicted samples    |               | 76%                     | 20%                   | 7%           | 43%                       |  |
| Total of scanned samples        |               | 1545                    |                       |              |                           |  |
| Total of well-predicted samples | Grass<br>Land | 975                     | 479                   | 331          | 597                       |  |
| Percent of predicted samples    |               | 67%                     | 29%                   | 19%          | 41%                       |  |



Fig. 2: Location of the calibration and validation sample sets in the various landscape units of Walloon Region.

Table 2: Results of the repeatability and intra-laboratory reproducibility studies for TOC, TN and clay content, and CEC and weight of standard error of reproducibility in the SEP.

|                                                      | TOC content             | TN content            | Clay content | CEC                       |
|------------------------------------------------------|-------------------------|-----------------------|--------------|---------------------------|
|                                                      | (g 100g <sup>-1</sup> ) | (g kg <sup>-1</sup> ) | (%)          | (cmol(+) kg <sup>-1</sup> |
| Repeatability – r                                    | 0.11                    | 0.12                  | 2.30         | 1.22                      |
| r%                                                   | 4.48                    | 4.30                  | 9.71         | 6.91                      |
| Reproducibility - R                                  | 0.25                    | 0.20                  | 5.04         | 2.49                      |
| R%                                                   | 10.59                   | 7.29                  | 21.27        | 14.14                     |
| Part of standard error of Reproducibility in the SEP | 1.3%                    | 0.8%                  | 37.1%        | 24.5%                     |

### Towards a routine used... methodology and results

## Step 1: laboratories scanned the samples and analyzed the samples by reference analysis

#### Goals:

- Checking the quality of prediction
- Selecting the non-predicted samples and samples different from the spectra database
- Adding the spectra and analytical results in the database
- Improving the prediction accuracy

#### Step 2: laboratories scanned the samples

- If prediction is accurate: the predicted value is used in place of analytical one.
- If prediction is not accurate: the sample is analyzed in the lab and both spectrum and reference value are added to the database (Table 3).



## Conclusion

This study illustrates the interest of developing soil spectral library in a large, but defined, territory to be used by several laboratories working with the same reference analysis procedure and using a standardized protocol to prepare and scan the soil samples. The models allow an accurate prediction of the four soil properties: total organic carbon, clay and nitrogen content, and cation exchange capacity. NIRS is thus an alternative method in soil analysis, allowing an improvement of fertility advice and precision farming.