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In order to successfully implement tissue engineered (TE) constructs as part of a clinical 

therapy, it is necessary to develop quality control tools that will ensure accurate and consistent 

TE construct release specifications. Hence advanced methods to monitor TE construct 

properties need to be further developed. In this study we showed proof of concept for contrast 

enhanced nanofocus computed tomography (CE-nanoCT) as a ‘whole-construct’ imaging 

technique with non-invasive potential that enables 3D visualization and quantification of in 

vitro engineered extracellular matrix (ECM) in TE constructs. In particular we performed a 

3D qualitative and quantitative structural and spatial assessment of the in vitro engineered 

ECM, formed during static and perfusion bioreactor cell culture in 3D TE scaffolds, using two 

contrast agents, namely Hexabrix
®
 and phosphotungstic acid (PTA). To evaluate the potential 

of CE-nanoCT, a comparison was made to standardly used techniques such as Live/Dead 

viability/cytotoxicity, picrosirius red staining and to net dry weight measurements of the TE 

constructs. When using Hexabrix
®
 as contrast agent, the ECM volume fitted linearly with net 

dry ECM weight independent from the flow rate used, hence suggesting that it stains most of 

the ECM. When using PTA as contrast agent, comparing to net weight measurements showed 

that PTA only stains a part of the ECM. This was attributed to the binding specificity of this 

contrast agent. Also, the PTA-stained CE-nanoCT data showed pronounced distinction 

between flow conditions when compared to Hexabrix
®
, indicating culture-specific structural 

ECM differences. This novel type of information can contribute to optimize bioreactor culture 

conditions and potentially critical quality characteristics of TE constructs such as ECM 

quantity and homogeneity, facilitating the gradual transformation of ‘TE constructs’ in well 

characterized ‘TE products’. 

 

 

Introduction 



As the field of tissue engineering (TE) matures, the need for novel techniques to 

characterize engineered constructs (i.e. cells/tissue combined with scaffolds) in a more 

insightful and quantitative manner becomes imperative. Currently, standard techniques such 

as histological sectioning and Live/Dead viability/cytotoxicity staining show limited potential 

as quality controls for TE constructs as these techniques only allow assessment of tissue 

distribution in two dimensions, with loss of information and with limited depth resolution 

while being destructive in nature. (1-4) Techniques such as confocal microscopy may offer a 

potential for three dimensional (3D) visualization, however again a limited depth resolution 

(~300 µm) hinders their performance when larger TE construct need to be analyzed. (5)  

Recent advances in 3D imaging techniques and image analysis strategies have 

demonstrated the potential of addressing some of the shortfalls of these currently applied 

methods for accurate TE construct analysis. In particular X-ray microfocus computed 

tomography (microCT) has been frequently applied as a 3D quantitative imaging technique to 

assess scaffold structure, (6-8) as well as bone ingrowth after in vivo implantation. (6, 9-14) 

Furthermore it has been employed for time-lapsed follow-up of mineralization inside 

scaffolds during in vitro static (15-17) or bioreactor cultures. (13, 18, 19) In most of these 

studies polymeric, ceramic, collagen scaffolds or composites were used, in which mineralized 

extracellular matrix (ECM) could be separated from the scaffold for the purpose of volume 

calculations and no significant material-dependent artifacts were present. However, when 

imaging ECM or tissue growth in metallic scaffolds or around implants, additional caution 

has to be taken during image analysis as metal artifacts (20, 21) can significantly influence the 

accuracy of the quantification of the newly formed ECM or tissue volume. (22, 23) 

Several studies have shown that when using phase contrast imaging, in most cases 

only available by synchrotron radiation, non-mineralized ECM formed in vitro in 3D TE 

constructs can be visualized. (24-26) However, routine access to systems allowing phase 



contrast imaging is limited and there are restrictions on the sample specifications. On the 

other hand, by using the more routinely available desktop microCT in standard absorption 

mode, without the use of a contrast agent, it has not been possible yet to visualize in vitro 

produced non-mineralized ECM in 3D scaffolds. (24, 27) To address this limitation osmium 

tetroxide, (28) a well-known X-ray opaque staining, has been used to visualize cells in 3D 

constructs. This stain is however toxic to cells, thus cannot be used for non-invasive quality 

control of ECM growth in the TE construct.  

In this study, we propose contrast enhanced nanofocus CT (CE-nanoCT), (29) as a 3D 

imaging technique that combines the high spatial and contrast resolution of nanoCT with the 

use of contrast agents, to characterize engineered ECM in TE constructs after in vitro culture. 

In particular we performed a 3D quantitative and qualitative structural and spatial assessment 

of the in vitro engineered ECM, formed during static and bioreactor cell culturing in titanium 

alloy scaffolds. By using metallic scaffolds in this case study we additionally proved the 

effectiveness of CE-nanoCT, as these scaffold types represent the worst case scenario with 

regard to material-dependent image artifacts. The two selected tissue-specific contrast agents 

that were used to stain the TE construct after culture were Hexabrix
®
 and phosphotungstic 

acid (PTA). The latter is known to bind to connective tissues, and more specifically to 

collagen and fibrin. (30) The former contains a negatively charged ioxaglate, which will be 

locally repulsed by the negative fixed charge density of the tissue, thus all tissues which do 

not contain a negative charge will be stained. (31, 32) Additionally, Hexabrix
®
 has been used 

for in vivo animal studies (33) and in a clinical setting, (34) and thus is a potential candidate 

for non-invasive TE construct quality assessment. To  evaluate the potential of CE-nanoCT 

for 3D visualization and quantification of in vitro engineered ECM by culture of human 

periosteum derived cells (hPDCS, i.e. a cell type that has been seen to be mulitpotent and to 

contribute in bone regeneration (35, 36)) in 3D titanium alloy scaffolds, a comparison was 



made to routine physical measurement techniques, such as Live/Dead viability/cytotoxicity 

for cell viability, picrosirius red staining for collagen content and ECM weight measurements.  

 

Materials and Methods 

Ti6Al4V scaffolds 

3D additive manufactured open porous Ti6Al4V scaffolds (subsequently referred to as 

Ti scaffolds: Ø = 6 mm, h = 6 mm, porosity = 73 ± 1%, strut diameter = 245 ± 2 µm and pore 

size = 755 ± 3 µm), produced on an in-house developed selective laser melting (SLM) 

machine, (37) were used. The design was based on a parametric unit cell (FIG. 1A), which 

consists entirely of identical beams with constant circular cross-section (0.1 mm) and a beam 

length of 0.9 mm. Figure 1B visualizes a produced open porous Ti scaffold. Prior to cell 

seeding, all scaffolds were pre-wetted by vacuum impregnation in cell culture medium for 2 h 

in a humidified incubator at 37°C, and dried overnight in a non-humidified incubator. (38) 

Standard 2D hPDC Culture 

hPDCs were isolated from periosteal biopsies of different donors as described 

previously. (39) This procedure was approved by the ethics committee for Human Medical 

Research (KU Leuven) and with patient informed consent. hPDCs were expanded in 

Dulbecco’s modified Eagle’s medium with high-glucose (Invitrogen) containing 10% fetal 

bovine serum (BioWhittaker) and 1% antibiotic–antimycotic (100 units/mL penicillin, 

100mg/mL streptomycin,and 0.25mg/mL amphotericin B; Invitrogen). The seeding density 

used for the two dimensional (2D) culture dish hPDC expansion was 6000 cells/cm
2
. hPDCs 

were passaged at 80% – 90% confluency. At the time of experiment, cells (with a population 

doubling number of 15) were trypsinized with Tryple Express (Invitrogen) to be seeded on the 

scaffolds.  

Static & bioreactor TE construct culture 



A validated static seeding protocol was used for seeding 2D cultured hPDCs (cell 

seeding density 30000 cells/cm
2
) onto the preconditioned Ti scaffolds with an average cell 

seeding efficiency of 60%. (38)  In vitro cell culture in the TE constructs lasted for 14, 21 and 

28 days under static (n = 7) or dynamic (n = 7) culture conditions.  For static culture, TE 

constructs were positioned in 12-well plates (Greiner Bio One) containing 3ml cell culture 

medium, and incubated at 37°C in a humidified and CO2-controlled incubator (relative 

humidity: 95%, 5% CO2). For bioreactor culture, TE constructs were cultured in an in-house 

developed perfusion bioreactor equipped with 7 parallel perfusion circuits (FIG. 1C). Each 

perfusion chamber, holding a single scaffold, was connected to an individual medium 

reservoir (disposable 50 ml Falcon tubes, BD Biosciences) containing 10 ml of cell culture 

medium via a Tygon
®
 (Cole Parmer) tubing and via a two-stop tubing (BPT, Cole Parmer) 

connected to a peristaltic pump (IPC-24, Ismatec SA). Two different perfusion flow rates 

were used for the bioreactor culture: the low flow rate used was 0.04 ml/min while the high 

flow rate was 4 ml/min. In both static and bioreactor cultures medium was refreshed every 

two days for the entire culture duration.  

CE-nanoCT 

After static or dynamic culture the TE constructs were rinsed with 1ml phosphate 

buffered saline (PBS) and transferred to a 4% paraformaldehyde solution (Sigma) for 2 hours 

to fixate the ECM. The TE constructs were stored in PBS prior to analysis. Two contrast 

agents were used as received, namely Hexabrix
®
 320 (Guerbet Nederland B.V) and PTA 

(VWR International). During preliminary experiments (data not shown), for both contrast 

agents an exposure time of 30 min to consistently stain the entire TE constructs was selected.  

Hexabrix
®
 is a radio-opaque injectable solution containing ioxaglate meglumine 

(39.3 %) and ioxaglate sodium (19.6 %). Ioxalgate is a negatively charged ionic iodinated 

dimer that is locally repulsed by the negative fixed charge density of the ECM. As a 



consequence, all tissues with a net negative charge will not be stained, while Hexabrix
®  

will 

adsorb to the rest. All samples were, before imaging, immersed in a solution of Hexabrix
®
 

320 (20% in PBS), then wrapped in parafilm and stably positioned in the nanoCT system for 

imaging.  

PTA is a soft tissue contrast agent containing tungsten, which confers strong X-ray 

contrast when attached to biological tissue, and has a strong binding affinity to fibrin and 

collagen. Hence PTA is a very useful contrast agent to specifically visualize the collagen and 

fibrin content in ECM. Similar to Hexabrix
®
, all samples were, prior to imaging, immersed in 

a solution of PTA (1.25g/50ml PBS), were then wrapped in parafilm and were stably 

positioned in the nanoCT system. 

The nanoCT system employed in this study was a Phoenix NanoTom S (GE 

Measurement and Control Solutions) with a 180 kV/15 W high-performance nanofocus X-ray 

tube. It was equipped with a tungsten target and was operated, for all scans, at a voltage of 

90 kV and a current of 170 µA. A 1 mm aluminum and 1 mm copper filter was used to reduce 

beam hardening and metal artifacts as much as possible. The exposure time was 500 ms and a 

frame averaging of 1 and image skip of 0 was applied, resulting in a total scanning time of 20 

minutes per TE construct. The scanning time was kept low to avoid sample drying during 

scanning, to allow routine screening and to enable in future more non-invasive use and real-

time monitoring. The reconstructed images had an isotropic voxel size of 3.75 µm. 

3D visualization, and image processing and analysis 

For 3D visualization of the TE constructs, CTVox (Bruker micro-CT) was used. For 

image processing and quantification of the ECM volume in the TE constructs we used CTAn 

(Bruker micro-CT) according to the scheme in FIG. 2. At first the reconstructed dataset of the 

entire TE construct was fragmented in different subsets with a similar amount of metallic 

artifacts (step 1). By using a 3-level automatic Otsu segmentation algorithm (40) on the 



individual 2D slices, the ECM was separated from both the scaffold and the background, the 

latter including noise and metal artifacts (step 2). As a result, grey-scale images with distinct 

grey-scale values for scaffold, ECM and background were generated for the different subsets. 

A global threshold was then chosen manually to select the ECM (step 3). In order to reduce 

the errors introduced by the partial volume effect and metallic artifacts for analyzing the ECM 

volume, the binarized images for the Ti structure were dilatated by 2 voxels and subtracted 

from the dataset of binarized ECM images (step 4). The noise was minimized by removing 

black speckle noise smaller than 500 voxels and white speckle noise smaller than 2000 

voxels. In order to solidify the resulting structure, a ’closing’ operation (~ 2 voxels) was 

performed on the resulting images (step 4), providing images suitable for the 3D analysis of 

the ECM volume. Finally, the ECM volume in the TE constructs was analyzed by performing 

a 3D analysis on the binarized and processed images (step 5). 

Physical characterization of TE constructs for comparison to the CE-nanoCT data 

In order to gain further understanding on the properties of the cultured TE constructs, 

subsequent experimental analyses were performed, as described in this section. They were 

also used to  evaluate the potential of CE-nanoCT and assess the levels of complementarity 

between established analyses and the suggested imaging technique. 

Cell viability by Live/Dead viability/cytotoxicity staining 

The cell viability in the TE constructs was evaluated using Live-Dead 

viability/cytotoxicity staining (Invitrogen, USA). Constructs were rinsed with 1ml PBS, 

incubated in the staining solution (0.5µl Calcein AM and 2µl Ethidium Homodimer in 1ml 

PBS) for 20 min under normal cell culture conditions and finally imaged using a Leica M165 

FC microscope (38). 

Collagen content by picrosirius red staining 



The collagen-containing ECM production on the TE constructs was characterized by 

picrosirius red staining (1mg/mL Sirius Red in saturated Picric acid). (41) The stained 

samples were thoroughly washed with distilled water to remove unbound dye and dried at 

37
o
C before qualitative analysis by stereomicroscopy. For quantitative analysis, the 

picrosirius red dye was dissolved in 0.2M NaOH/Methanol (1:1 ratio) with mild shaking 

overnight, and the optical density was measured at 492nm using a microplate reader 

(TECAN) for 1 ml triplicate samples for each condition.  

ECM weight measurement 

The liquid in the TE constructs was carefully removed using vacuum after which they 

were dried overnight in 37
o
C and subsequently weighed on a high accuracy balance (Sartorius 

CPA225D). Ti scaffolds were cleansed ultrasonically, immersed for 10 min in acetone, 10 

min in ethanol 70%, and 10 min in distilled water, subsequently an alkali treatment was 

applied for 24 h at 60°C in a 5 M sodium hydroxide (Sigma-Aldrich) solution, samples were 

rinsed with distilled water, and finally sterilized in a steam autoclave The weight of the 

cleansed Ti scaffold was subtracted from the total weight, resulting in the net ECM weight. 

 

Results 

CE-nanoCT allows 3D visualization of ECM in TE constructs 

As a first step in this study TE constructs were scanned with nanoCT without the use 

of contrast agents. It allowed a visual inspection of 3D hPDC-driven ECM formation in the 

TE constructs after static or dynamic in vitro culture. However the reconstructed 2D slices 

(FIG. 3A) were of low image quality (i.e. low contrast between ECM and background) 

making accurate qualitative evaluation and further 3D quantification impossible. When using 

Hexabrix
®
 and PTA, both contrast agents respectively infiltrated and bonded to the ECM, 

resulting in an increase in 3D grey-scale intensity of the ECM for static (FIG. 3B) as well as 



for both (low and high flow rate) bioreactor culture derived TE constructs (FIGs. 3C and 3D). 

Black arrows in the image indicate ECM boundaries within the TE construct. The high 

contrast difference between ECM, background and Ti scaffold allowed further processing of 

the raw CE-nanoCT images. 

Live/dead viability/cytotoxicity staining was employed as a benchmark analysis of cell 

viability and distribution on the different TE constructs. The fluorescent images showed that 

cells were distributed over the entire outer TE construct surface, indicating similar results for 

all 3 culture conditions (FIG. 4A). However CE-nanoCT images of the same TE constructs 

showed that for static culture, ECM was only formed at the scaffold periphery, resulting in 

only partially ECM filled TE constructs, while in the bioreactor cultured TE constructs ECM 

was also found back throughout the internal TE construct volume (FIG. 4B).  

The cross-sectional CE-nanoCT images were subsequently binarized and processed as 

described in FIG. 2 to quantify the volume of the ECM formed. FIG. 4C shows representative 

binarized images for all culture conditions, visualizing the ECM in white and background plus 

Ti scaffold in black. In the case of static culture only thin strands of ECM were present at the 

periphery of the TE construct, resulting in a loss of representation after binarization and 

correction for metallic artifacts (i.e. step 4 in FIG. 2), making the 3D quantification and 

visualization of the ECM in statically cultured TE constructs inaccurate. Qualitative 

assessment of the spatial ECM distribution in 3D in these samples was nevertheless possible 

throughout the entire TE construct. 

CE-nanoCT allows 3D quantification of ECM volume in TE constructs 

Image analysis of the binarized CE-nanoCT slices for the different contrast agents 

allowed to quantify the total amount of stained ECM formed within the available void volume 

(i.e. total TE construct volume excluding the volume of Ti scaffold) for the bioreactor 

perfusion culture conditions, which was not possible for statically cultured TE constructs as 



the amount of ECM formed was too small to be quantified. In order to comprehend the CE-

nanoCT-based ECM characterization in the TE constructs, a comparison was made to two 

established methods for ECM assessment, namely picrosirius red staining to measure the 

collagen content and ECM dry weight measurement (FIG. 5 and FIG. 6). TE constructs giving 

increased values of picrosirius red values (absorption at 492nm, FIG. 5A) also showed 

increased values of ECM when measured via Hexabrix
®
 and PTA stained CE-nanoCT (FIG 

5B). Overall, Hexabrix
®
 stained CE-nanoCT values were seen to follow the picrosirius red 

absorption values more closely than the PTA stained ones with a stronger dependency on the 

flow rate used for TE construct culture. The ECM volume after Hexabrix
®
 staining was seen 

to fit linearly with net dry weight values independent from the flow rate used (FIG. 6A). 

While for TE constructs cultured at high flow rate, only a small difference in ECM volume 

was observed between the Hexabrix
®
 and PTA staining, for those TE constructs cultured at a 

low flow rate, Hexabrix
®
 staining resulted in significantly higher ECM volumes than those 

obtained via PTA staining (FIG. 5B) because of the binding specificity of PTA to proteins and 

collagen. Indeed, both FIGs 5B and 6B show that a part of the ECM was not stained by PTA, 

and that this part was more pronounced for the lower ECM content conditions (seen for the 

low flow rate). 

CE-nanoCT allows spatial visualization and quantification of the ECM in TE constructs 

FIGs 7B and 7C show typical 3D renderings of the CE-nanoCT images (both for 

Hexabrix
®
 and PTA staining respectively) for a bioreactor perfusion cultured TE construct at 

high flow rate, together with the corresponding Live/Dead viability/cytotoxicity staining 

(FIG. 7A) and picrosirius red staining (FIG. 7D). The 3D image obtained with Hexabrix
®
 

staining, visualizing all the ECM present in the construct in green, showed a comparable 

ECM distribution as the Live/Dead viability/cytotoxicity staining for the outer TE construct 

surface (indicated by the white arrows). The PTA stained 3D images, showing the collagen 



and fibrin containing ECM in red, had a comparable ECM distribution as the picrosirius red 

staining for the outer TE construct surfaces. Moreover, the 3D rendered CE-nanoCT images 

of both the Hexabrix
®
 and PTA staining allowed a full 3D visualization of the ECM 

distribution throughout the entire TE construct (supplementary videos may be seen in the 

appendix). A volumetric ECM distribution histogram over the TE construct height was plotted 

both for the Hexabrix
®
 and PTA staining (FIG. 8), giving an indicative example of the 3D 

qualitative (distribution) and quantitative (volume of ECM) information obtainable with CE-

nanoCT. Although a homogeneous ECM distribution over the TE construct height could be 

expected, both stainings showed that a larger amount of ECM was formed at the bottom of the 

TE construct. 

 

Discussion 

In order to successfully implement TE constructs as part of a clinical therapy, it is 

necessary to develop quality control tools that will ensure accurate and consistent TE 

construct release specifications. (42) In general a substantial amount of routine lab techniques 

currently used in TE were initially developed and optimized for 2D analysis of cell growth, 

distribution and matrix secretion in culture flasks and not for use in a 3D setting such as TE 

constructs (Table 1). For example the information obtained by destructive scanning electron 

microscopy (SEM) remains 2D and rather elusive even when multiple sample slices are 

analyzed. (8, 25, 27) Thus one has to be careful when using 2D validated techniques to draw 

3D conclusions. Proper validation under 3D conditions and/or complementary use of 

additional real 3D information requires substantial additional research, but it is a much safer 

route to obtain reliable information of 3D cell and tissue behavior. Hence advanced 3D 

methods to, preferably non-invasively, monitor TE construct properties need to be further 

developed.  



X-ray micro and nanoCT offer a potential solution because of their non-destructive 3D 

character. However, the value of X-ray CT-based information for TE will ultimately be a 

trade-off of factors such as physicochemical, morphological and dimensional TE construct 

properties, contrast enhanced agent and equipment limitations (Table 2). According to 

specific study objectives, a customized strategy will be required to extract the necessary 

information in a robust way, ranging from (i) accurate and detailed (100s of µm scale) 

identification and quantification of different TE construct components limited to small TE 

construct samples and using phase contrast imaging, (25) to (ii) using standard desktop micro- 

or nanoCT as a routine 3D imaging technique for whole TE construct analysis (mm to cm 

scale) and quantification of mineralization after in vivo implantation. (10, 13) The latter 

approach, without the use of a contrast agent, has also been used for static or bioreactor in 

vitro cultures, (16, 18, 19) showing distinct contrast differences between mineralized matrix 

and scaffold. Phase contrast imaging (24-26) or microCT combined with osmium tetroxide as 

a contrast agent (28) have shown their potential to assess non-mineralized ECM in an in vitro 

engineered TE construct. However, the limited availability of synchrotron radiation or CT 

systems allowing phase contrast imaging, the toxicity of osmium tetroxide and the high cost 

associated with its disposal, all hamper their use as routine quality control for TE constructs.  

Both contrast agents used in this work (Hexabrix
®
 and PTA) increased the grey-scale 

intensity difference between the different phases in the TE constructs as seen in FIG 3. In the 

static culture case, ECM was only found around the periphery of the Ti scaffold in contrast 

with ECM the bioreactor cultured TE constructs. Porter et al. (18) also reported peripheral 

deposition of mineralized matrix on statically cultured TE constructs in respect to a more 

dense and spatially homogeneous distribution of mineralized matrix in bioreactor cultured TE 

constructs based on microCT analysis. Additionally they also reported that mineralized matrix 

formation was initiated at the scaffold periphery and progressed towards the scaffold center 



over a period of 44 days. These dynamics may be attributed to fluid flow and convective 

nutrient and oxygen transport throughout the TE construct volume during culture. (43-45) In 

this study CE-nanoCT revealed a dramatic increase of ECM content for bioreactor cultured 

TE constructs (up to 75% of void volume) with respect to the statically cultured ones (less 

than 4% of void volume). The low ECM quantity in the static culture case was below the CE-

nanoCT threshold for ECM quantification, which in this study was determined to be an ECM 

volume lower than 4% of the total Ti scaffold void volume (FIG. 4). This lower quantification 

limit was directly related to the artifacts introduced by the metallic scaffolds used in this 

work. (46) For other scaffold materials however, it is anticipated that the lower quantification 

threshold of CE-nanoCT will further decrease, since material-dependent artifacts will be 

reduced compared to the worst case scenario described here.   

CE-nanoCT results were then compared to known physical ECM characterization 

methods, such as dry net weight as a global ECM related parameter and picrosirius red 

staining as a collagen specific assay, to comprehend the CE-nanoCT data and hence evaluate 

the potential of CE-nanoCT for 3D ECM quantification in TE constructs. In FIG. 6A, the 

relative ECM void volume filling obtained via Hexabrix® staining (an equilibrium contrast 

agent, thus it does not bind to the ECM) was correlated to the net dry weight, resulting in a 

linear correlation for both flow rates, suggesting that Hexabrix® stains most of the ECM in a 

quantitative manner. However when using the more tissue-specific contrast agent PTA, which 

is known to bind to various proteins and connective tissue, (47, 48)  a difference with 

Hexabrix® staining was found (FIG. 5B), while when comparing to the net dry weight, it was 

shown that PTA only stained a fraction of the ECM (FIG. 6B).  

FIG. 5 shows a qualitative relationship between experimental values obtained via the 

collagen specific picrosirius red staining and CE-nanoCT values demonstrating both 

increasing trends over time. Additionally, a clear flow rate dependence was seen (FIGs 5B) 



for both PTA and Hexabrix® stains. It can be observed that TE constructs cultured under high 

flow rate showed a larger fraction of the ECM stained by PTA, which could be explained as 

an ECM richer in protein components (on which PTA may specifically bind). Fluid flow is 

known to enhance matrix synthesis within TE constructs during perfusion culture. (19, 44, 49) 

Furthermore differences in fibrillar collagen organization of the ECM, which are flow 

dependent, (50) could also explain the ECM differences that were observed by PTA staining 

as the ECM morphology could influence the binding mechanism of PTA to the ECM proteins. 

In FIG. 5, it may also be observed that the difference in collagen content, as determined by 

picrosirius red staining, for the different flow rates is less pronounced than the one observed 

with the PTA staining. However one has to keep in mind that the picrosirius red staining was 

used without any customization and validation for the specifics of the 3D environment under 

investigation, which could underestimate actual collagen content. (45) Certainly, for more 

dense TE constructs, like the ones obtained from high flow rate culture, this issue becomes 

more relevant due to increased inter-construct mass transport limitations that would affect the 

performance of the assay.  

CE-nanoCT-based imaging and quantification clearly show that by using this 

technique information that could not be previously generated by standard experimental 

techniques such as microscopy of TE constructs stained with Live/Dead viability/cytotoxicity 

or collagen-specific picrosirius red staining which are line-of-sight techniques lacking a 3D 

internal visualization potential may now be obtained. Hence, a direct validation of CE-

nanoCT using these techniques is irrelevant. Images obtained by standard experimental 

techniques are mainly limited to surface restricted TE construct characterization as they are 

line-of-sight techniques and only provide limited depth information. (49, 51) Not taking into 

account the latter limitation may result in the misinterpretation of statically cultured TE 

constructs as being full of ECM while in reality only an outer layer of ECM exists, as 



confirmed by CE-nanoCT (FIG. 4). A potential validation technique could be histological 

sectioning. However, the use of Ti scaffolds in this work does not allow the sectioning of the 

produced TE constructs, and thus will also not present full 3D data.  

To conclude, for the combination of factors used in this work, i.e. scaffold size and 

material type, type of CT device and scanning mode (Table 2), and its objective, CE-nanoCT 

has shown potential as a cost effective TE construct quality control methodology, by 

providing volumetric and distribution measurements throughout the entire TE construct (FIGs 

7 and 8). Although there are preliminary indications for ECM composition analysis via this 

method which need to be further investigated, the novel information that CE-nanoCT 

generates will assist to increase our insight in the ECM characteristics within in vitro 

manufactured TE constructs. In this study we showed proof of concept for CE-nanoCT as a 

‘whole-construct’ imaging technique with non-invasive potential that enables 3D visualization 

and quantification of in vitro engineered ECM in TE constructs. The development of robust 

tools and methodologies such as CE-nanoCT to assess important and potentially critical 

quality characteristics of TE constructs such as ECM quantity and homogeneity, can facilitate 

the gradual transformation of ‘TE constructs’ to well characterized ‘TE products’. 
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FIG. 1. (A) The parametric unit cell of the computer aided design of the porous Ti scaffolds, 

which consists entirely of identical beams with constant circular cross-section (0.1 mm) and a 

beam length of 0.9 mm, (B) a typical image of an SLM produced Ti scaffold and (C) an 

image of the in-house developed perfusion bioreactor equipped with parallel perfusion 

circuits, (D) Schematic of the bioreactor setup used for 3D dynamic culture, consisting of a 

medium reservoir containing 10 ml of medium, a peristaltic pump forcing culture medium 

through the porous scaffold that was positioned in the perfusion chamber.  

 



FIG. 2. Steps followed for image analysis from the 3D reconstruction of the CE-nanoCT scan 

to image processing and noise reduction to final 3D quantification and distribution analysis.  

 

FIG. 3. Representative 2D CE-nanoCT cross-sections of a construct (A) scanned without 



contrast agent, after bioreactor perfusion high flow rate (B) scanned after static culture with 

both Hexabrix
®
 and PTA, (C) after bioreactor perfusion (low flowrate) culture with both 

Hexabrix
®
 and PTA and (D) after bioreactor perfusion (high flowrate) culture with both 

Hexabrix
®
 and PTA. Black arrows indicate boundaries of the ECM in the constructs. 

 

FIG. 4. (A) Live/dead viability/cytotoxicity staining of constructs cultured in different 

conditions, (B) typical 2D grey-scale CE-nanoCT cross-sections using Hexabrix
®
 and (C) the 

corresponding binarized and processed cross-sections serving as input for the analysis of the 

ECM volume. 



 

FIG. 5. (A) ECM content quantification via picrosirius red for both flow rates over culture. 

(B) Relative ECM volume filling as function of the total TE construct internal void volume 

calculated based on CE-nanoCT using respectively Hexabrix® and PTA.  

FIG. 6. Relative ECM volume filling as function of the total TE construct internal void 

volume calculated based on CE-nanoCT using respectively Hexabrix® (A) and PTA (B) in 

function of net dry weight. TE constructs were cultured under: (○) Low flow rate condition 

(0.04 ml/min); (■) High flow rate condition (4ml/min).  

 



FIG. 7.  Top and side view of the (A) live/dead staining of a perfusion bioreactor cultured 

construct at a flow rate of 4 ml/min, (B) 3D rendering of the CE-nanoCT images with 

Hexabrix® staining, (C) 3D rendering of the CE-nanoCT images with PTA staining and (D) 

Brightfield image of scaffold stained with Picro-sirius red. White dashed lines indicate 

identical geometric features of the ECM in microscopic images and reconstructed images. 

 

FIG. 8. Representative longitudinal ECM distribution throughout the full TE construct i.e. 



volume of ECM per cross section, where the height of the section is 3.75 µm equal to the 

voxel size used for the analysis, in function of the scaffold height. Distributions obtained via 

Hexabrix
®
 and PTA staining for a scaffold that was cultured for 21 days under a flow rate of 

0.04 ml/min. 

 

Routine 

Techniques 

Specificity 

Depth 

analysis 

Scale Ref. 

Live/dead stain cells 

2D: limited 

depth 

µm-mm Du et al.
(49)

 

Picro-sirius red 

stain 

collagen 

2D: limited 

depth 

µm-mm Paletta et al.
(51)

 

SEM and optical 

microscopy 

cells, collagen, 

mineral phase 

2D ~ µm Peyrin et al.
(8)

 

Alizarin red stain Mineral phase 

2D: limited 

depth 

µm-mm Frohlich et al.
(17)

 

Table 1: Categorization of bench imaging techniques that have been routinely employed for 

the visualization and analysis of 3D engineered tissues (related to bone TE).  

 

 Specificity Size Range Resolution 

Scaffold 

material 

Imaging 

modality 

CE-

nanoCT 

ECM and 

mineral phase 

(if present) 

Whole 

construct 

(6 mm) 

Micron 

scale 

Titanium 

Absorptio

n - nanoCT 



Voronov 

et al.
(25)

 

 

cells, ECM, 

mineral 

phase, 

 

Localized 

region in the 

samples 

(~500 µm) 

Sub-micron 

scale 

Poly-lactic 

acid (PLA) 

Phase 

Contrast – 

micro-CT 

Porter et 

al.
 (18)

 

mineral 

phase 

Whole 

construct 

(3 - 9 mm) 

Micron 

scale 

PCL 

Absorptio

n - icro-CT 

Hilldore 

et al.
(28)

 

ECM 

Localized 

region in the 

samples 

Micron 

scale 

Hydroxy-

apatite 

Absorptio

n - micro-

CT 

Albertini 

et al.
(27)

 

ECM 

Localized 

region in the 

samples 

Sub-micron 

scale 

PLLA/PGA 

Phase 

contrast - 

synchrotron 

Cartmell 

et al.
(16)

 

Mineral 

phase 

Whole 

construct 

(6mm) 

Micron 

scale 

PLDL & 

Demineralize

d trabecular 

bone matrix 

scaffolds 

 

Absorptio

n - micro-

CT 

 

Langer et 

al.
(26)

 

Mineral 

phase, ECM 

Localized 

region in the 

samples 

Micron 

scale 

bone graft 

substitute 

Phase 

contrast - 

synchrotron 

Hagenmu Mineral Whole Micron Silkworm Absorptio



ller et al
(15)

 phase construct scale fibroin n - micro-

CT 

Table 2: Categorization and evaluation of X-ray tomography techniques employed for the 

visualization of features of in vitro 3D engineered tissues (related to bone TE). 

 


