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In type-II superconductors, the flux-free state (Meissner state) may be invaded by vortices bearing
quantized flux once H is above the lower critical field Hc1. However, the actual first flux penetration
does not occur at Hc1 due to the presence of a surface barrier and the fact that the Meissner state
may also exist as a metastable state up to a larger (superheating) field. In this work we determine the
field for the first vortex penetration in superconductors, by directly imaging the first vortex threading
a superconducting Pb film with antidots. We find that the first vortex penetration occurs when the
surface superconducting currents reach the depairing current, locally breaking superconductivity
and allowing a vortex to nucleate.

INTRODUCTION

At which field vortices first appear in a zero-field cooled
type-II superconductor? Vortex entry is thermodynam-
ically allowed as soon as the applied field H becomes
larger than the critical field Hc1 [1]. This critical field is
defined as the field above which the Gibbs free energy of
a vortex in a superconducting volume becomes negative.

However, the Meissner state can remain thermody-
namically metastable [2–5] at higher magnetic fields,
H > Hc1, up to the so called superheating field, Hsh,
at which the first vortex penetrates. The determination
of the field Hsh and the underlying criteria for first vor-
tex entry has a long history. A pioneering work [2] of
Bean and Livingston (BL) describes, within the London
limit, the effect of a surface on vortex penetration. They
considered a vortex inside a type-II superconducting half-
space parallel to a smooth surface. Close to the surface,
the vortex’ supercurrent distribution is distorted, as de-
scribed by an image anti-vortex. This results in an at-
tractive force between the vortex and the surface. On the
other hand, the vortex experiences a repulsive Lorentz
force at the surface arising from the screening currents
induced by the external magnetic field. The competi-
tion between both, results in the so called BL surface
barrier for vortex entry. For fields smaller than the BL
surface barrier field, HBL, a vortex parallel to the surface
is impeded to penetrate, even though a vortex solution is
thermodynamically allowed in the bulk for lower fields.
It was shown in Ref.[2] that,

HBL =
Hc√

2
=

Φ0

4πµ0λ(T )ξ(T )
(1)

where Hc is the thermodynamical critical field, defined
as the condensation energy at zero external field and
λ(T ) and ξ(T ) are the temperature dependent Ginzburg-

Landau penetration depth and coherence length, respec-
tively.

Furthermore, HBL does not represent yet the field de-
termining first flux penetration, since it ignores the nu-
cleation of the vortex at the border [6]. It was shown in
Ref.[3–5, 7, 8], by investigating the onset of instability
of the Meissner solution using the Ginzburg-Landau for-
malism, that the unavoidable process vortex entry into a
superconductor is fulfilled when the Meissner screening
current density at an ideal defect-free surface approaches
the depairing current density jd:

jedge = jd =
Hc[

3
√

6
4 λ(T )

] (2)

The difference between Eq. 2 and the London expres-
sion for the depairing current [1] is given by the factor
3
√

6/4=1.84. This factor results from the decrease of
the density of states with increasing current and is de-
scribed within the first Ginzburg-Landau equation, which
expresses conservation of energy and effectively couples
the Cooper pair-density with the pair velocity.

The sample geometry can play a determining role
in the vortex penetration, as it influences the current
distribution within and at the edges of the sample. For
example, in thin films which have a large demagnetiza-
tion factor in a perpendicular field, the strong curvature
of the field lines at the edges result in a strongly modified
current distribution. When the sample is thicker than
the penetration depth, a competition between the line
tension of a vortex cutting through the upper and lower
ridges at the sample edge and the Lorentz force induced
by the Meissner currents results in a so called geometri-
cal barrier[9, 10]. When the sample thickness is smaller
than the penetration depth, vortices are unable to tilt.
However the distortion of the supercurrent flow caused
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by the strip geometry has profound effects for the first
vortex nucleation, resulting in a so called edge barrier[11].

Indirect experimental verification of the superheat-
ing field and the correlation with the above described
models was based on detecting the onset of nonlinearity
of the initial magnetization in bulk superconductors
[12–14]. We propose here a more direct and reliable
way to determine the superheating field by imaging,
with single vortex resolution, the first entered vortex
in a thin superconductor. In order to achieve this
goal, a careful sample design and fabrication has to be
complied. Firstly, the presence of surface defects may
create spots for premature entry of vortices [4, 15, 16],
thus influencing the study of the intrinsic mechanisms.
Secondly, in thin film geometry, vortices will move to the
center of the sample as soon as they nucleate [17] making
it impossible to experimentally observe their entry. The
former problem can be solved by using a superconductor
with well defined edges, whereas creating an array of
antidots acting as pinning centers allows one to keep the
entered vortices relatively close to the sample’s edge,
where they can be visualized.
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H

FIG. 1: Atomic force microscopy image of Sample A. The
scanning Hall microscopy images of this work have been taken
in a region of the sample with the same size (12 µm side) and
same antidot distribution as the one delimited by the dashed
lines. Notice that the first row of boomerang shaped antidots
is only 0.2 µm away from the edge of the film. The arrow
indicates the direction of the applied field perpendicular to
the plane of the film.

SAMPLE DETAILS

In this work we study two high-quality Pb super-
conducting strips of widths 2a = 300µm (sample A)
and 2a = 600µm (sample B), and thicknessess t = 50
nm. Sample A contains a triangular array of boomerang

shaped antidots with an antidot void area of 0.28µm2,
and sample B contains a square array of square antidots
with an antidot void area of 0.36µm2. The periodicity of
both antidot lattices is 3µm. Figure 1 shows a represen-
tative atomic force microscopy image of the sample’s A
surface. Notice that the antidots are slightly separated
from the border in order to avoid spots of premature flux
entry. Further details about sample preparation can be
found in [18]. In all cases the magnetic field is applied
perpendicularly to the plane of the film. Local magnetic
field measurements were carried out via scanning Hall
probe microscopy (SHPM) near the sample’s border. It is
important to remark that although previous works have
shown spatial resolved flux penetration in bulk and thin
films [19], the power of SHPM allows us to determine
unambiguously the flux penetration with unprecedented
resolution of a single vortex.

In samples with periodic arrays of antidots, stable vor-
tex arrangements are expected for every value of the field
at which the vortex lattice commensurates with the anti-
dot lattice, as theoretically studied via molecular dynam-
ics simulations in [20, 21]. A way to quantify the quality
of the samples consists of imaging at low matching fields.
In this case the vortex-vortex interaction is weak and
therefore small imperfections on the pattern have a size-
able impact on the vortex distribution. Experimentally
we can obtain near-to-equilibrium vortex distributions by
performing field cooling experiments. Some examples of
the resulting flux patterns for sample A directly visual-
ized via SHPM at T = 6.9 K, and for different applied
fields are shown in the upper row of Fig. 2. The observed
sub-matching vortex patterns at H = 0.33H1 [Fig. 2(a)],
H = 0.52H1 [Fig. 2(b)] and H = 0.63H1 [Fig. 2(c)],
where H1 is the first matching field, are in agreement
with previous theoretical predictions [21] schematically
depicted in the lower row of Fig. 2. It is important to
emphasize that the mere existence of regular patterns in
the above field-cooling (FC) experiments is indicative of
a low dispersion in pinning energy among different anti-
dots and the fingerprint of a highly homogeneous sample
[22–24].

EXPERIMENTAL RESULTS

We now focus on the vortex entry under zero-field-
cooling condition. Fig. 3 (lower panels) shows SHPM
images at the same spot as in Fig. 2, next to the sample’s
edge, at T = 7 K and after a progressive increase of the
external field. At low fields [Fig. 3(b)], the superconduc-
tor is in the Meissner state and no vortices are observed
inside the sample. The strong screening currents give rise
to the well known magnification of the local magnetic
field close to the sample’s edge. By increasing the field
stepwise in intervals of 4 A/m it is possible to determine
experimentally the field Hen at which the first vortex en-
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FIG. 2: Upper row: scanning Hall probe microscopy images
obtained for sample A at the sample’s edge as indicated by
the dashed box in Fig. 1 after cooling down to T = 6.9 K
in presence of a field H = 0.33H1 (a), H = 0.52H1 (b), and
H = 0.63H1 (c). The dashed line shows the sample’s edge.
Lower row: schematic representation of the expected vortex
patterns according to Ref. [21]. Here the open (filled) circles
represent empty (occupied) pinning sites.

ters the scanned area, as shown in Fig. 3(c). Because of
the restricted scanning area, Hen is an overestimation of
the first vortex entry field. For fields slightly above Hen

the first row (i.e. the row closest to the sample’s edge)
of antidots is completely occupied by vortices before a
vortex appears in the second row. Further increasing the
external field leads to a completion of the second row of
antidots. This process ends when the second row is com-
pletely occupied, beyond which a far more complex pen-
etration is observed [Fig. 3(d)]. Indeed, (i) vortices can
move further inside the sample skipping empty rows of
antidots, (ii) double quantized vortices appear although
they never nucleate at the sample’s edge. This pene-
tration process was associated with the terraced critical
state proposed theoretically by Cooley and Grishin [25],
as studied in [26, 27]. A similar process is observed in
sample B. The temperature dependence of Hen for sam-
ple A (black square symbols) and sample B (red circular
and triangular symbols) are shown in Fig. 3(a). The dif-
ferent symbols for sample B reflect two distinct locations
at the sample border used to obtain Hen. The fact that
the experimentally obtained values for Hen are indepen-
dent on the measurement location, demonstrates that the
nucleation field is homogeneous along the sample border,
validating our determination of the overall superheating
field as a reliable and accurate estimation.
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FIG. 3: (a) Temperature dependence of the field Hen at which
the first vortex is visualized in the scanning area; Square sym-
bols are experimental data obtained for sample A, whereas
triangular and circular symbols present data obtained at two
different locations for sample B. The dashed lines are a guide
to the eye. (b - d) Scanning Hall probe microscopy images
obtained at the sample’s edge upon increasing external field,
after preparing the sample in a zero-field cooled state at T = 7
K. In a field of H = 12 A/m (b) the sample is in the Meissner
state, at H = 28 A/m (c) the first vortex enters as indicated
by the white circle and at H = 75 A/m (d) a critical state is
developed. The dashed lines indicate the sample’s edge.

DISCUSSION

Let’s now compare these experimentally obtained val-
ues with the theoretical models for vortex entry. As ex-
plained above, the necessary criterium for vortex entry is
the requirement that the induced screening current den-
sity by an external magnetic field, H, at the edge matches
the Ginzburg-Landau depairing current density, jd, of a
one-dimensional superconducting channel as given by Eq.
(2). We denote with Hjd the field at which this condition
is met. We need to extend the derivation for Hjd , to the
case of a perpendicularly magnetized thin superconduct-
ing strip.

To determine when the current density at the edge
reaches this critical value, jd, an expression for the cur-
rent density at the edge has to be found. For an in-
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finitely long thin strip of width |y| < a and thickness,
|z| < t/2, the complete current density distribution, J(y),
for a perpendicular applied external magnetic field field,
Hẑ, was obtained as in Ref.[11] by solving numerically
the Maxwell-London equations:

J(y)t

H
=

y√
1
4 [a2 − y2] + Λa

π

(3)

Where Λ denotes the effective screening length of the
superconducting bridge. In the thin film limit (i.e.
λ � d) the Ginzburg-Landau penetration length, λ, is
replaced by the effective penetration depth, Λ = λ(T )2/t.
The reason for this is the reduced screening capacity
of a very thin superconducting film [28]. It is shown
in Ref.[8, 16, 29] that this expression derived from the
Maxwell-London equations, fits over a broad range of
parameters with the Ginzburg-Landau solutions for the
screening-current distribution as long as H < Hen. More-
over, measurements of the magnetic field profile crossing
the sample border when the sample is prepared in the
Meissner state, can be well fitted using the current dis-
tribution in Eq. 3 and Ampère’s law. The agreement
between the London limit approximation and the full
Ginzburg-Landau solutions for the screening-current dis-
tribution in the regime H < Hen can be argumented.
First of all, our samples have a small κ at zero tempera-
ture, and therefore one could argue that the London limit
approximation is not valid. However, due to the reduced
screening efficiency in the thin film geometry, it is ap-
propriate to use the effective penetration depth Λ. The
increase of Λ with increasing temperatures is stronger
than the increase of ξ. As a result, κeff = Λ/ξ exceeds
κ(0) at the experimental temperatures. Secondly, the
condition H < Hen, means that there is a limited kinetic
reduction of the density of states at the edge due to cur-
rent induced depairing. Moreover, the periodic lattice of
antidots forces the pair density to be nearly constant in
the space between antidots, due to the boundary condi-
tions at the supercondutor-insulator interface[1]. A more
detailed discussion on the London approximation for first
vortex penetration in a thin film geometry, derived from
first principles, will be presented elsewhere[30].

However, we are interested in the condition that the
induced screening current at the edge of the sample ap-
proaches jd. It is expected then that Eq. 3 fails to de-
scribe the correct relation between the induced screening
current density and the applied magnetic field particu-
lary in the neighbourhood of the edge, as current-induced
depairing will locally alter the density of states dramat-
ically. However, at distances larger than the effective
penetration depth away from the sample edge, the cur-
rent density decreases quickly below the critical value for
depairing and the London limit is restored. Since the
global response of the superconducting strip to an ap-
plied magnetic field is determined by the whole current

distribution, it is expected that in the limit 2a � Λ,
the London limit gives a very good description of the de-
magnetizing effects as it is valid in the majority of the
sample volume. However, the condition for vortex entry
is a local one and we have to take into account the effect
of current induced depairing at the edge. In first ap-
proximation, we will introduce this effect by using a new
effective Ginzburg-Landau penetration length λ′ = Cλ,
as a cutoff factor at the edge. Here, C is a constant big-
ger than unity, since due to current induced depairing the
screening-currents are weakened and the magnetic field
is less effectively screened. Therefore, using Eq. (3), the
current at the edge (y = a) of the sample, is given by:

jedge =

[
1

Cλ(T )

][√
aπ

t

]
H (4)

As such, rewriting jedge and H as Jd and Hjd and using
Eq. (2) we obtain an expression for Hjd,

Hjd =

[
C

3
√

6
4

][√
t

aπ

]
Hc(T ) (5)

As a result Hjd is determined by the temperature
dependence of Hc(T ), a geometric demagnetizing factor
and a constant related to the depletion of the condensate
of our superconducting film.

The temperature dependence of Hc for bulk Pb
samples was measured by Decker et al., leading to an
extrapolated value of Hc(0) = 63.87 kA/m at T = 0
K [31]. This value is, within the experimental error,
identical to Hc(0) = 64.06 kA/m given in [32] for an
amorphous Pb film. In Fig. 4, the experimentally
obtained values for Hen(T ) are plotted versus Hc(T )
obtained by Decker et al. [31]. According to Eq. (5)
and a linear fit of the data Hen(T ) for sample A (square
symbols) versus Hc(T ), a slope of (10, 6 ± 0, 4) × 10−3

is obtained. Taking into account the width, 2a=300µm
and thickness, t=50nm of the sample, we obtain for

C=1.03× 3
√

6
4 .

This means that if we enhance the Ginzburg-Landau
penetration depth by this factor C to take into account
the effect of current induced pairing within the London
model expression for the screening-current density at the
edge, a nice match is found between the experimental re-
sults, Hen(T ) and the theoretically estimated superheat-
ing field, Hjd(T ), as indicated by the full black line in
Fig. 4. The enhancement factor of the effective penetra-
tion depth, C, is in a good agreement with the factor ap-
pearing in the Ginzburg-Landau expression for Jd due to
current induced depairing Eq. 2. This is not a surprise,
since in a bulk sample, in the first approximation the
field penetration at the edge can be assumed as an expo-
nential decrease of the magnetic field, B = B0e

−y/λedge .
Where, Λedge is the locally increased penetration depth
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FIG. 4: The obtained experimental data for the first vortex
entry field versus Hc(T ) obtained by Decker et al. is shown
for sample A (square symbols) and for two locations at the
border for sample B (circular and triangular symbols). The
theoretical curves obtained from Eq.5 for sample A and B

with C = 3
√
6

4
are shown by the full black and red lines,

respectively. The black and red dashed lines take into account
the effect of the pattern induced enhancement of the screening
current density for sample A and B, respectively.

compared to the bulk value due to current induced de-
pairing. In the case of a thick superconductor, using an
exponential penetration of magnetic field, the physical
meaning of Λedge is nicely shown by applying Ampères
Law:

|∇ ×B| = B0

λedge
= µ0Jedge, (6)

As the current density at the edge can be at most
the Ginzburg-Landau depairing current density, which
is lower than the London depairing current density by a
factor (3

√
6/4), the field will be screened over a larger

distance. It is clear from Eq. (6) and Eq. (2) that the
new length scale on which the field varies at the edge is
given by:

λedge = (3
√

6/4)λ(T ) (7)

In order to corroborate these results we performed sim-
ilar measurements on sample B. The obtained experi-
mental data for the first vortex entry field versus Hc(T )
obtained by Dekker et al. is plotted in Fig. 4 (triangular
and circular symbols). As expected, a clear reduction of
Hen is observed, see also Fig. 3(a), related to the larger
width of sample B (i.e. increased demagnetization field).

However, the value we obtain for C=0.74 × 3
√

6
4 from a

linear fit of the experimental data obtained for the first
vortex entry field in sample B, deviates significantly from
the value we obtained for C in sample A. Ascribing this
factor C to the current induced depairing effect alone,

one does not expect any difference in this factor for both
samples.

Due to different antidot array geometry and effective
antidot width, a more pronounced effect is expected in
sample B compared to sample A. The periodicity of
antidots perpendicular to current circulation is 5 µm
and 3 µm for sample A (triangular array) and sample
B (square array), respectively. For sample A the en-
hancement factor of the edge screening-current density
is, 5µm/4.77µm = 1.05, while for sample B this factor
is, 3µm/2.4µm = 1.25. In Fig. 4 the dashed curves incor-
porate this effect for both samples, while in the full lines
this effect is neglected. It is clear that by taking this ef-
fect into account, a nice fit is recovered. The importance
of these local enhancements of the current density at the
edge due to the presence of the antidots is evidenced by
observed modulations of the edge field in the vortex free
state.

CONCLUSION

In conclusion, we have visualized the first penetra-
tion of vortices in superconducting films with antidots by
Scanning Hall probe microscopy. The studied thin film
geometry and the presence of antidots have allowed us
to argue, using the London approximation that the first
vortex penetration occurs when the condition jedge=jd is
met.

From the exposed results, we can propose the follow-
ing picture for the observed vortex entry process. At
low values of the applied field, the superconductor is in
the Meissner state, where supercurrents circulate in the
whole sample with a decreasing density toward the cen-
ter. When the applied field reaches Hjd and the edge
current density approaches its depairing value (more ac-
curately it should be the current density averaged over
a ξ distance), there is a local breakdown of supercon-
ductivity and a first vortex nucleation at the edge near
an antidot, where Meissner current density takes a lo-
cal maximum due to the reduced current path width.
The nucleated vortex is immediately depinned from the
edge and is caught by the nearest antidot, where it is
observed. Since the vortex current has its sense opposite
to the Meissner current, the involved edge current den-
sity decreases back to below its depairing value, and the
nucleation of the second vortex occurs in another place,
and so on.
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[1] P. G. de Gennes, Superconductivity of Metals and Alloys
(Addison-Wesley, 1966,1989).

[2] C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12, 14
(1964).

[3] H. J. Fink and A. G. Presson, Phys. Rev. 182, 498
(1969).

[4] F. Pei-Jen Lin, and A. Gurevich, Phys. Rev. B 85, 054513
(2012).

[5] L. Kramer, Phys. Rev. 170, 475 (1968).
[6] P. G. de Gennes, Solid State Comm. 3, 127 (1965).
[7] L.G. Aslamazov, and S.V. Lemnitskii, Zh. Eksp. Teor.

Fiz. 84, 2216 (1983)
[8] D. Y. Vodolazov, I. L. Maksimov, and E. H. Brandt,

Europhys. Lett. 48, 313 (1999).
[9] E. Zeldov, A. I. Larkin, V. B. Geshkenbein, M. Kon-

czykowski, D. Majer, B. Khaykovich, V. M. Vinokur, and
H. Shtrikman, Phys. Rev. Lett. 73, 1428 (1994).

[10] M. Benkraouda and J. R. Clem, Phys. Rev. B 53, 5716
(1996).

[11] B. L. T. Plourde, D. J. Van Harlingen, D. Yu. Vodolazov,
R. Besseling, M. B. S. Hesselberth, and P. H. Kes, Phys.
Rev. B 64, 014503 (2001)

[12] A. S. Joseph and W. J. Tomasch, Phys. Rev. Lett. 12,
219 (1964).

[13] R. W. de Blois and W. de Sorbo, Phys. Rev. Lett. 12,
499 (1964).

[14] A. S. Joseph, W. J. Tomasch, and H. J. Fink, Phys. Rev.
157, 315 (1967).

[15] D. Cerbu, V. N. Gladilin, J. Cuppens, J. Tempere, J. T.
Devreese, V. V. Moshchalkov, A. V. Silhanek, J. Van de

Vondel, New J. Phys. 15, 063022 (2013).
[16] D. Y. Vodolazov, I. L. Maksimov, and E. H. Brandt,

Physica C 384, 211 (2003).
[17] M. Benkraouda and J. R. Clem, Phys. Rev. B 58, 15103

(1998).
[18] S. Raedts, A. V. Silhanek, M. J. Van Bael, and V. V.

Moshchalkov, Phys. Rev. B 70, 024509 (2004); S. Raedts,
A.V. Silhanek, V.V. Moshchalkov, J. Moonens, L.H.A.
Leunissen, Phys. Rev. B 73, 174514 (2006).

[19] J. I. Vestg̊arden, D. V. Shantsev, Y. M. Galperin, and T.
H. Johansen, Phys. Rev. B 77, 014521 (2008) and K.A.
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