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Using advanced ab-initio calculations, we describe the formation and confinement of a two-
dimensional electron gas in short-period (≃4 nm) Nb-doped SrTiO3 superlattices as function of
Nb doping. We predict complete two-dimensional confinement for doping concentration higher than
70%. In agreement with previous observations, we find large thermopower enhancement at room
temperature. However this effect is primarely determined by the charge dilution over a multitude
of weakly occupied bands. As a general rule, we conclude that thermopower in heterostructures is
more enhanced by weak, rather than tight, spatial confinement.

PACS numbers: 73.20.At, 73.40.Lq, 73.50.Lw, 73.63.Hs

I. INTRODUCTION

Since the discovery of 2-dimensional (2D) electron gas
(2DEG) in SrTiO3/LaAlO3

1, the search of oxide het-
erostructures with charge-confinement characteristics has
been relentlessly pursued by the solid state community.
Among the many qualities attributed to 2DEGs, one of
the most appealing is the large thermoelectric power.
There is mounting evidence, indeed, that nanostructured
systems2–7, rather than bulk materials, can provide a
new generation of highly efficient thermoelectric devices
capable to directly convert temperature (T) gradients
into electric power, and viceversa, thus providing efficient
heating and cooling functionalities8.

Recently, large thermopower was observed in several
delta-doped SrTiO3 (STO) superlattices9,10. In the 20%
Nb-doped SrTiO3 (STO) superlattices (SLs)9,12,13, al-
ternating n layers of insulating STO with m layers of
20% Nb-doped STO (STOn/Nb-STOm) the measured
in-plane thermoelectric power, or Seebeck coefficient S, is
several times larger than in STO bulk at the same doping.
This was hypothesized as due to a density of states (DOS)
increase induced by 2D localization14–17. However, this
scenario remains to be proved since, in absence of a mi-
croscopic description of the system, the presence of a 2D-
confined electron gas cannot be assessed. Furthermore,
the multi-band nature of transport in oxide heterostruc-
tures may give rise to quite a complicated thermoelectric
behavior (as seen e.g. for SrTiO3/LaAlO3

18) whose un-
derstanding requires the detailed microscopic description
of the heterostructure.

In this Letter we describe the 10-layer STO9/Nb-STO1

SL, formed by the alternance of one Nb-doped layer and
a barrier of 9 undoped STO layers at varying Nb-doping
concentration. This SL was first considered in Ref.9,
while later works by the same authors12,13 extended the
study to SLs with a varying number of layers, but always
keeping 20% Nb-doping. Here we study fully from First-

Principles three Nb-doping concentrations (25%, 50%,
and 100% doping) which are all relevant for experiments
since pulsed laser deposition of Nb-doped STO is achiev-
able in the whole 0-100% doping range11. Our study is
then extended to generic Nb-doping concentration by the
use of a multiband effective mass model.
We show that the Nb concentration directly controls

the properties of the electron gas. In particular, for large
enough nominal doping, a fully confined 2DEG is formed
in this short (10-layer period) SL. Furthermore, in agree-
ment with experiment, the Seebeck in the SL is larger
than in STO bulk at the same nominal doping. Our
space-resolved analysis of thermopower shows that the
major increase in thermopower should be lead back to
the redistribution of mobile charge in the many bands ac-
cessible at finite temperature, i.e. to the charge dilution
across a region of several nm size thickness. This result
agree with the arguments of Ref.10, where the observed
large thermopower for La-doped STO SL was related to
the spilling of charge carriers out of the doped region.
Our results indicate that, as a general rule, in multiband
systems weak 2D confinement is more favorable to large
thermopower than strong 2D confinement.

II. METHODS: BEYOND-LDA BAND

STRUCTURES COMBINED WITH

BLOCH-BOLTZMANN APPROACH

To describe the SL we use the ab initio varia-
tional self-interaction-corrected density-functional ap-
proach (VPSIC)19, successfully applied to many oxides
including STO/LAO18,20 and LNO/LAO21 superlattices.
Such an advanced approach is essential because the band
gap error in standard local density functionals may af-
fects band positions and alignments, thus severely com-
promising the accuracy of SL transport properties. For
the SL we describe doping by actual atomic substitu-
tions and explicitly recalculate all properties (including
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atomic relaxations and electronic structure) at each dop-
ing, which is mandatory because the rigid band approx-
imation tipically fail in oxide heterostructures. For the
bulk, full atomic relaxations are performed at 25% dop-
ing, while values at different dopings are obtained using
rigid band approximation, which works well for bulk.
For the determination of the Seebeck (S) coefficient

in diffusive regime, we employ the well known Bloch-
Boltzmann transport equations solved in relaxation time
approximation (BBT), as implemented in the BotzTraP
code22. The BBT requires two main ingredients as an
input: the electronic band structure and the relaxation
time τ . The band structures are calculated by VPSIC
on very dense k-space grids (30×30×30 corresponding to
680 k-points in the IBZ for STO bulk, and 20×20×3 giv-
ing 230 k-points in the IBZ for the SLs) and interpolated
by the linear-tetrahedron approach. The relaxation time
τ tipically depends on carrier energy ǫ and temperature,
and is overwhelmingly difficult to be calculated ab-initio
for a generic scattering regime, so that it is often assumed
to be constant. Within constant relaxation time (CRT)
the calculation is quite simplified since τ cancels out of
the expression of Seebeck and Hall resistivity, thus mak-
ing these two quantities parameter-free and fully deter-
mined by the band structure alone. As a further bonus,
for τ ∼const the Hall factor rH is equal to unity, Hall
and conduction mobility (µH = µ rH) become identical,
and the Hall resistivity (RH=rH/(n3De)) is simply the
inverse of the 3D charge density.
While very computationally favourable, it will be

shown in the next Section that CRT is rather unsatis-
fying for what concern the quantitative agreement with
the measurements. Then, looking for a route towards an
analytical determination of τ which could a) overcome
the gross disagreement with the experiment, b) depend
on the lowest possible number of parameters and sim-
ple enough to keep calculations feasible even for large-
size systems such as oxide heterostructures, we adopt for
τ a simple ansatz suggested in literature24,25, based on
the factorization in temperature-dependent and energy-
dependent parts:

τ(ǫ, T ) = F (T )

(

ǫ − ǫ0
KBT

)λ

, (1)

where ǫ0 is the conduction band bottom, λ a phenomeno-
logical parameter, and F(T) an energy-independent pref-
actor. The unknown prefactor F(T) cancels out in the
expression of Seebeck and Hall resistivity, thus we are
left with λ as the only parameter. Herafter we will fix
λ=3/2 which optimally reproduces the Seebeck measure-
ment in the whole temperature range (this was previously
noticed in Ref.24 where Eq.1 is used in combination with
an effective-mass model expression of S). A possible am-
biguity of this choice resides in the fact that ǫ3/2 is the
leading term (for the low-doping regime) of the Brooks-
Herring (BH) expression of τ for ionized-impurity scat-
tering, which is hardly dominant in STO above temper-
ature of 100 K, where a predominance of polar-optical

phonon scattering should be expected. However, no-
tice that Eq.1 is radically different from the BH formula
(which has a more complicated T-depencence through
the Debye screening length and cannot be reduced to the
form given in Eq.1). In other words, λ in Eq.1 must be
interpreted as a phenomenological fitting parameter, and
its effect on the calculated S(T ) not related to the pre-
dominance of the impurity scattering regime as described
by BH.
Adopting Eq.1 the BBT calculation thus remains at

the same level of a mere CRT approximation. And yet,
it will be showed that use of Eq.1 is capable to greatly
improve the CRT results for STO-based systems (and
probably for wide-gap oxides in general).

III. STO BULK

To validate our methodology, we first consider the
transport properties of doped bulk SrTiO3 (STO), that
are well described in a number of experiments. For ther-
mopower measurements, we compare our results to two
detailed works: Ref.24 for low-T data (below 300 K), and
Ref.26 for high-T data (up to 1200 K). Our BBT results
for S(T) obtained using Eq.1 with λ=3/2 and λ=0 (CRT
approximation) are shown in Fig.1 for selected doping
values matching those reported in the abovementioned
references (Fig.2 of Ref.24 and Fig.1 of Ref.26).
The comparison clearly demonstrates that our ana-

lytic modeling produces a dramatic improvement over
the CRT approximation. In the latter, S appears visibly
underestimated in absolute value, and its temperature-
dependence rather shapeless, with respect to the mea-
surements. On the other hand, the adoption of energy-
dependent τ restores a good qualitative agreement with
the experiment for a wide range of doping values. Even
quantitatively the match with the experiments is rather
satisfying, also considering the uncertainty in the actual
carrier concentration reported in the experiment (an evi-
dence of this aspect is given later on with the analysis of
Hall resistivity). An exception to this good match is the
negative phonon-drag peak at T=50 K measured for the
least doped sample of Ref.24 (see Fig.2 of Ref.24); in fact,
phonon-drag is not implemented in our BBT calculation
which at present only includes the diffusive term. It is
remarkable, in particular that the same value of λ can in-
terpolate two sets of measurements obtained in distinct
experiments for a very different range of temperatures.
This testifies the good universality of the model, at least
for what concerns wide-gap insulating oxides.
An important quality check for Eq.1 can be obtained

from Hall resistivity calculation, which, like S, does not
depend on prefactor F(T) and then it can be calcu-
lated plugging the energy-dependent part of Eq.1 into
the BBT. In Refs.24 and 26 RH measurements are not
reported, thus we compare calculations with our own Hall
measurement for two STO bulk samples (previously used
in Ref.18) corresponding to two different ranges of doping
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FIG. 1: Seebeck calculated by BBT approach for STO bulk.
Left panels: calculations for τ given in Eq.1 with λ=3/2; right
panels: calculation with λ=0 (i.e. constant τ ). Top-panels
refers to doping concentrations reported in Ref.24, bottom
panels to the concentrations reported in Ref.26. To facilitate
the comparison with these experiments, a crude hand-made
extrapolation for some experimental data (star symbols) is
also included.

concentration. The match between calculated and mea-
sured S for these samples was already shown in Ref.18
to be excellent, thus we can focus just on RH . In Fig.2
(left panels) we report (eRH)−1 measured for the two
samples below T=300 K, to be compared with the calcu-
lated values (central panels). The shape of calculated
and measured values are nicely similar for both sam-
ples, however a direct quantitative comparison is com-
plicated since (eRH)−1 obviously depends on the carrier
concentration n3D, which in the calculation is constant
with T and known by construction, while in the exper-
iment is unknown and tipically varying with T. To cir-
cumvent this ambiguity, we proceeded as following: i)
(eRH)−1 is calculated (red lines of central panels) for a
range of fixed doping values spanning the experimental
range of (eRH)−1 (for the first sample from 1.8×1019

cm−3 to 2.3×1019 cm−3, for the second samples from
2.3×1020 cm−3 to 3.0×1020 cm−3). ii) From each of
these curve we can easily evaluate the Hall factor as rH
= (eRH n3D) (red curves in the right panels). Accord-
ing to the effective-mass models, we expect rH to depend
only on λ, and be equal to unity for λ=0. Indeed, our
calculated rH is almost independent on the density (ex-
cept at low temperature), and very different from unity,
as expected having used λ=3/2. iii) the rH average over
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FIG. 2: Left panels: measured inverse Hall resistivity
(eRH)−1 for two STO bulk samples, a lightly-doped sample
I (top) and a heavily-doped sample II (bottom panel). Blue
squared symbols show (eRH)−1 as measured, blue solid line
the carrier density n3D(T)=rH/(eRH) obtained rescaling the
measured Hall resistivity by the calculated Hall factor rH .
Central panels, red lines: (eRH)−1 calculated for a range of
fixed densities spanning the experimental doping range: from
1.8×1019 cm−3 to 2.3×1019 cm−3 with incremental steps of
0.1×1019 for sample I (top); from 2.3×1020 cm−3 to 3.0×1020

cm−3 with increments of 0.1×1020 for sample II (bottom).
Central panels, blue circlets: (eRH)−1 calculated for the vari-
able charge density n3D(T) given by the solid line in the left
panel, to be directly compared with the measured vaues (blue
squares) to the left. Right panels: Hall factors rH=(eRH)n3D

obtained rescaling eRH calculated at fixed n3D (red curves of
central panels) with these densities. Clearly rH is weakly
dependent on n3D, but strongly T-dependent. The average
rH over these densities is used to rescale the measured Hall
resistivity and determines n3D(T) in the left panels.

the considered range of densities is calculated, and then
used to rescale the measured (eRH)−1 and obtain an
estimate of the true carrier concentration as a function
of T for the two considered samples (left panels, blue
lines). iv) Finally, we can use this estimate of n3D(T )
to recalculate (eRH)−1 at varying charge density, thus
now directly comparable with the experiment (squared
symbols in central panel).

We can appreciate the excellent quantitative agree-
ment of calculated and measured Hall resistivity for both
samples in the whole temperature range, apart for T
lower than 25 K (at low temperature the BBT numer-
ical integration requires extremely dense k-point grids,
thus numerical accuracy is very difficult to achieve). We
emphasize that it is customary in literature to discard
the Hall factor and present the measured (eRH)−1 (with
its oscillating behaviour as a function of T) as the Hall-
measured charge carrier density, for which oscillations do
not make much sense. Once renormalized by the Hall fac-
tor, the estimated carrier density display a more plausible
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FIG. 3: Nb- and Ti-projected DOS of conduction t2g states in
the STO9/Nb-STO1 superlattice at 25%, 50%, and 100% Nb
concentration (gray shaded lines: dxy; red lines: dxz+dyz).
Top panel is the doped layer, lowest panel the STO layer
furthest from the doped side. Dashed lines: Fermi energy
(energy zero: valence band top).

thermally-activated increase with temperature.
In conclusion, our calculation for Seebeck, Hall resis-

tivity and Hall factors based on Eq.1 show a nice quan-
titative agreement with the experiments and a dramatic
improvement over CRT results at null increase of com-
puting cost. This validate the application of the method
to the Nb-doped STO SLs, presented in the following.

IV. STO SUPERLATTICE

A. Electronic properties

The DOS of STO9/Nb-STO1 SL at 25%, 50%, and
100% Nb doping is reported in Fig.3. At 100% doping,
the Ti-substituting Nb donates one electron per unit cell
area to the SL conduction bands, but the strongly elec-
tronegative Nb1+ ion keeps most of the mobile charge
to itself. As evident from the Figure, at 100% doping a
large portion (0.75 electrons) of this charge remains in
the 3d orbitals of the doped layer, 40% of which in the
planar dxy and 30% in each of the dxz and dyz orbitals,
separated from dxy by an energy ∆t2g=0.66 eV. While
the planar dxy charge is almost completely confined in
the doped layer, about half the dxz plus dyz charge (0.25
electrons) spills out into STO as well, as those orbitals
propagate along z. However this charge fades out rapidly
while moving away from the doped plane, and substan-
tially vanishes inside STO. Thus, at large doping our re-
sults confirm the presence of a 2DEG confined within a
few STO layers, with electronic properties qualitatively
similar to those found in STO/LAO1.
Being induced by Nb electronegativity, the confine-

FIG. 4: Top: bands of the STO9/Nb-STO1 SL at 25%, 50%,
and 100% doping. Dashed lines are Fermi energies; energy
zero is placed at the valence band top. The character of the
three lowest bands is labeled. The conduction bands of dxz,
dyx character along Γ-Z=[001] are highlighted in violet: with
increasing Nb doping, a gap opens between the flat lowest
branch and the higher downfolded bulk-like sections. Bottom:
enlargement of the bands around ǫF .

ment of dxz, dyz charge progressively dies out as doping
decreases. Indeed, at 50% doping the dxz and dyz DOS
are almost evenly distributed through STO, although
with some remnant accumulation near the doped layer.
The dxy charge, on the other hand, still fully belongs to
the 50%-doped layer. At 25% doping (close to experi-
mental 20%) the dxz and dyz charge is homogeneously
spread throughout the SL with no residual accumulation
near Nb layer, while the dxy charge is still 2D.

The doping-controlled dimensional crossover involving
the three lowest bands of the SL is even more explicit in
the band structure (Fig.4): at low doping the dxz, dyz
bands are bulk-like, but as doping increases the lowest
one progressively flattens out, with a gap opening to the
higher bulk-like bands. The effective mass of the lowest
band m∗

xz,[001]=m∗

yz,[001] increases from 0.39 to 0.83 to

3.85 (in electron mass units) for 25%, 50%, and 100%
doping (the same mass is 0.32 in bulk SrTi0.75Nb0.25O3).
On the other hand, the lowest dxy band is fully confined
at any doping, with m∗

xy,[001]≃1000 compared to 5.45 in

SrTi0.75Nb0.25O3. A zoom near ǫF (Fig.4 bottom) shows
that the SL spectrum is actually gapped along kz ; a non-
vanishing conductivity at room T is still expected, how-
ever, because of the high DOS near ǫF .

Our results thus far describe this SL as a double-
channel conduction system, with a portion of charge of
dxy orbital character fully confined in 2D at any doping
concentration, and a fraction of dxz, dyz charge which
may be 2D or 3D in nature depending on the doping con-
centration. As described in the following, these two chan-
nels will contribute differently to in-plane thermopower.
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B. Thermopower

We use the calculated band energies as input for
the Bloch-Boltzmann transport theory22, and calculate
(Fig.5) the in-plane components of Seebeck coefficient (S)
as a function of temperature for the Nb-doped STO bulk
and the 10-layer SL at varying Nb doping concentration
(these calculations adopt an energy-dependent modeling
of relaxation time discussed in detail in the Supplemen-
tary). At equal nominal donor doping and T=300 K, the
calculated Seebeck for the SL (Ssl) is about a factor 2
larger than in bulk (Sbulk), in qualitative agreement with
the experiment9,12. Specifically, our |Sbulk|=60 µV/K at
25% doping is close to 62 µV/K measured12 at 20%; how-
ever, our |Ssl|=120 µV/K at 25% is half the experimental
240 µV/K12 at 20% doping. The discrepancy may be due
to defects or stoichiometry fluctuations which may re-
duce, with respect to nominal doping, the effective mobile
charge contributing to transport (similarly to what hap-
pens in STO/LAO1). In fact, our Ssl (see Fig.7) matches
the experimental value at ∼8% doping (see Fig.7), cor-
responding to a density 1.3×1020cm−3 not too far from
value 2.2×1020cm−3 reported in Ref.12.
We now investigate the reason for the thermopower en-

hancement. In Fig.6 we show the calculated DOS (n(ǫ),
upper panels), in-plane logarithmic electrical conductiv-
ity (lnσ(ǫ), determined to within an additive ln(F(T)),
middle panels), and Seebeck (lower panels) as a function
of carrier energy at T=300 K for the SL at 25% and 50%
doping, and for bulk SrTi0.75Nb0.25O3.
These results can be analyzed with the help of the

Cutler-Mott formula23

S =
π2k2BT

3e

∂(ln σ)

∂ǫ
|ǫF ≃

π2k2BT

3e

1

n

∂n

∂ǫ
|ǫF , (2)

where σ(ǫ)=en(ǫ)µ(ǫ)KBT , and the mobility µ(ǫ) is as-
sumed energy-independent in the last term of Eq.2. The
latter is consistent with our BBT results: indeed the σ(ǫ)
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Bottom: planar Seebeck at T=300 K for the same systems.

logarithmic derivative (squared and diamod dots in fig.6)
in the SL is about twice that in bulk, and hence so is S.
Eq.2 helps further in explaining the difference between
Sbulk and Ssl. If the SL charge were entirely confined in
the doped layer, the relevant DOS for the SL would be
n1, normalized to the volume of a single layer (see Fig.6,
top). We see that its slope increases markedly compared
to the bulk DOS, indicating a genuine increase of charge
localization. However, we have previously demonstrated
that the charge spreads through the whole SL at any
doping, thus n10 (normalized to the whole 10-layer SL
volume) is a more appropriate choice for the SL. Since at
ǫF the slope of n10 and the bulk DOS at same Nb dop-
ing are similar, we conclude that the factor-2 increase in
∂(lnn)/∂ǫ|ǫF must be due to a DOS decrease (i.e. charge
dilution through the SL) rather than to a slope increase
(i.e. mass enhancement).

C. Multiband modeling

Direct ab-initio calculations for generic doping values
may require a workload easily exceeding the current pos-
sibilities of today computing equipments. To general-
ize our analysis to doping levels not accessible by direct
first-principles calculations, we have used a 3-dimensional
effective mass modeling18 including all the t2g conduc-
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tion bands of the full calculation (30 bands for the 10-
layer SL). The inaccuracy of the rigid band approxi-
mation is circumvented using a doping-dependent band
parametrization extrapolated from the VPSIC calcula-
tion for three key quantities (see Fig.7, inset): the t2g
energy splitting (∆t2g), the energy difference between the
lowest dxy band and the bulk-like STO conduction band
manifold (∆ǫ), and the effective mass of the bands in-
volved in the dimensional crossover (m∗

xz,[001]=m∗

yz,[001]).

The model is finally validated by its reproducing the
Bloch-Boltzmann Seebeck at 25%, 50% and 100% dop-
ing.
In Fig.7 (left, main panel) we compare Sbulk and Ssl at

T=300 K vs Nb concentration. Ssl is further broken down
into contributions from the three lowest bands (S3) and
all the other 27 t2g bands (S27) included in the model:

Ssl = S3 + S27 =
∑

i=1,3

σiSi

σ
+

∑

i=4,30

σiSi

σ
(3)

where σi and Si are conductivity and thermopower of
the ith band. As doping decrease we see a progressive in-
crease in Ssl over Sbulk, as a consequence of the enhanced
|S27| contribution. This is easily understood recalling
that |S| is inversely related to ǫF : at low doping the SL
charge can be progressively diluted through a large num-
ber of bands, in turn lowering ǫF with respect to the
bulk. At zero doping ∆ǫ ∼0, ∆t2g∼0, and the full di-
lution limit S27=0.9 Ssl is reached. On the other hand,

|S3| is always smaller than |S27| and changes barely with
doping, despite the fact that only the two lowest dxz,
dyz bands are affected by confinement. Indeed, while the
2D confinement (i.e. the increase of m∗

xz,[001]) in itself

lowers ǫF , the increment of doping stabilizes the three
lowest bands (i.e. enhances ∆ǫ), thus causing a flow of
additional charge from the higher-energy bands and ef-
fectively rising ǫF ; the net effect is that S3 remains nearly
constant with doping, and progressively approaches Sbulk
as Nb doping increases. Above 70% doping, S3∼Sbulk
because the charge collapses into the three lowest bands
(at T=0), which are now well separated from the STO
band manifold. A doping of 70% is thus the estimated
threshold between 3D and 2D behavior. Nevertheless,
the thermal occupancy of the higher bands at T=300 K
is sufficient to furnish a sizeable S27 contribution to the
total Ssl, still visibly larger than Sbulk.
These results thus indicates that the difference between

Sbulk and Ssl is mainly determined by the charge dilu-
tion through the SL, rather than by the confinement-
induced charge localization. This has a simple rationale:
for a single-band system, enhancing the effective mass is
tantamount to reducing ǫF , in turn increasing the ther-
mopower; but for a multi-band system a very tight 2D
confinement may actually cause ǫF to rise, and be detri-
mental for thermopower compared to a milder confine-
ment allowing 2DEG dilution over a larger thickness.
The effect of charge dilution on S can be easily seen in

a very simple case: if a charge n3D initially localized in a
single band filled up to EF is redistributed in a number
of N identical bands filled up to EF ’, all with the same
mobility µ, charge ni = n3D/N, conductivity σi=e ni µ,
and seebeck Si=S(EF ’), then the conductivity of the di-
luted system (σ =

∑

i σi = Nσi) remains unchanged of
course, while the Seebeck of the diluted system:

S =
∑

i=1,N

σiSi

σ
= Si(E

′

F ) (4)

must be larger in amplitude than S(EF ) as long as EF ’
is lower than EF . That is, a pure charge dilution in a
multitude of degenerate bands increase the Seebeck and
leave conductivity unchanged. Of course, this is not nec-
essarely true if we a) abandon the effective mass modeling
and include the actual shape of n3D(ǫ); b) include the ac-
tual dependence of µ (and then τ) on EF . However, it
is unquestionable that in general, weak 2D confinement
is more favourable than tight 2D confinement to obtain
large Seebeck values.
Finally, in Fig.8 we replicate the result for different

values of λ, to give evidence that the fundamental con-
clusion of this analysis is unaffected by the choice of this
parameter. Indeed, we clearly see that while absolute
values of total and band-decomposed Seebeck do depend
on λ, the contribution of the 27 minority-occupied bands
is always dominating over the 3 bands of the doped layer.
Thus, we can conclude saying that independently on the
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FIG. 8: Left: Thermopower as a function of Nb-doping
concentration calculated using the multiband effective-mass
model with doping-dependent band parameters, for STO bulk
(black) and the STO9/Nb-STO1 SL (green line) at T=300 K.
For the latter, contributions from the 3 lowest t2g bands (red)
and the remaining 27 t2g bands (blue line) are also shown. Re-
sults of different panels only differ for the value of the power
parameter λ in Eq.1.

scattering regime, charge dilution is always effective in
producing an important burst in thermopower.

V. CONCLUSIONS

In conclusion, we have described from a theoretical
viewpoint the characteristics of the electron gas present
in 10-layer Nb-doped oxide superlattices. We showed

that the electronic properties (effective mass and spatial
extension) of the mobile charge in the SL can be effec-
tively tuned by the diagnostic choice of the doping con-
centration: above the estimated threshold of 70% doping
a dimensional crossover take place, and a fully confined
2DEG appears. Below this threshold, electron charge ac-
cumulates near the doped layer, but a consistent fraction
of it (progressively increasing with the lowering of doping
concentration) spreads thorugh the whole SL, so that a
complete 2D confinement is not acheved. We remark that
very high Nb-doping concentrations in STO are experi-
mentally achievable, and apparently keen to the reach of
high electron mobility11.
In agreement with the experiments9,10, we find the

thermopower of the SL remarkably larger than the ther-
mopower of the bulk at equivalent doping concentration.
Such an increase of thermopower is found to be conse-
quence of the delocalization of carriers into a multitude
of barely occupied bands. This conclusion can be un-
derstood considering that, according to the Boltzmann
theory, the dominant factor in expanding the Seebeck
amplitude is primarily the lowering of the Fermi energy
which obviously follows from the dilution.
As a general rule, our analysis shows that in a multi-

band system, a weak 2D confinement favors large ther-
mopower more than a strong confinement which tightly
traps all the charge in one or a few doped layers.
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