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Nomenclature

Abbreviations

GTN Gurson-Tvergaard-Needleman

Greek letters

α Huang [1991] correction constant

β Huang [1991] correction constant

σ Stress tensor [MPa]

εN mean effective plastic strain of the matrix at incipient nucleation
from Chu and Needleman [1980]

εeq equivalent effective plastic strain in the matrix

σ Equivalent flow stress in the matrix [MPa]

σY Flow stress [MPa]

σeq Macroscopic effective stress [MPa]

σm Macroscopic mean stress [MPa]

εp Plastic strain tensor

σ∞ Stress in the matrix [MPa]

σ∞eq Equivalent stress in the matrix [MPa]

Roman letters

ḟg Porosity (growth contribution)

ḟn Porosity (nucleation contribution)

A Strain contribution from the Needleman and Rice [1978] nucle-
ation law
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B Strain contribution from the Needleman and Rice [1978] nucle-
ation law

c Material parameter from the Needleman and Rice [1978] nucle-
ation law

f Microvoid volume fraction (Porosity)

fF Porosity at final failure from Tvergaard and Needleman [1984]

fN Nucleated void volume fraction from Chu and Needleman [1980]

fu Ultimate value of porosity at the occurrence of ductile rupture
from Tvergaard and Needleman [1984]

fcr Critical void volume fraction at the onset of coalescence from
Tvergaard and Needleman [1984]

q1 Parameter from the GTN model

q2 Parameter from the GTN model

q3 Parameter from the GTN model

R Void radius [m]

SN Gaussian standard deviation of the normal distribution inclu-
sions from Chu and Needleman [1980]

T Triaxiality

VA Volume of the cavity and the matrix [m]

VM Volume of the cavity [m]

p∞ Hydrostatic pressure in the matrix [MPa]
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1 Introduction

The goal of the damage models is the prediction of fracture during forming
processes or structural loading after a progressive deterioration of material
properties. From all the types of damage (brittle, ductile, creep, fatigue,
. . . ), we are particularly interested in the ductile damage, which is associated
with large plastic deformation in the neighbourhood of crystal defects.

The accurate prediction of the ductile fracture on material is very im-
portant because it is associated with a damage mechanism that affects the
material properties, after certain level of plastic deformation. There are two
common approaches:

1. Uncoupled approach: The calculation of the rupture follows a criteria
which has no effect into the classical constitutive behaviour of the
material.

2. Coupled approach: The damage development is incorporated into the
constitute equation to develop a brand new continuum damage theory.

The coupled approach has some advantages over the uncoupled one, allowing
the prediction of different fracture types and a better characterisation of the
fracture zone. Nevertheless, the integration into a finite element code is
more difficult than the uncoupled approach.

The Gurson model belongs to the coupled approach group, and his strong
physical roots has allow a great increase of his use during the last 30 years. In
this report a general description of this model, the parameters involved and
the finite element implementation in the Lagamine FE code are discussed.

2 Historical background

Physical observation regarding ductile fracture phenomena in metals dates
backs to the sixties (see early references by Rice and Tracey [1969] and Gur-
son [1977]), when it became more or less clear1 that the fracture phenomena
in metal involved the generation, growth and coalescence of microscopic
voids. Since the early work by Bridgman [1952], when analyzing the effect
of the external pressure in the development of plasticity and fracture, the
experimental evidence regarding the effect of the stress state on fracture has
been studied. One of the main conclusion of this study was that the exter-
nal pressure has a significant effect on damage leading to failure; eventually,

1Considering the obvious technological and theoretical limitations at that time, above
all the ignorance of the exact physical mechanisms triggering the damage development.
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failure can occur with or without damage development depending on the
applied external pressure.

Based on these observations, the first micromechanical studies looked for
a relation between the growth of the void and the stress and strain fields. The
pioneer work of McClintock [1968] and then Rice and Tracey [1969], both
studying the growth of isolated voids, gave the first theoretical framework
for ductile failure. In this respect, McClintock [1968] proposed a model for
an isolated cylindrical cavity, where the growth rate is an increasing function
of the stress triaxiality ratio2, founding that the void expansion increases ex-
ponentially with the transverse stress. This work was later extended by Rice
and Tracey [1969], who performed a variational analysis of a single spherical
cavity within an infinite perfectly plastic medium under J2-plasticity. The
following evolution equation for the void radius was obtained:

Ṙ

R
= 0.283 exp

(
1

2

σ∞kk

σ∞eq

)
ṗ∞ (1)

Later, Huang [1991] modified Eq. 1 using additional velocity fields:

Ṙ

R
=

{
α exp (βT )ṗ if T > 1

αT 1/4 exp (βT )ṗ if T ≤ 1
(2)

With α = 0.427 and β = 1.5. For high triaxiality values, the solutions
obtained by McClintock [1968] and Rice and Tracey [1969], Huang [1991]
are very similar, mainly because void shape effects are negligible at large
values of triaxiality. It is interesting to present these results in their original
forms as they, despite the time since they were formulated, present a simple
relation for void growth. Moreover, it is notable that these models can
used in the post-processing of elastic-plastic calculations as a failure criteria,
taken a critical void growth as a material parameter.

2In fact, triaxiality also affect nucleation of new voids [Benzerga and Leblond, 2010].
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3 General description of the Gurson model

The Gurson model is a mathematical representation of ductile damage based
on the michromechanics of the material, using the continuum mechanics ap-
proach. It cames as a result of the application of the homogenization theory
in the analysis of the plastic stress field in a microscopic medium composed
of a dense matrix and cavities. The model is expressed as a macroscopic
yield criteria, introducing a micromechnical variable as the damage param-
eter: the void volume fraction. Herein, a brief explanation of the model and
his parameters is presented. No intend is for given a detailed description.
For a more complete presentation of the model, the reader is encouraged
to read the review papers of Tvergaard [1989], Pardoen and Besson [2004],
Besson [2009], Benzerga and Leblond [2010] and François et al. [2013].

3.1 Gurson [1977]

The Gurson [1975, 1977] model was born from the experimental evidence
regarding the influence of microvoid growth on plastic deformation and the
ductile fracture. Hence, the key feature of this model is the void volume
fraction (porosity), which acts as an imperfection [Li et al., 2011] during the
plastic flow. It is defined by:

f =
VA − VM

VA
(3)

One void is surrounded by a plastic material matrix, which is incompress-
ible, with no hardening (rigid plastic matrix), isotropic behaviour and no
viscosity. The resulting yield locus is shown in Eq. 4.

Fp(σ, f, σY ) =
σ2
eq

σ2 − 1 + 2f cosh
3

2

σm
σ
− f2︸ ︷︷ ︸

Damage

= 0 (4)

It is important to note that when f = 0, the Gurson yield locus recovers the
classical isotropic von Mises yield locus. The growth of the void is considered
including the following equation:

ḟ = ḟg =
VM V̇A
V 2
A

= (1− f) trε̇p (5)

This equation comes from the apparent volume change, mass conservation
and plastic incompressibility of the matrix, derived from Eq. 3.
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In his original form, the Gurson model does not take into account the
plastic anisotropy, the mixed hardening of the dense matrix, the appearance
of new voids, the coalescence leading to the crack and other phenomenas
involved in ductile fracture. Moreover, the voids are consider spherical or
confined into a infinite cylinder, which is certainly a severe hypothesis. Even
if by definition of the yield locus the macroscopic media is compressible (I1-
dependent), the fully dense matrix surrounding the voids is in fact incom-
pressible, being governed by a J2 flow theory. For these and other reasons,
numerous extensions had been proposed in the literature.

3.2 Gurson-Tvergaard-Needleman extension

Several extensions had been introduced into original Gurson model and be-
tween them, the Gurson-Tvergaard-Needleman (hereafter called the GTN
model) was one of the first to compile robustly the three stages of dam-
age development: void nucleation, growth and coalescence. In the following
section, a brief descriptions3 of each of these mechanism and the equations
considered into the GTN model are presented.

3.2.1 Void nucleation

Within the nucleation of new microscopic voids two main mechanisms are
found:

• Decohesion of matrix-inclusion or matrix-second phase interfaces.

• Hard particle fracture.

They can be observed separately or as combination or both, as there are
parameters favouring one or the another. A concise summary of them can
be found in Benzerga and Leblond [2010]. As a general rule, nucleation
results from inhomogeneity of the plastic deformation between the matrix
and the inclusions [Pineau, 2004]. Sometimes nucleation is stress controlled,
while in other cases can be strain controlled because the energy condition
for the separation of the interfaces can be met both by plastic deformation
accumulation or stress within the interface. Nevertheless, the formulation
of an adequate condition for void nucleation by interface fracture is difficult
to obtain and usually another approach is used [François et al., 2013]. This
continuum approach will be described below.

3No micromechanical models or cell studies are presented for the sake of simplicity.
Refer to the reviewing papers for a more complete presentation of the topic.
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Assuming that nucleation is a mechanism that is not linked with void
growth, like void growth4, the total porosity can be decomposed in the
nucleated and growth part [Chu and Needleman, 1980]:

ḟ = ḟg + ḟn (6)

Where fg is already described in Eq. 5. The nucleation model of Needle-
man and Rice [1978] assumes that nucleation is a random function of both
effective plastic strain or the equivalent stress:

ḟ = Aε̇Peq︸︷︷︸
Strain

+B (σ̇eq + cσ̇M )︸ ︷︷ ︸
Stress

(7)

With σ̇eq + cσ̇M > 0, and c is a parameter adjusted by cell computations
[Needleman, 1987]. Later, Chu and Needleman [1980] proposed a normal
distribution for A and B to represent the heterogeneity of the nucleation
phenomena.

A(εeq) =
fN

SN
√

2π
exp

[
−1

2

(
εeq − εN
SN

)2
]

B(σ) = 0 (8)

Where fn is the nucleated void volume fraction, fN is the potential nucleated
void volume fraction in relation with the inclusion volume fraction, εN is the
mean effective plastic strain of the matrix at incipient nucleation, SN is the
Gaussian standard deviation of the normal distribution inclusions and εeq is
the equivalent effective plastic strain in the matrix.

Stress controlled nucleation is not often used because they are harder to
implement numerically [Besson, 2009, François et al., 2013]

3.2.2 Void coalescence

In coalescence we can distinguish three different behaviors, sorted in chrono-
logical order of observation within the literature [Benzerga and Leblond,
2010]:

• Internal necking: the grow of the voids is large enough to create a
neck in the space between cavities. Often observed at high stress
triaxialities.

4An assumption that has a micromechanical root [Benzerga and Leblond, 2010]
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• Void sheeting: due to the formation of a secondary population of voids
on small particles, creating shear bands. Dominant at low stress tri-
axialities.

• Necklace: due to formation of voided columns, prominent in steel con-
taining elongated MnS inclusions and favored at low triaxiality level
[Benzerga and Leblond, 2010]

Internal necking was studied by Thomason [1968, 1985] based on limit-load
analysis of the ligament between voids. Void sheeting was described by
Brown and Embury [1973], where a 45◦ band can be formed when the dis-
tance between voids is approximately equal to their height. With the excep-
tion of the third mode, failure by internal necking or void sheeting seems to
be mainly dependent on the stress triaxiality and the microstructure, but
also on the void distribution [Weck and Wilkinson, 2008].

At the macroscopic level, the coalescence can be easily observed in a
load-displacement curve after an abrupt change in the slope at the onset of a
(macroscopic) crack, then descending as the crack propagates. According to
the Gurson [1977] model, the loss of material stress carrying capacity occurs
when the voids have grown so large that the Gurson yield surface becames

a point in the stress space i.e., f =
1

q1
. Nevertheless, the experimental

evidence shows that the material occurs much before.
Hence, and in order to incorporate coalescence into the Gurson model,

Tvergaard and Needleman [1984] proposed to use fc not as an additive part
of the porosity (like Eq. 6 ) but a specific coalescence function f∗, which
replaces the porosity:

f∗ =

 f if f < fcr

fcr +
fu − fcr
fF − fcr

(f − fcr) if f > fcr
(9)

Where fu is the ultimate value of f∗ at the occurrence of ductile rupture,
fcr is the critical void volume fraction at the onset of coalescence and fF
is the porosity at final failure. The aim of f∗ is to model the complete
vanishing of the carrying stress capacity due to void coalescence. Both qi
and f∗ allows to recover results from a mesoscopic approach near rupture.

Coalescence is associated to mechanisms of plastic flow localization5

within the matrix, which is certainly harder to capture compared to diffuse
plastic flow during void growth. For a detailed discussion of coalescence

5These mechanisms involves, for instance, void growth or void interactions.
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models and their physical roots, see Benzerga and Leblond [2010]. It is in-
teresting to note that the main effect of the Lode angle on ductile fracture
seems to be through the failure mode.

3.2.3 Correction factors

Tvergaard [1982] introduced the factors q1 and q2 (and a third one q3 = q1
2)

describing more accurately void growth kinematics in unit cell calculations.
A modified version of Eq. 4 is thus obtained:

Fp(σ, f, σY ) =
σ2
eq

σ2
Y

− 1 + 2q1f cosh−3q2σm
2σY

− q3f
2 = 0 (10)

Originally, the Gurson model gives somewhat too large localization strains
if q1 =1.0. Nevertheless, using a value of q1 =1.5 allows to the contin-
uum model to be in good agreement with the localization strain for the cell
analysis carried on by [Tvergaard, 1981].

Some authors claim, wrongly motivated from these previous results, that
q1 and q2 are parameters accounting for the void shape or the interactions
between voids. The evidence, in this aspect, is sparse and is more likely
that these parameters reflect the inner imperfections of the model [Benzerga
and Leblond, 2010]. For instance, cell analysis by Koplik and Needleman
[1988] and Gao et al. [1998] have shown that both parameters vary with
the geometry and loading conditions. Faleskog et al. [1998] showed that
these parameters also depends on the plastic hardening exponent and the
ratio of the yield stress over the Young modulus. Ben Bettaieb et al. [2012]
mathematically demonstrated that fixing q2 lead to bad results, so it is
integrated as a state variable within the calculations. This could be related
that the void it is assumed to be an empty space where no inclusion is
considered inside.
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4 Versions available in Lagamine

In its current state, Lagamine has four version of the Gurson model. All of
them were programmed by Mohammed Ben Bettaieb with the exception of
GUR3D. The main difference between the three versions programmed by Ben
Bettaieb is the calculation and integration of the damage. All this laws are
3D, so they can only be used with solid elements6.

4.1 GUR3D

Is the first version implemented in the Lagamine code. It for isotropic mate-
rials with mixed isotropic and kinematic hardening. No further information
is given.

4.2 GUR3Dclas

Is the classic Gurson model plus plastic anisotropy and mixed isotropic
(Swift) and kinematic (Armstrong and Fredrick) hardening. The evolu-
tion of cavities is classical and it is integrated implicitly. This law is the
recommended for general applications. The yield equation is defined by:

Fp(σ,α, f, σY ) =
σ̂2
eq

σ2
Y

− 1 + 2q1f cosh−3q2σ̂m
κσY

− q3f
2 = 0 (11)

Where σ̂ is the effective stress tensor, defined by:

σ̂ = σ −X (12)

And σ̂eq:

σ̂eq =

√(
1

2

)
(σ̂ : H : σ̂) (13)

And κ is a coefficient reflecting the plastic anisotropy effect [Benzerga and
Besson, 2001, Benzerga et al., 2004a,b]. The porosity evolution is given by:

ḟ = ḟg = (1− f)tr
(
ε̇P
)

(14)

Equivalence between the rates of macroscopic and matrix plastic work is
assumed:

σ̂ : ε̇P = (1− f)σY ˙εm
P (15)

6A plane strain version of the Gurson model is available, but there is no further infor-
mation.
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Void shape effects are not considered and the initial spherical shape is kept
constant. Nucleation is also neglected. A more detailed description can be
found in Ben Bettaieb et al. [2011b].

4.3 GUR3Dani

It is a model specific for Dual-Phase (DP) steels. It can be decomposed in
two mains parts:

• The modeling of the matrix, extending the original model with plastic
anisotropy and mixed isotropic (Swift) and kinematic (Armstrong and
Fredrick) hardening.

• The evolution of the porosity, neglecting the morphological distribu-
tion and shape evolution of the voids (which are assumed spherical).

The algorithm is explicit respect to the porosity and implicit respect to other
variables (equivalent plastic strain, yield stress, etc.). See Ben Bettaieb et al.
[2011a] for further details.

4.4 GUR3Darcelor

Few times used in the Ben Bettaieb works.
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A Triaxiality

Triaxiality has traditionally been used as a metric to characterize the stress
state. It copuld be understand (roughly), a ratio between the hydrostatic
(first invariant) and deviatoric (second deviatoric invariant) effects on the
stress state.

T (I1, J2) =
σm
σeq

=
1

3
√

3

I1√
J2

(16)

The last years has shown an increase interest in other stress state measure,

Table 1: Stress state for different triaxialities.

Triaxiality Stress state

< 0 Compression
0 Pure shear

1/3 Uniaxial tension
2/3 Biaxial tension
∞ Pure hydrostatic

the Lode angle. A better understanding of the stress state could be reached
using this parameter under low triaxialities. For a detailed description of
the Lode angle definition and effect on ductile fracture, see the respective
internal report.
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