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1.1 Introduction

Motion detection is closely coupled with higher level inference tasks such as detection,
localization, tracking, and classification of moving objects, and is often considered to be a
preprocessing step. Its importance can be gauged by the large number of algorithms that
have been developed to-date and the even larger number of articles that have been published
on this topic. A quick search for ‘motion detection’ on IEEE Xplore© returns over 20,000
papers. This shows that motion detection is a fundamental topic for a wide range of video
analytic applications. It also shows that the number of motion detection methods proposed
so far is impressively large.

Among the many variants of motion detection algorithms, there seems to be no sin-
gle algorithm that competently addresses all of the inherent real world challenges. Such
challenges are sudden illumination variations, night scenes, background movements, illu-
mination changes, low frame rate, shadows, camouflage effects (photometric similarity of
object and background) and ghosting artifacts (delayed detection of a moving object after
it has moved away) to name a few.

In this chapter, we provide an overview of the most highly cited motion detection meth-
ods. We identify the most commonly used background models together with their features,
the kind of updating scheme they use, some spatial aggregation models as well as the most
widely used post-processing operations. We also provide an overview of datasets used to
validate motion detection methods. Please note that this literature review is by no means
exhaustive and thus we provide a list of surveys that the reader can rely on for further
details.
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Together with this overview, we provide benchmarking results on different categories
of videos, for different methods, different features and different post-processing methods.
This should give the reader a perspective on some of the most effective methods available
nowadays on different types of videos. We also report results on majority vote strategies that
we use to combine the output of several methods. The goal being to identify complementary
methods whose combination helps improving results. All benchmark results have been
obtained on the changedetection.net dataset.

1.2 Motion Detection Methods

Motion detection is often achieved by building a representation of the scene, called back-
ground model, and then observing deviations from this model for each incoming frame. A
sufficient change from the background model is assumed to indicate a moving object. In
this document, we report on the most commonly-used models which we refer to as the basic,
parametric, non-parametric, data-driven and matriz decomposition models. Other models
for motion detection are also accounted for in this section such as the prediction model,
the motion segmentation model, and the machine learning approaches. All these motion
detection methods are summarized in Table 1.1.

Together with these 8 families of methods, we review commonly-used features, spatial
aggregation techniques, updating scheme as well as post-processing methods.

1.2.1 Basic Models

The simplest strategy to detect motion is to subtract the pixel’s color in the current frame
from the corresponding pixel’s color in the background model [14]. A temporal median filter
can be used to estimate a color-based background model [110]. One can also generalize
to other features such as color histograms [84, 196] and local self-similarity features [70].
In general, these temporal filtering methods are sensitive to compression artifacts, global
illumination changes and incapable to detect moving objects once they become stationary.

Frame differencing is another basic model. It aims to detect changes in the state of a
pixel by subtracting the pixel’s intensity (or color) in the current frame from its intensity
(or color) in the previous frame. Although this method is computationally inexpensive, it
cannot detect a moving object once it stops moving or when the object motion becomes
small; instead it typically detects object boundaries, covered and exposed areas due to
object motion.

Motion history images [16, 118] are also used as a basic model for motion detection. It
is obtained by successive layering of frame differences. For each new frame, existing frame
differences are scaled down in amplitude, subject to some threshold, and the new motion
label field is overlaid using its full amplitude range. In consequence, image dynamics ranging
from two consecutive frames to several dozen frames can be captured in a single image.

1.2.2 Parametric Models

In order to improve robustness to noise, parasite artifacts, and background motion, the
use of a per-pixel Gaussian model has been proposed [182]. In a first step, the mean and
standard deviation are computed for each pixel. Then, for each frame, the likelihood of
each pixel color is determined and pixels whose probability is below a certain threshold
are labeled as foreground pixels. Since pixels in noisy areas are given a larger standard
deviation, a larger color variation is needed in those areas to detect motion. This is a
fundamental difference with the basic models for which the tolerance is fixed for every
pixel. As shown by Kim et al. [80], a generalized Gaussian model can also be used and
Morde et al. [118] have shown that a Chebychev inequality can also improve results. With
this model, the detection criteria depends on how many standard deviations a color is from
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the mean.

A single Gaussian, however, is not a good model for dynamic scenes [52] as multiple
colors may be observed at a pixel due to repetitive object motion, shadows or reflectance
changes. A substantial improvement is achieved by using multiple statistical models to
describe background color. A Gaussian Mixture Model (GMM) [156] was proposed to
represent each background pixel. GMM compares each pixel in the current frame with
every model in the mixture until a matching Gaussian is found. If a match is found, the
mean and variance of the matching Gaussian are updated, otherwise a new Gaussian with
the mean equal to the current pixel color and some initial variance is introduced into the
mixture. Instead of relying on only one pixel, GMM can be trained to incorporate extended
spatial information [72].

Several papers [74] improved the GMM approach to add robustness when shadows are
present and to make the background models more adaptive to parasitic background motion.
A recursive method with an improved update of the Gaussian parameters and an automatic
selection of the number of modes was presented in [202]. Haines et al. [58] also propose an
automatic mode selection method, but with a Dirichlet process. A splitting GMM that relies
on a new initialization procedure and a mode splitting rule was proposed in [46, 48] to avoid
over-dominating modes and resolve problems due to newly static objects and moved away
background objects while a multi-resolution block-based version was introduced in [146].
The GMM approach can also be expanded to include the generalized Gaussian model [4].

As an alternative to mixture models, Bayesian approaches have been proposed. In [138],
each pixel is modeled as a combination of layered Gaussians. Recursive Bayesian update
instead of the conventional expectation maximization fitting is performed to update the
background parameters and better preserve the multi-modality of the background model.
A similar Bayesian decision rule with various features and a learning method that adapt to
both sudden and gradual illumination changes in used in [94].

Another alternative to GMM is background clustering. In this case, each background
pixel is assigned a certain number of clusters depending on the color variation observed in
the training video sequence. Then, each incoming pixel whose color is close to a background
cluster is considered part of the background. The clustering can be done using K-means
(or a variant of it) [26, 126] or codebook [82].

1.2.3 Non-Parametric Methods
In contrast to parametric models, non-parametric Kernel Density Estimation (KDE) fits
a smooth probability density function to a time window with previously-observed pixel
values at the same location [42]. During the change detection process, a new-frame pixel is
tested against its own density function as well as those of pixels nearby. This increases the
robustness against camera jitter or small movements in the background. Similar effects can
be achieved by extending the support to larger blocks and using texture features that are less
sensitive to inter-frame illumination variations. Mittal and Poggio [116] have shown that
robustness to background motion can be increased by using variable-bandwidth kernels.
Although nonparametric models are robust against small changes, they are expensive
both computationally and in terms of memory use. Moreover, extending the support causes
small foreground objects to disappear. As a consequence, several authors worked to improve
the KDE model. For instance, a multi-level method [122] makes KDE computationally inde-
pendent of the number of samples. A trend feature can also be used to reliably differentiate
periodic background motion from illumination changes [190].

1.2.4 Data-driven Methods

Recently, pixel-based data-driven methods using random samples for background modeling
have shown robustness to several types of error sources. For example, ViBe [6, 170] not
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Background model References
Running average [14, 84, 196, 70]
Basic Temporal median [110]

Motion history image [16, 118]

Single Gaussian [182]

Gaussian Mixture Model (GMM) [156, 72, 74, 202, 48, 46, 146, 58]
Background clustering [26, 126, 82]

Generalized Gaussian Model [4, 80]

Bayesian [138, 94]

Chebyshev inequality [118]

None-Parametric Kernel Density Estimation (KDE) [42, 122, 190, 116]
Cyclostationary [140]

Stochastic K-nearest neighbors (KNN) [6, 64].
Deterministic KNN  [202]

Hidden Markov Model (HMM) [158]

Principal Component Analysis (PCA) [124, 188, 96, 36, 150]
Sparsity and dictionary learning [136, 194]

Kalman filter [78, 198]

Weiner filter [168]

Optical flow segmentation [180, 114, 102]

GMM and Optical flow segmentation [126, 200]
1-Class SVM [32]

Machine Learning SVM [100, 62, 60]

Neural networks [104, 106, 152]

Parametric

Data-driven

Matrix Decomposition

Prediction Model

Motion Segmentation

TABLE 1.1 Overview of 8 families of motion detection methods.

only shows robustness to background motion and camera jitter but also to ghosting arti-
facts. Hofmann [64] improved the robustness of ViBe on a variety of difficult scenarios by
automatically tuning its decision threshold and learning rate based on previous decisions
made by the system. In both [6, 64], a pixel is declared as foreground if it is not close
to a sufficient number of background samples from the past. A deterministic K nearest
neighbor approach has also been proposed by Zivkovic and van der Heijiden [202], and one
for non-parametric methods by Manzanera [108].

A shortcoming of the above methods is that they do not account for any “temporal
correlation” within video sequences, thus they are sensitive to periodic (or near-periodic)
background motion. For example, alternating light signals at an intersection, a flashing
adversisement board, the appearance of rotating objects, etc. A cyclostationary background
generation method based on frequency decomposition that explicitly harnesses the scene
dynamics is proposed in [140]. In order to capture the cyclostationary behavior at each
pixel, spectral coefficients of temporal intensity profiles are computed in temporal windows
and a background model that is composed of those coefficients is maintained and fused with
distance maps to eliminate trail effects.

An alternative approach is to use a Hidden Markov Model (HMM) with discrete states
to model the intensity variations of a pixel in an image sequence. State transitions can
then be used to detect changes [158]. The advantage of using HMMs is that certain events,
which may not be modeled correctly by unsupervised algorithms, can be learned using the
provided training samples.

1.2.5 Matrix Decomposition

Instead of modeling the variation of individual pixels, the whole image can be vectorized
and used in background modeling. In [124], a holistic approach using eigenspace decom-
position is proposed. For a certain number of input frames, a background matrix (called
eigen background) is formed by arranging the vectorized representations of images in a ma-
trix where each vectorized image is a column. An eigenvalue decomposition via Principal
Component Analysis (PCA) is performed on the covariance of this matrix. The background
is then represented by the most descriptive eigenvectors that encompass all possible illumi-
nations to decrease sensitivity to illumination. Several improvements of the PCA approach
have been proposed. To name a few, Xu et al. [188] proposed a variation of the eigen
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background model which includes a recursive error compensation step for more accurate
detection. Others [150, 96] proposed PCA methods with computationally efficient back-
ground updating scheme, while Doug et al. [36] proposed illumination invariant approach
based on a multi-subspace PCA, each subspace representing different lighting conditions.

Instead of the conventional background and foreground definition, Porikli [136] decom-
poses a image into “intrinsic” background and foreground images. The multiplication of
these images reconstructs the given image. Inspired by the sparseness of the intensity gradi-
ent, it applies a spatial derivative filters in the log domain to a subset of the previous video
frames to obtain intensity gradient. Since the foreground gradients of natural images are
Laplacian distributed and independent, the ML estimate of the background gradient can
be obtained by a median operator and the corresponding foreground gradient is computed.
These gradient results are used to reconstruct the background and foreground intensity
images using a reconstruction filter and inverse log operator. This intrinsic decomposition
is shown to be robust against sudden and severe illumination changes, but it is computa-
tionally expensive.

Another background subtraction approach based on the theory of sparse representation
and dictionary learning is proposed in [194]. This method makes the following two important
assumptions: (1) the background of a scene has a sparse linear representation over a learned
dictionary; (2) the foreground is sparse in the sense that a majority of the pixels of the frame
belong to the background. These two assumptions enable handling both sudden and gradual
background changes.

1.2.6 Other Methods

Prediction Models

Early approaches use filters to predict background pixel intensities (or colors). For these
models, each pixel whose observed color is far from its prediction is assumed to indicate
motion. In [78] and [198], a Kalman filter is used to model background dynamics. Simi-
larly, in [168] Wiener filtering is used to make a linear prediction at pixel level. The main
advantage of these methods are their ability to cope with background changes (whether it
is periodic or not) without having to assumed any parametric distribution.

In [168] camouflage artifacts and small motionless regions (usually associated to ho-
mogeneous foreground regions) are filled in within a post-processing stage. In case most of
the pixels in a frame exhibit sudden change, the background models are assumed to be no
longer valid at frame level. At this point, either a previously stored pixel-based background
model is swapped in, or the model is reinitialized.

Motion Segmentation

Motion segmentation refers to the assignment of groups of pixels to various classes based
on the speed and direction of their movements [102]. Most approaches to motion segmen-
tation first seek to compute optical flow from an image sequence. Discontinuities in the
optical flow can help in segmenting images into regions that correspond to different objects.
In [180], temporal consistency of optical flow over a narrow time window is estimated; areas
with temporally-consistent optical flow are deemed to represent moving objects and those
exhibiting temporal randomness are assigned to the background.

Optical flow-based motion detection methods will be erroneous if brightness constancy
or velocity smoothness assumptions are violated. In real imagery, such violations are quite
common. Typically, optical flow methods fail in low-texture areas, around moving object
boundaries, at depth discontinuities, etc. Due to the commonly imposed regularization
term, most optical flow methods produce an over smooth optical flow near boundaries. Al-
though solutions involving a discontinuity preserving optical flow function and object-based
segmentation have been proposed [114], motion segmentation methods usually produce a
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halo artifact around moving objects. The resulting errors may propagate across the entire
optical flow solution. As a solution, some authors [126, 200] use motion segmentation and
optical flow in combination with a color-based GMM model.

Machine Learning

Motion detection methods in this category use machine learning discriminative tools such as
SVM and neural networks to decide whether or not a pixel is in motion. The parameters of
these functions are learned given a training video. Lin et al. [100] uses a probabilistic SVM
to initialize the background model. They use the magnitude of optical flow and inter-frame
image difference as features for classification. Han and Davis [60] model the background
with kernel density approximation with multiple features (RGB, gradient, and Haar) and
use a Kernel-SVM as a discriminative function. A somewhat similar approach has also been
proposed by Hao [62]. These approaches are typical machine learning methods that need
positive and negative examples for training. This is a major limitation for any practical
implementation since very few videos come with manually labeled data. As a solution, Chen
et al. [32] proposed a GPU-based 1-class SVM method called SILK. This method do not
need pre-labeled training data, but also allows for online updating of the SVM parameters.
Maddalena and Petrosino [104, 106] model the background of a video with the weights
of a neural network. A very similar approach but with a post-processing MRF stage has
been proposed by Schick et al. [152]. Results reported in the paper show great compromise
between processing speed and robustness to noise and background motion.

1.2.7 Features

Several features can be used to detect moving objects. The simplest one is certainly
grayscale (or luminance) which is easy to interpret and has a well founded physical mean-
ing [50]. Grayscale motion detection methods are normally used on mono-channel cameras
like depth cameras, thermal cameras, or older grayscale surveillance cameras.

Nowadays, most motion detection methods rely on color. A color image consists of three
channels per pixel (typically R, G, B) that can be processed separately or simultaneously.
However, the physical meaning of these channels is less obvious than for mono-channel
sensors. Ideally, color images are acquired using three spatially aligned sensors. But since
this configuration increases the size and cost of the sensor and requires pixel registration,
most color cameras use a single image sensor with a color filter array in front of it. The most
widely implemented array is the Bayer color filter array [10]. Each location on the sensor
measures one color and missing colors are interpolated from neighboring pixels. Suhr [160]
proposes a GMM variant that conducts background modeling in a Bayer-pattern domain
and foreground classification in an interpolated RGB domain. The authors argue that since
performance is similar to that of the original GMM on RGB images, RGB video streams
captured with one sensor are not 3 times more informative than their grayscale counterpart.

In practice though, most techniques exhibit a small performance increase for the classi-
fication task when using RGB instead of grayscale features [12]. Thus, from a classification
perspective and despite that the computation time is more or less tripled, it is beneficial to
use color images, even when colors have been interpolated in the image. In their survey pa-
per, Benezeth et al. [12] compare six RGB color distance functions used for background sub-
traction, including the Euclidean distance, the L1 distance, and the Mahalanobis distance.
They conclude that four of the six metrics had globally similar classification performances;
only the simplest zero and first order distances were less precise.

Several motion detection techniques use other color spaces such as normalized color [116],
cylindric color model [82], HSV [34], HSI [176], YCbCr [88], and normalized RGB [186].
From an application perspective, those colorspaces are believed to be more robust to shad-
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ows and illuminations changes than RGB or grayscale [34].

Other features, like edges [68], texture [98], optical flow [100, 116, 164], PCA-based
features [124] are also used. Like the colorspace features, these features seem more robust
to illumination changes and shadows than RGB features. Texture and optical flow features
are also robust to noise and background motion. Since texture features integrates spatial
information which often happens to be constant, a slight variation of in the background does
not lead to spurious false positives. For example, a bush with a uniform texture will be
undetected when shaken by the wind. As for optical flow, since moving objects are assumed
to have a smooth and coherent motion distribution [164], noise and random background
motion can be easily decorrelated from actual moving objects.

In general, it seems like adding features improves performances. Parag et al. [128] even
propose to select the best combination of features at each pixel. They argue that different
parts of the image may have different statistics and thus require different features. But this
comes at the price of both a complexity and a computation time increase.

1.2.8 Updating Strategies

In order to produce consistent results over time, background models need to be updated
as the video streams in. From a model point of view, there are two major updating tech-
niques [132] : the recursive and non-recursive techniques. The recursive techniques main-
tain a single background model that is updated with each new video frame. Non-recursive
techniques maintain a buffer L of n previous video frames and estimate a background model
based solely on the statistical properties of these frames. This includes median filtering and
eigenbackgrounds [124]. The major limitation of this last approach is that computing the
basis functions requires video clips void of foreground objects. As such, it is not clear how
the basis functions can be updated over time if foreground objects are continuously present
in the scene.

As mentioned by Elgammal et al. [44], other updating strategies use the output of the
segmentation process. The conditional approach (also called selective or conservative) up-
dates only background pixels in order to prevent the background model from being corrupted
by foreground pixels. However, this approach is incapable of eliminating false positives as
the background model will never adapt to it. Wang et al. [174] propose to operate at the
blob level and define a mechanism to incorporate pixels in the background after a given
period of time. As an alternative, the unconditional (or blind) approach updates every
pixel whether it is identified as being active or not. This approach has the advantage of
integrating new objects in the background and compensating for false detections caused,
say, by global illumination changes or camera jitter. On the other hand, it can allow slowly
moving objects to corrupt the background which leads to spurious false detections. Both
conditional and unconditional techniques can be used, depending on the appropriateness to
the model or on the requirements of the application.

Some authors introduce more nuances. For example, Porikli et al. [138] define a GMM
method and a Bayesian updating mechanism, to achieve accurate adaptation of the models.
A somewhat similar refinement method is proposed by Van Droogenbroeck et al. [170].
Both [138] and [170] distinguish between a segmentation mask, the binary output image
which corresponds to the background/foreground classification result, and the updating
mask. The updating mask corresponds to locations indicating which pixels have to be
updated. The updating mask differs from the segmentation map in that it remains unknown
to the user, and depends on updating strategies. For example, one can decide not to update
the model inside of static blobs or, on the contrary, decide to erode foreground mask to
progressively remove ghosts. Another recent updating strategy consists in spatial diffusion;
it was introduced with ViBe [6]. Spatial diffusion is a mechanism wherein a background
value is diffused in a neighboring model. This diffusion mechanism can be modulated to
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help remove ghosts or static objects.

1.2.9 Spatial Aggregation, Markovian Models and Post-processing
Most motion detection techniques are local processes that focus on pixel-wise statistics and
ignoring neighboring pixels (at least during the modeling phase). This is a well-founded
approach from a statistical point of view since neighboring pixels might have very different
underlying feature probability density functions. Nevertheless, there exist techniques that
aggregate information from neighboring pixels into regular blocks or so-called superpixels.
Block-based aggregation is a coherent approach for video encoder, as blocks and macro-
blocks are the fundamental spatial units in encoders.

Grouping pixels in blocks is motivated by several factors. First, statistics averaged over
a rectangular region increases the robustness to non-stationary backgrounds, despite the
fact that it blurs the object silhouette and that another method might be needed to refine
edges as in [30]. Second, if sharp edges are not mandatory, processing blocks speeds up
the motion detection process. Hierarchical methods, as proposed by Park et al. [130] or
Chen et al. [28], are typical examples of methods that plays with different levels of pixel
aggregation.

Pixels aggregation can also be achieved by with the help of a Markovian model. Typical
Markovian models are based on a maximum a posteriori formulation that is solved through
an optimization algorithm such as iterative optimization scheme (ICM) or graphcut [2, 112]
which are typically slow. In [14] it was shown that simple Markovian methods (typically
those using the Ising prior) produce similar results than simple post-processing filters.

Other Markovian methods have been proposed. In [66], Markov random fields are used
to re-label pixels. First, a region-based motion segmentation algorithm is developed to
obtain a set coherent regions. This serves to define the statistics of several Markovian
random fields. The final labeling is obtained by maximizing the a posteriori energy of
the Markov random fields, which can be seen as a post-processing step. The approach by
Schick et al. [152] relies on similar ideas. A first segmentation is used to define a probabilistic
superpixel representation. Then a post-processing is applied on the statistical framework to
provide an enhanced segmentation map. It is interesting to note that Schick et al. [152] have
successfully applied their post-processing technique to several motion detection techniques.

A more classical, simpler and faster way to re-label pixels is throughout a post-processing
filter. For example, Parks and Fels [132] consider a number of post-processing techniques
to improve the segmentation map. Their results indicate that the performance is improved
by morphological filters (closings), noise removal filter (such as median filters), and area
filters. Morphological filters are used to fill internal holes and small gaps, while area filters
are used to remove small objects.

In section 1.4.2, we present the results of some post-processing operations. It appears
that simple post-processing operations, such as the median or close/open morphological
operations always improve the segmentation map. It is thus recommended to include post-
processing operations, even when comparing techniques. This was also the conclusion of
Brutzer et al. [24] and Benezeth et al. [14]. Note that other filters can be used such as
temporal filters, shadow filters [24], and complex spatio-temporal filtering techniques to re-
label the classification results. However, it has been observed that not all post-processing
filters do improve results [132].

1.3 Datasets and Survey Papers

Without aiming to be exhaustive, we list below 15 of the most widely used datasets for
motion detection validation (see Table 1.2). Additional details regarding some of these
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Dataset

Description

Ground truth

2012 CD.net™

31 videos in 6 categories : baseline, dynamic background,
camera jitter, shadow, intermittent motion, and thermal.

Pixel-based labeling of
71,000 frames.

Wallflower [168]

7 short video clips, each representing a specific challenge
such as illumination change, background motion, etc

Pixel-based labeling of
one frame per video.

detection methods.

PETS [192] Many videos aimed at evaluating the performance of | Bounding boxes.
tracking algorithms

CAVIAR® 80 staged indoor videos representing different human be- | Bounding boxes.
haviors such as walking, browsing, shopping, fighting, etc.

i-LIDS™ Very long videos meant for action recognition showing | Not fully labeled.
parked vehicle, abandoned object, people walking in a re-
stricted area, and doorway

ETISEO™ More than 80 videos meant to evaluate tracking and event | High-level label such as

bounding boxes, object
class, event type, etc.

ViSOR 20097 [172]

‘Web archive with more than 500 short videos (usually less
than 10 seconds)

Bounding boxes.

BEHAVE 2007~

7 videos shot by the same camera showing human inter-
actions such as walking in group, meeting, splitting, etc.

Bounding boxes.

changes and dynamic backgrounds.

VSSN 2006 9 semi-synthetic videos composed of a real background | Pixel-based labeling of
and artificially-moving objects. The videos contain an- | each frame.
imated background, illumination changes and shadows,
however they do not contain any frames void of activity.
IBM ~ 15 videos taken from PETS 2001 plus additional videos. Bounding box around
each moving object in 1
frame out of 30.
Karlsruhe™ 4 grayscale videos showing traffic scenes under various 10 frames per video have
weather conditions. pixel-based labeling.
Li et al.]94]7 10 small videos (usually 160X 120) containing illumination | 10 frames per video have

pixel-based labeling.

Karaman et al. [76]

5 videos coming from different sources (the web, the “art
live” project™, etc.) with various illumination conditions
and compression artifacts

Pixel-based labeling of
every frame.

GVSG 2008 [166]

15 Semi-synthetic videos with various levels of textural
complexity, background motion, moving object speed, size
and interaction.

Pixel-based labeling ob-
tained by filming moving
objects (mostly humans)
in front of a blue-screen
and then pasted on top
of background videos.

Brutzer et al. [24]

Computer-generated videos showing one 3D scene repre-
senting a street corner. The sequences include illumina-
tion changes, dynamic background, shadows, and noise.

Pixel-based labeling.

TABLE 1.2 Overview of 15 video datasets.

datasets can be found on a web page of the European CANTATA project®.

Out of these 15 datasets, 7 were initially made to validate tracking and pattern recog-
nition methods (namely PETS, CAVIAR, i-LIDS, ETISEO, ViSOR 2009, BEHAVE 2007,
IBM). Although challenging for these applications, those datasets mostly contain day-time
videos with fixed background, constant illumination, few shadows and no camera jitter. As
a consequence, it is difficult to evaluate how robust motion detection methods are when
looking at benchmarking results reported on these 7 datasets.

CD.net* [54] is arguably the most complete dataset devoted to motion detection bench-
marking. It contains 31 videos in 6 categories with nearly 90,000 frames, most of it manually
labeled. A unique aspect with this dataset is its web site which allows for performance eval-
uation and method ranking. As of today, 27 methods are reported on the website. CD.net
replaced older datasets which had either few videos, partly labeled videos, very short video
clips, or semi-synthetic (and yet not realistic) videos.

In parallel of these datasets, a number of survey papers have been written on the topic
of motion detection. In this chapter, we list survey papers devoted to the comparison

*www.hitech-projects.com/euprojects/cantata/datasets_cantata/
*www.changedetection.net
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Survey

Description and Benchmark

Goyette et al., 2012 [54]

Survey paper written in the wake of the CVPR 2012 Change Detection work-
shop. It surveys several methods and reports benchmark results obtained on
the CD.net dataset.

Bouwmans et al., 2011 [18]

Probably the most complete surveys to date with more than 350 references.
The paper reviewed methods spanning 6 motion detection categories and the
features used by each method. The survey also listed a number of typical
challenges and gave insights into memory requirements and computational
complexity. Benchmark on the Wallflower dataset.

Brutzer et al., 2011 [24]

Report benchmarking results for 8 motion detection method on the computer-
generated Brutzer dataset.

Benezeth et al., 2010 [14]

Used a collection of 29 videos (15 camera-captured, 10 semi-synthetic, and
4 synthetic) taken from PETS 2001, the IBM dataset, and the VSSN 2006
dataset.

Bouwmans et al., 2008 [20]

Survey of GMM methods.
dataset.

Benchmarking has been done on the Wallflower

Parks and Fels, 2008 [132]

Benchmark results for 7 motion detection methods and evaluation of the in-
fluence of post-processing on their performance. They used 7 outdoor and 6
indoor videos containing different challenges such as dynamic backgrounds,
shadows and various lighting conditions.

Bashir and Porikli, 2006 [8]

Performance evaluation of tracking algorithms using the PETS 2001 dataset
by comparing the detected bounding box locations with the ground-truth.

Nascimento and Marques,
2006 [120]

Report benchmarks obtained on a single PETS 2001 video with pixel-based
labeling.

Radke et al. [144]

Extensive survey of several motion detection methods. Most of the discus-
sion in the paper was related to background subtraction methods, pre- and
post-processing, and methodologies to evaluate performances. Contains no
quantitative evaluation.

Piccardi [134]

Reviewed 7 background subtraction methods and highlighted their strengths
and weaknesses. Contains no quantitative evaluation.

Rosin and

2003 [148]

Toannidis)|

Report results for 8 methods. Videos used for validation show two lab scenes
with balls rolling on the floor.

Prati et al., 2001 [142]

Used indoor sequences containing one moving person. 112 frames were labeled.

TABLE 1.3 15 motion detection surveys.

and ranking of motion detection algorithms. Note that some of these surveys use datasets
mentioned previously while other use their own dataset. Details can be found in Table 1.3.

These survey papers often contain a good overview of state-of-the-art motion detection
method. However, the reader shall keep in mind that statistics reported in some of these
papers were not computed on a well-balanced dataset composed of real (camera-captured)
videos. Typically, synthetic videos, real videos with synthetic moving objects pasted in,
or real videos out of which only 1 frame was manually segmented for ground truth were
used. Also, some survey papers report results from fairly simple and old motion detection
methods.

1.4 Experimental Results

So far, we introduced eight families of motion detection methods, presented different fea-
tures, several updating schemes and many spatial aggregation and post-processing methods.
The goal of this section is to provide empirical results to validate which configuration per-
forms best. Note that since the number of combinations of motion detection methods,
features, updating schemes and post-processing methods is intractable, we provide bench-
marks for each aspect independently.

The goal of this section is also to underline unsolved issues in motion detection and
identify complementary methods whose combination can further improve results. Empirical
results are obtained with the 2012 CD.net dataset. As mentioned previously, this dataset in-
cludes 31 videos divided in 6 categories namely dynamic background, camera jitter, shadow,
intermittent motion, baseline, and thermal. With a manually labeled groundtruth for each
video, to our knowledge this is the most complete dataset for motion detection validation.

But prior to present benchmarking results, we first describe and explain the evaluation
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metrics used in this section.

1.4.1 Metric Evaluation

As stated by Goyette et al. [56], it is not a trivial task to find the right metric to accurately
measure the ability of a method to detect motion. If we consider background segmentation
as a classification process, then we can recover the following 4 quantities for a processed
video: the number of true positives (TP) and false positives (FP), which accounts for the
number of foreground pixels correctly and incorrectly classified, and the number of true
negatives (TN) and false negatives (FN), which are similar measures but for background
pixels. With these values, one can come out with the following seven metrics, often used
to rank background subtraction methods. (1) The True Positive Rate (TPR), also named
sensitivity and recall, is Re = TPR = TPZ% (2) The False Negative Rate (FNR) is
FNR =1—-TPR. (3) The True Negative Rate (TNR), also named specificity, is TNR =

IN__ . (4) The Fulse Positive Rate is FPR = 1—TNR. (5) The precision is Pr = —+L

TN+FP" TP+FP"
(6) The Probability of Wrong Classification (also Error Rate) is PWC = %.

(7) The Accuracy is A=1— PWC.
In the upcoming subsections, we will try to answer the question of which metric(s)
should be used to rank methods.

Limitation of metrics combining TPR and TNR.

For obvious reasons, TPR,TNR, FPR, and FN R cannot be used alone to rank methods.
In fact, methods are typically adjusted to prevent F'PR and F'N R from being large simulta-
neously. Such trade-offs can be interpreted by showing a Receiver Operating Characteristic
(ROC) graph. But ranking methods based on ROC curves is rather inconvenient due to the
large number of results that need to be generated and which can be prohibitive in the con-
text of large videos. Therefore, most often, only a single point is known in the ROC space.
Summarizing TPR and T'N R into a single value remains difficult and this is highlighted by
the following discussion.

Since most surveillance videos exhibit a low amount of activity (5% on average for the
CD.net video sequences), the TN R value will always dominate A and PWC. Actually, as
one can see in Table 1.4, nearly all methods have a very low F'PR (except for [70]) and
a large FNR. As a consequence, when used alone, the accuracy A and the probability of
wrong classification PWC will always favor methods with a low FPR and a large FNR.
At the limit, a method that would detect no moving object at all would have a not-so-bad
ranking score according to A and PW (' alone. That is because only a small fraction of the
pixels would be wrongly classified on average.

Another way of underlying the limitation of A (and PW () is by rewriting the accuracy
equation. If we denote the probabilities of observing a foreground pixel and a background
pixel by pra and ppa respectively, then one can show that the accuracy can be computed
as follows A = ppa TPR + ppg TNR. Thus, with a low ppg, the TN R ends up having
an overwhelming importance when computing A. As an alternative, one could consider the
Balanced Accuracy, BA = %TPR + %TN R. However, since that metric is uncommon in
the motion detection community, we decided not to use it.

So in conclusion, although the accuracy and the probability of wrong classification can
be used to evaluate methods, they should not be used alone and one should keep in mind
that they favor methods with a low FPR.

Metrics Derived from Pr and Re

Another trade-off for motion detection methods is to prevent Pr and Re from being large
simultaneously, which is shown on a precision-recall curve.
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(a) ground truth (b) method 1 (¢) method 2 (d) method 3

FIGURE 1.1 Three methods with the same balanced accuracy (0.8) but with different F-Measures. For
methods 1 and 2, F; = 0.35 while for method 3 F; = 0.73.

The classical difficulties encountered when interpreting those graphs are mainly related
to an unachievable region in the precision-recall space [22]. There exists a lower bound on
the precision which depends on the recall and prpg. The size of this region grows with prgq,
and the precision varies significantly with prpg [92]. Moreover, a purely random method is
such that Pr = ppg, and therefore the range for valid Pr is not the same for all videos.
Therefore, the metrics derived from Pr and Re should be interpreted with care.

But using precision-recall curves to rank methods is inconvenient for the same reasons
ROC curves are. In practice, precision and recall must be combined into one metric. The
most frequent way of doing so is through the F-measure Fj, which is the harmonic mean
between Pr and Re: F; = (%Pr‘l + %Re‘ﬂil = QTPJ?F%. When both Pr and Re
are large, F} is approximately equal to the arithmetic mean of Pr and Re. Otherwise, it is
approximately equal to min (Pr, Re).

The balanced accuracy and the F-Measure, although similar at the first glance, are not
equivalent. Let’s consider the case shown in Figure 1.1 for which it is difficult to identify
the human silhouette based on the first two results. In that example, all three results have
the same balanced accuracy but a much higher F-Measure for method 3. This is a strong
indication that the F-measure is a better metric than the balanced accuracy in the context
of motion detection and thus why we use it in our validation. Another reason for F; to be
larger for method 3 is the fact that it does not take into account TN. As a consequence,
Fy is a metric that focuses more on the foreground than on the background.

Influence of Noise

The F-measure is not void of limitations. As will be shown in this section, it is sensitive
to noise and thus should be used with care. In order to illustrate the impact of noise
and the importance of post-filtering operations, let us add a “salt and pepper” noise to
a segmentation map. Let « be the probability to switch the class of a pixel and T PR’
and TN R’ the estimates on the noisy segmentation maps. In that case, we have TP’ =
TP(l1—-a)+ FNa, FN' = FN(1—-«)+TPa, TN' = TN (1 —a) + FPa, and FP' =
FP(1—a)+TNa. Following some algebric manipulations, one can show that the relative
ranking between 2 methods can change depending on the amount of noise in the data. This
is illustrated in Figure 1.2 where F} for Spectral-360 goes below PBAS after noise has been
added.

This sensitivity to noise leads us to conclude that it is preferable to filter noise with
a post-processing filter before ranking background subtraction techniques according to F3.
This is what has been done for every method reported in Table 1.4.

Interestingly, the ranking provided by PWC| the accuracy and the balanced accuracy
is not affected by noise as is the case for the F-Measure. Here is why. After some algebraic
manipulations, we find that TPR' = #P};N/ =(1-a)TPR+a(l—TPR),and TNR' =
% =(1-a)TNR+a(1—TNR). If a < 1, then the same amount of noise on the
results of two segmentation algorithms does not change their respective ranking, if the
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[

(a) input image (b) PBAS: F =76.2% (c) Spectral-360: F} = 80.6 %

(d) ground truth (e) PBAS-+noise: F1 =41.6% (f) Spectral-360+noise: F1 =
37.6 %

FIGURE 1.2 Ranking of the methods obtained according to F-measure is sensitive to noise. It is

therefore important to filter out noise from the results before ranking methods with F7.

ranking is determined by any linear combination Q of TPR and TNR. Indeed, Q =
BTPR+ (1—B8)TNR and Q' = BTPR'+(1-3) TNR' = (1—a)Q + a(1 — Q). Thus
Qalogoritm1 < Qalgorithm2 if and only if Q;lgomthml < Q:zlgomhmz- This implies that
the ranking according to the accuracy, the balanced accuracy, or the probability of wrong
classification is stable as long as the same amount of noise is present on the output of the
compared methods.

Evaluation and Ranking of Methods

The previous discussion made it clear that summarizing the performance of a background
subtraction algorithm with a single metric is restrictive. Several metrics like FFNR and
F PR are complementary and cannot be used independently whereas others like PWC' and
A give an overwhelming importance to TN R. As for the F-measure, although widely used,
it is sensitive to noise. This leads us to conclude that no metric is perfect and should thus
be used with care.

The last question that we ought to answer before presenting benchmark results, is how
to compute evaluation metrics when considering more than one video sequence. Naively,
one could add up the total number of TP, TN, FP and FN across all videos out of which
metrics could be computed. But unfortunately, since videos have different sizes in space
and time, large videos would end up having more influence on the ranking that smaller
ones. As explained by Goyette et al. [56], a better solution is to compute the metrics for
each video (that is Re, FNR, F PR, Speci ficity, Pr, PWC, A, and F;) and than average it
across videos. CD.net also has a multi-criteria ranking which we do not retained in this
chapter for the sake of simplicity.

In this chapter, we rank methods according to the average F; computed across all videos
and categories of the CD.net dataset. Although sensitive to noise, the result of every method
has been post-processed with a median filter to prevent the previously-mentioned ranking
problems. Also, Goyette et al. [56] mentioned that the Fy score is correlated with this
multi-criteria ranking which is a good indication that Fj is a well balance metric.
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Method Description FPR | FNR | F-Measure

Spectral-360 [154] Patent 0.008 0.22 0.77

DPGMM [58] GMM + Dirichlet Process 0.014 0.17 0.77

SGMM-SOD [46] Tmproved version of | 0.006 0.23 0.76
SGMM [48]

PBAS [64] data-driven and stochastic | 0.010 0.21 0.75
method

PSP-MRF [152] Probabilistic super-pixels | 0.017 0.19 0.73
with Neural Maps

SC-SOBS [106] Improved version of | 0.016 0.19 0.72
SOBS [104]

SOBS [104] Neural maps 0.018 0.21 0.71

SGMM [48] GMM + new mode initializa- 0.009 0.29 0.70
tion, updating and splitting
rule

Chebyshev Inequality [118] Multistage method with | 0.011 0.28 0.70
Chebyshev inequality and
object tracki

KNN [202] Data-driven KNN 0.009 0.32 0.67

KDE Elgammal [42] Original KDE 0.024 0.25 0.67

GMM Stauffer-Grimson [156] Original GMM 0.014 0.28 0.66

GMM Zivkovic [202] GMM with automatic mode | 0.015 0.30 0.65
selection

KDE Yoshinaga et al. [190] Spatio-temporal KDE 0.009 0.34 0.64

KDE Nonaka et al. [122] Multi-level KDE 0.006 0.34 0.64

Bayesian Multi layer [138] Bayesian layers + EM 0.017 0.39 0.62

Mahalanobis distance [14] Basic background subtrac- | 0.040 0.23 0.62
tion

Euclidean distance [14] Basic background subtrac- | 0.030 0.29 0.61
tion

GMM KaewTraKulPong [74] Self-adapting GMM 0.005 0.49 0.59

Histogram over time [196] Basic method with color his- | 0.065 0.23 0.54
tograms

GMM RECTGAUSS-Tex [146] Multiresolution GMM 0.013 0.48 0.52

Local-Self similarity [70] Basic method with self- sim- | 0.148 0.06 0.50
ilarity measure

TABLE 1.4 Overall results for 22 methods. These results correspond to the average FPR, FNR
and F' — Measure obtained on all 31 videos of the CD.net dataset.

Let us mentioned that the benchmarking results do not entirely capture the pros and
cons of a method. Obviously, the complexity of an algorithm together with its processing
speed and memory usage are to be considered for real-time applications.

1.4.2 Benchmarks
Motion Detection Methods

From the changedetection.net website, we retained results from 22 motion detection meth-
ods. Five methods are relatively simple as they rely on plain background subtraction,
of which two use color features (Euclidean and Mahalanobis distance methods described
in [18, 14]), one uses RGB histograms over time [196], and one uses local self-similarity
features [70].

We also report results for eight parametric methods, seven of which use a GMM model.
This includes the well-known methods by Stauffer and Grimson [156], a self-adapting GMM
by KaewTraKulPong [74], the improved GMM method by Zivkovic and Heijden [202], the
multiresolution block-based GMM (RECTGAUSS-Tex) by Dora et al. [146], GMM method
with a Dirichlet process (DPGMM) that automatically estimated the number of Gaussian
modes [58] and the SGMM and SGMM-SOD methods by Evangelio et al. [48, 46] which rely
on a new initialization procedure and novel mode splitting rule. We also included a recursive
per-pixel Bayesian approach by Porikli and Tuzel [138] which shows good robustness to
shadows according to [54].

We also report results on three KDE methods. The original method by Elgammal et
al. [42], a multi-level KDE by Nonaka et al. [122], and a spatio-temporal KDE by Yoshi-
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naga et al. [190]. Results for data-driven methods and machine learning methods are also
reported. That is Hofmann’s stochastic and self-adaptive method (PBAS) [64], a sim-
ple K-nearest neighbor method [202] and neural maps methods (SOBS and SC-SOBS) by
Maddalena et al. [104, 106] and a neural network method with a region-based Markovian
post-processing methods (PSP-MRF) by Schick et al [152]. We also have results for two
commercial products. One that does pixel-level detection using the Chebyshev inequality
and peripheral and recurrent motion detectors by Morde et. al. [118] and one which has
only been published in a pending patent so far and whose description is not available [154].
The false positives rate (FPR), false negative rate (FNR) and F-measure (F}) for these 22
methods are reported in Table 1.4. Note that, as mentioned in [54], these are the average
FPR, FNR and Fj across all videos.

Category 18t 2nd 3rd

Baseline SC-SOBS 0.93 Spectral-360 | 0.93 PSP-MRF 0.92
Dynamic Back. DPGMM 0.81 Spectral-360 | 0.79 Chebyshev Inequality | 0.77
Shadows Spectral-360 0.88 SGMM-SOD 0.86 PBAS 0.86
Camera Jitter PSP-MRF 0.78 DPGMM 0.75 SGMM 0.75
Thermal DPGMM 0.81 Spectral-360 0.78 PBAS 0.76
Interm. Motion | SGMM-SOD | 0.72 SC-SOBS 0.59 PBAS 0.58

TABLE 1.5 Three highest ranked method for each category together with their F-measure.

From these results, one can conclude that the top performing methods are mostly GMM
methods (DPGMM, SGMM-SOD, SGMM), data-driven methods (KNN and PBAS) and
machine learning methods (SOBS and PSP-MRF). As shown in Table 1.5, GMM methods
(particularly DPGMM and SGM-SOD) seems robust to background motion, camera jitter
and intermittent motion. This can be explained by the fact that these GMM methods
come with a mode initialization (and updating) procedures that reacts swiftly to changes
in the background. Table 1.5 also shows that there is room for improvement on jittery
sequences and intermittent motion which are the categories with the lowest F-measure.
Another unsolved issue is robustness to shadows. Although the F-measure of the most
effective methods is above 0.86, the FPR on shadows of the 3 best methods is above 58%.
This means that even the most accurate methods wrongly classify hard shadows.

Features

Here, we report results for 8 of the most commonly-used features i.e.: grayscale, RGB,
Normalized RGB, HSL, HSV, norm of the gradient, RGB+gradient and YCbCr. We tested
these features with two different methods. The first one is a basic background subtraction
method with a forgetting constant of 0.002 [14]. The second is a version of ViBe [6] (a
stochastic data-driven method) that we adapted to the various color spaces and removed
its postprocessing stage.

Results in Table 1.6 leads us to two main conclusions. First, using all three RGB color
channels when possible instead of grayscale only always improves results. Second, out
of the “illumination-robust” features N-RGB, HSL, HSV and gradient (grad), only HSV
seems to provide good results globally. That being said, combining gradient with RGB
helps improving results, especially for the basic method. As mentioned by several authors,

Category Gray | RGB | N-RGB | HSL | HSV | grad | RGB+grad | YCbCr
Basic Method 0.48 0.53 0.49 0.56 0.58 0.3 0.59 0.59
ViBe [6] 0.72 0.75 0.60 0.65 0.74 0.11 0.74 0.71

TABLE 1.6 F-Measure obtained for 8 different features and two motion detection methods.
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this suggests that for some methods, combining color and texture is a good way of improving
results.

Updating Scheme

In this section, we tested different updating schemes on one method. We tested the blind,
conservative, “soft” conservative and “edge” conservative updating schemes. Again, we im-
plemented a simple background subtraction method with RGB color feature. The difference
from one implementation to another is the forgetting constant . For the blind scheme,
a = 0.002, for the conservative o = 0.002 only for background pixels, the soft conservative
a = 0.002 for foreground pixels and o = 0.008 for background pixels and edge conservative,
a = 0.007 for background pixel, a = 0.002 for foreground edge pixels and o = 0 for the
other foreground pixels.

| Blind | Conservative | Soft-Conservative | Edge-Conservative |
[ 052 | 0.5 \ 0.53 \ 0.55 |

TABLE 1.7 F-measure for different background updating strategies.

Results in Table 1.7 show that the edge-conservative strategy is the most effective one
while the conservative strategy is the least effective, although by a small margin. The
reason for this small difference between results comes from the fact that the CD.net videos
are all relatively short (at most 6 minutes) and thus do not exhibit major changes in the
background as is the case when dealing with longer videos. Longer videos would certainly
stretch the difference between each strategy.

Post-Processing

In this section, we compared different post-processing filters on the output of 3 methods.
These methods are a basic background subtraction method with a forgetting constant of
0.002, ViBe [6] and ViBe+ [170]. Note that ViBe+ is a method which already has a post-
processing stage. The post-processing methods are 3 median filters (3 x 3, 5x 5, and 7x7), a
morphological opening and closing operation, a closing operation followed by a region filling
procedure (as suggested by Parks and Fels [132]) and a connected component analysis. The
latter removes small isolated regions, whether they are active regions or not.

Results in Table 1.8 show that all post-processing filters improved the results of all 3
methods. Surprisingly, it also improved the results of ViBe+, a method which already had a
post-processing stage! Of course, the improvement rate is more significant for a low ranked
method than for a precise one. Given its positive impact on performance and noise removal,
we recommend to use at least a 5x5 median, but also other filtering operations to fill gaps,
smooth object shapes or remove small regions.

No Post- Med Med Med Close Connected
Method processing 3x3 5X5 X7 Morph +fill. component
Basic Method 0.53 0.56 0.63 0.60 0.55 0.54 0.58
ViBe [6] 0.67 0.68 0.68 0.69 0.70 0.70 0.68
ViBe+ [170] 0.71 0.72 0.73 0.73 0.74 0.74 0.72

TABLE 1.8 F-Measure obtained for 6 different postprocessing filters on the output of 3 motion
detection methods.
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1.4.3 Combining Methods

So far, we analyzed and compared the behavior of individual motion detection techniques.
A further step consists in combining methods. From that point, at least two questions
arise: how should methods be combined, and which methods, similar or dissimilar, should
be combined?

There are two strategies to combine methods: (1) consider every available methods,
regardless of their own performance, or (2) select a small subset of methods, based on their
performance or on an optimization criterion. Here, we explore 3 different combination rules
: two involving all n = 22 methods and one involving a subset of methods. Because it is
difficult to model the correlation between individual methods and to take it into account,
the combination rules considered here are based on the assumption that individual classifiers
are independent of each other. An alternative would be to learn the combination rule [38],
but this is out of the scope of this chapter.

The results obtained with the 3 different combination rules are shown on precision recall
graphs with F; contour lines. It should be noted that the conclusions that can be drawn
from the receiver operating characteristic space are different from those of the precision
recall space. In this chapter, we only focus on the latter, and aim at maximizing the Fj
score. The following observations should therefore be interpreted with care.

Combination rule 1: majority vote among all methods.

We define a decision thresholding function Fry, as follows: Frpy, () = 0 if @ < Th, and
Frn (x) = 1 otherwise. Let us denote the output of the ith background subtraction method
by ¢; € {0,1}, the combined output by g. € {0,1}, the ground truth by y € {0,1}, and
probabilities by p (+). The first combination rule considered in this chapter is

1 n
Je = “N"a ), ith Th € [0,1]. 1.1
Je = Frn (n ;y ) wi €[0,1] (1.1)

We refer to this technique as the “majority vote” rule, since it extends the classical un-
weighted majority vote (this one is obtained when n is odd, and the decision threshold is
set to Th = 0.5). Note that Equation (1.1) defines n 4+ 1 monotonic functions from {0,1}"
into {0,1}. This combination rule supposes that the individual background subtraction
algorithms are independent. Limits of what can be expected from such a combination are
discussed in [90]. The results, obtained for every decision threshold, are shown in Fig-
ure 1.3(a).

Combination rule 2: summation.

Another combination rule which is often encountered in the literature is the summation
rule [86], which is also known as mean rule [162], or the averaged Bayes’ classifier [184].
Adapted to our framework, it can be written as

1 n
i = - — 15, 7) |, ith Th € [0,1], 1.2
e = Frn (n ;p(y [ )) wi €[0,1] (1.2)

where

) FNR; p(y=1[T)
:1 Z:O,T = ’ 13
p(y=1[y ) TNR;p(y=0|T)+ FNR; p(y = 1|T) -

TPR; p(y=17T)

p(y=1[y ) FPR;p(y=0[T)+TPR;p(y=1]T) -y
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FIGURE 1.3 Results obtained from the combination of all (22) background subtraction methods, with 2
combination rules. For the purpose of comparison, the precision and the recall of the 22 individual methods
are displayed in red. The blue dots correspond to different decision thresholds (T'h) as well as different
estimations of the priors (Y).

Here T represents the knowledge about the context (T is sometimes named the envi-
ronment, as in [184]). The context is, for example, an indoor video-surveillance application,
a particular video stream, the other pixels in the same image, or some information related
to the past. However, the choice should be carefully made, since it can have an important
impact on the performance of the combination. The priors p (y = 0|T) and p (y = 1|T) are
usually estimated on the basis of the decisions taken by the individual methods on the
whole image, in order to adapt dynamically to the context. But, in some video-surveillance
settings, some video regions are more likely to contain movement than others. In this case,
it makes sense to estimate the priors on a neighborhood around the considered pixel, and
also to take the history into account. This is somehow equivalent to the atlas used in [178§],
but in a dynamic setting.

The results for this combination rule are shown in Figure 1.3(b). We have considered the
whole range of decision thresholds, and four ways of estimating the priors: (1) fixed priors
ply=1) € {4%, 8%, 12%, 16 %, 20 %}); (2) priors estimated on the whole image; (3)
priors estimated on the whole image, with a temporal exponential smoothing applied on the
estimated priors (with a smoothing factor « € {0.90, 0.37, 0.21, 0.14, 0.09, 0.05, 0.02}); (4)
priors estimated per pixel, on a square neighborhood of size s € {1, 7, 31, 127, 511}. Note
that estimating the priors for a combination is an ill-posed problem since false positives (false
negatives) tend to increase (reduce) the estimated prior of the foreground, and therefore to
encourage a higher number of positives (negatives) in the combined output. Obviously, the
opposite behavior is wanted.

We observe some similarities between the majority vote and the summation. However,
the majority vote only permits to reach n = 22 points in the precision recall space, whereas
the summation permits a fine tuning. The optimal threshold for the majority vote and the
summation varies significantly from one video to another (this is not represented on the
graphs). Thus, there is a trade-off when choosing the threshold. The best overall threshold
is about 0.4 for the majority vote and the sum. We have obtained our best results when
estimating the priors on a neighborhood of 31 x 31 pixels.
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FIGURE 1.4 Real precision and recall of the majority vote combination rule (at the neutral decision
threshold). The predicted performance is shown, in blue, for 50 combinations of 3, 5, and 7 methods,
selected theoretically. The precision and the recall of the 22 individual methods are shown in red.

Combination rule 3: majority vote of a predefined subset of methods.

It turns out that no combination of the 22 methods is able to beat significantly the
best individual methods. Carefully selecting a subset of methods is therefore necessary.

Note that an alternative would be to assign a “good” weight to each individual background
subtraction method.

Our third combination rule is the same as the previous majority vote one, except that
it is applied on a subset of 3, 5 and 7 methods. Since computing the majority vote of
every possible combination of methods is extremely time consuming, we first determined
the 50 most promising subsets of methods. A prediction of the Fj score has been obtained
for every combination of 3, 5 and 7 methods, without the need to try them on the video
sequences. This is possible under the assumption of independence, based on the values
given in Table 1.4, and the knowledge of the proportion of foreground pixels in each video
sequence®.

The results obtained with the third combination rule are depicted in Figure 1.4. We used
a decision threshold of 0.5. Whereas a blind combination of all methods together does not
permit to beat significantly the best individual methods (see Figure 1.3), combining carefully
selected subsets of methods leads to a higher performance than the methods independently
(see Figure 1.4).

We have also observed how many times each method appears in the selected subsets of 3,
5, and 7 methods. We have noticed that, as expected, the methods which have the highest F}
score are often taken into account, even if the ranking in Table 1.4 is not strongly correlated
with the occurrences. Surprisingly, about one third of the methods are never selected. What
is even more surprising is that the Local-Self similarity method [70], which has the worst
ranking according to Fj in Table 1.4, appears often in the selected combinations for 3

*In a probabilistic framework, the classifier independence means that p (J1,...,9nly) = [Ti—q » (%ily)-
The proportion of foreground pixels in a video sequence is p(y =1) = ppg. Table 1.4 gives
p(yi =1ly=0) = FPR; and p(§; =1ly=1) = 1 — FNR;. Let C denotes the combination function
(the majority vote in this case) such that §. = C (§) with § = (41,...,%n). Under the independence as-
sumption, we expect p (Jely) = 2255, 9.), s.t. C()=1e [T, p (#ily). The predicted precision and
accuracy are derived from p (9. = 1|y = 1) and p (g = Oly = 0) thanks to the knowledge of p (y =1).
They are averaged across all videos and categories, before deriving the predicted value of Fi. As we do
not expect the independence assumption to hold in practice, the predicted values are only used for the

selection of the most promising subsets of methods. The results presented in the figures are obtained
experimentally.



P.-M. JODOIN, S. PIERARD, Y. WANG, and M. VAN DROOGENBROECK. Background Modeling and Foreground Detection for Video Surveillance.
In T Bouwmans, F. Porikli, B. Hoferlin, and A. Vacavant, editors, “Background Modeling and Foreground Detection for Video Surveillance”, chapter
24, CRC Press, July 2014.

1-20

methods, and is systematically used in the top 50 subsets of 5 and 7 methods, with no
exception. Note that it is not a side effect of the independence assumption, as taking
this method into account does not harm to the performance when the errors are positively
correlated, as the results shown in Figure 1.4 illustrate. What should be noted about the
Local-Self similarity method [70] is that it behaves differently from the other methods: it has
the highest T PR, but also the highest F'PR. Intuitively, a method that behaves differently
may be useful in a combination, even if it has a bad ranking when evaluated alone, thanks to
its complementarity with the other methods. This effect has already been observed by Duin
et al. [40]. Therefore, if combining multiple background subtraction methods is possible,
designing methods that are top-ranked, when they are evaluated alone, should not be the
primary focus. Instead, designing complementary methods is preferable.

1.5 Conclusion

In this chapter, we presented a survey of 8 families of motion detection methods, pre-
sented different features, several updating schemes and many spatial aggregation and post-
processing methods. We also provided several benchmarking results based on the CD.net
dataset. These results lead us to the following conclusions :

1. Methods : As of today, GMM (DPGMM, SGMM-SOD, SGMM), data-driven
methods (KNN and PBAS) and machine learning methods (SOBS and PSP-
MRF) and among the most effective ones. That being said, none is performing
best on every category.

2. Remaining Challenges : Intermittent motion, camera jitter and hard shadows
are among the most glaring issues.

3. Features : HSV and RGB + gradient are the most effective features.

4. Updating scheme : The edge-conservative approach is the most effective
scheme while the conservative approach is the least effective.

5. Post-processing : Every post-processing method that we have tested improved
the results of our motion detection methods, especially for the simple low-ranked
method. Post-processing should thus always be used.

6. Combining methods : One can beat the best performing methods by combin-
ing the output of several methods. The best results have been obtained with a
majority vote of 3 and 5 methods and with a threshold of 50%. The best re-
sults are obtained by not only combining top ranked methods, but by combining
methods which are complementary by nature.
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