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Abstract. Despite their importance for many astrophysical processes, massive stars are
still not fully understood. Massive binaries offer an attractive way to improve our knowl-
edge of the fundamental properties of these objects. However, some secondary effects are
known to generate variations in the spectra of massive binaries, rendering their analyses
more difficult. We present here a new approach to the computation of synthetic spec-
tra of massive binaries at different phases of their orbital cycle. Our model starts with
the Roche potential modified by radiation pressure and accounts for the influence of the
companion star on the shape and physical properties of the stellar surface. We further
account for gravity darkening and reflection effects to compute the surface temperature.
Once the local gravity and temperature are determined, we interpolate in a grid of NLTE
plan-parallel atmosphere model spectra to obtain the local contribution to the spectrum
at each surface points. Then we sum all the contributions, accounting for the Doppler
shift, and limb-darkening to obtain the total spectrum. The computation is repeated for
different orbital phases and can be compared to the observations to determine the best
parameters. We illustrate our method through the example of the LZ Cep system (O9III
+ ON9.7V).
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1. Introduction

Some effects linked to binarity complicate the spectral classification and/or
the spectral analysis (see e.g., Sana et al. 2005, Linder et al. 2007, and ref-
erences therein). For instance, the stars in binary systems are not spherical
but atmosphere codes currently used to model observed spectra are de-
signed for single spherical stars. In this context, we have developed a novel
way of modelling the spectra of binary stars that account for deformations
due to tidal effects and partially explain the peculiar effects observed in the
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spectra. CoMBiSpeC (Code of Massive Binary Spectral Computation) is
designed for massive stars but could be modified and extended to low-mass
stars. The limitation to massive stars is an initial choice motivated by the
fact that these stars are rare, not well-known but important for their sur-
rounding and the galaxies. Moreover, a large fraction of massive stars (at
least 50%) are part of binary or multiple system (Sana & Evans 2011 and
references therein, Sana et al. 2012).

Non-spherical models were introduced in astrophysics by Russell (1952)
to reproduce the light curves of binaries. Kopal (1959) introduced the Roche
potential approach that was used by Lucy (1968) and Wilson & Devinney
(1971). CoMBiSpeC is based, in a first step, on such models but we have
incorporated radiation pressure effects and, of course, the computation of
synthetic spectra.

Sect. 2 describes the assumptions, the modelling of the geometry of the
stars, and the modelling of the spectra. In Sect. 3, we compare the predicted
spectra to the observations and the new parameters found. We provide a
summary of our results and future perspectives in Sect. 4.

2. Model

In this paper, we focus on the modelling of circular binary systems. For
clarity, we divide the process into two parts, one part involving the surface,
gravity and temperature calculation, and a second the spectra calculation.
A full description of the model can be found in Palate & Rauw (2012) and
Palate et al. (2013). The extension to eccentric orbits and/or asynchronous
rotation is fully described in Palate et al. (2013) and consist in the use of the
TIDES! code (Moreno et al. 1999, 2005, 2011) for the surface and velocity
field computation coupled to CoMBiSpeC for the spectral computation.

2.1. GEOMETRICAL MODELLING

In the case of circular systems in synchronous rotation, the stellar surface
is an equipotential of the Roche potential. In massive stars, the radiation
pressure is very important and acts on the shape of stars, we thus have
modified the classical Roche potential by adding the inner radiation pres-
sure (effect on each star’s own surface) and the external radiation pressure

!Tidal interactions with dissipation of energy through shear.
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(effect of the companion) effects. The treatment of the radiation pressure is
a complex problem with an extensive literature. Our approach is based on
the work of Drechsel et al. (1995) and Phillips & Podsiadlowski (2002) for
the treatment of the external radiation pressure and the Howarth (1997)
approach for the inner radiation pressure treatment. We refer the reader to
these three papers as well as Palate et al. (2013) for the complete demon-
strations and discussion.

The effect of the external radiation pressure can be seen as a force
that decreases the attraction of the companion. Its treatment therefore
consists of scaling the mass of the companion in the Roche potential. The
scale parameter § = % is computed iteratively for each surface point
in a similar way to the reflection effect treatment of Wilson (1990). The
modified “Roche” potential can be written

1 1—6(r,¢,0 1 . .
Q=-+ al (rcp')) +Q+ -1r2sin?0 — grcos psinf, (1)
r \/r2—2rcospsinf + 1 2
where r = /22 +y? + 2%, ¢ = 72, x = rcospsing, y = rsinpsing, and

z = rcosf. Here, 8 and ¢ are, respectively, the colatitude and longitude
angle in the spherical coordinates centred on the star under consideration.

According to Howarth (1997), the inner radiation pressure can be treated
as a simple scaling of the Roche potential and thus, Qc¢r = (1 —I')§2, with
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I'= mthTpOle TGoore] and where e 0.036 m*kg™", o7y is the Thomson

scattering cross section and o the Stefan-Boltzmann constant. The stellar
surfaces are represented with a discretised grid of 240 x 60 points (in ¢ and
6 respectively). The local acceleration of gravity is given by the gradient of
the Roche potential. The temperature is computed accounting for gravity
darkening and following the von Zeipel (1924) theorem
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We have explicitly made the assumption of a co-rotating system, so that

the stars always present the same face to each other. This leads to a local

increase in temperature owing to the reflection effect between the two stars.

We have followed the approach of Wilson (1990) to treat this effect. Figure
1 displays the gravity distribution at the stellar surfaces.
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Figure 1: Distribution of log(g) at the stellar surface (cgs units) for the LZ Cep system
computed with radiation pressure effects.

2.2. SPECTRAL MODELLING

The second part of the algorithm computes the spectrum of the binary by
summing the incremental contributions of each surface point. Non-LTE OB
star spectral grids (TLUSTY OSTAR2002 and BSTAR2006 grid, Lanz &
Hubeny 2003, 2007) are used to compute the integrated spectrum of the star
at each orbital phase. The spectral grid is computed for solar metallicity.
Each spectrum is defined by two parameters: gravity and temperature. As
we know these parameters for each point at the stellar surfaces, we can
compute the local contribution to the spectrum. The computation consists
of a linear interpolation between the flux of the four nearest spectra in
the grid. The appropriate Doppler shift is then applied to the spectrum
accounting for the orbital and rotational velocity of the surface element. We
multiply the spectrum by the area of the element projected along the line of
sight towards the observer and by a limb-darkening coefficient based on the
tabulation of Claret and Bloemen (2011). Finally, we sum the contribution
to the total spectrum. It has to be stressed that we have assumed that
there is no cross-talk between the different surface elements as far as the
formation of the spectrum is concerned. Phase zero corresponds to the
“eclipse” of the primary by the secondary. Over the first half of the orbital
cycle (phase = [0,0.5[), the primary star has a negative radial velocity.
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3. LZCep

LZ Cep is an O 9III+0 9.7V binary system with an orbital period of 3.070507
days. Its light curve displays ellipsoidal variations that are probably due to
the deformation of at least one component. Mahy et al. (2011) recently de-
termined dynamical masses of about 16 M and of about 6.5 Mg for the
primary and the secondary components, respectively. Furthermore, they
also found that the secondary is chemically more evolved than the primary.
Indeed, the determinations of the CNO and He abundances show a deple-
tion in C and in O whilst N and He are enriched. These results suggested
that the secondary component is filling its Roche lobe and transfers its mat-
ter to the primary. The secondary thus appears to be a core He-burning
object with a thin H-rich envelope.

Table I: Abundances derived by Mahy et al. (2011) compared to the solar abundances
(Grevesse and Sauval 1998) used in the CoMBiSpeC model.

Abundances Primary Secondary Solar

He/H 0.1 0.4 0.1
C/H [x1074] 1.0 0.3 2.45
N/H [x107%]  0.85 12.0 0.6
O/H [x1074] 3.0 0.5 4.57

LZ Cep was observed with NARVAL, the spectropolarimeter mounted
on the Téléscope Bernard Lyot at the Pic du Midi Observatory in France.
This instrument has a spectral resolution of R = 65000. The dataset con-
tains ten spectra obtained on a timescale of 14 days between 2009 July 20
and 2009 August 03. These data were automatically reduced with the Libre
ESpRIT package (Donati et al. 1997).

Starting from these observations and from solutions derived by Mahy
et al. (2011), we have refined the parameters of the stars. We have tried
more or less 50 models in various ranges of temperatures and radii. The
best agreement between observations and models is summarized in Table
II. Figure 2 displays the observed spectrum and the CoMBiSpeC spectrum
at phase 0.4. Some differences appear because of normalization errors of the
observed spectra (e.g., the HJ and HeI A 4143 lines) and the fact that, the
He and CNO abundances of the components of LZ Cep are non-solar while
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the grid of synthetic spectra used for computation is in solar abundances.
Figure 2 (zoom) shows this difference for the carbon and nitrogen lines.
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Figure 2: Comparison between observed spectrum (in grey) and the corresponding CoM-
BiSpeC model (in black) at phase 0.4. Zoom: Abundances difference for the N II A\ 4228,
4237, 4242 and OTII A\ 4276, 4284 lines between observed spectrum (in grey) and the
CoMBiSpeC model (in black).

4. Discussion and conclusion

We have presented the CoMBiSpeC model that is a first step in the spec-
tral modelling of (massive) binaries. It allows us to compute the physical
properties on the surface of massive stars in binary systems containing
main-sequence O(B) stars. It includes various effects like reflection, radi-
ation pressure, gravity darkening, limb-darkening that allow us to com-
pute the temperature distribution at the stellar surface. Then, we use the
TLUSTY OSTAR2002 and BSTAR2006 grids (Lanz & Hubeny 2003, 2007)
to compute the spectra of each star of the system as a function of orbital
phase. For the first time, the CoMBiSpeC model has been used to refine
the solution derived by classical analyses for the LZ Cep system. The ex-
ample also underlines the improvements that could be done: extension to
non-solar abundances, different turbulent velocity, lines affected by stellar
winds, cross-talk between the surface elements. However, despite these lim-
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Table II: Comparison between the solutions derived by Mahy et al. (2011) and the best
solution found with the CoMBiSpeC model.

Parameters Observations Observations CoMBiSpeC model
solution 1 solution 2 solution
Mass, (M) 155+1.0  169+1.0 16.9
Mass, (M) 6.1+1.0 6.7+ 1.0 6.7
Polar temperature, (K) 32000(fixed)  32000(fixed) 33500 £ 500
Polar temperatures (K)  28000(fixed)  28000(fixed) 29500 =+ 500
Polar radius, (Ro) 10.6£1.2 10.5£1.2 10.0
Equatorial radius, (Rg)  13.1+1.2 124£1.2 10.91
Maximal radius, (Re) 13.1+£1.2 124£1.2 10.91
Polar radiuss (Rg) 6.1+1.2 6.7+1.2 6.7
Equatorial radiuss (Rg) 6.9+1.2 9.3+1.2 7.33
Maximal radiuss (Rg) 6.9+1.2 9.3+1.2 8.17

itations and assumptions, the results of the computation are quite encour-
aging, rendering CoMBiSpeC a promising tool for the analysis of massive
binaries.
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