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Résumé 

Description du sujet de recherche abordé 

Jusqu’il y a peu, les valeurs d’élevage des animaux étaient estimées sur base de données  

phénotypiques mesurées sur l’individu et/ou ses apparentés, et la notion que la covariance entre 

valeurs d’élevages est proportionnelle au coefficient de parenté entre individus.  L’essor de la 

génomique permet maintenant l’analyse directe du génome et l’identification des loci qui 

déterminent les valeurs d’élevage des individus.  En conséquence, la sélection « assistée par 

marqueurs » ou « génomique », plus performante, est en passe de remplacer la sélection 

phénotypique.   

L’identification des régions génomiques et des variants génétiques qui contrôlent les phénotypes 

d’intérêts requiert des méthodes statistiques avancées en constante évolution.  Dans le cadre de 

cette thèse, nous avons (i) contribué au développement de méthodes de cartographie génétique, (ii) 

appliqué ces méthodes pour cartographier des loci influençant des phénotypes d’intérêt, tant 

métriques que méristiques, et (iii) contribué au développement de méthodes pour l’utilisation 

d’information génomique en sélection et production animales.   

Résultats 

Les méthodes de cartographie que nous avons contribué à développer se distinguent 

principalement pas le fait que (i) elles exploitent la structure haplotypique du génome (à l’aide 

d’un modèle markovien caché) ce qui devrait augmenter le déséquilibre de liaison avec les 

variants causaux et ainsi la puissance de détection, (ii) elles exploitent simultanément 

l’information de liaison génétique dans les familles et d’association à l’échelle de la population, 

(iii) elles corrigent pour la stratification en modélisant un effet polygénique aléatoire, et (iv) elles 

s’appliquent aussi bien à des phénotypes quantitatifs que binaires. 

Nous avons ensuite appliqué les méthodes développées (et d’autres) pour la cartographie de loci 

influençant (i) des paramètres hématologiques chez le porc, et (ii) des caractères binaires 
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comprenant des maladies héréditaires simples ou complexes et des variations génomiques 

structurelles de type Copy Number Variants (CNV) chez le bovin et le cheval.  

In fine, nous avons contribué au développement de méthodes pour l’utilisation d’information 

génomique en production animale.  Nous avons contribué à l’extension de la méthode de 

cartographie basée sur des haplotypes à des fins d’imputation et avons évalué la précision de 

celle-ci dans des scénarios proches de la réalité. En outre, nous avons contribué au développement 

d’une méthode permettant d’identifier des vaches atteintes de mammites dans l’exploitation, par 

génotypage d’un échantillon de lait de la cuve (mélange de laits de toutes les vaches de 

l’exploitation).   

Conclusions et Perspectives 

En conclusion, nos travaux ont mené au développement d’un logiciel (« GLASCOW ») qui est 

utilisé de façon croissante par la communauté scientifique pour la localisation de gènes 

influençant des phénotypes à déterminisme complexe, en particulier binaire.  Nous avons, en 

utilisant la méthode développée, contribué à la localisation de régions génomiques influençant 

plusieurs caractères d’intérêt chez le porc, le bovin et le cheval.  Et – in fine - nous avons 

contribué au développement de méthodes permettant de réduire des coûts d’accès à la technologie 

génomique, d’une part en complétant du génotypage réel par du génotypage in silico par le 

procédé d’imputation, et d’autre part en développant une méthode de déconvolution de génotypes 

obtenus sur mélanges d’ADN.  
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Summary 

Description of the research project 

Until recently, breeding values were estimated based on phenotypes measured on the individual 

and its relatives, and the notion that the covariance between breeding values is proportionate to the 

kinship coefficient.  Advances in genomics now allow for direct analysis of the genome and 

identification of the loci that determine the breeding values of individuals.  As a consequence, 

marker assisted selection and genomic selection have become more effective and are replacing 

conventional selection. 

The identification of loci influencing the traits of interest requires the use of advanced statistical 

methods that are constantly evolving.  In the context of this thesis, we have (i) contributed to the 

development of gene mapping methods, (ii) applied these methods to map loci influencing both 

metric and meristic traits, and (iii) contributed to the development of methods for the integration 

of genomic information in livestock breeding and management.   

Results 

The mapping methods that we have helped developing distinguish themselves mainly by the fact 

that (i) they exploit haplotype information (by means of a hidden markov model) which should 

increase the linkage disequilibrium with causative variants and hence detection power, (ii) they 

can simultaneously extract linkage information within families, and linkage disequilibrium 

information across the population, and (iii) they correct for population stratification by means of a 

random polygenic effect, and (iv) they can be applied to binary as well as quantitative traits. 

We have applied these and other methods to map loci influencing (i) quantitative hematological 

parameters in a porcine line-cross, and (ii) binary traits including diseases in bovine and 

non-syntenic Copy Number Variants in cattle, horse and human. 

In fine, we have contributed to the development of methods for the utilization of marker 

information in animal selection and production. We have extended the haplotype-based mapping 

method to allow imputation and have evaluated the utility of this approach in scenarios mimicking 

reality.  We have also contributed to the development of a method to quantify somatic cell counts 
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in the milk of individual cows by genotyping a sample of milk from the farm’s tank (hence a 

mixture of milk from all cows on the farm). 

Conclusions and Perspectives 

Our work has resulted in the development of a software package (“GLASCOW”) that is 

increasingly used by the community to map genes influencing complex traits, primarily binary.  

By using this tool, we have contributed to the localization of several trait loci in pig, cattle, horse 

and human.  We have contributed to the development of approaches that reduce the costs of 

genomic analyses in livestock by, on the one hand, complementing real SNP genotypes with 

genotypes obtained in silico by means imputation, and, on the other hand, by developing a method 

to deconvolute genotypes obtained on DNA pools.  
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Introduction  

Key concepts in association mapping and  

the use of marker information in livestock production. 

 

Heritable traits 

Vive la différence! What defines us as individuals is how we differ from each other.  “How tall 

am I?” essentially asks whether I am amongst the tall, average or small ones of my class.  Very 

early in life, we learn to recognize a myriad of the distinctive features of our contemporaries, 

which we use to recognize, seek contact or rather avoid them.  

We also know intuitively that most of these differences do not occur just randomly, as if a deity 

had bestowed each one of us with a random assortment of features, but that they are largely 

determined by and hence define our origins.  Origins shape distinctive features in three ways:  

(i) the environment in which we develop profoundly affects our identity, (ii) our “way of life”, or 

cultural heritage, determines much of whom we are, and (iii) the genome we inherited from our 

parents provides each of us with a unique blueprint, or set of instructions that guides our 

development. 

How does the genome inherited by our parents contribute to our phenotypic differences? All of us 

inherit one genome copy from our father (sometimes referred to as “padumnal”), and genome 

copy from our mother (sometimes referred to as “madumnal”).  They obviously are both “human 

genomes”, being very similar to each other and certainly more similar to each other than to the 

genome of any other species.  Yet they are not identical: aligning our padumnal and madumnal 

genomes – a still mostly virtual exercise which will however soon become practical – would 

reveal a different base pair approximately every 1,000 residues.  Such differences are referred to 

as Single Nucleotide Polymorphisms or SNPs of which there are approximately 3 million in a 

typical human genome.  Compiling all SNPs at the population level reveals tens of millions of 

SNPs.  SNPs are characterized by at least two alleles of which one is typically less common than 

the other: the minor allele.  The population frequency of the minor allele (or MAF) allows one to 
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make the rather arbitrary distinction between common SNPs (f.i. MAF ≥ 5%), low frequency 

SNPs (f.i. 0.5% < MAF < 5%), and rare SNPs (MAF ≤ 0.5%).  Approximately 38 million SNPs 

have now been reported of which 7 million are common SNPs (f.i. Frazer et al. 2009; The 1000 

Genomes Project Consortium 2012).  SNPs, which include transitions, transversions and single 

base-pair insertion deletions (indels), are only one type of genetic variants.  Others include larger 

indels, simple sequence repeats (including micro- and minisatellites), copy number variants 

(CNVs), inversions, and translocations.  Copy Number Variants are large genome segment 

whose copy number varies between individuals.  They often coincide with segmental 

duplications.  Known CNV affect an estimated 4% of our genome and 13% of our genes 

(Conrad et al. 2010). All genetic variants - whichever their type - originate from germ-line 

mutations.  Every gamete carries of the order 50 to 100 de novo point mutations (generating a 

“derived” from an “ancestral” allele), which primarily results from errors of DNA replication in 

the germline.  Sperm cells, particularly from older men, carry more de novo mutations than 

oocytes as the number of cell divisions to produce spermatozoa are larger than for oocytes (Hurles 

2012).  The fate of the de novo mutations inherited by a conceptus is determined by drift, and – 

for non-neutral mutations (see hereafter) – by selection.  The balance between the gain of new 

variants by mutation, and the loss of variants by drift, results in a steady state equilibrium 

characterized – for neutral variants – by a predictable rate of polymorphism with predictable 

distribution of MAF (Kimura 1983).  The expected homozygosity at equilibrium is: 

H =
1

4Nem +1
 

where Ne is the effective population size and m the mutation rate per gamete. The majority of 

SNPs are thought to be largely neutral with respect to phenotype.  A minority is assumed to 

affect gene function, either by altering the gene’s expression profile, or by changing the 

three-dimensional structure and hence function of the gene product.  The latter are susceptible to 

affect the individual’s phenotype – they are said to be “causative” SNPs.  As many of them 

encompass genes, CNVs are thought to more often than SNPs affect gene function and hence 

make a significant impact on phenotypic variation.  Causal SNPs may undergo effect of selection 

(f.i. Bamshad & Wooding 2003; Sabeti et al. 2006; Cutter & Payseur 2013).  Negative selection 

against deleterious variants will reduce the level of polymorphism and shift the MAF distribution 
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to lower values.  Positive selection and balancing selection will leave their own signatures on the 

genome.  Selection on causative variants may affect the fate of their neural neighbors.   

Alleles may – in principle – differ “epigenetically” (i.e. by virtue of distinct heritable DNA or 

chromatin modifications) rather than in their sequence.  Such metastable epialleles have been 

shown to segregate in plant populations and contribute to phenotypic differences (f.i. Hauser et al. 

2011).  It is generally believed however that the epigenetic status of genes is largely reset in the 

mammalian germline, precluding the widespread occurrence of epialleles in mammals, except for 

the marks that differentiate the padumnal and madumnal alleles of parentally imprinted genes (f.i. 

Morgan & Whitelaw 2008).   

For a minority of traits, inter-individual differences are entirely determined by genetic variants at 

one gene.  Such “Mendelian” traits are said to be monogenic.  The causative variants may be 

(completely or partially) recessive or dominant.  The vast majority of monogenic traits are 

inherited diseases (including “inborn errors of metabolism”) in humans, and inherited diseases and 

coat color variants in domestic animals.  They commonly involve severe, recessive 

loss-of-function variants dominated by nonsense, frameshift, splice-site and damaging missense 

variants in protein coding genes. 

The vast majority of phenotypes, including common diseases and agricultural important 

phenotypes, have a multifactorial or complex determinism.  Inter-individual differences are 

determined by environmental, cultural and genetic factors.  Genetic effects are generally assumed 

to be “polygenic”, i.e. depend on multiple genetic variants affecting multiple genes.  The number 

of genes involved remains largely unknown for most traits.  The distribution of allele-substitution 

effects appears to be exponential, i.e. variants with large effects are less numerous than variants 

with small effects (f.i. Hayes & Goddard 2001).  There also appears to be an inverse correlation 

between effect size and MAF, which is thought to primarily reflect purifying selection against 

variants with large effects (f.i. Manolio et al. 2009).  Molecular evidence from model organisms 

suggests that epistatic interactions between polygenes might be commonplace, i.e. that the effect 

of a genotype at one locus is dependent on the genotype at another locus (f.i. Bloom et al. 2013). 

Yet, initial studies have not revealed a major contribution of epistatic effects to the variance of 

most studied traits in human and livestock (f.i. (Cordell 2009).  Complex phenotypes include 

continuously distributed quantitative traits (f.i. most production traits in agriculture), as well as 
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binary traits (f.i. common complex diseases).  It is noteworthy that a detailed analysis of 

inherited defects that are generally labeled monogenic, often reveals instances of incomplete 

penetrance and variable expressivity.  Monogenic traits therefore often appear only simple on the 

surface.  

The proportion of the inter-individual variation – for a trait of interest – that is due to genomic 

differences is called the heritability (H
2
) of the trait (Visscher et al. 2008).  H

2
 is a 

population-specific parameter, i.e. the same phenotype may have different H
2
 in different 

populations or even in the same populations at different times.  This is due to the fact that the 

panoply of segregating sequence variants (and their MAF) as well as of non-genetic factors 

influencing the phenotype are most likely to differ between populations.  A common way to 

estimate H
2
 in humans is to compare the resemblance between monozygotic and dizygotic twins.  

Monozygotic and dizygotic twin pairs are assumed to be equally exposed to environmental and 

cultural influences, but differ in their degree of genetic resemblance: monozygotic twins are 

genetically identical while dizygotic twins are genetically as related as non-twin sibs.  A higher 

phenotypic resemblance between monozygotic than between dizygotic twins does support a 

quantifiable contribution of genomic polymorphisms to trait variation.  In domestic animals, the 

heritability is typically estimated from the correlation between the phenotypic and genetic 

resemblance or kinship, increasingly using the mixed “individual animal” model.  It is assumed 

in these studies that genetic resemblance is not correlated with environmental resemblance.  The 

individual animal model rests on Fisher’s mathematically convenient infinitesimal model, i.e. the 

trait is influenced by an infinitely large number of variants with individually minute effects that 

are evenly scattered throughout the entire genome.  The “broad sense” H
2 

heritability can be 

partitioned in an additive component (narrow sense h
2
) and a non-additive residual. h

2
 is of 

particular interest in agriculture as it constrains the success of selection programs.  The 

heritability of a complex binary trait (such as a common complex disease) is generally estimated 

by assuming the existence of an underlying (non-observed), continuously distributed “liability” 

with threshold value separating affected from non-affected individuals.   
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Identifying causative variants 

Motivation and basic principles.  Identifying the causative variants influencing heritable traits of 

medical and agronomic importance is one of the most active areas of research in the life-sciences.  

This is due to the fact that recent advances in genomic technologies makes this one of the most 

effective experimental designs to improve our understanding of the molecular mechanisms 

underpinning disease and agricultural production, which may contribute to the development of 

improved methods of diagnosis (medicine) and selection (agriculture), as well as of treatment 

(medicine) and production (agriculture). 

The basic principles of the “forward genetic” approach towards identifying causative variants 

influencing a trait of interest are extremely simple and based on the examination of the correlation 

between phenotype and genotype (for a given variant).  Thus, assume a population of individuals 

that have been (i) evaluated for the phenotype of interest, and (ii) for which the entire genomic 

sequence has been determined.  In principle one can measure the correlation between phenotype 

and genotype for all variants.  Practically this is done either by sorting the individuals by 

phenotype (f.i. cases vs controls) and checking for different genotype frequencies between groups, 

or by sorting the individuals by genotype and checking for different phenotype means between 

groups.  One expects such a correlation to exist for causative variants. 

Avoiding spurious associations.  The issue is that such phenotype-genotype correlation may also 

exist for “passenger” (i.e. non causative) variants.  This will be the case if the genotype at the 

passenger variants is correlated with the genotype at causative variants, or with environmental or 

cultural effects that influence the phenotype (f.i. Platt et al. 2010). 

Correlation between genotype at passenger and causative variants is expected for closely linked 

variants.  The corresponding correlation is referred to as “linkage disequilibrium” (LD) or 

“gametic association”.  De novo mutations are initially completely associated with the haplotype 

characterizing the chromosome upon which they occurred (a haplotype is a combination of alleles 

for a set of neighboring variants).  If the newly derived allele spreads in the population it will 

progressively re-assort with distinct haplotypes by meiotic recombination.  With time the initial 

association should erode and equilibrium attained (i.e. independent genotypes at neighboring 
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variants).  Yet, drift continuously regenerates LD.  At equilibrium, the expected squared 

correlation between the genotypes of adjacent variants is:  

r2 =
1

4Neq +1
+

1

n
 

where q  is the recombination rate between the variants, and n the sample size in which r2  is 

measured.  Unless LD between passenger and causative variants is perfect (r
2
=1), the correlation 

between phenotype and genotype should be highest for the causative variant.  Yet, this prediction 

may not apply if multiple closely linked causative variants co-segregate in the population.  Such 

“allelic heterogeneity” appears to be the rule rather than the exception, at least in human 

populations.  Passenger variants that are in LD with multiple causative variants may by chance 

be more strongly associated with the phenotype than the individual causative variants, a 

phenomenon referred to as “synthetic association” (f.i. Dickson et al. 2010; Platt et al. 2010).  

At present the best way to untangle such dependencies is to simultaneously fit multiple if not all 

variants in a “multivariate” analysis.  Thus, one wants to estimate the effect of each variant on 

phenotype conditional on the genotype of all other variants in the vicinity.  This approach is only 

applicable for variants that are not in perfect LD with each other (i.e. it is impossible – using this 

approach - to differentiate passenger and causative variants that are in perfect LD in the studied 

population).  Multi-colinearity issues make it sometimes even difficult to differentiate variants 

that are in high, although not perfect LD. 

Correlation may also exist between passenger variants and non-syntenic (markers located on a 

different chromosome) causative variants.  This is a very common occurrence in domestic 

animals, particularly in cattle population relying extensively on artificial insemination.  Assume a 

polygenic trait such as milk production.  Highly significant “sire effects” are commonplace.  

Any rare variant carried by a sire with superior breeding value would “tag” its descendants and be 

associated with increased milk production because of its association with the polygenic 

background underlying the high breeding value.  This is one example of spurious association due 

to “population stratification”.  In this example, the trait of interest is directly affected by the 

causal polygenes.  In another form of stratification, the studied population comprises sub-groups 

exposed to distinct environments or cultural influences, which are influencing the phenotype of 

interest.  Variants tagging sub-populations will show association with the phenotype by virtue of 
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their correlation with the sub-group specific non-genetic effects.  The spurious associations due 

to stratification can be avoided by explicitly modeling the sub-populations.  Genome-wide 

marker information can be used to uncover the underlying population structure.  This can be 

done by unsupervised clustering using for instance the STRUCTURE programs (Pritchard et al. 

2000), by means of principal components using for instance the EIGENSTRAT programs (Price et 

al. 2006), or – increasingly – by modeling a random polygenic effect with covariance structure 

proportionate to genome-wide kinship estimated from genotype data (f.i. Price et al. 2010). 

An elegant and effective approach to avoid spurious association of passenger variants that are not 

closely linked to causative variants is to simultaneously test for linkage and association.  In 

humans, this is typically achieved by analyzing parent-offspring trios and performing a 

“transmission disequilibrium test” (TDT) (f.i. Ewens & Spielman 2003).  In the case of a binary 

trait such as a disease, the TDT tests whether a specific variant is over-transmitted by 

heterozygous parents to affected offspring.  This will only be the case if the analyzed variant is 

associated (at the population level) and “linked” (at the familial level) with a causative variant (or 

itself a causative variant).  Because of their specific structure, domestic animal populations offer 

ample opportunity to simultaneously extract linkage and association information.  LD- and 

linkage information can be merged to estimate identity-by-descent (IBD) probabilities for all pairs 

of chromosomes in the dataset and these can be used to test whether a chromosome region is 

associated and in linkage with variants influencing the trait of interest (f.i. Meuwissen et al. 2002; 

Druet & Georges 2010).  

Stratification will lead to an overall inflation of the test statistic for association.  The occurrence 

of residual stratification effects can therefore be evaluated by examining the distribution of the test 

statistic (for all or a selection of variants scattered throughout the genome) using – for instance - a 

quantile-quantile (QQ) plot.  A shift towards lower p-values suggests stratification.  To control 

the level of false positives, the thresholds to declare significance can be decreased accordingly in a 

procedure referred to as “genomic control” (f.i. Devlin & Roeder 1999).  It should be noted that 

the shift towards lower p-values resulting from population stratification will in some cases be due 

to actually causative polygenic variants.  Some people have therefore rightfully argued that this 

procedure “throws the baby with the bathwater”. 
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Compensating for incomplete genotype information.  Thus far, we have made the presumptuous 

assumption that the entire genome sequence would be available for all individuals in the dataset.  

While this may become reality in the future, it is not yet the case.  This hasn’t stopped geneticists 

from engaging very actively in genome-wide association studies (GWAS) in many organisms, 

including men and domestic animals.  This was made possible because of the pervasive linkage 

disequilibrium across the genome in these organisms.  In most Out-of-Africa human populations, 

a panel of passenger SNPs with a density of  1 SNP per 5Kb captures 80% of common 

causative variants wit r
2
 ≥ 0.8 (f.i. The International HapMap Consortium 2007; Bhangale et al. 

2008).  It has become customary in human genetics to perform GWAS using SNP panels 

comprising between 300,000 and > 1 million SNP variants, which can be cost-effectively 

interrogated using commercially available micro-arrays.  As LD extends over longer genomic 

regions in domestic animals than in human, GWAS are typically performed using panels 

interrogating an order-of-magnitude less markers than in human, i.e. from 50,000 to 750,000 

(Goddard & Hayes 2009).  The use of such panels should thus allow the identification of regions 

of the genome encompassing common causative variants.  However, identification of the actual 

causative variants requires subsequent targeted “fine-mapping” efforts.   

In some instances, the per-SNP information content has been optimized by taking advantage of 

prior knowledge about the LD structure of the genome (The International HapMap Consortium 

2005, 2007, 2010).  The human HapMap project genotyped 270 individuals representing three 

major ethnic groups for 3.1 million common SNPs.  Examination of the LD patterns between 

closely linked SNPs revealed a step-wise rather than gradual decrease in LD with distance.  LD 

was found to be high within 50Kb segments of the genome referred to as haplotype blocks, 

which are separated from each other by recombination hotspots causing abrupt drops in LD.  The 

typical haplotype block comprises 5 to 10 common haplotypes accounting for the majority of the 

chromosomes observed in the population.  Rather than selecting SNPs at random, some 

manufacturers of SNP genotyping arrays selected panels of “tagging SNP” that tag as many 

common haplotypes as possible.  Similar strategies, albeit with less resolving power, were 

applied to develop some of the SNP genotyping arrays used in domestic animals (f.i. Matukumalli 

et al. 2009).   
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So far, the vast majority of GWAS studies have used single SNP association tests.  Thus, SNP 

genotype frequencies were compared between cases and controls or the effect of SNP genotype on 

the quantitative trait of interest was evaluated.  The power to detect the effect on phenotype of a 

unseen causative variant by means of an interrogated “marker” SNP is strongly dependent on the 

degree of LD between the marker SNP and the causative variant.  Assuming that a sample size of 

n would be needed to detect the effect of the causative variant if it were directly interrogated, a 

sample size of n r2 will be needed to detect the same effect via a marker SNP in LD of r
2
 with 

the causative variant (as nr
2

corresponds to the Pearson test statistic for independence (f.i. 

Balding 2006).  The detection power thus drops rapidly with decreasing LD between interrogated 

and causative SNPs.  One way to overcome this is to perform association analyses using 

haplotypes, i.e. combination of adjacent SNPs.  Ideally this requires “phasing” of the genotype 

data, i.e. sorting the alleles by parental origin.  This is most reliably accomplished using 

genotype information from the parents.  However, even in the absence of parental information 

(which is the most common scenario), the most likely linkage phase can be estimated with some 

degree of accuracy for strings of SNPs in LD.  The hope of the haplotype-based approaches is 

that one of the haplotypes will be in higher LD with the causative variants than anyone of the 

composite SNPs considered individually, hence increasing the association signal. Many 

haplotype-based approaches use “windows”.  These can be sliding window with fixed number of 

SNPs (Lin et al. 2004).  Alternatively the boundaries of the windows can be set such as to 

coincide with the limits of known haplotype blocks.  Throughout this thesis, we use a 

Hidden-Markov-Model based approach that obviates the need for windows (f.i. Druet & Georges 

2010).   

An alternative approach to extract more LD information from the incomplete set of genotyped 

SNPs that is being extensively used in human genetics is “genotype imputation”.  Imputation 

corresponds to the in silico prediction of an individual’s genotype for variants that have not been 

genotyped experimentally (Marchini & Howie 2010).  In simplified terms, this is done by 

identifying individuals in a very densely genotyped reference population (f.i. the HapMap or 

full-sequenced 1,000 Genomes Project populations) that regionally carry the same haplotypes as 

the “individual to impute”.  The dense genotypes of the corresponding haplotypes are then 
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projected from the reference population to the study population.  This can be accomplished for 

the entire genome.  GWAS are subsequently conducted one SNP at the time using genuinely 

genotyped SNPs as well as (the often more numerous) imputed SNP.  All variants cannot be 

imputed with equal accuracy: low frequency variants or variants located in recombination hotspots 

are typically more difficult to impute.  Such variants are penalized in the association studies, 

which complicates comparison between SNPs.  Imputation has also been essential to merge 

datasets genotyped with different arrays in common meta-analyses.  

Accounting for multiple testing.  In nearly all instances, the objective of GWAS is to pinpoint 

chromosome regions that are thought to encompass truly causative variants.  Therefore, one has 

to define a threshold for the test statistic above which to reject the null hypothesis of absence of 

association.  This threshold has to account for the fact that a genome-scan implies the realization 

of many tests.  Using a nominal threshold corresponding to a type-I error rate of 5% (for a single 

test) would thus generate 5,000 false positive associations when testing 100,000 “independent” 

(not in LD) SNPs, even in the absence of a single true genetic effect.  The traditional way to deal 

with this multiple testing issue is to adapt the threshold for the number of independent tests 

performed using either a Bonferroni or related Sidak correction.  This requires the 

determination of the number of independent test performed, which can be achieved using a variety 

of approaches often exploiting permutation testing.  In human genetics, the recommended 

threshold for GWAS corresponds to a nominal p-value of 10
-8

, implying the realization of 5 

million independent tests (Hirschhorn & Daly 2005).  Thresholds applied in animal genetics are 

typically somewhat more lenient as the number of tested SNPs is considerably lower and LD 

assumed to be more pronounced.  In addition to imposing these very significant significance 

thresholds, good practice guidelines demand confirmation of the significant hits in an independent 

data set to warrant publication in the best journals. 

An alternative approach, rather than considering individual p-values independently, exploits 

information from the distribution of p-values across all tests performed.  If all tests correspond to 

true null hypotheses, the distribution of p-values is expected to be uniform, i.e. 5% of tests will 

have p-values between 0 and 5%, 5% will have p-value between 5 and 10%, etc.  An excess of 

test with low p-values suggest the occurrence of true alternative hypotheses amongst the tests 

performed.  Assume that 20% of the tests have a p-value between 0 and 5%, this implies that  
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three out of four of these tests are true alternative hypotheses. If we select these tests as “positive 

discoveries”, we can therefore expect a false discovery rate (FDR) of one in four.  The 

distribution of p-values across all tests performed is typically examined using QQ-plots.  The 

exact FDR for individual tests can easily be computed using standard theory.  The FDR approach 

will typically be more efficient at identifying true alternative hypotheses if these represent a large 

enough proportion of realized tests (Storey & Tibshirani 2003).   

Rare variants.  It was recognized from the onset that the SNP panels used for GWAS were best 

suited to tag common causative variants.  Population genetic arguments supported the notion that 

common complex diseases would involve common risk variants, i.e. the so-called Common 

Disease Common Variant Hypothesis (CDCV) (Reich & Lander 2001).  However, as surmised 

by some very early on (Pritchard 2001), it has become increasingly apparent that low frequency 

and rare risk variants also contribute to inherited risk and the heritability of quantitative traits in 

human populations.  As a matter of fact low frequency and rare variants appear to have larger 

effects than common variants resulting in stronger purifying selection (which reduces their 

frequency) (Gibson 2012).  The contribution of rare variants to the heritability of agriculturally 

important traits in livestock remains largely unknown. 

Detecting rare causative variants poses specific challenges.  Rare variants are typically poorly 

tagged by interrogated SNPs, certainly if analyzed one-by-one.  It is likely that GWAS will soon 

be conducted with exome-wide followed by genome-wide resequence data rather than SNP 

genotype data, which should alleviate this detection issue. However, as rare variants are – by 

definition – rare, performing an association test remains difficult as too few individuals carry the 

variant to allow for the realization of a meaningful test.  This limitation becomes obvious for 

“singletons”, i.e. variants that are only observed once in the studied data set.  A singleton 

observed in a case confers an infinitely large relative risk that will, however, never be significant: 

it’s p-value is 0.5. 

One way to include rare variants in association studies is to analyze them in “aggregate” rather 

than individually.  The first such a family of approaches are the “burden tests”.  The underlying 

premise is that variants disrupting the function of the causative gene will be enriched in 

individuals with extreme phenotypes.  In case-control studies, cases can be considered as 

extremes.  For quantitative phenotypes one can select individuals in the tails of the distribution.  
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Given our present limited understanding of molecular biology, the only variants that can 

confidently be predicted to be “disruptive” are those affecting the protein sequence, including 

nonsense, frame-shift, splice-site, and – to a lesser extend – missense variants.  Performing a 

burden test therefore typically consist in (i) sequencing one or more (or all) genes of interest in 

extreme individuals, (ii) identifying low frequency and rare variants that are predicted to disrupt 

gene function, and (iii) comparing the cumulative frequency of the corresponding variants 

between opposite extremes (f.i. cases vs (super-)controls) (Bansal et al. 2010).  This approach 

has been applied to several common diseases and has unexpectedly revealed as many cases of 

enrichment of rare risk variants in cases, as of enrichment of rare protective variants in controls 

(Nejentsev et al. 2009; Momozawa et al. 2011; Rivas et al. 2011). 

One of the limitations of the burden tests is that they assume that all disruptive variants in given 

gene affect the phenotype in the same manner: either all of them increase the phenotype (f.i. 

disease risk), or all of them decrease it.  The C-alpha test has been developed to overcome this 

limitation for low frequency variants (it is not applicable to singletons).  It looks for an 

aggregated overdispersion of the distribution of disruptive variants (in a given gene) between f.i. 

cases and controls, i.e.  the fact that some of the variants tend to preferentially cluster in cases, 

while others tend to preferentially cluster in controls (Neale et al. 2011). 

Identifying causative genes 

Identifying causative variants influencing diseases and agronomically important traits is certainly 

one of the major objective of GWAS, yet identifying the genes which these variants perturb, i.e. 

the causative genes, is certainly equally if not more important.  Indeed, it is this knowledge that 

paves the way to improved treatment regimes in medicine.   

If the causative variants are coding variants, i.e. they change the amino-acid sequence of the gene, 

the identity of the target causative gene leaves little doubt.  There is growing evidence however 

that a substantial proportion of causative variants are regulatory variants, affecting the expression 

profile of target genes rather than the structure of their product.  As cis-acting regulatory 

elements can be hundreds of thousands and even millions of base-pairs away from the genes they 

regulate, the identification of the causative genes perturbed by regulatory variants remains a major 

challenge.  
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An extremely elegant genetic test of gene causality has been developed and applied in the model 

organisms D. melanogaster and S. cerevisiae: the reciprocal hemizygosity test (Long et al. 1996; 

Steinmetz et al. 2002).  The typical scenario in which this test becomes useful in model organism, 

is following the mapping of a Quantitative Trait Locus (QTL) to a specific location in an 

intercross population.  Assuming that the confidence interval for the QTL contains a number of 

genes, the question becomes which one or several of the genes in the interval underlie the QTL 

effect.  To respond to that question pairs of reciprocal F1 hemizygotes are generated for all 

positional candidate genes.  This can be done increasingly effectively by homologous 

recombination.  Thus for each gene, a pair of hemizygotes is produced by knocking out the allele 

coming from either the “A” or the “B” strain.  If the examined gene is not involved in the QTL 

effect, the reciprocal hemizygotes will be functionally equivalent: their phenotype will not differ 

significantly (yet may differ from the original F1 individuals).  If, on the contrary, the gene is the 

causal gene, one reciprocal hemizygote will be functionally “Q-“, while the other will be “-q” (in 

which Q and q represent the alternate alleles at the QTL).  This will cause the reciprocal 

hemizygotes to differ phenotypically. 

Generating series of reciprocal hemizygotes is obviously an arduous task in organisms other than 

yeast.  A less demanding variation of the reciprocal hemizygosity test is “quantitative 

complementation” (Mackay 2001; Georges 2007).  In this approach, one generates one 

knock-out per positional candidate gene, which is subsequently mated to animals from the 

mapping population in order to generate “A-“ and “B-“ animals.  The premise of the test is that 

the contrast between the phenotype of these alternative hemizygous lines will be larger than the 

“A+” versus “B+” contrast if the candidate gene is causative, and not otherwise.  Quantitative 

complementation has been applied in D. melanogaster and a couple of times in the mouse (Yalcin 

et al. 2004).  Its application in outbred populations including human and domestic animals may 

appear impossible.  Yet, naturally occurring null alleles for a substantial number of genes 

segregate in these populations at sometimes appreciable frequencies.  It may thus, at least in 

theory, be possible to identify individuals with “C-“ and “c-“ genotype (where C and c would be 

alternative alleles for a causative variant) and compare their phenotypes.  This approach has been 

proposed and applied once in cattle (Karim et al. 2011).  
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The other formal test for gene causality - which is easier to apply in outbred populations - is the 

previously described “burden test”.  Imagine that a locus influencing a trait of interest has been 

identified by GWAS and that it encompasses n genes.  The positional candidate genes can be 

deeply sequenced in cohorts of extreme individuals (f.i. cases and controls).  The demonstration 

of a differential “burden” of rare disruptive mutations in either cases or controls for one of the 

candidate genes would unambiguously identify the causative gene(s).  One of the main 

difficulties with the burden test is to reliably identify disruptive mutations.  Contaminating the 

collection of candidate disruptive mutation with neutral ones rapidly undermines statistical power.  

It has recently been suggested that it might be better to avoid missense variants (and only use 

stop-gains, frameshift and essential splice site variants) in the burden test, as well as to incorporate 

information about de novo mutations (requiring the analysis of parent-offspring trios) (He et al. 

2013).   

While elegantly simple in principle, the burden test requires sequencing of very large cohorts to 

achieve adequate power.  This power is rapidly eroded by multiple testing if one intends to study 

many positional candidate genes.  This is probably one of the main reasons why application of 

the burden test at genome-wide level by exome sequencing has not yet yielded the results that 

were hoped for.  It is thus advisable to carefully preselect the candidate genes to subject to a 

burden test.  One way to do this is to first apply the burden test to genes mapping to 

GWAS-identified loci.  One can additionally increase the prior probability of success by 

applying network analysis.  Gene networks that are shown to be significantly overpopulated 

within such sets of GWAS-identified positional candidates are likely to be enriched in genuine 

causative gene (Raychaudhuri et al. 2009; Rossin et al. 2011).  An alternative strategy to 

prioritize positional candidates is to use eQTL information if available.  Thus, an eQTL 

association signal for a positional candidate gene in a phenotype-relevant cell type that would 

resemble the association signal for the phenotype would be a strong candidate gene to subject to a 

burden test (Montgomery & Dermitzakis 2011).   

It remains unclear whether the burden test is applicable to all types of causative genes.  Many 

gene products fulfill distinct functions in multiple tissues and at different stages of development, 

driven by tissue/timing-specific enhancers.  Disruptive coding variants, which form the basis of 

the burden test, are affecting all these functions without discrimination.  Could it be that specific 
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phenotypes are not associated with a differential burden of disruptive mutations in the coding 

sequence, but rather in tissue/timing-specific regulatory elements?                      

Missing heritability  

Hundreds of GWAS have been conducted in humans, domestic animals and plants, for a broad 

range of medically and agriculturally important phenotypes.  Risk loci and QTL have been 

identified for nearly all examined traits amounting to thousands of hits.  Yet a systematic finding 

is that the identified loci typically only account for a small fraction of the heritability of the 

studied trait.  This recurrent observation has raised the issue of the “missing heritability” and 

what its underlying causes might be (Manolio et al. 2009).  The factors contributing to the 

missing heritability are most likely multiple.  We will herein briefly survey the contributing 

factors that are most commonly invoked. 

One possible contributor to the missing heritability that has not received a lot of attention is the 

possibility that the identified loci explain more of the trait variance than what has been assumed.  

The variance explained is typically computed by assuming that the lead SNP is the only causative 

variant in the locus.  Recent fine-mapping efforts strongly suggest that – at least in humans and 

rat– most loci harbor multiple common causative variants (Michael et al. 2013 and unpublished 

observations), i.e. that allelic heterogeneity is the rule rather than the exception.  Accurately 

computing the variance explained by the locus should account for this complexity and this will 

nearly certainly increase the variance explained. 

The claim of missing heritability, i.e. the fact that the identified risk variants only explain part of 

the trait heritability, assumes that the heritability is estimated accurately.  Trait heritabilities are 

classically estimated from “epidemiological” data.  One may rightfully question the accuracy of 

this approach.  Especially in humans, genetic and environmental resemblance are often 

confounded.  It has even been argued that monozygotic twins might be treated more uniformly 

than dizygotic twins, hence possibly leading to overestimated heritabilities from twin data.  More 

recently, it has been suggested that heritability estimates could be inflated if epistatic effects were 

contributing to trait heritability (Zuk et al. 2012).  It is worthwhile noting in this regard that Peter 

Visscher and colleagues recently proposed to use genome-wide genotype data within families to 

provide unbiased estimates of at least the narrow sense h
2
 (Visscher et al. 2006).  The method is 
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based on the estimation of the correlation between the phenotypic resemblance between sibs and 

the estimated fraction of their genomes inherited identical-by-descent.  While being very 

insightful, the approach unfortunately requires a very large number of sibs to yield accurate 

estimates.  

A third possible contributing factor to the missing heritability is the incomplete genome coverage 

of the utilized SNP panels.  This seems less and less likely to be a major contributing factor as 

SNP panels continue to improve.  Yet, it is certain that some part of the genome remain poorly 

tagged.  This is probably the case for variants located within recombination hotspots as well as 

for variants mapping to segmental duplications.  CNV also remain difficult to interrogate and are 

ignored in most GWAS.  Although data suggest that most common CNV are satisfactorily tagged 

by flanking SNPs (McCarroll et al. 2008), part of the missing heritability might still be hiding in 

these difficult to interrogate parts of the genome. 

One of the most thoroughly scrutinized hypotheses to account for the missing heritability is the 

potential importance of low frequency and rare causal variants.  The SNP panels that have been 

used predominantly for GWAS until recently primarily include common variants that are by 

definition (at least if used one at a time) only suitable to tag common causal variants.  The need 

to be able to better study contribution of low frequency rare variants to disease heritability is one 

of the major drivers of the 1,000 Genomes Project (Nielsen 2010).  SNP panels interrogating low 

frequency coding variants have been designed based on the ensuing information and are presently 

being used in GWAS with very large case-control cohorts.  Genotype imputation is now 

routinely used to genotype “GWAS-sed” cohorts in silico for low frequency variants detected in 

the 1,000 Genomes Project.  Moreover, a growing number of GWAS are presently being 

conducted using exome-sequencing, waiting for genome-wide resequencing to become an 

affordable norm.  A growing number of studies have performed targeted resequencing of 

candidate genes (f.i. positional candidate genes from GWAS; cfr. above) to evaluate the 

contribution of rare variants.  At present, the main message in human genetics appears to be that 

rare risk variants indeed do exist, that their effects indeed appear to be larger than those of 

common variants, yet that they only explain a very small fraction of the genetic variance and 

hence missing heritability (Momozawa et al. 2011; Rivas et al. 2011). 
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Another hypothesis that is receiving growing attention is the “polygenic” or “quasi-infinitesimal” 

hypothesis.  According to this view many complex traits, in medicine and agriculture, would be 

influenced by a very large number of genetic variants (i.e. thousands to tens of thousands) with 

individually very small effects.  The variance accounted for by most such variants would be too 

small to have been detected by GWAS so far.  There is growing experimental support for this 

polygenic hypothesis.  In human genetics, the first wave of GWAS were typically conducted 

with of the order of 1,000 cases and 1,000 controls and typically yielded at most a handful for 

genome-wide significant loci.  Merging dataset al.lowed for a second generation of 

meta-analyses, which typically generated additional loci at a rate that was strongly related to the 

size of the analyzed cohorts.  Power calculations clearly indicated that many loci were still 

missed (i.e. loci were detected with effects size that had only limited probability to be detected).  

Merging meta-analyses in even large datasets indeed continued to reveal additional loci.  This 

trend has been very clear for height (Lango Allen et al. 2010; Berndt et al. 2013) and – more 

recently – for schizophrenia (Ripke et al. 2013).  Additional evidence in support of the polygenic 

hypothesis came from the application of “genomic selection” and related methods to animal data 

first, and – more recently – human data.  As previously mentioned, in domestic animals trait 

heritabilities are typically estimated using the mixed “individual animal model” (Lynch & Walsh 

1998).  This linear model includes a random polygenic (additive) effect proper to each animal.  

The covariance between individual animal effects are assumed to correspond to 2Qs A

2 , where 

Q  is the kinship coefficient for the considered pair of individuals and s A

2  the additive genetic 

variance.  Kinship coefficients are classically computed from genealogical records, allowing 

estimation of s A

2  and hence the heritability.  If the heritability is known, the individual animal 

effects (corresponding to their breeding values) can be estimated as Best Linear Unbiased 

Predictors (BLUPs).  More recently it has become possible to estimate kinship coefficients of 

pairs of individuals using genome-wide SNP genotypes obtained using SNP genotyping arrays 

that are now available for all major domestic animal species.  Not surprisingly, estimates of s A

2  

obtained with the corresponding variance structure are very similar to those obtained on the basis 

of genealogical records, leading some scientists to claim that “There is no missing heritability 
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problem in animal genetics!”.  Individual breeding values can be estimated using the 

corresponding covariance structure using so-called “GBLUP”.  Yang et al. (2010) applied this 

GBLUP model to human height data and showed that the polygenic effect captured 50% of the 

phenotypic variance, while QTL mapped by association in the same data set would explain less 

than 10%.  They suggested that a better SNP panel might have allowed them to explain as much 

as 80% of the phenotypic variance.  The same models are increasingly been applied to common 

complex diseases providing growing support that the polygenic hypothesis may accounts for a 

substantial fraction of the missing heritability (Cross-Disorder Group of the Psychiatric Genomics 

Consortium 2013).  GBLUP assumes that all segments of the genome account for the same 

proportion of the genetic variance.  It is obvious that this assumption will not be valid in most 

circumstances.  To better account for possible heterogeneity in explained variance, more 

sophisticated Bayesian models are being developed that assume various prior distributions of QTL 

effects.  Application of these models results - at least for some traits – in capturing a higher 

proportion of the trait variance and making more accurate predictions of individual “breeding 

values” (Hayes et al. 2010).  It is noteworthy that the same models are increasingly be used to 

estimate the effects of all genetic variants simultaneously, and hence hopefully improve the 

distinction between causative and passenger variants.  In less than five years, genomic selection 

has revolutionized animal breeding and has become the method of choice to identify elite breeding 

stock (Goddard & Hayes 2009).  It seems reasonable to speculate that the same methodologies 

may contribute to the development of novel diagnostic approaches in human medicine (de los 

Campos et al. 2010). 

A commonly proposed source of missing heritability is epistasis.  The idea is that the effects of 

some genetic variants are dependent of the genotype at one or more other variants.  Properly 

modeling such epistatic interactions might explain a higher proportion of the trait variance than by 

considering the marginal effects only.  Recent experiments conducted in experimental crosses of 

yeast showed that gene-by-gene interactions explained between 0 and 50% of the heritability and 

that detectable pairwise interactions explained from 0 to 71% of this epistatic variance (Bloom et 

al. 2013).  So far, the search for gene-by-gene interactions has been less successful in outbred 

populations for reasons that remain only partially understood (Hill et al. 2008).   
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Another suggested cause of missing heritability are parent-of-origin effects.  The mammalian 

genome is known to harbor 150 genes that are subject to parental imprinting 

(http://www.geneimprint.com/site/genes-by-species).  For these genes, and although being 

diploid, the organism only uses one allele (in all or some tissues): the padumnal allele for halve of 

the imprinted genes, the madumnal allele for the other halve.  Kong et al. (2009) reanalyzed 

GWAS data (for three common complex diseases) in the vicinity of known imprinted genes 

assuming an “imprinting model”.  They indeed observed 10 associations with parent-of-origin 

effects.  More sophisticated parent-of-origin effects are known to exist.  The best understood is 

probably the callipyge phenotype, which is only expressed in heterozygous animals inheriting the 

CLPG mutation from their sire (+
Mat

/CLPG
Pat

), a mode of inheritance referred to as “polar 

overdominance” (Cockett et al. 1996).  QTL mapping experiments performed in 

purpose-generated F3 mouse crosses indicated that polar overdominance and related 

parent-of-origin effects might be more common than generally recognized, and not limited to 

genomic regions harboring known imprinted genes (Lawson et al. 2013).  It is important to 

recognize however that “mismodelling” may generate what appears to be imprinting effects but 

are in fact statistical artifacts.  Unaccounted for maternal effects are one such source of 

pseudo-imprinting (Hager et al. 2008), while the erroneous assumption of fixation of alternate 

QTL alleles in the parental lines used to generate line-crosses are another.  The latter has been 

the cause of a flurry of erroneous reports of imprinted QTL in livestock (De Koning et al. 2002; 

Sandor & Georges 2008).   

De novo mutations have been shown to underlie a significant proportion of cases of autism and 

possibly other complex diseases (Girard et al. 2011; Kong et al. 2012).  More recently, searching 

for highly disruptive de novo mutations in cases has been proposed as a strategy to identify 

causative genes.  However, cases involving de novo mutations are typically sporadic.  Even if 

these would account for a substantial proportion of the disease incidence, it is hard to imagine how 

such cases would contribute to disease heritability.  A disease that would entirely be due to de 

novo mutation would have a heritability of zero, unless the mutation process by itself was 

heritable.  

Finally, is it possible that the missing heritability reveals one or more important yet unsuspected 

novel molecular mechanisms of inheritance?  In C. elegans, RNA-mediated interference (RNAi) 
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has been shown to mediate multigenerational epigenetic inheritance (Buckley et al. 2012).  The 

non-Mendelian inheritance pattern of a coat color variant involving a specific mutation in the 

murine cKit gene suggest that similar mechanisms might operate in mammals (Rassoulzadegan et 

al. 2006).  However, more work is needed to evaluate the generalities of what still remain 

oddities, at least in mammals.   

Uses of genomic markers in livestock management 

Parentage control.  Tracing the ancestry has been part of animal breeding for a long time, 

particularly since the introduction of breed creation and the accompanying registration in herd- 

and studbooks.  Monitoring the accuracy of ancestry recording using genetic markers has become 

routine practice in many domestic animal species (f.i. Werner et al. 2004).  It started with the use 

of blood group antigens (with subsequent addition of biochemical polymorphisms), and has 

evolved into the systematic use of panels of microsatellite markers – which are still in use in most 

countries under the auspices of the International Society of Animal Genetics 

(ISAG)(http://www.isag.us).  As the use of genomic selection is increasing, a growing number of 

animals are being genotyped with genome-wide SNP arrays.  It appears likely therefore that 

SNPs will soon phase microsatellites out.  The possibility to “impute” microsatellite genotypes 

from SNP data should facilitate this transition. 

Tracability.  Consumers are paying increasing attention to the certification of the origins of the 

food products they eat.  In several countries, including Belgium, biological samples are being 

stored to allow retrospective tracing of the origins of meat products (f.i. Dalvit et al. 2007).  This 

is presently achieved using microsatellite markers.  In this thesis, we have developed a method 

that can be viewed as a tracing method operating on sample mixtures (Blard et al. 2012).  The 

aim of the method is to quantify the number of somatic cell counts (an indicator of mastitis) in the 

milk of all cows in a farm, just by genotyping a sample of milk from the farm’s tank (hence 

containing a mixture of milk from all its cows).  We demonstrate that by confronting the SNP 

allele frequencies in the tank’s milk with the known SNP genotypes of the cows in the farm it is 

possible to determine what proportion of the somatic cell counts present in the tank was 

contributed by each individual cow, and hence determine her individual somatic cell counts.  
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This approach could contribute to improved ways of monitoring subclinical mastitis, as well as of 

monitoring illegal delivery of milk from infected cows to the milk factory.  

Biodiversity.  Intensive agricultural practices have considerably reduced the number of varieties 

and breeds that are being used.  The ensuing reduction in genetic variability has rightfully been 

seen as a threat to future food security, in addition to the major cultural loss it means (f.i. Taberlet 

et al. 2008).  Efforts have therefore been initiated to survey domestic biodiversity worldwide 

before some of the breeds disappear (f.i. Scherf 2001).  Breed compilations are meant to inform 

future conservation efforts.  One way to quantitatively characterize domestic biodiversity is to 

use genetic distance as unifying metric.  This can be done using the available collections of 

genetic markers, including SNP panels.  Conservation efforts can then focus on a set of breeds 

selected to maximize retention of genetic diversity.  

Genetic defects.  It has recently been shown that humans carry of the order of 100 

loss-of-function variants (MacArthur et al. 2012).  A handful of these appear to be highly 

deleterious recessives and to cause either embryonic death or severe developmental anomalies 

upon homozygosity.  Homozygosity for such highly deleterious variants is uncommon in humans 

in the absence of consanguinity, as most of these are rare.  In domestic animal populations, the 

widespread use of elite sires - including by artificial insemination (AI) – may cause highly 

deleterious variants to rapidly reach moderate to high frequencies.  As avoidance of 

consanguineous matings is less rigorous than in humans, domestic animal populations are 

recurrently affected by outburst of genetic defects.  This in turn may have caused more effective 

purifying selection against deleterious variants, which may explain their lower frequency in 

domestic animals than in human despite a higher nucleotide diversity (than in human) observed at 

neutral sites (Wanbo Li & Carole Charlier, unpublished observations).   

With the development of genome-wide SNP arrays in livestock it has recently become possible to 

locate the genes responsible for such defects in a matter of weeks if not days (Charlier et al. 2008).  

Several examples demonstrating the efficacy of this process are included in this thesis (Dupuis et 

al. 2011; Sartelet et al. 2012).  As a matter of fact, mapping causative loci has probably become 

the most cost-effective way to demonstrate the inherited nature of a newly reported anomaly.  

Going from the locus to the culprit gene and variant remains more challenging.  Yet, the 

possibility to rapidly obtain the complete sequence of the locus using either a targeted or whole 



Introduction 

 29 

genome approach has - in most cases - considerably accelerated this step as well (f.i. Charlier et al. 

2012).  

Using a test interrogating the causative variant, or even neutral variants constituting a haplotype 

that is in strong linkage disequilibrium with the not yet identified causative variant, it is now 

possible to effectively manage recessive defects in livestock population.  This is typically done 

by avoiding the selection of animals which carry common deleterious variants, as elite sires.  

More care should probably be taken to avoid the creation of genetic bottlenecks by eliminating too 

many sire lines, which could only exacerbate the issue.  Moreover, too drastic selection against 

deleterious recessives may affect genetic progress for other traits, thereby in fine causing an 

economic loss.  There is a need to optimize breeding schemes incorporating this new source of 

information. 

It has become apparent that part of these deleterious recessives cause embryonic lethality (Charlier 

et al. 2012; Kumar Kadri et al. 2013; Sonstegard et al. 2013).  It has therefore been speculated 

that the drop in fertility that has been observed in several livestock species might be due in part to 

an increase in embryonic loss due to homozygosity for embryonic lethal alleles.  That this is 

indeed the case is substantiated by the observation – at least in cattle - of highly significant 

depletions in homozygosity for specific haplotypes (VanRaden et al. 2011; Fritz et al. 2013).  As 

embryonic loss is a trait that is difficult to record, it may be more effective to apply a 

genotype-driven, reverse genetic approach to this problem.  Along those lines, the Unit of 

Animal Genomics has mined genome-wide sequence data from 50-500 animals of a number of 

cattle breeds for highly disruptive variants that should be enriched in embryonic lethals.  

Subsequent genotyping of large cohorts indeed demonstrates a significant absence of 

homozygotes as well as a direct effect on fertility, indicating that the corresponding variants 

indeed are embryonically lethal (Charlier et al. in preparation). 

Genomic selection.  One of the earliest drivers of “gene mapping” in domestic animals was the 

perspective to apply more effective “marker assisted selection” (Kashi et al. 1990) based on 

mapped Quantitative Trait Loci (QTL).  Unfortunately, the limited variance explained by the 

identified QTL and the poor mapping resolution initially achieved with low-density microsatellite 

maps, made that proposition unattractive and ineffective.  In 2001, Meuwissen et al. (2001) 

proposed a revolutionary concept, dubbed “Genomic Selection”, that would (i) take advantage of 
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across-family linkage disequilibrium rather than within-family linkage (hence perform association 

mapping), (ii) take advantage of – at that time still hypothetical – genome-wide panels of 

cost-effectively genotyped SNP, and (iii) forgo the use of stringent significance thresholds, to 

estimate breeding values based on genome-wide marker information.  The authors presented a 

number of approaches including GBLUP and various Bayesian models that assumed a 

non-uniform distribution of gene effects.  The characterization of millions of SNPs and the 

concomitant development of cost-effective genotyping platforms in the years to follow, allowed 

the evaluation of the proposed method.  It rapidly proved to offer opportunities to outcompete the 

ongoing breeding practices, including sire progeny-testing in cattle.  In a matter of 24 months, 

genomic selection has been integrated in breeding programs worldwide, first in cattle and now – 

increasingly - in other livestock species as well.  The superiority of genomic over conventional 

selection probably stems mainly from (i) the possibility to differentiate the breeding values of 

full-sibs on the basis of Mendelian segregation at a stage where conventional selection can’t, and 

(ii) the higher accuracies of prediction obtained with genomic selection for low heritability traits 

even in the absence of Mendelian segregation (f.i. the information on fertility in dairy cattle 

obtained by genomic selection equates to the information of a progeny-group counting more than 

150 daughters).  Moreover, if large effects contribute to the genetic variance for a trait of interest 

(f.i. DGAT1 variants to milk fat yield), Bayesian models provide a better fit to the data than the 

infinitesimal animal model, which increases the accuracy of prediction.   

Increasing numbers of animals are presently being genotyped as part of genomic selection 

programs.  As genotyping costs are still high for agricultural applications, schemes have been 

developed to minimize these costs.  At present, this is typically done by exploiting the close 

familial relationships that exist within breeding stock.  If a sire and dam have been genotyped 

with a high density SNP array, it is a waste of resources to genotype their offspring at equivalent 

density.  Low-density SNP arrays combined with linkage approaches are sufficient to accurately 

predict the genotype of the offspring for all SNPs genotyped in the parents by a process, which in 

fact equates to “imputation”.  The preferred scheme today is pyramidal.  It consists in 

genotyping the animals at the top of the breeding pyramid at the highest density.  As a matter of 

fact, this tier of animals will rapidly be sequenced genome-wide.  The 1,000 Bulls project 

(http://www.1000bullgenomes.com) aims at accomplishing this for cattle as a worldwide 
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community effort.  The next tier of animals in the pyramid would be genotyped at medium 

density, while the bottom tier would be genotyped at low density.  Imputation would be used to 

project the whole-sequence information on the entire population.  One publication in this thesis 

deals with methods of imputation in this context (Blard et al. 2012). 

Genomic selection is a genuine advance in animal breeding.  It is clear however that their 

remains room for improvement.  Biases are observed in the breeding value estimates and 

accuracies still need to improve.  One avenue towards the latter goal is to increase variant density 

(hence the pyramidal schemes described above) to include causative variants in the collection or at 

least increase the linkage disequilibrium between passenger and causative variants.  However, 

increasing variant density increases the problem of over-fitting in statistical modeling.  One 

possibly way to overcome this issue is to prioritize variants based on their predicted effect on gene 

function, i.e. estimate the probability that a given variant is causative rather than passenger.  

Efforts are underway to generate “Encode-like” data (Gerstein et al. 2012; Sanyal et al. 2012; 

Thurman et al. 2012; Ball 2013; http://encodeproject.org/ENCODE/) for livestock to better enable 

this distinction.
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Objectives 

 

The objectives of the present thesis were: 

 

1. To develop a method to effectively map loci influencing binary and quantitative traits in 

outbred populations. 

 

2. To apply the corresponding method to the analysis of economically important traits in 

livestock. 

 

3. To develop approaches to more effectively use marker information in livestock 

production.   
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Part 1. Development and characterization of a 

haplotype-based method for association mapping of complex 

traits 

 

Ancestral haplotype-based association mapping with generalized 

linear mixed models accounting for stratification 

 



Part 1 

 34 

Ancestral haplotype-based association mapping with generalized linear mixed 

models accounting for stratification 

Z. Zhang, F. Guillaume, A. Sartelet, C. Charlier, M. Georges, F. Farnir
 
and T. Druet 

Abstract 

Motivation: In many situations, genome-wide association studies are performed in populations 

presenting stratification.  Mixed models including a kinship matrix accounting for genetic 

relatedness among individuals have been shown to correct for population and/or family structure. 

Here we extend this methodology to generalized linear mixed models which properly model data 

under various distributions.  In addition we perform association with ancestral haplotypes 

inferred using a hidden Markov model. 

Results: The method was shown to properly account for stratification under various simulated 

scenario presenting population and/or family structure.  Use of ancestral haplotypes resulted in 

higher power than SNPs on simulated datasets.  Application to real data demonstrates the 

usefulness of the developed model.  Full analysis of a dataset with 4600 individuals and 500 000 

SNPs was performed in 2 h 36min and required 2.28 Gb of RAM. 

 

Bioinformatics 28 (2012) 2467-2473
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Introduction 

Genome-wide association studies (GWASs) identify genetic variants (e.g. SNPs, CNV or indels) 

affecting traits of interest such as those related to human health or of agronomical importance.  

With the development of high-throughput genotyping and next-generation sequencing, these 

studies have been particularly successful.  Hundreds of loci associated with diseases were 

detected through GWAS (e.g. Donnelly, 2008).  Association studies proved equally valuable in 

other organisms such as Arabidopsis thaliana (Aranzana et al. 2005), mice (Threadgill et al. 2002), 

dog, crops (Malosetti et al. 2007; Yu et al. 2006) or livestock species.  

Although very effective, genetic association studies still face a number of potential pitfalls.  One 

major problem in GWAS comes from the spurious associations that may occur as a result of 

relatedness between individuals (e.g. familial relationships or population structure).  Another 

issue is that, especially for complex traits, non-genetic factors (e.g. sex, age, etc.) may have 

profound impact on the scrutinized phenotype, raising the need for proper modeling of these 

effects.  

An appealing solution to these problems is to use a mixed-model framework.  Indeed, this 

methodology makes it possible to include covariates in the model and to account for the average 

genomic relatedness among individuals (population or family structure).  Such models have been 

used for many years for QTL mapping especially in animal breeding (George et al. 2000).  

Recent studies (Kang et al. 2008; Malosetti et al. 2007; Yu et al. 2006; Zhao et al. 2007) have 

demonstrated that inclusion of such effects in mixed-models properly corrects for stratification 

and that the use of mixed models to control for stratification resulted in fewer false positives 

and/or higher power than other techniques such as genomic control (Devlin and Roeder, 1999), 

structured association (Pritchard et al. 2000) or principal components analysis (Price et al. 2006).  

In addition, mixed-models were able to capture the multiple levels of population structure and 

genetic relatedness.  All these features make mixed-models a very promising tool to perform 

association analyses while controlling for relatedness structure. 

Linear mixed-models (LMMs) assume that traits are normally distributed.  Use of generalized 

linear mixed models (GLMMs) allows extension of the mixed-model approach to other types of 

traits, such as binary traits for example.  With these models, a linear function of different 
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covariates including polygenic and local genomic effects is used to describe the expected value of 

the observed phenotype through a so-called link function.  Tzeng and Zhang (2007) developed a 

variance-components score test for association studies which can be used in the GLMM 

framework. 

Analyses can be performed using single SNP or haplotypes of multiple SNPs.  Haplotypes are 

specific combinations of alleles on the same chromosome.  They extract more information on the 

relation between DNA variation and phenotypes than single SNPs and may present higher 

correlation with underlying mutations [depending on the marker density and the linkage 

disequilibrium (LD) pattern in the population].  Furthermore, haplotype tests can model allelic 

heterogeneity or find several (interacting) mutations at different tightly linked sites.  However, 

the power of haplotype-based tests is potentially reduced due to the extra degrees of freedom 

needed in these analyses (e.g. Su et al. 2008; Tzeng and Zhang 2007).  Different strategies to 

minimize this problem have been proposed in the literature, relying mainly on grouping 

haplotypes based on similarity (e.g. Blott et al. 2003; Durrant et al. 2004; Druet et al. 2008; 

Seltman et al. 2003).  Various clustering algorithms are available.  Those relying on sliding 

window approaches are not optimal as the optimal window size varies from one region to another 

(Browning, 2008).  With the localized haplotype clustering method (Browning and Browning 

2007), clusters of haplotypes are parsimoniously selected.  This model allows for greater 

flexibility because haplotype lengths and the number of haplotypes are variable.  Browning 

(2008) stated that this model is conceptually similar to the clusters of the Scheet and Stephens 

(2006) model.  For each position along the genome, this later model assigns haplotypes to a 

predetermined number of ancestral haplotypes present several generations ago from which all 

haplotypes within a cluster are assumed to have descended.  Each haplotype can be associated to 

a cluster for a different length making the model flexible.  In addition, the model can group 

haplotypes with small difference (missing genotypes, genotyping errors or recent mutations).  

Suet al. (2008) proposed to use these ancestral haplotypes in association testing, whereas we 

suggested to use them for QTL fine-mapping and genomic selection (Druet and Georges 2010).  

In the same study, we showed that these clusters group haplotypes having a recent common 

ancestor (with short time to coalescence) and high identity-by-descent (IBD) probabilities [as 

estimated with the method of Meuwissen and Goddard (2001)].It was as efficient as methods 
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using these IBD probabilities to cluster haplotypes (e.g. Druet et al. 2008).  The use of these 

ancestral haplotypes proved already efficient for QTL fine-mapping (Karim et al. 2011) and 

genomic selection (de Roos et al. 2011). 

In the present study, we develop a haplotyped-based method for association mapping relying on 

GLMM accounting for stratification and other covariates affecting the modeled trait. 

Methods 

The proposed method relies on GLMM.  To account for stratification and/or polygenic 

background, the model includes a vector of random polygenic effects (e.g. Yu et al. 2006) in 

addition to the random haplotype effects:  

η=Xβ+Zu+Wh 

where η is a vector of n linear predictors (with n equal to the number of observed phenotypes), β 

is a vector of fixed effects (such as the overall mean in the present study), u is a vector of random 

n’ polygenic effects (with n’ equal to the number of individuals for which genomic information is 

available – typically, n’ = n), h is a vector of p random ancestral haplotype effects, (with p equal to 

the chosen number of ancestral haplotypes (Druet and Georges, 2010)).  X, Z and W are 

incidence matrices relating respectively fixed effects, polygenic and ancestral haplotypes effects to 

observations.  The variance of the random polygenic effects G is 2K VG (Yu et al. 2006) where 

K is a relative kinship matrix obtained from the marker data (see below) and VG is the genetic 

variance.  The variance of the random ancestral haplotype effects T is equal to I VH where VH is 

the "haplotypic” variance.  Haplotypes effects are assumed independently identically (and 

normally) distributed. 

The linear predictors are transformed to the observed scale (for example, disease status) through 

the inverse link function (e.g. McCullagh and Nelder, 1989).  In our analyses, the logit link 

function was used to model binomial data such as disease traits (or affection status).  The 

probability for individual i to be affected by the disease h(ηi) is therefore obtained through the 

inverse of the logit function: 

    (  )  
   

     
 

Coding 0 a healthy individual and 1 an affected one, this probability is also the expected value for 

the trait.  The solutions of the GLMM were obtained using an iterative procedure based on the 
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Laplacian approximation of the likelihood (McCullagh and Nelder, 1989; Breslow and Crayton, 

1993).  Indeed, the GLMM equations can be approximated by the following mixed model 

equations (MME) (e.g., Kachman 2000): 

[
                        

                            

                            

] [
 ̂
 ̂
 ̂

]  [

        

        

        

] 

where X*= XH, Z*= ZH , W*= WH,   
  

  
 , R is the residual variance matrix and y*=y-µ+Hη.  

In the case of the logit function (and one record per individual), H and R are diagonal matrices 

with µi(1-µi) on the diagonal (e.g., Kachman 2000).  Therefore, an iterative procedure must be 

used.  First, starting values for β, u and h are used to compute µ and to build the approximate 

MME.  These are then solved to obtain new estimates of β, u and h.  The process is repeated 

until convergence. 

The relative kinship matrix K was estimated based on similarity scores as in Eding and 

Meuwissen (2001) and Hayes and Goddard (2008): 

Sxy,l = 0.25 [I11+ I12+ I21+ I22] 

where Sxy,l is the similarity score between individuals x and y at locus l and Iij is an indicator 

variable equal to 1 if allele i on locus l in the first individual and allele j on the same locus in the 

second individual are identical, otherwise it is 0.  In our analyses, we replaced SNP alleles by 

ancestral haplotypes (similar to multi-allelic markers).  The relationships are then based on closer 

founders.  Sxy, averaged over the whole genome is then used as an estimator of the kinship 

relationship fxy as in Lynch (1988) or Eding and Meuwissen (2001):  

 ̂   
     

   
 

where s is the minimal value of Sxy in the matrix (Hayes and Goddard 2008).  Zhao et al. (2007) 

and Kang et al. (2007) concluded that use of similarity score to construct relationship matrices 

was as efficient as more complex methods and avoided problems of non-positive definite matrices.  

We tested different methods to construct relationship matrices (based on SNP or haplotypes) but 

these had little impact on estimation of polygenic effects and even less on residuals. 

Associations are tested for every marker position along the genome by a significance test of 

σℎ
2=0.Explicit evaluation of the likelihoods in GLMM is cumbersome, making application of 

likelihood ratio tests (LRTs) challenging.  Therefore we used the score tests as proposed by 
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Verbeke and Molenberghs (2003).  Schaid et al. (2002) and Tzeng and Zhang (2007) used score 

tests in haplotype-based association studies with binary traits.  The score tests are based on the 

value of the first derivative of the log-likelihood under the null hypothesis (i.e. the variance of the 

haplotypes is null).  A significant positive first derivative with respect to the variance component 

indicates that the maximum-likelihood estimator of the haplotypes variance is significantly 

different from zero. 

Tzeng and Zhang (2007) derived a test statistic T based on the score tests for haplotype-based 

models for GLMM.  In the case of the logit function, the test statistic is equal to: 

T=0.5(y-µ)'WW'(y-µ)=0.5(W'(y-µ))'* W'(y-µ) 

where y-µ is a vector of residuals (observations corrected for estimated fixed and random effects) 

obtained from a GLMM under the null hypothesis (no haplotype effect) where σℎ
2=0.  Since T 

relies on estimation of residuals from a model without haplotype effects, the procedure is similar 

to the two-step procedure proposed in Aulchenko et al. (2007).  Therefore it has the same 

advantages: the mixed models must be solved only once to obtain the residuals, which 

considerably speeds up computations, and since residuals are corrected for stratification, they are 

free from familial correlations and the data become exchangeable (Aulchenko et al. 2007) which 

means that permutation techniques may be applied. 

Tzeng and Zhang (2007) demonstrated that the distribution of the T test statistic under the null 

hypothesis could be approximated using a gamma distribution.  We perform 1,000 permutations 

of the residuals to estimate the mean and the variance of the gamma distribution (or the shape and 

scale parameters).  Parameters of the gamma distribution are estimated for each tested position 

(marker) because the distribution is influenced by the structure of the incidence matrix relating 

haplotypes to residuals, which is potentially position specific.  We will refer to this strategy as 

‘gamma approximation’.  In addition, empirical P-values can be computed by repeatedly 

permuting the phenotypes (residuals) among the individuals (referred to as permutation hereafter). 

A data set of 3547 genotyped Holstein, Jersey or crossbred bulls (see Karim et al. 2011) was used 

to simulate case/controls studies.  Individuals were genotyped for the Illumina Bovine SNP50 

SNP chip (Illumina, San Diego, CA).  After data edition, 37,647 SNPs were conserved on the 29 

autosomes.  DualPHASE from the PHASEBOOK package (Druet and Georges, 2010) was used 
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to infer haplotypes from the genotyped individuals and to assign them to K ancestral haplotype 

clusters (K was set equal to 5, 10 or 20). 

To simulate different stratification scenarios including breed (i.e. structured populations) and 

polygenic (i.e. familial relationships) effects, and mimicking causal variant (SNP with significant 

impact) effects, the following model was used:  

η=X1µ+X2β+Z1u+Z2v 

where µ is the mean effect, X1 is a vector of "1", β is the breed effect, X2 is a vector containing the 

percentage of Holstein blood (ranging from 0 to 1), Z1 is a matrix (n x 1000) containing the 

number of alleles "1" of a set of 1000 SNPs affecting the phenotype, u is a vector containing the 

allelic substitution effects of 1000 SNPs used to simulate a polygenic effect, Z2 is a vector 

containing the number of alleles "1" for the SNP of interest and v is the allelic substitution effect 

for that SNP.  The breed effect was equal to 0, 0.2, 0.4 or 0.7 according to the scenario 

(corresponding to odd ratios (OR) equal to 1.0, 1.22, 1.5 and 2.0, respectively), the individual 

SNP effects (1000 SNPs) were drawn from a gamma distribution (shape = 0.4 and scale = 1) 

(Calus or Meuwissen).  The variance of the polygenic effects (the sum of 1000 individual SNP 

effects) was then rescaled to 0 or 0.16.  Finally, the studied SNP effects were equal to 0.5 and 0.8 

(corresponding to OR equal to 1.65 and 2.22, respectively). 

The phenotype of each individual was then sampled from a binary distribution with mean equal to: 

   
   

     
 

The overall mean effect was set to obtain an incidence of the disease of 27 % in the population.  

Finally, 500 cases and 500 controls were randomly sampled from the 3547 genotyped individuals.  

Simulations were repeated for 1,000 different SNPs chosen as potential causal variants.  One 

thousand SNPs were selected as potential major variants and were removed from the dataset prior 

to phasing.  A total of 10 000 and 100 000 simulations were performed per scenario to estimate 

power and to compute QQ-plots, respectively. 

Results 

Simulated data 

The maximum LD (measured by r
2
) between each of the 1000major variants and the remaining 

SNPs (hereafter called marker SNPs) or with the 5, 10 or 20 ancestral haplotypes was estimated 
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within a 2Mb interval (1Mb on each side of the major variant).  The maximum r
2
 was on average 

equal to 0.40 with marker SNPs and to 0.51 and 0.72 with 10 or 20 ancestral haplotypes.  

However, in some cases, SNPs can still present higher LD.  Indeed, using marker SNPs or K = 

20 haplotypes, 7.5 % of the major variants were captured with an r
2
 of 1.0 whereas this value 

dropped to 0% with 5 or 10 haplotypes.  From here on, K = 20 for the remainder of the 

simulation study. 

To test whether our model correctly accounted for stratification, type-I errors were estimated by 

testing the model under H0 (the major variant had no effect: v was set equal to 0) and QQ-plots 

were generated.  Simulations were performed including a breed effect of 0.4, but no polygenic 

effect.  Four models were fitted to the generated dataset: using haplotypes or marker SNPs, and 

including or not a polygenic effect accounting for stratification.  In Figure 1, models without 

polygenic effect clearly present an excess of small P-values.  After inclusion of the polygenic 

effect, the regression slopes of the QQ-plot were below one, indicating that stratification was 

correctly accounted for but that tests are slightly too conservative. 

In Table 1, regression coefficients of QQ-plots obtained with the four fitted models applied to 

different simulated scenarios are presented.  In all cases where stratification was simulated, 

models without polygenic effect showed excess of small P-values, particularly with haplotypes 

which tend to capture more stratification effects.  The inclusion of a polygenic effect resulted in 

regression coefficients below 1.0, even when both breed and polygenic effects were simulated.  

In these simulations, two methods were used to estimate P-values, namely the permutation test and 

the gamma approximation test, with both yielding approximately the same regression slopes after 

correction for stratification. 

Table 2 compares the power of models with marker SNPs or haplotypes for different OR and 

frequencies of the major variant (permutations were used to estimate P-values).  In GWAS, due 

to multiple testing, low P-values must be achieved but the number of simulations allowed us only 

to estimate the power at α= 0.001.The marker with the strongest association is not always the 

closest to the major variant.  Therefore, power was tested in a 2Mb window centered on the 

major variant, spanning ~ 30 SNPs.  To correct for the resulting multiple testing (and correlation 

among successive tests along the region), chromosomes were randomly shuffled across 

individuals 10 000 times.  For each permutation, the best P-value was stored and the association 
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test was declared significant at P < 0.001 if one of the P-values was lower than 9990 of the best 

P-values obtained by permutation.  Major variants, with resulting OR equal to 1.65 and 2.22, 

accounted only for a small fraction of the variation 

(r
2
 between the SNP and the binary trait below 0.04 and 0.08 according to the SNP effect).  Due 

to incomplete LD with causative SNPs, haplotypes and genotyped SNPs captured an even smaller 

fraction of that variance.  Therefore the power was low (tests are already corrected for ~ 30 

repeated correlated tests by the permutation procedure explained above), particularly when minor 

allele frequency (MAF) was below 0.2 and for small OR (1.65).  For larger SNP effects, power 

increased, particularly when using ancestral haplotypes in the model which proved better in the 

present simulations for MAF above 0.10. 

The power was also compared for different levels and types of structures (Table 3).  In all cases, 

use of ancestral haplotypes resulted in higher power than for single SNPs and power decreased in 

datasets presenting structure (particularly for haplotypes and in presence of polygenes). 

Real data 

Data from the Belgian Blue cattle breed heredo-surveillance platform were used to test the method 

on real datasets.  Four phenotypes were analyzed: 3 monogenic recessive diseases [gingival 

hamartoma (33 cases), arthrogryposis (13 cases) and prolonged gestation (25 cases)] and 

color-sidedness which is monogenic dominant (8 cases).  The causative variants are known for 

hamartoma (Sartelet et al. in preparation) and color-sideness (Durkin et al. 2012) whereas for 

arthrogryposis and prolonged gestation, diagnostic tests have been developed based on markers in 

LD with the causative variants.  In addition to cases, genotypes from 300 controls were available.  

Individuals were genotyped for a custom made 50K bovine chip described in Charlier et al. (2008).  

After deleting markers with a call rate below 0.90 or having a MAF below 0.05, 41 878 SNPs 

mapping to autosomal chromosomes were used in the study.  Haplotypes were reconstructed 

using DualPHASE (Druet and Georges, 2010) with 10 ancestral haplotypes (we reduced the 

number of ancestral haplotypes to 10 since the number of individuals is much smaller than in the 

simulation study).  Association studies were also performed with EMMAX (Kang et al. 2010) 

which performs single point (SNPs) association studies with LMM that account for stratification 
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(through inclusion of a kinship matrix).  After Bonferroni correction for ~ 50 000 tests, 

genome-wide significance was set at10
–6

. 

For the 3 monogenic recessive diseases P-values (estimated with the gamma approximation) 

below 10
–40

 were obtained (Manhattan plots are available in Supplementary Figures) in regions in 

which almost all cases were homozygous for a specific ancestral haplotype whereas almost none 

of the controls was homozygous for that haplotype, suggesting high LD between this ancestral 

haplotype and the causative variant.  The identified regions were in agreement with the previous 

findings.  The Manhattan plot for color-sidedness is presented in Figure 2a.  The lowest P-value 

is below 10
–10

 and the corresponding position is located at 0.7Mb from a CNV causing the 

phenotype, a copy of a chromosomal segment on BTA6 encompassing the KIT locus which 

translocated to BTA29 (Durkin et al. 2012).  All color-sided individuals carry at least one copy 

of the same ancestral haplotype (it has dominant behavior).  Some controls also carry the 

haplotype but the phenotype is not observed.  Indeed, the phenotype has an incomplete 

penetrance since it cannot be observed on individuals with completely white coats (homozygous 

genotypes for a frequent common codominant mutation at the roan locus results in white coats 

[Charlier et al. 1996]). 

Associations performed with EMMAX are presented in Supplementary Figures for monogenic 

recessive diseases and Figure 2b for color-sideness.  This software relies on LMM and assumes 

that the traits are normally distributed.  As other LMM packages, it can still be applied on binary 

traits and perform well as shown in Supplementary Figures where several SNP in the region 

surrounding the causative SNP were highly significant and no other SNP reached such levels of 

significance.  However, some SNPs reach genome-wide significance in non-causative regions 

(e.g. association study for arthrogryposis). 

For color-sideness, use of EMMAX resulted in a Manhattan plot where the causative region is 

non-significant and difficult to identify (other regions of the genome show higher significance).  

These examples illustrate that considering binary trait as normally distributed and using SNP as 

covariates can result in situations where the region harboring the causative mutation is difficult to 

identify.  In such situations, extension to GLMM and use of ancestral haplotypes resulted in 

associations where many positions in the region of interest have high level of significance, clearly 
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above the remainder of the genome and with less non-causative regions reaching genome-wide 

significance. 

Computational performance 

To test the computational efficiency of the developped software, we ran an implementation 

compiled with Intel Fortran using openMP and MKL libraries on a dataset with a total of 4600 

individuals genotyped for 500 000 SNPs.  The analysis was performed on a Intel Xeon E5520 

processor at 2.27GHz using four threads.  The full analysis lasted 2 h 36min and required a total 

of 2.28Gb of memory. 

Discussion 

Our simulation studies showed that taking into account genomic relationships among individuals 

through inclusion of a polygenic effect in GLMM accounted for stratification, as previously 

observed with LMM (e.g. Malosetti et al. 2007; Yu et al. 2006; Zhao et al. 2007).  It was also 

observed that corrections were effective in structured populations (breed effect) and/or when 

family structure was present (polygenic effect).  Most designs in model organisms, plants or 

animal species present a high level of stratification because either several populations are used in 

the study or the individuals are closely related, making these robust corrections essential.  In 

addition to correcting for stratification, the GLMM framework offers additional flexibility because 

it allows for a better modeling of the phenotypes through the inclusion of additional covariates 

(e.g. sex, age, etc.) and a consequently better association study where all known nuisance factors 

have been corrected for.  Such a possible nuisance factor could be a measure of the population 

structure, as suggested in some studies (e.g. Price et al. 2006; Pritchard et al. 2000).  The effect 

of adding this correction concurrently with the genomic relatedness structure might be necessary 

in some populations albeit not always (Kang et al. 2008; Zhao et al. 2007).  Another point 

stressing flexibility of LMM is that association can easily be performed with either SNPs or 

(ancestral) haplotypes.  Extension from LMM to GLMM is important for traits that are not 

normally distributed.  However, in many situations such as large balanced case/control studies 

where variants are not very rare and have low or moderate effects, LMM perform well with binary 

traits.  GLMM are recommended for strong deviations from normality, when cases or controls 

are rare within a cell (covariates of the model such as fixed, SNP or haplotype effects).  Such 
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situations occur more often in smaller designs with few cases (or controls) and with rare variants 

(or haplotypes).  Such designs are still common in animal or plant species and our applications to 

real data illustrate that in such cases, use of a GLMM with a logit link function results in cleaner 

association than LMM. 

Slopes of QQ-plots indicated that statistical tests were too conservative resulting in a loss of power.  

Similar deflation has been described in Amin et al. (2007) and is due to the fact that polygenic 

effects (used for correction) and SNP or haplotype effects are correlated (e.g. SNP or haplotypes 

are used to estimate K).  This correlation is stronger with haplotype which are therefore more 

affected by the over-correction.  One solution would be to correct for deflation with genomic 

control as in Amin et al. (2007) or to perform a test modeling simultaneously polygenic and 

haplotype effects at most interesting positions.  Without such corrections, the proposed model 

may be more conservative than some other methods relying on LMM. 

Although computational efficiency was not the main goal of the present study, the developed 

method presents interesting computational features.  First, GLMM must be solved only once 

(with the SNP or haplotype variance set to 0).  Solving the GLMM equations and inferring the 

variance components are potentially time consuming.  With likelihood ratio tests, variances are 

inferred for a model including polygenic and SNP (or haplotype) random effects for each tested 

position.  With the present method, the test score is obtained from a simple statistic based on 

records corrected for effects of the model under the null hypothesis (without SNP or haplotypic 

effect).Performing this test is much faster than inferring variance in the full model.  This is very 

similar to the approach used in GRAMMAR (Aulchenko et al. 2007).  In addition, since the data 

are corrected for family and population structure it becomes exchangeable and permutations can 

be performed freely, which was not the case for the raw data.  Thanks to permutations, empirical 

P-values corrected for multiple testing can easily be obtained.  Still, with permutations it would 

be time consuming to obtain small P-values as typically needed in GWAS studies; in that case, 

approximation of the test score distribution with a gamma distribution (with scale and shift 

parameters obtained empirically through 1000 permutations) seems to perform well. 

As in previous studies (Druet and Georges, 2010; Su et al. 2008), assigning chromosomes to 

ancestral haplotypes resulted in high LD between haplotype groups and underlying mutations.  In 

the present study, the LD was much higher than when using SNP for a cattle population and with ~ 
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50 000 SNPs covering the genome.  The picture might change with different marker densities or 

in other populations.  The method for clustering haplotypes has also been successfully applied to 

the fine-mapping of a QTL affecting bovine stature (Karim et al. 2011) in a crossbred population.  

In that study, the association between the ancestral haplotypes and the later candidate causative 

variants was almost perfect (2 misclassified haplotypes out of 1490).  More recently, our method 

allowed to fine-map a mutation causing dwarfism in cattle which was always associated to the 

same ancestral haplotype (Sartelet et al. 2012).  Other examples in the present study illustrate the 

high LD between the ancestral haplotypes obtained with DualPHASE (Druet and Georges, 2010) 

and ungenotyped variants.  The association should be better for more recent variants which 

rapidly increased in frequency due to selection.  In that case, the length of the haplotype 

associated to the variant would be longer than for random variants (as those used in the simulation 

study), making it easier to identify the haplotype.  Ancestral haplotypes can be associated with 

different types of variants including SNP, multiple alleles, several-linked SNP (a small haplotype), 

insertions/deletions and duplications.  In the real data example on color-sidedness, ancestral 

haplotypes presented high LD with a trans CNV and other examples of association between 

ancestral haplotypes and deletions or duplications (either in cis or trans position) can be found in 

Durkin et al. (2012).  Note, when large reference populations genotyped at high density (or 

sequenced) are available, imputation followed by single point association would probably result in 

higher power than use of ancestral haplotypes (if there is only one causal variant and if SNPs in 

high LD with this variant are genotyped in the reference panel).  However, such reference 

populations are only available in a few species.  While providing high LD with underlying 

variants, the use of ancestral haplotypes also controls the number of haplotype groups to be used 

in the study, which is important to maintain statistical power.  This method proves also flexible 

since there is no need to define arbitrary windows and since haplotype origin can change at any 

position along the chromosome.  For instance, recombinant haplotypes do not create additional 

haplotypes groups: they are simply potentially assigned to different groups on each side of the 

cross-over position.  Finally, haplotypes with small differences due to genotyping errors or new 

non-causative mutations can still be grouped together whereas with less flexible methods, new 

haplotype groups would be defined for each difference, resulting in a loss of power.  For the 

same reason, missing genotypes are easily handled.  Our score test framework can easily be 
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applied with other methods for clustering haplotypes, even those modeling a correlation between 

haplotypic effects.  Our method does not rely on a particular biological model but identifies 

ancestral haplotypes significantly associated with the disease.  Therefore it can be applied to 

monogenic recessive diseases, dominant diseases, phenotypes with complete or incomplete 

penetrance, oligenic or polygenic diseases or complex traits.  It is also robust to misclassified 

samples which will only reduce slightly the power since there are no strong assumptions such as 

sharing of an IBD segment in all cases.  For instance, the method was used to fine-map a variant 

causing dwarfism in Belgian Blue cattle (Sartelet et al. 2012) which was the cause only for a 

subset of cases (14 out of 33).  Still, the method detected with high significance (P-value 

<10E-11) the region harboring the causative mutation.  Further veterinary examination revealed 

that dwarfs could be classified into different categories and that the 14 cases corresponded to a 

specific sub-group.  Even without that knowledge, the variant was identified, stressing the 

robustness of the method.  The example of color-sidedness also illustrates that with only a few 

cases (8), a dominant gene (cases carry only one haplotype) and incomplete penetrance (the 

phenotype is not observed on white animals) the method still identifies with high significance the 

region harboring the causative variant. 
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Fig. 1. QQ-plots obtained with marker SNPs (black) or ancestral haplotypes (gray) with (circles) 

or without (triangles) polygenic terms accounting for stratification included in the model.
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Fig. 2. Manhattan plot for association study for color-sideness with (A) GLMM score tests using 

ancestral haplotypes and (B) EMMAX 

Table 1. Regression coefficients of QQ-plots obtained with four fitted models on four simulated 

designs [P-values computed with permutation test or with a gamma approximation test (in 

parenthesis)] 

 

Simulated 

breed effect 

Simulated 

polygenic 

variance 

Fitted model 

without polygenic effect with polygenic effect 

SNP
a 

Anc. Hap.
a 

SNP Anc. Hap. 

0 0 1.03 (1.01) 0.99 (1.02) 0.97 (0.96) 0.86 (0.87) 

0.4 0 1.59 (1.57) 2.54 (3.06) 0.94 (0.94) 0.82 (0.83) 

0 0.16 1.39 (1.36) 2.02 (2.22) 0.95 (0.95) 0.86 (0.86) 

0.2 0.16 1.65 (1.63) 3.29 (3.89) 0.94 (0.94) 0.82 (0.83) 

a
 Association is performed either with SNP or ancestral haplotypes. 
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Table 2. Variant detection power (α= 0.001) with SNP or ancestral haplotypes in a design without 

structure (no breed and polygenic effects) for different minor allelic frequency (MAF) classes of 

the causal SNP 

 

MAF Class 

r
2a

 

OR of variant = 1.65 

r
2
 

OR of variant =2.2 

SNP Anc. Hap SNP Anc. Hap 

[0,0.1] 0.008  0.003  0.002  0.018  0.020  0.016  

(0.1,0.2] 0.017  0.013  0.030  0.040  0.072  0.194  

(0.2,0.3] 0.024  0.033  0.071  0.057  0.129  0.421  

(0.3,0.4] 0.030  0.050  0.113  0.071  0.136  0.520  

(0.4,0.5] 0.032  0.053  0.152  0.076  0.150  0.622  

a
 r

2
 between causative variant and observed phenotype. 

Table 3. Power of association mapping (α= 0.001) with SNP and haplotypes in different designs 

with stratification (statistics are provided across all MAFs) 

 

Simulated  Simulated  OR of variant = 1.65 OR of variant =2.2 

breed effect 
polygenic 

variance 
SNP Anc. Hap. SNP Anc. Hap. 

0 0 0.023  0.078  0.079  0.373  

0 0.16 0.025  0.057  0.077  0.322  

0.4 0 0.027  0.067  0.077  0.359  

0.7 0 0.028  0.071  0.076  0.365  

0.2 0.16 0.023  0.053  0.074  0.322  
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Supporting Figure 1: Manhattan plot for association study for gingival hamartoma with GLMM 

score tests using ancestral haplotypes and EMMAX (from top to bottom).
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Supporting Figure 2: Manhattan plot for association study for arthrogryposis with GLMM score 

tests using ancestral haplotypes and EMMAX (from top to bottom). 
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Supporting Figure 3: Manhattan plot for association study for prolonged gestation with GLMM 

score tests using ancestral haplotypes and EMMAX (from top to bottom) 
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Part 2: Application of a haplotype-based method for 

association mapping of complex traits 

 

 

2.1 Genome-Wide Association Study Reveals Constant and Specific 

Loci for Hematological Traits at Three Time Stages in a White Duroc 

x Erhualian F2 Resource Population 

 

2.2 Results of a haplotype-based GWAS for recurrent laryngeal 

neuropathy in the horse 

 

2.3 A splice site variant in the bovine RNF11 gene compromises 

growth and regulation of the inflammatory response 

 

2.4 Detection of copy number variants in the horse genome and 

examination of their association with recurrent laryngeal neuropathy 

 

2.5 Serial translocation by means of circular intermediates underlies 

colour sidedness in cattle 
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Genome-wide Association Study Reveals Constant and Specific Loci for 

Hematological Traits at Three Time Stages in a White Duroc × Erhualian F2 

Resource Population 

Z. Zhang, Y. Hong., J. Gao, S. Xiao, J. Ma, W. Zhang, J. Ren, L. Huang 

Abstract 

Hematological traits are important indicators of immune function and have been commonly 

examined as biomarkers of disease and disease severity in humans.  Pig is an ideal biomedical 

model for human diseases due to its high degree of similarity with human physiological 

characteristics.  Here, we conducted genome-wide association studies (GWAS) for 18 

hematological traits at three growth stages (days 18, 46 and 240) in a White Duroc × Erhualian F2 

intercross.  In total, we identified 38 genome-wide significant regions containing 185 

genome-wide significant SNPs by single-marker GWAS or LONG-GWAS.  The significant 

regions are distributed on pig chromosomes (SSC) 1, 4, 5, 7, 8, 10, 11, 12, 13, 17, and 18, and 

most of significant SNPs reside on SSC7 and SSC8.  Of the 38 significant regions, 7 showed 

constant effects on hematological traits across the whole life stages, and 6 regions have 

time-specific effects on the measured traits at early or late stages.  The most prominent locus was 

the genomic region between 32.36 and 84.49 Mb on SSC8 that is associated with multiple 

erythroid traits.  The KIT gene in this region appears to be a promising candidate gene.  The 

findings improve our understanding of the genetic architecture of hematological traits in pigs.  

Further investigations are warranted to characterize the responsible gene(s) and causal variant(s) 

especially for the major loci on SSC7 and SSC8.  

 

PLoS One 8 (2013) e63665
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Introduction 

In the immune system, hematological traits include three components: leukocytes (white blood 

cells, WBCs), erythrocytes (red blood cells, RBCs) and platelets.  All of these components 

represent important parameters of immune capacity of individuals (TULLIS 1952).  

Hematological related cells in the peripheral blood execute a range of functions including the 

transport of oxygen, innate and adaptive immunity, vessel wall surveillance, homeostasis and 

wound repair.  As blood incessantly flows within the circulatory system around organs and 

tissues, it can reflect any slightly abnormal changes in the body rapidly by testing the changes of 

cells number and (or) cells volume.  Deviations outside normal ranges for these parameters are 

indicative of different kinds of disorders including cancer and cardiovascular, metabolic, 

infectious and immune diseases (Soranzo et al. 2009).  Measurements of erythrocytes within the 

blood are becoming a routine examination to uncover various hematological related disorders.   

The count and volume of cellular elements in circulating blood are highly heritable and vary 

considerably among individuals (Edfors-Lilja et al. 1994; Evans et al. 1999; Garner et al. 2000).  

In human, genome-wide association studies (GWAS) have identified > 60 loci associated with 

hematological parameters in individuals of European ancestry, Japanese population, and African 

Americans (Soranzo et al. 2009; Ganesh et al. 2009; Kamatani et al. 2009, 2010; Meisinger et al. 

2009; Nalls et al. 2008; Uda et al. 2008).  However, these polymorphisms explain only a small 

fraction of the genetic variance in hematological traits.  This is so called “missing heritability” 

(Yang et al. 2010).  Well-designed study in animal model is an efficient way to identify 

additional genetic factors contributing to complex phenotypic variance.  The domestic pig is a 

large-animal model for human genetic diseases due to its high degree of similarity with human 

physiological characteristics.  Identification of responsible genes and causal variants for 

hematological traits in pigs would benefit researches on human medicine. 

So far, 239 quantitative trait loci (QTL) for swine hematological traits have been reported by 

linkage mapping in the AnimalQTLdb database (Hu et al. 2007), but the confidence intervals of 

these QTL are generally large (>20 cM) and harbor hundreds of functional genes, thereby 

hampering the characterization of plausible candidate genes.  Compared to traditional QTL 

mapping strategies, GWAS based on high-density markers is a more powerful tool to identify 
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genomic regions for phenotypic traits.  To our knowledge, only two very recent studies have 

reported the GWAS for hematological parameters in pigs (Luo et al. 2012; Wang et al. 2013).  

The two studies identified 10 and 62 genome-wide significant loci for hematological traits.  

However, only one locus for RDW on pig chromosome (SSC) 12 was consistently detected in the 

two studies, implying the complexity and heterogeneity of hematological traits. 

In our previous studies, we conducted a whole genome linkage mapping in a White Duroc × 

Erhualian F2 resource population using 183 microsatellite markers, and identified a number of 

QTL affecting hematological traits measured at 3 growth stages (Yang et al. 2009; Zou et al. 

2008).  To fine map the identified QTL and uncover new genetic variants associated with 

hematological traits, we herein performed GWAS on the F2 resource population using the 

PorcineSNP60 Genotyping BeadChip technology (Illumina, USA).  The experimental data are 

available upon the readers’ request. 

Material and Methods 

Ethics statement 

All the procedures involving animals are in compliance with the care and use guidelines of 

experimental animals established by the Ministry of Agriculture of China.  The ethics committee 

of Jiangxi Agricultural University specifically approved this study.  

Animals and phenotypic measurements 

A detail description of the White Duroc × Erhualian F2 resource population and phenotype 

recording have been presented in our previous publications (Yang et al. 2009; Zou et al. 2008; 

Guo et al. 2009).  Briefly, the three-generation resource population comprising 1912 F2 

individuals was developed by crossing 2 White Duroc boars and 17 Erhualian sows.  All animals 

were kept under a consistent standard pigpen and were fed with same diet at the experimental farm 

of Jiangxi Agricultural University.  Eighteen hematological parameters were measured for 1449 

individuals at three age stages: days 18, 46 and 240.  Blood samples of 5 ml were collected from 

each animal and were directly injected into eppendorf tubes containing 30 ul of 20% EDTA in 

polybutadiene-styrene.  A standard set of hematological data were recorded using a CD1700 

whole blood analyzer (Abbott, USA) at the First Affiliated Hospital of NanChang University, 

China.  The 18 hematological parameters include 7 baseline erythroid traits ( hematocrit (HCT), 
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hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobina 

concentration (MCHC), mean corpuscular volume (MCV), red blood cell count (RBC), and red 

blood cell volume distribution width (RDW) ), 7 leukocyte traits ( granulocyte count (GRAN), 

granulocyte count percentage (GRAR), monocyte count (MON), monocyte count percentage 

(MONR), lymphocyte count (LYM), lymphocyte count percentage (LYMA), and white blood cell 

count (WBC) ), and 4 platelet traits ( plateletcrit (PCT), platelet distribution width (PDW), platelet 

count (PLT), and mean platelet volume (MPV) ).  

Genotyping and quality control 

Genomic DNA was extracted from ear tissues using a standard phenol/chloroform method.  All 

DNA samples were qualified and standardized into a final concentration of 20 ng/ul.  A total of 

1020 individuals in the F2 pedigree were genotyped for the Porcine SNP60 Beadchips on an iScan 

System (Illumina, USA) following the manufacturer’s protocol.  Quality control was executed to 

exclude SNPs with call rate < 95%, minor allele frequency (MAF) < 5%, severely Hardy 

Weinberg disequilibrium (P < 10E-5) and Mendelian inconsistency rate > 10%.  Moreover, 

individuals with missing genotypes >10% or Mendellian errors >5% were discarded from the data 

set. 

Statistical analyses 

Single-marker GWAS: The allelic difference of each SNP in phenotypic traits was tested using a 

general linear mixed model (Breslow and Clayton 1993; Bradbury et al. 2007; Yu et al. 2005).  

The model included a random polygenic effect, and the variance-covariance matrix was 

proportionate to genome-wide identity-by-state (Hayes and Goddard 2008).  The formula of the 

model in mathematic is: eZuXbY  S , where Y is the vector of phenotypes, b is 

the estimator of fixed effects including sex and batch,  is the SNP substitution effect and u is 

the random additive genetic effect following multinomial distribution u ~ N(0, Gσα
2
), in here G is 

the genomic relationship matrix that was constructed based on SNP markers as described in Eding 

et al. (2001) , and σα
2
 is the polygenetic additive variance.  X, Z are the incidence matrices for b 

and u, S is incidence vector for , e is a vector of residual errors with a distribution of N (0, Iσe
2
).  

All single-marker GWAS were conducted by GenABEL packages (Aulchenko et al. 2007).  The 

genome-wide significant threshold was determined by bonferroni correction, which was defined as 
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0.05/N, where N is number of tested SNPs.  In our study, the number of studied SNPs is 39622 

and the corresponding genome-wide threshold is 1.26e-6. 

GWAS of time serials data: As all experimental individuals were recorded for hematological traits 

at three time stages (days 18, 46 and 240), we assumed that measurements at different stages in 

the same individual would be more correlated than those obtained from different individuals.  To 

conceptualize this assumption, phenotypic records on the three age stages were analyzed together 

using a mixed effect approach to distinct the correlations within and/or among individuals 

(Harville 1997; Laird and Ware 1982).  The model was similar to the above-mentioned 

single-marker GWAS model except that the phenotypic variance was partitioned to five parts 

rather than four parts: variance explained by SNPs, by fixed factors such as sex and batch, by 

polygenic effects, and by the time stage and by residual errors.  The longitudinal GWAS were 

performed by LONG-GWAS to adjust the variance and covariance structure among the three age 

stages (Furlotte and Eyheramendy 2012). 

Haplotype-based association studies: A haplotype-based association study was also performed to 

identify genomic regions associated with the tested hematological traits (Druet and Farnir 2011).  

Haplotypes corresponding to a predetermined number (K = 20) of hidden haplotype states was 

conducted with a hidden Markov model via PHASEBOOK (Druet and Georges 2010).  

Association between phenotypes and the hidden haplotypes was detected under a generalized 

linear mixed framework that corrected population stratification by fitting a random polygenic 

effect.  The mathematic formula of the mixed model was the same as the single-marker analysis, 

except that S was incidence matrices of hidden haplotype states rather than SNP genotypes and 

that the estimated haplotype effects were set as random effects. 

Linkage disequilibrium (LD) analysis: LD extents were estimated for significant SNPs using 

HAPLOVIEW (Barrett et al. 2005).  The LD blocks were determined according to the 

four-gamete rule to pinpoint plausible candidate genes for hematological traits. 

Results 

Phenotype statistics and SNP characteristics 

Descriptive statistics of the measured traits in the current experimental population are presented in 

Table 1. Of the 7 baseline erythroid traits, 4 parameters including HCT, HGB, MCHC and RBC 
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increased with age and one measurement (RDW) declined with age, while MCV and MCH first 

decreased and subsequently increased.  Of the 7 leukocyte traits, GRAN and GRAR increased 

while LYMA decreased with age.  The tendency of the other leukocyte traits varied irregularly.  

No consistent variation pattern was observed for platelet traits.   

After quality control, 3077 SNPs with call rate <90%, 15711 SNPs with MAF < 0.05, 6502 SNPs 

showing Hardy Weinberg disequilibrium (P < 10E-5) and 208 markers exhibiting Mendelian 

inconsistency were excluded for further analyses.  All individuals are qualified samples.  A final 

set of 39622 SNPs on 1020 individuals were explored for the subsequent GWAS. 

Summary of significant loci identified by GWAS 

For GWAS on F2 populations, a cluster of significant SNPs would be typically detected at a 

significant locus due to large LD extent in such populations.  If the distance between two 

genome-wide significant SNPs was small than 10 Mb, the two SNPs were treated as the same 

locus otherwise they were considered two independent loci in this study.  According to this 

criterion, 13 genomic regions on 11 autosomes were strongly associated with blood cell 

parameters by single-marker GWAS or LONG-GWAS (Table 2 & Table S1).  The 13 regions 

harbor 185 significant SNPs and 91 annotated genes (data not shown).  Of the 185 SNPs, 119 

SNPs corresponding to 63 genes were evidenced by both association strategies.  In the 

single-marker GWAS, 147 significant SNPs representing 78 genes were identified in comparison 

with 158 associated SNPs from 76 genes revealed by LONG-GWAS. 

Loci for erythrocyte traits 

In total, we found 140 SNPs and 118 SNPs significantly associated with 7 erythrocyte traits by 

single-marker GWAS and LONG-GWAS, respectively.  The corresponding Manhattan plots are 

shown in Figure 1 and Figure S1.  

Single-marker GWAS for erythrocyte traits: For HCT and HGB, we identified 3 genome-wide 

significant loci on SSC7.  The loci cover the region from 33 to 56 Mb and had the effect 

exclusively on the measurements at day 240.  The lead SNPs within the regions are identical for 

the two traits.  No genome-wide significant SNP was found for these traits at days 18 and 46.  

For MCH, MCV and RBC, all significant SNPs were detected on SCC8 which appeared to harbor 

two independent associated regions (32.36 - 50.1 Mb and 66.03 - 84.49 Mb).  The regions 



Part 2 

 61 

showed constant effect on MCV across the three age stages whereas exhibited time-specific 

influence on MCH and RBC as the association disappeared on early-stage samples at day 46.  

Notably, a cluster of SNPs (>100) on this chromosome exhibited signals of strong association with 

MCV and MCH at day 240 with the top SNP (ss131369293) at 50096834 bp.  For MCHC, only 

ss131260759 at 4248936 bp on SSC4 achieved the genome-wide significant level for the trait 

measured at day 46.  

LONG-GWAS for erythrocyte traits: A total of 118 SNPs within 10 genomic regions showed 

strong association with erythrocyte-related traits by LONG-GWAS.  The results confirmed the 

findings of single-marker GWAS for HCT on SSC7, and for MCV, MCH and RBC on SSC8.  It 

indicates that these loci consistently regulate red blood cells at different stages.  Moreover, we 

uncovered two novel loci for HGB on SSC1 and SSC12 with the lead SNPs at 65994430 

(ss120021119) and 29107229 (ss131459230) bp on the two chromosomes, respectively.  One 

new locus was identified for HCT at 85640695 bp on SSC11.  Only one significant locus for 

MCHC was found at 4168738 bp on SSC10, which differed from the result from the single-marker 

GWAS.  

Loci for white blood cell counts 

Only 6 genome-wide significant SNPs on 4 autosomes were identified for leukocyte traits by 

single-marker GWAS (Figure 2).  Two SNPs within the RAB44 gene on SSC7 were associated 

with WBC at day 240.  Two significant SNPs (ss131368550 and ss131364780) for GRAR at 

days 18 and 46 were found at different positions (40.78 Mb and 26.31 Mb) on SSC8.  Moreover, 

one SNP (ss131544979) at 2971217 bp on SSC17 was associated with LYM at the age of 18 days.  

A single SNP (ss478935524) at the position of 5860648 bp on SSC18 was associated with LYMA 

by LONG-GWAS.  

Loci for platelet traits 

Analysis of platelet traits revealed two significant loci on SSC13 and SSC5 by single-marker 

GWAS and 39 associated loci by LONG-GWAS (Figure 2).  In simple GWAS results, 

ss131296370 at 95971272 bp on SSC5 and ss107854351 at 14848132 bp on SSC13 were 

associated with PLT and PDW at day 46 with P-values of 1.14 E-8 and 3.94 E-7 respectively.  

For LONG-GWAS, two significant loci for PDW were detected on SSC8.  The lead SNPs at the 



Part 2 

 62 

two loci were SS131368505 at 40852645 bp and ss131371056 at 75662581 bp with a distance of 

34.81 Mb, implying at least 2 loci controlling PDW on chromosome 8. 

Discussion 

GWAS versus QTL mapping 

We have previously performed genome scans on the F2 population using 183 microsatellites.  We 

detected 46 genome-wide significant QTL for baseline erythroid traits, 8 for leucocyte-related 

traits and 6 for platelet-related traits.  These QTL are distributed on SSC1, 2, 7, 8, 10, 12, 13, 15 

and X (Yang et al. 2009; Zou et al. 2008).  In the present study, we did not test the association of 

SNPs on chromosome X as the currently available GWAS statistical models are hard to handle the 

random inactivation situation on the sexual chromosome.  By using single-marker GWAS or 

LONG-GWAS on the 60K SNP data, we confirmed the previously identified QTL on SSC7 and 

SSC8 accounting for 46% of the total detected QTLs and uncovered two additional genome-wide 

loci for HCT and HGB on SSC11 and SSC12, respectively.  QTL mapping studies in F2 

populations were generally conducted by comparing the phenotypic difference between F2 

individuals inheriting different alleles from the founder breeds under the assumption that QTL 

alleles were alternatively fixed in each founder breed of the F2 intercross.  The advantage of this 

mapping strategy is that we can anchor genomic regions affecting phenotypic traits using sparse 

markers.  However, it could result in false negative signals If QTL alleles are segregating within 

founder lines.  Moreover, the confidence intervals of most QTL were larger than 20 cM.  In our 

QTL mapping study, the smallest intervals were 3 and 4 cM for MCV and MCH at day 18 on 

SSC8, respectively (Yang et al. 2009).  In comparison, GWAS test the average phenotypic 

difference grouped by alternative alleles of high density markers and without any assumption; 

thereby it could identify significant signals even if QTL is not fixed in founder breeds.  Moreover, 

GWAS could narrow down the confidence interval of QTL to small genomic regions.  In the 

current study, the confidence interval for MCV at day 18 on SSC8 were 0.80 Mb based on the 1.5 

Lods drop rule (Dupuis and Siegmund 1999).  Only a handful of genes exist in such small 

regions.  
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QTL replication with other studies 

Until now, there were only two very recent GWAS papers describing significant genomic loci for 

hematological parameters in pigs (Luo et al. 2012; Wang et al. 2013).  Luo et al. (2012) detected 

62 genome-wide significant and 3 chromosome-wide significant SNPs associated with erythrocyte 

traits by performing GWAS on a Large White × Chinese Min F2 intercross.  All significant SNPs 

were found on SSC7 and SSC8 except one SNP associated with RBC on SSC1 and two SNPs for 

RDW on SSC12.  Our results confirmed all of these findings.  Wang et al. (2013) identified 111 

SNPs including 10 genome-wide significant SNPs and 101 chromosome-wide significant SNPs 

for 15 hematological traits in 2 Western breeds and one Chinese synthetic breed.  The 111 SNPs 

are distributed on all autosomes except for SSC7, SSC8 and SSC18.  However, none of these 

SNPs were replicated in this study.  The reasons for the inconsistence could be different genetic 

background of experimental populations in the two studies, the complex genetic basis of 

hematological related cells, and different trait recording methods.  Wang et al. (2013) measured 

hematological traits on pigs at day 35 after immunized with classical swine fever vaccine at day 

21. 

Time constant and specific QTL 

The single-marker GWAS revealed that the significant locus on SSC8 was consistently associated 

with MCV measured at days 18, 46, and 240, suggesting that a common variant regulates MCV at 

the whole life stage.  The constant effect of this locus on MCV was further confirmed by 

LONG-GWAS that treated MCV data at the three ages together and obtained the same finding as 

the single-marker GWAS.  In contrast, ss131544979 at 2971217 bp on SSC17 showed time 

specific effect on LYM at day 18.  SNPs within two different regions on SSC8 were associated 

with GRAR at days 18 and 46, respectively, indicating that distinct genes are involved in 

development stages of granulocyte cells.  Time specific loci were also evidenced for PLT and 

PDW on SSC5 and SSC13 as the association signals were observed only from the data at day 46.  

A high proportion of SNPs on SSC7 and SSC8 were identified for erythroid traits and leukocytes 

traits at day 240.  Notably, the SNPs on SSC7 for HCT, HGB and WBC had a significant effect 

only at day 240 (Table 2) and therefore can be viewed as a late-acting QTL.  It should be noted 
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that all significant SNPs on SSC7 were not located in the SLA region (24.7 Mb - 29.8 Mb), which 

was response for immune system and suspected to a range of diseases.  

LONG-GWAS analysis 

Currently, standard GWAS (e.g. GenABEL) only utilized one time point for each individual.  If 

QTL constantly control the traits during the whole life process, it is reasonable to assume that 

jointly analysis of data at all-time points may be more powerful than the single-time-point 

approach.  We thus used LONG-GWAS that utilized multiple phenotype measurements for each 

individual as proposed by Furlotte et al. (2012).  We not only replicated the linkage mapping 

results for hematological trait, but also identified five new QTL affecting HGB, MCHC, HCT and 

LYMA on chromosomes 1, 12, 10, 11, and 18 respectively.  One disadvantage of LONG-GWAS 

is that the significant signal may be overwhelmed by putting all time point’s data together if QTL 

effects vary during time stage.  In this study, 5 time-specific expressed QTL for MCH, MCHC, 

PLT, PWD and LYM at early stage from 18 to 46 days were identified by the singer-marker 

GWAS, while theses loci were not detected by LONG-GWAS. 

Haplotype analysis for single SNP associated with measured phenotypes 

In the standard GWAS, a prominent locus is usually featured by a lead SNP and a cluster of 

surrounding significant SNPs within a genomic region especially in the F2 pedigrees, in which 

high LD extents are expected.  However, only one genome-wide significant SNP was associated 

with GRAR at days 18 and 46 (Table S2).  None of suggestive SNP was detected in the 

neighboring region of the top SNP.  To test if the signal was false positive result or real 

association, we conducted a haplotype based GWAS for this trait (Figure S2).  We showed that 

dozens of genome-wide SNPs in a large interval were uncovered for GRAR at day 46, and the 

position of the top SNP was exactly the same to the lead SNP in the single-marker GWAS.  For 

GRAR at day 18, the most significant SNPs were moved to another position (86.8 Mb), but the 

second top marker was identical to the top SNP identified in the single-marker GWAS.  The 

findings support the reliability of the single significant marker for GRAR.  

Plausible candidate genes at the significant locus on SSC8  

In the present study, the most interesting finding is the major locus for multiple hematological 

traits on SSC8.  More than half of the detected regions (14 regions) were located on SSC8 that 
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were associated with 9 hematological traits.  Hundreds of significant SNPs in a large single 

region of more than 45 Mb on SSC8 were identified for MCH and MCV at day 240.  In contrast, 

two segments in the ~45 Mb region appeared to be independently associated with the two 

measurements at day 18 as no significant SNP was found in the inter-segment region (Table 2).  

To investigate whether one or two loci affect MCV and MCH on this chromosome, we re-analyzed 

MCH and MCV data conditional on the allelic effect of the lead SNPs (Figure S3).  For MCH at 

day 18, after controlling for the effect of ss131369293, the second significant region disappeared.  

Also, no SNP showed association with MCH and MCV at day 240 after correcting for the effect of 

the lead SNP (ss131369293).  Moreover, the complete LD (D’ = 1) was observed for the two top 

SNPs (ss131369009 at 44.93 Mb and ss107827400 at 66.03 Mb) for MCV at day 240 in the two 

intervals within the ~45 Mb region on SSC8.  These observations support one major locus for the 

tested hematological traits on this chromosome.  However, we can not rule out the possibility that 

two neighboring genes contribute to the phenotypic traits as the conditional analysis can not 

distinguish the effects of two adjacent loci due to LD. 

We noticed that SNPs associated with MCH, MCV, RBC and GRAR at the early stage mainly 

reside in the region of 36.31 to 50.10 Mb.  The stem cell growth factor receptor (KIT) gene 

around 43.55 Mb on this chromosome stands out as a compelling candidate gene as it is essential 

for the development of hematopoietic stem cells and has been highly expressed in hematopoietic 

cells (Escribano et al. 1998; Sakurai et al.i 1996).  Several mutations in KIT have significant 

influence in RBC in the mouse (Jackson et al. 2006).  Johansson et al. (2006) showed strong 

association of KIT variants with erythroid traits in piglets.  Moreover, Fésüs et al. (2005) reported 

the mild effect of KIT on hematological parameters in adult pigs.  Our observation of the KIT 

region associated with hematological traits reinforces the assumption that the KIT gene has a 

significant effect on peripheral blood cell measures in pigs (Cho et al. 2011).   

Conclusion 

In conclusion, a total of 185 genome-wide significant SNPs corresponding to 91 genes were 

identified for 18 hematological traits at the three growth ages in the White Duroc × Erhualian F2 

intercross.  These loci confirmed the previously identified QTL and showed both time constant 

and specific effects on the measured traits.  Of these findings, the most prominent one was the 
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genomic region between 32.36 and 84.49 Mb on SSC8 that is associated with multiple erythroid 

traits.  The KIT gene on this chromosome appears to be a promising candidate gene.  The 

findings improve our understanding of the genetic architecture of hematological traits in pigs.  

Further investigations are warranted to characterize the responsible gene(s) and causal variant(s) 

especially for the major loci on SSC7 and SSC8. 
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Table 1. Descriptive statistics of 18 hematological traits at three growth stages in the F2 resource population 

 

Trait Abbreviation 
Value  (No.) 

Day 18 Day 46 Day 240 

Hematocrit (%) HCT 0.30 ± 0.07 (1447)  0.30 ± 0.07 (1010)  0.41 ± 0.05 (1010)  

Hemoglobin (g/l) HGB 95.55 ± 22.83 (1444)  100.67 ± 18.71 (1025)  137.35 ± 16.08 (1025)  

Mean corpuscular hemoglobin (pg)  MCH 19.34 ± 3.21 (1445)  18.24 ± 4.34 (1009)  19.28 ± 1.49 (1009)  

Mean corpuscular hemoglobin content (g/l) MCHC 319.79 ± 30.86 (1442)  341.41 ± 51.29 (1009)  337.13 ± 15.91 (1009)  

Mean corpuscular volume (fl) MCV 60.66 ± 9.64 (1446)  52.70 ± 8.13 (1019)  57.25 ± 4.29 (1019)  

Red blood cell count (10
12

) RBC 4.92 ± 0.94 (1447)  5.67 ± 1.12 (1010)  7.14 ± 0.87 (1010)  

Red cell distribution width (%) RDW 25.45 ± 4.65 (1405)  24.10 ± 6.34 (1002)  18.94 ± 3.39 (1002)  

Granulocyte count (10
9
) GRAN 1.31 ± 1.35 (1433)  2.96 ± 2.91 (797)  7.47 ± 4.31 (797)  

Granulocyte count percentage(%) GRAR 11.89 ± 10.21 (1433)  15.77 ± 13.28 (910)  41.71 ± 20.69 (910)  

Lymphocyte count (10
9
) LYM 9.28 ± 5.43 (1433)  13.76 ± 5.4 (1024)  7.85 ± 3.74 (1024)  

Lymphocyte count percentage(%) LYMA 79.29 ± 13.79 (1448)  75.06 ± 16.39 (1025)  46.29 ± 17.85 (1025)  

Monocyte count (10
9
) MON 0.21 ± 0.24 (550)  0.40 ± 0.32 (754)  0.22 ± 0.23 (754)  

Monocyte count percentage(%) MONR 1.96 ± 2.11 (551)  2.19 ± 1.68 (754)  1.30 ± 1.35 (754)  

White blood cell count (10
9
) WBC 11.54 ± 6.03 (1449)  18.45 ± 5.97 (1024)  17.02 ± 4.39 (1024)  

Mean platelet volume (fl) MPV 7.95 ± 1.67 (666)  8.30 ± 1.94 (760)  7.93 ± 1.25 (760)  

Plateletcrit (%) PCT 0.44 ± 0.23 (549)  0.75 ± 1.08 (753)  0.23 ± 0.1 (753)  

Platelet distribution width (%) PDW 15.53 ± 2.44 (664)  14.43 ± 1.85 (761)  15.49 ± 0.94 (761)  

Platelet count (10
9
) PLT 559.26 ± 219.65 (1386)  590.21 ± 271.91 (1009)  295.67 ± 117.75 (1009)  

 

Values are shown in mean ± standard deviation; the numbers of recorded individuals are given in parentheses.  Description of 7 erythroid traits in ~1420 animals 

genotyped for 183 microsatellite markers has been shown in Zou et al. (2008). 
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Table 2. Genome-wide significant loci associated with hematological traits by the single-marker analysis 

Trait 
1
 Top SNP  Chr 

2
 Pos (bp) 

3
 P-Value Num 

4
 Interval (Mb) 

5
 Nearest gene 

6
 

HCT240 ss107806758 7 35177641 8.98E-10 3 33.18 - 35.18 SPDEF 

HCT240 ss131349087 7 45420438 1.69E-08 1 45.42 CDC5L 

HCT240 ss131354973 7 56230077 5.90E-08 2 54.81 - 56.23 EFTUD1 

HGB240 ss107806758 7 35177641 8.97E-11 8 33.18 - 35.25 SPDEF 

HGB240 ss131349087 7 45420438 1.36E-07 1 45.42 CDC5L 

HGB240 ss131354973 7 56230077 2.91E-07 1 56.23 EFTUD1 

MCH18 ss131369009 8 44927836 5.03E-07 5 39.15 - 50.1 TLL1 

MCH18 ss131083163 8 76480145 1.43E-07 2 76.48 - 77.78 SHROOM3 

MCH240 ss131369293 8 50096834 1.17E-19 122 31.53 - 79.81 PPID 

MCHC46 ss131260759 4 42489363 8.57E-07 1 42.49 - 42.49 PGCP 

MCV18 ss131369293 8 50096834 2.66E-10 6 36.97 - 50.1 PPID 

MCV18 ss131083163 8 76480145 2.77E-09 13 66.03 - 79.51 SHROOM3 

MCV46 ss478938668 8 42150857 6.81E-07 1 42.15 KIT 

MCV46 ss131076611 8 76669199 1.26E-06 1 76.67 SHROOM3 

MCV240 ss131369293 8 50096834 1.08E-17 103 34.39 - 79 PPID 

RBC18 ss131094241 8 49881116 1.40E-09 9 32.36 - 49.88 RXFP1 

RBC18 ss107827400 8 66027033 3.12E-08 7 66.03 - 84.49 TECRL 

RBC240 ss131369293 8 50096834 7.42E-11 14 34.39 - 50.1 PPID 

RBC240 ss107906810 8 72567179 4.31E-08 5 66.03 - 74.51 U6 

GRAR18 ss131368550 8 40777538 3.58E-07 1 40.78 OCIAD1 

GRAR46 ss131364780 8 26310331 7.61E-07 1 26.31 - 26.31 RPS18 

LYM18 ss131544979 17 2971217 2.64E-07 1 2.97 ssc-mir-383 

WBC240 ss131344940 7 37288793 1.93E-07 2 37.23 - 37.29 RAB44 

PDW46 ss107854351 13 14848132 3.94E-07 1 14.85 LRRC3B 

PLT46 ss131296370 5 95971272 1.14E-08 1 95.97 DCN 

1
 Abbreviations of hematological traits are given in Table 1. e.g. HCT240 is hematocrit at 240 days. 

2
 Chromosomal locations of top SNPs.  

3
 Positions of the top SNPs according to Sus scrofa Build 10.2 genome assembly. 

4
 The number of genome-wide significant SNPs for each hematological trait 

5
 The associated interval was defined as the region in which the distance between any two neighboring 

genome-wide significant SNPs was less than 10 Mb. 

6
 Annotated genes nearest to the top SNPs 
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Figure 1. Manhattan plots for the single-marker analysis of erythrocyte traits. log10(1/p) values are 

shown for all SNPs that passed quality control. The dotted line denotes the Bonferroni-corrected 

genome-wide significant threshold. SNPs surpassing the genome-wide threshold are highlighted in pink 

and SNPs reaching the suggestive threshold in green. HCT240: hematocrit at 240 days; HGB240: 

hemoglobin at 240 days; MCH240: mean corpuscular hemoglobin at 240 days; MCHC46: mean 

corpuscular hemoglobin content at 46 days; MCV18, MCV46, MCV240: mean corpuscular volume at 18, 

46 and 240 days; RBC18 and RBC240: red blood cell count and at 240 days. 
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Figure 2. Manhattan plots for the single-marker analysis of white blood cell and platelet traits. 

log10(1/p) values are shown for all SNPs that passed quality control. The dotted line denotes the 

Bonferroni-corrected genome-wide significant threshold. SNPs surpassing the genome-wide threshold are 

highlighted in pink and SNPs reaching the suggestive threshold in green. GRAR18 and GRAR46: 

granulocyte count percentage at 18 and 46 days; LYM18: lymphocyte count at 18 days; WBC240: white 

blood cell count at 240 days; PDW46: platelet distribution width at 46 days; PLT46: plateletcrit at 46 days. 
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Figure S1. Manhattan plots for the LONG-GWAS analysis of hematological traits. log10(1/p) values 

are shown for all SNPs that passed quality control. The dotted line denotes the Bonferroni-corrected 

genome-wide significant threshold. SNPs surpassing the genome-wide threshold are highlighted in pink 

and SNPs reaching the suggestive threshold in green. HCT: hematocrit; HGB: hemoglobin; MCH: mean 

corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin content; MCV: mean corpuscular volume; 

RBC: red blood cell; LYMA: lymphocyte count percentage; PDW: platelet distribution width. 
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Figure S2. Manhattan plots for the hidden haplotypes analysis of GRAR at 18 and 46 days on SSC8 where 

only one SNP was associated with each trait in the single-marker analysis. SNPs surpassing the 

genome-wide threshold are highlighted in pink and SNPs reaching the suggestive threshold in green. 

 

Figure S3. Manhattans plots for conditional GWAS of MCV at 18 (A), 46 (B) and 240 (C) days. Grey 

and blue dots denote the results for SNPs before and after controlling for the top SNP (ss131369293) at 

50.10 Mb on SSC8, respectively. Grey lines represent the genome-wide significant threshold. 
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Table S1. Genome-wide significant SNPs associated with hematological traits by LONG-GWAS. 

 

Trait 
1
 Top SNP  Chr 

2
 Pos (bp) 

3
 P-Value Num_SNP

4
 

Interval 

(Mb) 
5
 

Nearest Gene 
6
 

HCT ss131338218 7 21815831 4.85E-07 2 21.82 - 31.03 SLC17A4 

HCT ss131455151 11 85640695 1.17E-06 1 85.64 - 85.64 TUBGCP3 

HGB ss120021119 1 65994430 6.71E-07 1 65.99 - 65.99 7SK 

HGB ss131341609 7 31027719 9.32E-09 15 17.05 - 45.42 TINAG 

HGB ss131459230 12 29107229 1.94E-07 2 29.02 - 29.11 CA10 

MCH ss131369009 8 44927836 7.01E-12 95 34.9 - 79.19 TLL1 

MCHC ss131567944 10 4168738 7.36E-07 1 4.17 - 4.17 FAM5C 

MCV ss131369009 8 44927836 9.28E-14 95 34.39 - 84.49 TLL1 

RBC ss131094241 8 49881116 4.00E-10 29 31.09 - 50.1 RXFP1 

RBC ss478935224 8 66349700 1.37E-09 27 66.03 - 85.12 TECRL 

LYMA ss478935524 18 5860648 7.13E-07 1 5.86 - 5.86 GALNTL5 

PDW ss131368505 8 40852645 1.18E-09 13 34.39 - 50.1 OCIAD1 

PDW ss131371056 8 75662581 1.07E-09 26 66.03 - 79 PPEF2 

1
 Abbreviations of hematological traits are given in Table 1. e.g. HCT240 is hematocrit at 240 days. 

2
 Chromosomal locations of top SNPs.  

3
 Positions of the top SNPs according to Sus scrofa Build 10.2 genome assembly. 

4
 The number of genome-wide significant SNPs for each hematological trait 

5
 The associated interval was defined as the region in which the distance between any two neighboring 

genome-wide significant SNPs was less than 10 Mb. 

6
 Annotated genes nearest to the top SNPs 

Table S2. Simple statistic results for GRAR at 18 and 46 days classified by the genotypes of the top SNPs.  

 

 Mean ± standard deviation (Number of individuals) 

Genotype 11 12 22 

GRAR18 3.67 ± 1.90 (13) 8.32 ± 7.80 (280) 10.92 ± 9.48 (478) 

GRAR46 10.57 ± 2.12 (3) 24.93 ± 15.07 (127) 13.55 ± 12.56 (646) 
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Results of a haplotype-based GWAS for Recurrent Laryngeal Neuropathy in the horse 

M. C. Dupuis, Z. Zhang, T. Druet, C. Charlier, P. Lekeux and M. Georges 

Abstract 

Recurrent laryngeal neuropathy (RLN) is a major upper airway disease of horses, which causes abnormal 

respiratory noise during exercise and can impair performance.  Aetio-pathogenesis remains unclear but 

genetic factors have been suspected for many decades.  The objective of this study was to identify risk loci 

associated with RLN.  Horses with extreme phenotypes were carefully selected.  The Illumina Equine 

SNP50 Beadchip was used to genotype 234 cases (196 Warmbloods, 20 Trotters, 14 Thoroughbreds and 4 

Draft Horses), 228 breed-matched controls and 69 parents.  Statistical analyses included quantification of 

population structure, single marker and haplotype-based association studies, and family-based analyses.  

Population stratification was corrected by modeling a random polygenic background effect with covariance 

structure estimated from genome-wide SNP data.  Two genome-wide suggestive loci were identified 

respectively on chromosomes 21 (p = 1.62x10
-6

) and 31 (p = 1.69x10
-5

), using haplotype-based association 

studies in Warmbloods.  Both signals were driven by the enrichment of a “protective” haplotype in 

controls compared to cases.   

 

Mamm. Genome 22 (2011) 613-620 
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Introduction 

Recurrent Laryngeal Neuropathy (RLN), also known as idiopathic laryngeal hemiplegia, is the most 

common obstructive upper airway disorder of the horse.  It is usually detected at two to three years of age, 

at the onset of training, as RLN causes abnormal inspiratory sounds during effort (“roaring” or “whistling”) 

and can impair performance (Cahill and Goulden 1987; Dixon et al. 2001).  At endoscopic examination, 

the disease manifests itself as a reduced abduction of the left arytenoid cartilage.  It is thought to be due to 

laryngeal muscular dysfunction caused by degeneration of the recurrent laryngeal nerves.  Affected 

animals often undergo surgery to improve performance and the condition therefore has important welfare 

and economic implications (Dixon et al. 2009; Robinson 2004).  

Estimates of RLN prevalence vary depending on breed and criteria used to define the phenotype: between 1 

to 8.3% in Thoroughbreds (Brown et al. 2005; Garrett et al. 2010; Lane et al. 1987; Sweeney et al. 1991), 

24 to 42% in draft horses (Archer et al. 1989; Brakenhoff et al. 2006), and as high as 50% in adult 

Warmbloods (including animals with slight paresis; (Ohnesorge et al. 1993).  It seems to occur at higher 

frequency in taller horses and in males (Beard and Haynes 1993; Goulden and Anderson 1981a).  Contrary 

to inherited myelinopathies or axonopathies in humans or dogs, RLN is not classified as a polyneuropathy 

but as a bilateral mononeuropathy (Hahn et al. 2008).  Indeed, horses affected by RLN do not show 

clinical signs of polyneuropathy (e.g. limb muscle weakness, sensory symptoms, and megaoesophagus) and 

typical histological lesions have only been reported in the recurrent laryngeal nerves, especially the left one 

which is the longest nerve in the horse.  These lesions include signs of degeneration (i.e. loss of large 

myelinated fibers, most severely distally) and regeneration (Cahill and Goulden 1986a, b, c; Duncan et al. 

1978).   

In two retrospective studies, etiologic factors of laryngeal paresis or paralysis (such as irritant perivascular 

injection, trauma, guttural pouch mycosis, hepatic encephalopathy, poisoning) were identified in 6-11% of 

affected horses (Dixon et al. 2001; Goulden and Anderson 1981b).  For the remaining 89-94%, which 

were qualified to be RNL cases, the etiology was undetermined.  Genetic factors have been suspected for 

many decades (Marti and Ohnesorge 2002).  Indeed, sseveral studies have reported a higher incidence of 

RLN in offspring of affected than unaffected stallions (Ohnesorge et al. 1993; Poncet et al. 1989).  The 

heritability has been estimated at 0.2 in Thoroughbreds (Ibi et al. 2003), 0.4 in Clydesdale (Barakzai 2009) 

and 0.6 in German saddle horses (Ohnesorge et al. 1993).   
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The aim of our study was to carry out a genome-wide association study (GWAS) using the Equine SNP50 

Beadchip from Illumina to identify risk loci associated with RLN in horses.  

Materials and Methods 

Animals and phenotypes  

Clinical data were collected between 2008 and 2010 at the CIRALE (French center of imaging and research 

on equine locomotor disorders) with the collaboration of seventeen veterinary clinics located in France, 

Belgium, Germany and Switzerland.  For each horse, we recorded breed, sex, date of birth, pedigree and 

medical history.  Throat and neck were examined very thoroughly to exclude laryngeal paralysis 

secondary to for instance jugular phlebitis.  The laryngeal mobility was assessed under laryngoscopy, 

without sedation, for at least one minute per nostril.  Abductory and adductory muscles were stimulated by 

inducing swallowing and transient hyperventilation by nasal occlusion.  All videoendoscopies were 

recorded.  Horses with laryngeal grade ≥ III.2 (Havemeyer workshop grading system (Robinson 2004); full 

abduction of the arytenoid cartilage never achieved) were considered as cases.  Horses with laryngeal grade 

I (synchronous and symmetrical movements) and ≥ 3 years were used as controls, as it has been shown that 

laryngeal grade may evolve from normal to abnormal before the age of 3 (Anderson et al. 1997).  Horses 

with intermediate grades were excluded from the study because of reported unpredictable disease 

progression (Dixon et al. 2002), low intra-observer repeatability (Ducharme et al. 1991; Perkins et al. 2009), 

and low correlation with histopathology (Collins et al. 2009; Piercy et al. 2009).  Blood samples were 

collected on EDTA for all examined horses and stored at -20°C.   

We collected samples from a total of 234 cases (196 Warmbloods (W), 20 Trotters (TR), 14 Thoroughbreds 

(TH) and 4 draft horses) and 228 breed-matched controls.  Thirty-four cases and 17 controls belonged to 

six large paternal half-sib W families.  The remaining 200 cases and 211 controls were descendent of 360 

sires and 408 dams.  Samples were available for 43 (unphenotyped) sires and 26 (unphenotyped) dams 

(Table 1).  Male horses were overrepresented in both cases (75%) and controls (64%).  

Genotyping and quality control 

Genomic DNA was extracted from 350 µl of blood using the MagAttract DNA Blood Midi M48 Kit 

(Qiagen) and was quantified using the Picogreen assay (Invitrogen).  Genotyping was performed using the 

Equine SNP50 Beadchip (Illumina) including 54,602 evenly distributed SNPs on the 31 equine autosomes 
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and X chromosome (average distance between markers: 43kb), and standard protocols recommended by the 

manufacturer.  

Average and minimum call rate per individual was 99.68% and 96% respectively, allowing us to keep all 

individuals.  Gender, replicates and parental relationships were checked with the Genome Studio software 

(Illumina).  Minor allele frequency (MAF) was calculated for each SNP in each breed.  7,556 SNPs were 

excluded based on genotyping rate (call freq < 90%; 329 SNPs), minor allele frequency (MAF < 5%; 6986 

SNPs), and Hardy-Weinberg equilibrium in Warmbloods (p < 10
-3

; 433 SNPs).  

Statistical analyses 

Population structure.  The PLINK toolset (version 1.07, http://pngu.mgh.harvard.edu/~purcell/plink/) 

was used to quantify population stratification based on pairwise identity-by-state (IBS) distances (Purcell et 

al. 2007).  

Single marker association studies.  Genotype frequencies at 47,046 SNPs were compared between cases 

and controls using a standard association test implemented with PLINK.  Quantile-quantile plots (QQ 

Plots) were generated to detect inflation of statistics due to population stratification.  Association studies 

accounting for stratification were conducted on autosomal SNPs with the GenABEL toolset (available at 

http://mga.bionet.nsc.ru/~yurii/ABEL/GenABEL/) that models estimated relatedness of individuals based 

on genome-wide SNP data (Aulchenko et al. 2007).  SNP-specific test statistics (chi-squared values) 

obtained within each of the three analysed breed (W, TR and TH) were summed to obtain an across-breed 

statistic and p-value (chi-squared statistics with degrees of freedom equal to the number of breeds).  Draft 

horses were not included in the analyses as there were too few of them. 

Haplotype-based association studies.  We reconstructed autosomal haplotypes using the Phasebook 

software package, that exploits population (linkage disequilibrium) and familial information (Mendelian 

segregation and linkage) in a Hidden Markow Model setting (Druet and Georges 2010).  We tested three 

different numbers of hidden states (10, 15, 20).  Population frequencies of the hidden haplotype states 

were then compared between cases and controls using a generalized mixed model, which includes a 

random polygenic effect for which the variance-covariance matrix is proportionate to genome-wide 

identity-by-state.  Data from the three breeds were combined by summing the SNP-specific score test 

values (which have a gamma distribution) to obtain an across-breed statistic and p-value (gamma statistic 

with the mean equal to the sum of the means and the variance equal to the sum of the variances). 
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Within-family analyses.  One of the six larger paternal half-sib pedigrees was unusual in that the 

frequency of RLN in male and female offspring of the sire was reportedly close to 50%, suggesting 

autosomal dominant inheritance.  Samples were available from nine affected and seven non-affected 

offspring.  As no DNA was available for the stallion, precluding straightforward linkage analysis, we 

compared allele and haplotype frequencies between half-sib cases and controls using Fisher’s exact test.   

Significance thresholds.  Nominal p-values corresponding to genome-wide thresholds to declare 

associations as being significant (one such signal expected per 20 genome scans by chance; pgenome-wide = 

0.05) or suggestive (one such signal expected per genome scan by chance; pgenome-wide = 0.63) (Lander and 

Kruglyak 1995) were determined by applying a conservative Bonferroni correction for the realization of 

47,046 tests (corresponding to the number of usable SNPs), yielding respective thresholds of 1.09x10
-6

 

(significant, log(1/p)=5.96) and 2.11x10
-5

 (suggestive, log(1/p)=4.67).  
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Results  

Informativeness of the utilized SNP panel.  The frequency distributions of MAF are represented in figure 

1 for W, TR and TH.  Generally speaking, MAF of polymorphic SNPs (MAF > 0) were uniformly 

distributed in the three populations, and their average heterozygosities comparable (W: 0.325, TR: 0.323, 

TH: 0.346).  However, the proportion of polymorphic SNPs differed considerably between breeds (W: 

0.97, TR: 0.91 TH: 0.87).  The higher proportion of polymorphic SNPs in W remained when accounting 

for differences in sample size (Suppl. Fig. 1).  

The power of association studies is directly proportionate to the level of linkage disequilibrium (LD) 

between causative variants and SNP markers measured using r
2
.  To assess the level of genome coverage 

provided by the utilized SNP panel in the studied populations, we treated each one of the 47,046 markers in 

turn as pseudo-causative variant and identified the SNP with highest r
2
 among the remaining ones, as well 

as the distance between them.  As estimates of r
2 
are known to be inflated by the quantity 1/n (where n is 

the size of the utilized sample), calculations were performed using a random sample of same size (n=37) 

for the three populations.  Figure 2 shows the cumulative frequency distribution of r
2

max in W, TH and TR.  

r
2
max

 
values were highest in TH (mean r²max 0.82), followed by TR (0.74) and W (0.69).  As r

2
 is a measure 

of effective population size, the observed ranking was as expected, reflecting tight regulation of 

reproduction in TH (closed studbook) when compared to TR (partially open studbook) and W (admixed 

breeds).  Of note, r
2
max values were inferior to 0.5 for 37% of SNPs in W (providing the largest 

case-control cohort for GWAS), indicating suboptimal LD-coverage of the marker panel for single-point 

analyses, in at least some regions.  

Between- and within-population structure.  Population structure was quantified using genome-wide 

pairwise identity-by-state (IBS) distances calculated by PLINK.  Supplementary Figure 2 shows the first 

four principal components of the multidimensional scaling (MDS) plot of all analyzed animals.  In general, 

TH, TR and Draft horses form tight, well-separated clusters, while W are considerably more scattered and 

located between the other clusters with whom they partially overlap (particularly with TH).  This is as 

expected given W origin: a group of horse types bred for equestrian sports, descending from heavier 

agricultural types upgraded by “hotblood” influence, mainly TH and sometimes TR.  

Figure 3 shows the MDS-plot for the W, sorted in cases and controls.  At first glance, spatial distribution 

of cases and controls seemed very comparable.  Nevertheless, examination of the average between group 
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(case-case, control-control, case-control) IBS metrics using PLINK revealed a significant (p < 0.04) excess 

resemblance within controls, leading to a significant stratification (p < 0.0001) between cases and controls.  

This is likely related to the fact that controls came from a smaller number (148) of stables than cases (216). 

Population-based GWAS.  QQ-plots of the p-values obtained using standard single-SNP association 

studies conducted with PLINK confirmed the stratification (λGC=1.36) anticipated from the analysis of the 

IBS metrics (Suppl. Fig. 3).  Rather than controlling Type I error by applying genomic control (Devlin and 

Roeder 1999; Devlin et al. 2001), thereby reducing detection power (Balding 2006), we modeled a random 

polygenic background effect in restricted maximum likelihood (REML)-type analyses.  This was done 

using GenABEL (Aulchenko et al. 2007) for single-SNP analyses, and Phasebook (Druet and Georges 2010) 

for haplotype-based analyses.  The effect on the distribution of p-values is reflected in the corresponding 

QQ-plots (Supplementary Fig. 4 and Fig. 4A).  While considerably improved, the distribution still showed 

a modest shift towards low p-values.  We therefore applied an additional genomic control-type correction 

such that p-values < 10
-3

 would lie on the expected diagonal (Fig. 4A).   

When using the single-marker model accounting for stratification, a single SNP on chromosome 21 yielded 

suggestive evidence of association when analyzing W alone, while no SNP exceeded this threshold when 

analyzing the three breeds jointly (Supplementary Fig. 4).  When performing haplotype-based analysis 

(K=20) in the W population, we obtained suggestive associations on chromosomes 21 (log(1/p)=5.79) and 

31 (log(1/p)=4.77) (Fig. 4A).  Analysis of hidden haplotype frequencies in cases and controls revealed 

that in both instances (chromosomes 21 and 31) the signal was due to the enrichment of a specific 

haplotype in controls (Fig. 4B and 4C).  For both chromosomes, the “protective” haplotypes had a 

frequency of 0.35 in controls versus 0.20 in cases.  The two loci were also detected when modeling 

smaller number of Hidden States albeit with lower log(1/p) values (chr 21: 4.99 (K=10), 4.57 (K=15); chr 

31: 1.81 (K=10), 4.52 (K=15)).  When adding information from TH and TR in an across-breed analysis, 

the signal on chromosome 21 exceeded genome-wide significance (log(1/p)=6.03), while the signal on 

chromosome 31 remained suggestive yet increasing in significance (log(1/p)=4.94) (Supplementary Fig. 5).  

However, as no obvious peaks were detectable at the corresponding chromosome 21 and 31 positions when 

analyzing TH and TR separately, we consider this increase in significance with caution and consider both 

loci as suggestive.  

Removing p-values corresponding to marker positions within 2 Mb from the most strongly associated 

positions on chromosomes 21 and 31 from the  W QQ-plot reveals two closely linked SNPs on 
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chromosome 18 departing from the null distribution indicating that this might be a genuine association 

signal (Supplementary Fig. 6).   

Family-based analysis.  As previously mentioned, 50% of the offspring of one of the sires of the six 

available half-sib families were reportedly affected with RLN, compatible with the transmission of an 

autosomal dominant mutation for which the stallion would be heterozygous.  The stallion himself was 

reportedly affected (no video endoscopy available).  To test this hypothesis despite the fact that DNA 

could not be obtained for the sire, we compared SNP allele frequencies in his nine affected and seven 

unaffected offspring using Fisher’s exact test.  The outcome of this analysis is shown in Fig. 5.  

Log(1/p-values) reaching 4.09 were obtained on chromosome 1 between positions 50 and 58Mb.  

Haplotype analysis of the corresponding region pinpointed the two supposedly paternal haplotypes of which 

one was transmitted to seven of the nine cases and only one of the seven controls.  The nominal statistical 

significance of this transmission disequilibrium equals 0.02.  Assuming that the genome segregates from 

parent to offspring as 300 independent units (M. Georges, unpublished), this p-value is obviously not 

significant after correction for multiple testing.  

Discussion 

We herein describe the results of a GWAS conducted with the EquineSNP50 array to detect risk loci for 

RLN in the horse.  We report two genome-wide suggestive loci, respectively on chromosomes 21 and 31.  

Establishing the bona fide nature of both risk loci will require confirmation in independent cohorts 

(Chanock et al. 2007), which we hope will result from the publication of our results.   

The signal for both loci was clearly enhanced by performing haplotype-based analyses.  This is most 

likely due to the fact that haplotypes have the potential to be in higher LD with the causative variants than 

individual SNPs, especially when using medium density SNP panels.   

When performing an across-breed analysis (W+TH+TR), the signal on chromosome 21 reached 

genome-wide significance.  This was accomplished by summing, at each marker position, the gamma 

statistics obtained separately in each breed.  By doing so, we search for congruent evidence for association 

across breeds, yet without imposing any constraints on haplotype effects or sign in the different populations, 

i.e. we don’t force the same haplotypes to be associated with RLN in the different populations.  As a 

matter of fact, phasing and haplotype clustering was performed separately for each breed.  However, we 
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consider this results with caution as no clear signal was observed when considering the TH and TR 

populations alone.   

 Unexpectedly, in W both the chromosome 21 and 31 signals were largely driven by the enrichment of a 

“protective” haplotype in controls compared to cases.  A priori, one would predict that the RLN defect 

result from one or more (mildly) deleterious mutations enriched in cases.  Note that protective variants 

have been identified for complex diseases in human, including Crohn’s disease (Duerr et al. 2006; 

Momozawa et al. 2011).  Relative protection conferred by the identified haplotypes was 1.77 (± SE 0.11) 

for loci on chr 21 and 1.91 (± SE 0.13) for the one on chr 31.  These are fairly large effect when compared 

to relative risks typically reported for complex traits in humans (Altshuler et al. 2008).  This could be due 

to their inflation as a result of the “winners curse”, or – if genuine – provide additional evidence that 

complex traits in domestic animal populations are influenced by larger effects which are less effectively 

selected against as a result of the reduced effective population size (Goddard and Hayes 2009).  

Analysis of intergroup IBS metrics as well as QQ-plots of the p-values obtained when performing standard 

association test reveals statistically significant levels of population stratification, expected to generate 

spurious associations.  We therefore conducted our association studies in a mixed model framework 

including a random polygenic background.  Covariances between individual animal effects were 

proportionate to the genome-wide IBS computed using either SNP genotypes (GenABEL) or the hidden 

haplotype states (Phasebook).  As expected, including these random polygenic effects had a drastic 

“buffering” effect on the distribution of p-values approaching the distribution expected under the null 

hypothesis, with the exception of the lowest p-values corresponding primarily to chromosome 21 and 31 

signals.  Nevertheless, the QQ-plots still revealed a trend towards p-values lower than expected under the 

null hypothesis.  This could either be due to the fact that the polygenic effect does not completely control 

for stratification, or that predisposition to RLN is influenced by a very large number of loci with 

individually small effects, i.e. that RLN has quasi-infinitesimal architecture akin to human height (Visscher 

2008).  However, to avoid type I errors in declaring detection of loci influencing RLN, we conservatively 

applied an additional genomic control-type correction to the p-value such that the bulk of corrected 

p-values would follow the null distribution.  

To the best of our knowledge, no associations have been reported in any other mammal between 

neuropathies and the orthologous regions of the two identified loci.  Candidate genes that could be 

implicated in the pathological process of peripheral neuropathies were searched within 1 Mb of the 
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associated SNPs on chromosomes 1, 21 and 31.  The pathology of RLN is characterised by a proximal to 

distal loss of large myelinated fibres.  Histological lesions of recurrent laryngeal nerves suggest that RLN 

may be a primary axonopathy: collapsed myelin sheath without axis cylinder, increased myelin sheath 

thickness, regenerating Schwann cell membrane clusters, axonal debris.  In addition to axonal 

degeneration, there is also evidence of chronic myelin damages: Büngner’s band, onion bulbs, variation in 

internodal length, myelin digestion chambers (Cahill and Goulden 1986a, b, c; Duncan et al. 1978).  Some 

of these characteristics are common with several forms of Charcot-Marie-Tooth disease (CMT), which 

represents a group of clinically and genetically heterogeneous inherited neuropathies affecting humans.  

More than 30 loci and 20 causative genes are known to be associated with CMT (Barisic et al. 2008; Irobi 

et al. 2004).  None of these genes were found in the regions of interest detected by association analyses, 

except for one on chromosome 1.  In the homologous region on human chromosome 10, the early growth 

response 2 (EGR2 also known as KROX20) was identified.  This gene is part of a multigene family 

encoding zinc-finger proteins implicated in myelination of the peripheral nervous system (Warner et al. 

1998).  Allelic variants of EGR2 have been implicated in hypomyelinating neuropathy, 

Charcot-Marie-Tooth disease type 1D, Dejerine-Sotas neuropathy.  We sequenced the open reading frame 

of EGR2 in cases and controls belonging to the family of interest, but failed to identify any DNA sequence 

variant of interest (results not shown).  

Genes associated with CMT are involved in many different functions: neuronal structure maintenance, 

axonal transport, nerve signal transduction, RNA processing, housekeeping functions (Barisic et al. 2008; 

Irobi et al. 2004).  Several genes in the identified regions may participate in these cellular functions 

without having previously implicated in disease pathogenesis (for example USE1 involved in 

endosome-lysosome transport, MAP1S a microtubule associated protein, MSS1 that may play a role in 

mitochondrial tRNA modification...).  However, stronger association evidence is required to justify their 

molecular analysis.  

In conclusion, our study indicates that predisposition to RLN in the horse, despite having high heritability, 

is unlikely to be determined by one or a small number of genes with major effect.  However, this 

hypothesis cannot be totally excluded as the LD coverage provided by the utilized SNP panel was not 

optimal.  Moreover, a major locus with allelic heterogeneity may also have escaped our scan despite the 

use of a haplotype-based method.  Nevertheless, it seems more likely that RLN has a complex 

determinism involving a large number of loci, of which the candidates on chromosome 21 and 31 may have 
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the largest effects.  If the genuine nature of these loci is confirmed in independent cohorts, identifying the 

causative genes may increase our understanding of RLN pathogenesis and possible suggest novel 

therapeutic opportunities.  Assuming that RLN is very polygenic, predictive diagnosis and selection may 

be more effective using a genomic selection type of approach (Georges 2007; Meuwissen et al. 2001).  

However, the latter approach would require genotyping of a much larger training cohort.   
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Table 1: Cohorts characteristics. 

A total of 531 horses from four breeds (Warmbloods, Trotters, Thoroughbreds and Draft horses) were 

genotyped.  

 Cases Controls Sires Dams TOTAL 

Warmbloods 196 188 17 17 418 

Trotters 20 18 22 5 65 

Thoroughbreds 14 16 3 4 37 

Draft horses 4 6 1 0 11 

TOTAL 234 228 43 26 531 

 

 

 

 

Figure 1: Frequency distributions of minor allele frequencies (MAF) calculated for all markers available 

on the Equine SNP50 array in W (n=418), TR (n=65) and TH (n=37). 
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Figure 2: A. Cumulative frequency distributions of highest r
2
 values for each of the 47,046 SNPs used in 

GWAS. B.  Mean distances (Mb) between SNPs of highest r² values. Calculations were performed with 

the same sample size (n=37) in the three breeds.   

 

 

Figure 3: First four principal components of a Multidimensional Scaling (MDS) analysis (based on 

pairwise identity-by-state (IBS) distances) of W sorted in cases and controls. 
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Figure 4:  (A) Results of a GWAS for RLN.  Dots marker the nominal significance (log(1/p)) obtained at 

each SNP positions using an haplotype-based (20 Hidden Haplotype States) analysis in W correcting for 

stratification by means of a random polygenic effect (pair-wise covariance proportionate to SNP-based 

genome-wide IBS), implemented with Phasebook.  Alternating blue colors mark the chromosome limits. 

The green and red horizontal lines correspond to the genome-wide (Bonferroni corrected) suggestive and 

significant thresholds, respectively.  The inset shows the corresponding QQ plot, before (grey) and after 

(blue) application of genomic control.  (B) Frequency of the 20 Hidden Haplotype States in cases (dark 

blue) and controls (light blue) for map position 2,203,650 on chr 21.  (C) Same as (B) for map position 

9,863,278 on chr 31. 
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Figure 5:  Log(1/p) values (computed using Fisher’s exact test) of the differences in SNP allele 

frequencies between nine affected and seven non-affected half-sibs, offspring of an affected stallion with 

50% RLN incidence in his descendants.  Log(1/p-values) > 3 (reaching 4.09) were obtained on 

chromosome 1 between positions 50 and 58Mb. The green horizontal line corresponds to the genome-wide 

(Bonferroni-corrected) suggestive threshold.  
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Supplementary figure 1: Frequency distributions of minor allele frequencies (MAF) computed in samples 

of the same size (n=37) in three breeds. 

 

 

Supplementary figure 2: First four principal components of Multidimensional Scaling (MDS) analysis of 

all available horses on the basis of pairwise identity-by-state (IBS) distances.  



Part 2 

 90 

 

Supplementary figure 3: Log quantile-quantile (QQ) and Manhattan plots of the p-values obtained using 

standard single-SNP association studies implemented with PLINK in W. Deviation across the entire 

distribution towards high log(1/p-values) suggests stratification (λGC=1.36).  

 

Supplementary figure 4: Log quantile-quantile (QQ) and Manhattan plots of the p-values obtained using 

single-SNP association studies in W corrected for stratification by modeling a random polygenic 

background effect in a REML type analysis implemented with GenABEL (estimated relatedness of 

individuals based on genome-wide SNP data). The correction improved the distribution of p-values which 

lie close to the expected diagonal. 



Part 2 

 91 

 

 

Supplementary figure 5: Log quantile-quantile (QQ) and Manhattan plots of the p-values obtained using 

an across-breeds (W+TR+TH) haplotype-based association studies correcting for stratification by means of 

a random polygenic effect (pair-wise covariance proportionate to SNP-based genome-wide IBS), 

implemented with Phasebook. Alternating black and grey colors mark the chromosome limits. The green 

and red horizontal lines correspond to the genome-wide (Bonferroni corrected) suggestive and significant 

thresholds, respectively.  The inset shows the corresponding QQ plot, before (orange) and after (dark) 

application of genomic control. 
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Supplementary Figure 6: Log quantile-quantile (QQ) plot before (blue dots) and after (black dots) 

removing p-values corresponding to marker positions within 2 Mb from the most strongly associated SNPs 

on chromosomes 21 and 31. 
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A Splice Site Variant in the Bovine RNF11 Gene Compromises Growth and Regulation of 

the Inflammatory Response 

A. Sartelet, T. Druet, C. Michaux, C. Fasquelle, S. Géron, N. Tamma, Z. Zhang, W. Coppieters, M. Georges 

and C. Charlier 

Abstract 

We report association mapping of a locus on bovine chromosome 3 that underlies a Mendelian form of 

stunted growth in Belgian Blue Cattle (BBC).  By resequencing positional candidates, we identify the 

causative c124-2A>G splice variant in intron 1 of the RNF11 gene, for which all affected animals are 

homozygous.  We make the remarkable observation that 26% of healthy Belgian Blue animals carry the 

corresponding variant.  We demonstrate in a prospective study design that approximately one third of 

homozygous mutants die prematurely with major inflammatory lesions, hence explaining the rarity of 

growth-stunted animals despite the high frequency of carriers.  We provide preliminary evidence that 

heterozygous advantage for an as of yet unidentified phenotype may have caused a selective sweep 

accounting for the high frequency of the RNF11 c124-2A>G mutation in Belgian Blue Cattle. 

 

PLoS Genet 8 (2012) e1002581 
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Author Summary 

Recessive defects in livestock are common, and this is considered to result from the contraction of the 

effective population size that accompanies intense selection for desired traits, especially when relying 

heavily on artificial insemination (as males may concomitantly have a very large number of offspring).  

The costs of recessive defects are assumed to correspond to the loss of the affected animals.  By 

performing a molecular genetic analysis of stunted growth in Belgian Blue Cattle (BBC), we highlight (i) 

that the economic impact of recessive defects may outweigh the only loss of affected animals and (ii) that 

some genetic defects are common for reasons other than inbreeding.  We first demonstrate that a splice 

site variant in the RING finger protein 11 (RNF11) gene accounts for ∼40% of cases of stunted growth in 

BBC.  We then show that a large proportion of animals that are homozygous for the corresponding RNF11 

mutation die at a young age due to compromised resistance to pathogens.  We finally demonstrate that 

carriers of the mutation benefit from a selective advantage of unidentified origin that accounts for its high 

frequency in BBC. 

Introduction 

Growth is one of the economically most important phenotypes in livestock production.  While genetic 

variants with large effects on stature account for part of the between-breed variation (Karim et al. 2011), 

within-breed variation is likely to be highly multifactorial and polygenic.  Accordingly, quantitative trait 

loci (QTL) influencing growth are reported on all autosomes in the cattle QTL database 

(http://www.animalgenome.org/cgi-bin/QTLdb/BT/index). 

The BBC breed is a beef breed that is famous for its “double-muscling” phenotype caused in part by a 

disruptive 11-bp deletion in the myostatin (MSTN) gene (Grobet et al. 1997).  As in other breeds, growth 

performances are paramount in BBC as they control duration of the fattening period and final carcass 

weight, hence directly determining profit. 

In recent years, an increasing number of young animals with growth retardation as primary symptoms were 

reported to our heredosurveillance platform.  We established this platform in 2005 to rapidly detect 

genetic defects emerging in the BBC, identify the culprit genes and mutations, and develop diagnostic tests 

to limit their negative impact (Charlier et al. 2008).  Animals with growth retardation underwent a 

standard protocol including a genome-wide association study (GWAS) to identify putative causative loci.  

We herein report the mapping of a locus accounting for ∼40% of growth-retardation cases, and identify the 
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causative loss-of-function mutation in the RING finger protein 11 (RNF11) gene.  Moreover, we perform a 

prospective study that indicates that as much as one third of homozygous mutants die from infection before 

six months of age.  We finally present evidence that carriers of the mutation might benefit from a selective 

advantage that may account for its unexpectedly high frequency (∼13%) in the BBC population. 

Results 

A major growth-stunting locus maps to BTA3 

Between 2008 and 2011, we collected blood samples and epidemiological data from 147 BBC individuals, 

aged between 3 months and 3 years old, with pronounced (∼15% reduction in stature when compared to 

contemporaries) yet proportionate growth retardation as primary distinctive feature.  We initially 

genotyped 33 of these with a custom-designed 50 K medium-density bovine SNP array [3].  None of these 

animals would be homozygous or compound heterozygote for the previously identified c.2904-2905delAG 

(Fasquelle et al. 2009) and c.1906T>C (Sartelet et al. 2011) MRC2 mutations causing Crooked Tail 

Syndrome and known to affect stature.  Using the genotypes of the corresponding SNPs (yet obtained with 

a distinct, high-density bovine SNP array) from 275 healthy sires as control, we performed a GWAS using 

an approach based on hidden haplotype states with a generalized mixed model accounting for stratification 

(Zhang et al. 2012).  A genome-wide significant signal was obtained on BTA3 driven by haplotype state 

17, observed at a frequency of 52% in cases versus 12% in controls (Figure 1A).  Fourteen of the 33 cases 

(42%) were homozygous for the corresponding haplotype, causing a significant deviation from 

Hardy-Weinberg expectations in cases (expected: 27%, p<0.002), hence suggesting recessivity. 

Retrospective phenotypic analysis of the 14 homozygotes revealed shared features: proportionate growth 

retardation appearing around 5–6 months of age (not observed at birth), normal muscular development, 

close forehand, long and thin neck, hairy, long and thin head (Figure 2).  Pedigree analysis indicated that 

the 14 individuals traced back to Galopeur des Hayons (a once popular BBC sire) on sire and dam side. 

A splice site mutation in the RNF11 gene is the likely causative mutation 

Direct examination of the SNP genotypes of the 14 cases homozygous for hidden state 17 revealed a 3.3 

Mb (100,727,788–104,017,608 - Btau 4.0) segment of autozygosity (Figure 1B).  It encompassed 19 

annotated genes of which none was an obvious candidate (Figure 1C).  We thus undertook the systematic 

re-sequencing of all open reading frames (ORF) and intron-exon boundaries.  During this process (and 

after completion of 14/19 genes), we identified an A to G transition (c124-2A>G) mutating the intron 1 
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acceptor splice site of the RNF11 gene (Figure 1D).  RNF11 encodes a highly conserved, ubiquitously 

expressed protein with 154 amino-acids (Azmi and Seth 2005), recently recognized as a subunit of the A20 

ubiquitin-editing complex regulating NF-κβ signaling (Shembade et al. 2009).  We developed a 

5′-exonuclease assay and genotyped (i) the case-control cohort used for GWAS (33 cases, 275 controls), (ii) 

a diversity panel encompassing 141 animals from eleven breeds other than BBC, (iii) 549 additional normal 

adult BBC animals, and (iv) Galopeur des Hayons.  The c124-2A>G variant appeared in near perfect 

linkage disequilibrium (D′=1; r2=0.984) with haplotype state 17 in the case-control cohort.  It was not 

present in non-BBC animals.  It had an allelic frequency of 13% amongst the 824 genotyped healthy adult 

BBC animals, yet without a single animal being homozygous GG (p<0.01 under Hardy-Weinberg 

equilibrium).  Galopeur was indeed confirmed to be carrier of the c124-2A>G mutation. 

The effect of the c124-2A>G mutation on RNF11 transcripts was examined by RT-PCR using RNA 

extracted from skeletal muscle, spleen, mesenteric lymph node, thymus, lung, trachea of one GG and one 

AA animal.  Using two primers located respectively in exon 1 and 3 and RNA from wild-type AA animals, 

we obtained a unique 360-bp RT-PCR product in all examined tissues, and showed by sequencing that it 

encompassed the expected exon 2 sequence (data not shown).  The same experiment performed with RNA 

from a homozygous mutant GG animal yielded (i) a major product of ∼190 bp, and (ii) a minor product of 

∼360 bp (Figure 3A).  The major product was shown by sequencing to correspond to a transcript skipping 

exon 2.  The minor product missed the first seven base pairs of exon 2, and resulted from the activation of 

a cryptic splice site in exon 2.  RT-PCR conducted with primers located respectively in exon 1 and 2 

confirmed the existence of transcripts containing exon 2 in homozygous mutants (Figure 3B).  Both forms 

are expected to cause a frameshift, appending 29 (major product) and 14 (minor product) illegitimate 

residues to a severely truncated (41/154 amino-acids) RNF11 protein missing the ubiquitin interaction and 

RING-finger domains.  The transcript corresponding to the minor form is expected to undergo non-sense 

mediated RNA decay (NMRD) (Chang & Wilkinson 2007), due to the occurrence of a stop codon in exon 2 

of three.  NMRD is not expected to affect the transcript corresponding to the major form as the 

corresponding open reading frame terminates in exon 3 of three.  We compared the levels of RNF11 

transcript in mesenteric lymph node and spleen of a wild-type AA and a mutant GG animals, using 

quantitative RT-PCR with primer sets targeting the second (outside of the 7-bp deletion) and third RNF11 

exons, respectively, as well as three internal control genes.  In spleen, we observed a 1.1-fold reduction 

(p=0.4) in the amount of exon 3 containing transcripts, and a 11-fold reduction (p<0.005) in exon 2 
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containing transcripts.  Assuming NMRD of the minor but not of the major product, this allows us to 

estimate (i) that ∼80% of the RNF11 pre-mRNAs skip exon 2, while ∼20% use the exon 2 cryptic splice 

site, and (ii) that 55% of exon 2 retaining transcripts are being degraded by NMRD.  The same analysis 

conducted in lymph node reveals a ∼2-fold reduction (p<0.05) in exon 3 containing transcripts, and 

∼37-fold reduction (p<0.0005) in exon 2 containing transcripts, corresponding to (i) ∼44% of RNF11 

pre-mRNAs skipping exon 2 and ∼56% using the exon 2 cryptic splice site, and (ii) ∼95% of exon 2 

retaining transcripts being degraded by NMRD (Supporting Information S1). 

Taken together, our findings strongly support the causality of the c124A>G RNF11 mutation in determining 

stunted growth in homozygous GG animals. 

Increased juvenile mortality accounts for incongruent carrier frequency and disease incidence 

The ∼26% carrier frequency amongst healthy individuals is incompatible with the number of reported 

cases of stunted growth.  As an example, ∼6% of offspring of known carrier bulls should be affected, and 

such high figures were never recorded.  We reasoned that this lower than expected incidence of cases 

might reflect elimination of mutant animals either before or after birth.  Embryonic mortality of 

homozygous mutant fetuses has been reported for deficiency in uridine monophosphate synthetase 

(DUMPS) (Shanks and Robinson 1989), Complex Vertebral Malformation (CVM) (Thomsen et al. 2006; 

Malher and Philipot 2006) and Brachyspina (BS) (Charlier et al. submitted for publication). 

To test these hypotheses we first examined field data and tested the effect of sire carrier status on (i) “non 

return (in oestrus) rate” of inseminated cows between 28 and 280 days after insemination, and (ii) rate of 

mortality, morbidity and culling of offspring between birth and 14 months of age (Hanset and Boonen 

1994).  Non-return rates tended to be slightly decreased when cows were inseminated with semen from 

carrier sires (i.e. reproductive failure increased), but the effect was not significant (p=0.66).  Mortality, 

morbidity and culling tended to be increased in offspring of carrier sires, but this effect was not significant 

either (p=0.89) (Supporting Information S1). 

As analysis of field data did not provide conclusive results, we performed a prospective study.  We 

identified 105 carrier dams in 22 farms that were pregnant following insemination with semen from known 

carrier sires.  We followed the ensuing 105 calves up to 12 months after birth.  The responsible 

veterinarian (AS) and the breeders were not aware of the calves' RNF11 genotype until completion of the 

study.  Genotypic proportions at birth did not deviate significantly from Mendelian expectations (AA: 26 
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(=24.8%); AG: 56 (=53.3%); GG: 23 (=21.9%); p=0.72).  All calves looked normal, and there was no 

significant effect of RNF11 genotype on weight or height at birth.  However, one year after birth, 10 

calves had died and eight had been culled for health-related reasons.  Strikingly, all but one of these were 

homozygous mutant GG, while one was AG (p<0.0005) (Figure 4A).  While the AG animal was 

euthanized with a limb fracture, the nine deceased GG animals died with severe inflammation (primarily 

pneumonia) (Supporting Information S1).  The c124-2A>G genotype had a highly significant (p≤0.001) 

effect on post-natal growth.  Indeed, all surviving GG animals exhibiting stunted development after 6 

months (Figure 4B).  A contrario, the growth pattern of AG and AA animals was indistinguishable. 

Taken together, our data indicate that as much as one third of homozygous GG calves die with major 

inflammation, while all remaining calves exhibit stunted growth and are hence systematically culled 

prematurely. 

Selective advantage of heterozygotes may underlie the high carrier incidence 

The 26% carrier frequency amongst healthy BBC animals is puzzling given the observed purifying 

selection against GG animals.  This suggests that heterozygotes might benefit from a selective advantage 

that would maintain the G allele at high frequency in the population.  Such balanced polymorphism has 

been demonstrated for MRC2 loss-of-function mutations causing Crooked Tail Syndrome in homozygotes, 

yet increased muscle mass in carriers (Fasquelle et al. 2009; Sartelet et al. 2011). 

To test this hypothesis, we first used field data and examined the effect of RNF11 c124-2A>G sire carrier 

status on own and progeny performances for recorded traits including size, muscularity, type and general 

appearance (Hanset and Boonen 1994).  We obtained conflicting results: carrier status appeared to 

negatively affect the perceived quality of sire, yet improve the quality of its offspring (Supporting 

Information S1). 

As an alternative approach to test for a putative selective advantage benefitting carriers, we evaluated 

whether the incidence of carriers amongst active AI sires was compatible with Mendelian (0.5:0.5) 

inheritance of a neutral mutation from the founder bull Galopeur.  Assuming that the c124-2A>G 

mutation improves zootechnical performances in heterozygotes, carriers should be over-represented 

amongst AI sires related to Galopeur.  Two hundred and six of the 262 BBC AI sires born between 2003 

and 2007 were related to Galopeur and 58 (=28%) of these proved to carry the RNF11 c124-2A>G 

mutation.  Using gene dropping in the known genealogies, we computed the probability that 58 or more 
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descendants would be carrier in the absence of selection (no systematic transmission distortion).  This 

probability was 0.0002, 0.0006 and 0.01 assuming a frequency of 0, 0.01 and 0.05 for the c124-2A>G 

mutation outside the Galopeur lineage (Figure 5A).  These results suggest that the c124-2A>G mutation 

indeed underwent a recent selective sweep in the BBC population, although the phenotype that is being 

selected remains unclear.  That 58/206 descendents of Galopeur carry the c124-2A>G mutation is best 

explained by assuming that the mutation has ∼10% excess probability (i.e. 60%) to be transmitted by a 

carrier parent to an AI sire or one of its ancestors (Figure 5B). 

Homozygosity at the RNF11 c124-2A>G mutation accounted for 14 of the first 33 analyzed cases (i.e. 

42%), raising the question of what caused stunted growth in the others.  To address this, we genotyped the 

remaining 114 cases for the c124-2A>G mutation.  In agreement with genotypic proportions in the first 33 

cases, 47/114 (41%) were homozygous and 23/114 (20%) heterozygous.  Therefore, carrier frequency 

amongst non c124-2A>G homozygous cases was 34% (29/86), which does not differ significantly (p=0.10) 

from the frequency of c124-2A>G carriers in the control cohort (211/829=26%).  This suggests that the 

c124-2A>G mutation is the only common RNF11 mutation involved in stunted growth in BBC. 

To identify putative other loci involved in stunted growth, we genotyped the remaining 67 non c124-2A>G 

homozygous cases with a medium density 50 K SNP array (Illumina), and rescanned the genome as 

described before using only non c124-2A>G homozygous cases (86) and the same control cohort (275).  

As expected, there was no evidence for a residual effect of the RNF11 locus.  Neither was there any 

genome-wide significant evidence for other loci on any one of the 29 autosomes (Supporting Information 

S1). 

Discussion 

We herein demonstrate that a loss-of-function mutation in the RNF11 gene affects normal growth and 

disease resistance in calves.  This is the first report of a phenotypic effect associated with RNF11 

mutations in any organism, including human and mouse (Shembade et al. 2009). 

We postulate that the increased disease susceptibility of homozygous c124-2A>G calves is related to the 

demonstrated role of RNF11 in feedback down-regulation of NF-κB by the A20 complex (Shembade et al. 

2009).  Indeed, the nine c124-2A>G homozygous calves that underwent necropsy were affected by 

extensive inflammation of the respiratory tract (eight) or by polyarthritis (one).  Of note, A20 knock-out 

mice die prematurely from multi-organ inflammation (Lee et al. 2000).  The fact that only ∼1/3 of 
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homozygous mutant calves died prematurely is compatible with a defect in the control or resolution of 

inflammation.  External factors, including pathogens, may trigger an intendedly salutary innate and/or 

adaptive response, that evolves in pathogenic non-resolving inflammation (Nathan & Ding 2010). 

The effects on growth may be secondary to hidden episodes of uncontrolled inflammation, as proposed for 

A20- and ITCH-deficient mice and human (Lee et al. 2000; Schembade et al. 2008; Lohr et al. 2010).  

However, the fact that several of the surviving homozygous c124-2A>G calves appeared perfectly healthy 

upon clinical examination, suggest that growth retardation might be directly related to alternative functions 

of RNF11 as modulator of growth factor receptor signaling (particularly TGF-β and EGFR signaling) and 

transcriptional regulation (Azmi & Seth 2005).  It is also noteworthy, that RNF11 has been found to be 

highly expressed in bone cells during osteogenesis (Gao et al. 2005). 

Calf mortality is an economically important trait.  It is generally considered highly complex and 

multifactorial, and its heritability is always very low.  It is thus difficult to improve using conventional 

selection strategies.  We herein demonstrate that genomic approaches may help dissect such complex 

phenotypes in sub-components including some with simple Mendelian determinism amenable to effective 

“marker assisted selection”.  The situation uncovered in this work is reminiscent of bovine leukocyte 

deficiency (BLAD) in Holstein-Friesian (Shuster et al. 1992), an immune deficiency resulting from CD18 

deficiency and causing increased susceptibility to infection in young calves (Nagahata 2004). 

We provide suggestive evidence that the high incidence of the RNF11 c124-2A>G mutation in BBC is not 

only due to drift, but may be due to the superiority of heterozygotes for unidentified selection criteria.  

Such a situation would be reminiscent of previously described pleiotropic effects on conformation of 

mutations in the gene encoding the calcium release channel (CRC) in pigs (causing malignant hyperthermia 

and porcine stress syndrome in homozygotes) (Fujii et al. 1991) and in the MRC2 gene in cattle (causing 

Crooked Tail Syndrome in homozygotes) (Fasquelle et al. 2009; Sartelet et al. 2011).  These examples 

illustrate some of the issues resulting from the selection of animals with extreme performances. 

Materials and Methods 

Ethics statement 

Blood samples were collected from sires, cows and calves, by trained veterinarians following standard 

procedures and relevant national guidelines. 
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Genotyping 

Genomic DNA of cases was extracted from 350 µl of blood using the MagAttract DNA Blood Midi M48 

Kit (Qiagen).  Genomic DNA of controls was extracted from frozen semen using the MagAttract Mini 

M48 Kit (Qiagen).  The 33 cases of the initial genome scan were genotyped using a custom-made 50 K 

SNP array (Charlier et al. 2008).  The 67 cases of the second scan (excluding RNF11 c124-2A>G 

homozygotes) were genotyped with the BovineSNP50 v2 DNA analysis BeadChip (Illumina).  The 275 

control sires were genotyped with the BovineHD BeadChip (Illumina).  SNP genotyping was conducted 

using standard procedures at the GIGA genomics core facility. 

Genome-wide haplotype-based association studies 

Phasing of the SNP genotypes and assignment of the haplotypes to a predetermined number of hidden 

haplotype states was conducted with PHASEBOOK (Druet & Georges 2010).  Hidden haplotype 

state-based association analysis was conducted using GLASCOW (Zhang et al. 2012).  GLASCOW uses 

generalized linear models and fits a random hidden haplotype state effect as well as a random polygenic 

effect to correct for population stratification.  Locus-specific p-values were determined from 1,000 

permutations assuming a gamma distribution of the used score test (Zhang et al. 2012).  We applied a 

conservative Bonferonni correction assuming 50,000 independent tests to determine the genome-wide 

significance thresholds. 

Mutation scanning 

Coding exons of positional candidate genes were amplified from genomic DNA of a homozygous case and 

a healthy control using standard procedures.  The primers used for the RNF11 gene are listed in the 

Supporting Information S1.  PCR products were directly sequenced using the Big Dye terminator cycle 

sequencing kit (Applied Biosystem, Foster City, CA).  Electrophoresis of purified sequencing reactions 

was performed on an ABI PRISM 3730 DNA analyzer (PE Applied Biosystems, Forster City, CA).  

Multiple sequence traces from affected and wild-type animals were aligned and compared using the 

Phred/Phrap/Consed package (www.genome.washington.edu). 

5′ exonuclease diagnostic assay of the c124-2A>G RNF11 mutation 

A 5′exonuclease assay was developed to genotype the c124-2A>G RNF11 mutation, using 5′-AGG AAG 

AAA CAA AAG GAA AAC ATT ACC TAG A-3′ and 5′-TGT TGG ATG ATA GAC CGG AAC TG-3′ as 

PCR primers, and 5′-ACT TGT TCC TAA ATT TT-3′ (wild type A allele) and 5′-TTG TTC CCA AAT 
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TTT-3′ (mutant G allele) as probes (Taqman, Applied Biosystems, Fosters City, CA).  Reactions were 

carried out on an ABI7900HT instrument (Applied Biosystems, Fosters City, CA) using standard 

procedures. 

RT–PCR and cDNA sequencing 

Total RNA from RNF11 c124-2A>G AA and GG animals was extracted from lung, lymph nodes, spleen, 

skeletal muscle, thymus and trachea using standard procedures (Trizol, Invitrogen).  After 

DNase-treatment (Turbo DNA-free, Ambion), cDNA was synthesized using the SuperScript III First-Strand 

Synthesis SuperMix (Invitrogen).  A cDNA segment was amplified using two RNF11 specific primers sets: 

one encompassing exon 2 with primers located in exon 1 and exon 3 (E1–E3) and one encompassing the 

exon1-exon2 boundary (E1–E2) (Supporting Information S1).  PCR products were separated by 

electrophoresis on a 2% agarose gel containing 0.0001% of SYBR Safe DNA gel stain (Invitrogen) at 100 

volts during 40 min and size was evaluated with SmartLadder 200 lanes (Eurogentec).  The PCR products 

were directly sequenced as described above. 

Real-time quantitative RT–PCR 

Total RNA from RNF11 c124-2A>G AA and GG animals was extracted from lymph node, spleen as 

described above.  After DNase-treatment (Turbo DNA-free, Ambion), 500 ng of total RNA was reverse 

transcribed in a final volume of 20 µl using SuperScript III First-Strand Synthesis SuperMix (Invitrogen).  

PCR reactions were performed in a final volume of 10 µl containing 4 µl of 5-fold diluted cDNA 

(corresponding to 100 ng of starting total RNA), 1X of ABsolute Blue QPCR SYBRE Green ROX Mix 2X 

(Thermo Fischer Scientific), 0.3 µM forward and reverse primers and nuclease free water.  PCR reactions 

were performed on an ABI7900HT instrument (Applied Biosystems, Forster City, CA) under the following 

conditions: 10 min at 95°C followed by 40 cycles at 95°C for 15 sec and 60°C for 1 min.  Two primers 

sets were used to test RNF11 expression and three genes were included as candidate endogenous controls: 

(1) Beta-Actin (ACTB), (2) Ribosomal Protein Large P0 (RPLP0), (3) Tyr-3- & Trp-5-Monooxygenase 

Activation Protein Zeta (YWHAZ).  The corresponding primer sequences are given in Supporting 

Information S1.  A standard curve with a five point two-fold dilution series (total RNA=100, 200, 400, 

800 and 1600 ng from lymph node and spleen from a AA wild-type individual) for each RNF11 primer set 

was used to determine the amplification efficiency.  All sample/gene combinations were analyzed in 

triplicate.  ACTB and YWHAZ genes were selected as endogenous controls using geNorm 
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(Vandesompele et al. 2002).  Normalized relative RNF11 expression, for exon 2- and exon 3-containing 

transcripts, in the lymph node and the spleen of a wild-type AA and a mutant GG animal accounting for 

primer efficiency were computed using the qbaseplus software package (Biogazelle) (Hellemans et al. 

2007). 

Estimating the effect of carrier status for the RNF11 c124-2A>G mutation on agronomically 

important traits measured in the field 

The effect of the sire's RNF11 c124-2A>G genotype on non-return rate (NRR) of its mates was estimated 

using a mixed model including sire's RNF11 genotype (fixed), year and month at insemination (fixed), 

mate's herd (random), individual animal effect of the offspring (random) and error.  NRR are computed 

from the AI information collected by inseminators working with the Association Wallonne de l'Elevage 

(AWE; http://www.awenet.be/) at seven time-points after AI.  The analysis was performed on 479,674 

cows mated to 340 AI sires. 

The effect of the sire's RNF11 c124-2A>G genotype on the rate of mortality, morbidity and culling of its 

offspring was estimated using a mixed model including sire's RNF11 genotype (fixed), calf's gender (fixed), 

year and month of calf's birth (fixed), mate's parity (fixed), calf's in utero position (fixed; forward or 

backward), calf's herd (random), individual animal effect of the calf (random), and error.  The 

corresponding phenotypes are collected by AWE technicians visiting farms, for (i) newborn calves, and (ii) 

calves having reached the age of 14 months since last visit.  The number of records for newborn offspring 

was 317,350 from 332 AI sires, and for 14 month-old offspring was 126,098 from 288 AI sires. 

The effect of the sire's RNF11 c124-2A>G genotype on its own zootechnical performances was estimated 

using a mixed model including sire's RNF11 genotype (fixed), sire's MRC2 genotype (fixed) (Fasquelle et 

al. 2009; Sartelet et al. 2011), year and month at scoring (fixed), sire's body condition at scoring (fixed), 

sire's age at scoring (quadratic regression), individual animal effect for the sires (random) and error (Lynch 

and Wash 1997).  Zootechnical performances of AI sires are recorded between 15 and 56 months of age as 

22 linear scores (0–50 score) that are summarized as indexes evaluating size, muscularity, meaty type and 

general appearance (Hanset and Boonen 1994).  Three hundred and eleven sires were used in this analysis. 

The effect of the sire's RNF11 c124-2A>G genotype on the zootechnical performances if its offspring was 

estimated using a mixed model including sire's RNF11 genotype (fixed), sire's MRC2 genotype (fixed) 

[(Fasquelle et al. 2009; Sartelet et al. 2011), offspring's gender (fixed), year and month at scoring (fixed), 
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offspring's body condition at scoring (fixed), offspring's age at scoring (quadratic regression), offspring's 

herd (random), individual animal effect for the offspring (random) and error (Lynch and Walsh 1997).  

The first data set corresponded to the same five global scores (cfr. sire's own performances) measured on 

92,475 36-month-old daughters of 306 sires by AWE technicians.  The second data set corresponded to 

weight (Kg), size (cm) and conformation (1–9 score) measured on 95,045 14-month-old offspring of 315 

sires. 

Covariances between random individual animal effects were assumed to be proportionate to twice the 

kinship coefficient computed from known genealogies.  Variance components and fixed effects were 

computed using MTDFREML (Boldman et al. 1995). 
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Figure 1.  Genome-wide haplotype-based association mapping of a growth stunting locus on BTA 3. 

(A) Manhattan plot for the haplotype based genome-wide association study for stunted growth using a 

model with 20 ancestral haplotypes. Alternating colors (black and grey dots)mark the limits between 

autosomes. Inset: frequency of the 20 hidden haplotype states in the 33 cases (red) and the 275 controls 

(black) at position BTA3:103,391,968 bp. (B) Genotypes of the 14 cases homozygous for hidden haplotype 

state 17 for 2,347 BTA3 SNPs. Homozygous genotypes are shown in orange or yellow and heterozygous 

genotypes in red. The limit of the homozygous haplotype shared by the 14 cases is highlighted in red. (C) 

Gene content of the 3.3 Mb shared interval (19 genes). (D) RNF11 gene model, and representation of the 

RNF11 c124-2A>G splice site variant. 
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Figure 2. Features of animals homozygous for the RNF11 c124-2A>G mutation. Affected (front) and 

control (back) calves of same age, illustrating the proportionate growth retardation, close forehand, and 

hairy head masking a narrow skull (A). Illustration of the hairy head (B), and normal muscle development 

(C) of animals homozygous for the RNF11 c124-2A>G variant. 
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Figure 3. Effect of the c124-2A>G splice site variant on RNF11 transcripts. (A) Gel electrophoresis of 

RT-PCR products obtained from mesenteric lymph node from homozygous wild-type (AA) and mutant (GG) 

animals using primer sets located respectively in exon 1 and 3 (E1–E3) and exon 1 and 2 (E1–E2). M: 

molecular weight marker. (B) Sequence analysis and structure of the 190-bp and 360-bp RT-PCR products 

obtained from an affected (GG) animal. 
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Figure 4. Survival and growth of 105 calves born from matings between carrier sires and dams. (A) 

Survival (from birth to 7 months of age) of calves sorted by c124-2A>G genotype (red: GG, dark blue: AA, 

light blue: AG) (***: p<0.001). (B) Weight (estimated from heart girth length) and (C) height at withers 

(from birth to 7 months of age) of calves sorted by c124-2A>G genotype (red: GG, dark blue: AA, light 

blue: AG). Regression lines (black) were fitted separately for affected and non-affected animals. 
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Figure 5. Signature of selection. (A) Frequency distribution (number of simulations out of 10,000) of the 

number of sires tracing back to the Galopeur founder (total: 206) that are expected to carry the c124-2A>G 

mutation assuming that it segregates in the corresponding pedigree according to Mendelian expectations, 

and that the frequency of c124-2A>G outside the Gallopeur lineage is 0% (red), 1% (orange), or 5% 
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(yellow). The dotted vertical marks the actual number of carrier sires (58) amongst the 206 descendants of 

Galopeur. (B) Distribution of the number of simulations (out of 10,000) yielding 58 carriers out of 206 

descendants of Galopeur (Y-axis), as a function of the rate of transmission of the mutation from 

heterozygous carriers (X-axis). Three curves are given corresponding to frequencies of the mutation outside 

of the Galopeur’s lineage of 0% (red), 1% (orange), and 5% (yellow). The dotted orange vertical line 

corresponds to a transmission rate of 62%, maximizing the number of simulations yielding 58 carriers for a 

mutation frequency (outside of the Galopeur’s lineage) of 1%.
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Detection of copy number variants in the horse genome and examination of their 

association with recurrent laryngeal neuropathy 

M. Dupuis, Z. Zhang, K. Durkin, C. Charlier, P. Lekeux
 
and M. Georges 

Abstract 

We used the data from a recently performed genome-wide association study using the Illumina 

Equine SNP50 beadchip for the detection of copy number variants (CNVs) and examined their 

association with recurrent laryngeal neuropathy (RLN), an important equine upper airway disease 

compromising performance.  A total of 2797 CNVs were detected for 477 horses, covering 229 

kb and seven SNPs on average.  Overlapping CNVs were merged to define 478 CNV regions 

(CNVRs).  CNVRs, particularly deletions, were shown to be significantly depleted in genes.  

Fifty-two of the 67 common CNVRs (frequency ≥ 1%) were validated by association mapping, 

Mendelian inheritance, and/or Mendelian inconsistencies.  None of the 67 common CNVRs were 

significantly associated with RLN when accounting for multiple testing.  However, a duplication 

on chromosome 10 was detected in 10 cases (representing three breeds) and two unphenotyped 

parents but in none of the controls.  The duplication was embedded in an 8-Mb haplotype shared 

across breeds. 

 

Anim. Genet. 44 (2013) 206-208 
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Results 

Recurrent laryngeal neuropathy (RLN) is the most common upper airway pathology in the horse 

(Robinson 2004).  Estimates of narrow-sense heritability range between 20% and 60% depending 

on the population (Marti and Ohnesorge 2002; Ibi et al. 2003; Barakzai 2009).  We recently 

conducted a genome-wide association study with 234 cases and 228 breed-matched controls, using 

the Illumina Equine SNP50 array (Dupuis et al. 2011).  We identified two genomic regions with 

suggestive evidence for association of chromosomes 21 and 31.  However, both loci jointly 

explained at most 8% of inherited predisposition. 

To further exploit the generated data set, we used Penncnv to call copy number variants (CNVs) 

from the available SNP genotypes (Wang et al. 2007; see Materials and methods in Appendix S1).  

After exclusion of horses with more than 10 CNVs (given the frequency distribution of CNV per 

horse, Fig. S1), we detected 2797 CNVs for 477 horses (average CNVs/sample = 5.9), including 

10.7% homozygous and 2.6% heterozygous deletions, and 55.1% heterozygous and 1.6% 

homozygous duplications.  On average, individual CNVs spanned 229 kb and seven SNPs.  

Overlapping duplications and deletions were merged separately to define 478 CNV regions 

(CNVRs) (Tables S1 & S2).  Overlap between duplication and deletion CNVRs was observed 30 

times.  The majority of CNVs were rare: 86% were observed in four or fewer horses (i.e., <1%), 

of which 67% were singletons.  The chromosome distribution of the CNVRs is shown in Fig. S2. 

Thirty-one of the 478 CNVRs jointly contained olfactory receptor genes (average, 15 genes; range, 

1–94).  In addition, the 238 duplication CNVRs overlapped 273 genes, and the 240 deletion 

CNVRs overlapped 174 genes.  When compared to a random sample of non-overlapping genome 

segments, deletion CNVRs were very significantly depleted in gene content (P < 0.001), whereas 

duplication CNVRs tended to be depleted albeit non-significantly (P = 0.07; Fig. S3).  This is 

thought to reflect purifying selection against CNV-dependent gene loss and supports the genuine 

nature of a large proportion of predicted CNVRs (Conrad et al. 2010).  In addition to olfactory 

receptors, CNVRs-encompassed taste receptors, members of the cytochrome P450 family and 

solute carrier family, T cell receptors, and immunoglobulin lambda-like polypeptide, known to be 

subject to CNVs in other species as well (Feuk et al. 2006; Redon et al. 2006). 
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We performed several tests to evaluate the specificity and sensitivity of the CNV calling procedure 

(see Materials and methods in Appendix S1).  These analyses were limited to the 67 common 

CNVRs (≥1%; Table S2).  First, we searched for an association between the CNV copy number 

and the genotype of SNPs located in 2-Mb flanking windows.  The test statistic obtained with the 

cognate CNVR was compared with that obtained for the same windows with the 66 other common 

CNVRs.  For 33/67 CNVRs, the test statistic obtained with the cognate CNVR was the highest of 

the list.  For 12 additional ones, the test statistic had a rank of three or two, corresponding to a 

nominal P value <5% (Fig. S4).  Thus, the genuine nature of ~67% of common CNVRs is 

supported by evidence of cis-association.  We further extended the association studies to the 

entire genome to detect possible trans-associations (Durkin et al. 2012).  Log(1/P) values 

exceeded a conservative threshold of 8 for two duplication CNVRs without evidence of 

cis-association (CNVR62, 66) and one CNVR with clear cis-association (CNVR43).  

Surprisingly, three deletion CNVRs with significant cis-association (CNVR4, 22, 45) also yielded 

a trans-signal exceeding the threshold of 8. 

We then searched for Mendelian inheritance of both duplication and deletion CNVRs.  We used 

eight available trios (sire–dam–offspring) to verify whether a CNVR in an offspring was detected 

in at least one of the parents and used 74 offspring of 52 single parents to verify whether CNVRs 

detected in parents were transmitted to offspring.  This allowed us to confirm three additional 

CNVRs (CNVR33, CNVR37, and CNVR44), for which no significant association was obtained.  

Twenty-five of the 48 CNVRs confirmed by association were additionally validated by Mendelian 

inheritance. 

We finally checked for Mendelian inconsistencies within deletion CNVRs.  Two additional 

CNVRs (CNVR46, CNVR61) were validated using this approach.  Among the 22 deletion 

CNVRs confirmed by association, 17 exhibited an excess of Mendelian inconsistencies. 

Taken together, we provide genetic validation evidence for ~80% of the common CNVRs in our 

data set. 

To obtain an estimate of the sensitivity of CNV detection, we examined the proportion of offspring 

inheriting a CNVR from a carrier parent.  The analysis was limited to validate CNVRs.  Overall, 

35% of offspring from a carrier parent also carried the CNVR, whereas 50% was expected.  Thus, 

the overall sensitivity of detection of common CNVs was estimated at 70%. 
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We then searched for association between RLN and CNVR genotype.  To that end, we compared 

the proportion of cases and controls with copy number differing from two using Fisher's exact test.  

We considered only the 67 common CNVRs in this analysis.  The significance threshold was 

consequently set (Bonferonni correction) at 0.00075.  None of the 67 CNVRs exceeded this 

threshold.  However, the most significant signal was obtained with CNVR35, which was 

observed in nine cases (three warmbloods, three trotters, three draft horses), one unphenotyped 

parent and none of the controls, yielding a nominal P value of 0.0036.  CNVR35 corresponds to a 

62-kb duplication that was validated on the basis of a cis-association.  Examination of the SNP 

genotypes indicated that the duplicated CNVR35 allele is embedded in a remarkably long (8 Mb) 

haplotype shared among the three breeds.  We identified two animals that carried the 

corresponding haplotype and visual examination of their log R ratio and B allele frequencies 

indicated that indeed both were carrying the CNVR allele with the duplication (Fig. S5).  One 

was an unphenotyped sire of one of the affected draft horse offspring (shown by Penncnv to carry 

the duplication), whereas the other was an additional affected warmblood.  Including this 

additional case in the analysis yields a nominal association P value of 0.0018.  The corresponding 

genomic region is not known to behave as a recombination cold spot.  Thus, the conservation of 

such a long haplotype across three different breeds is intriguing.  One possible explanation is that 

the duplication resides in an 8-Mb inversion, precluding recombination with wild-type haplotypes.  

It is tempting to speculate that the inversion rather than the CNV might underlie the association 

with RLN. 
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Figure S1: Frequency distribution of the number of CNVs per horse detected with the PennCNV 

software on 520 individuals. 

    

 

Figure S2: Chromosomal distribution of the CNVRs compared to number of SNPs per 

chromosome.  
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A  

 

B  

 

Figure S3：Frequency distributions of the number of genes observed in a random sample (1000 

permutations) of non-overlapping random segments (matched in term of size and number) for 

deletions (A) and duplications (B).
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Figure S4: Evidence of association between copy number variants and the genotype of SNPs 

located in 2Mb flanking windows revealed by the rank of the test statistic obtained with the cognate 

CNVR (blue) compared with that obtained for the same windows with the other common 66 CNVR 

(red).  
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Figure S5：Visualization with illumina Genome Studio software of fluorescence intensities of 6 

SNPs (from BIEC2-112446 to BIEC2-112475) contained in a duplication (CNVR35) detected in 

twelve horses (10 by PennCNV, in green, and 2 by visual examination, in yellow). 
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Table S1. Details of the 478 CNVR: chromosome and position in bp, number of horses (Nb) 

detected with the CNVR and copy-number （CN） (homozygous deletions 0, heterozygous 

deletion 1, heterozygous duplications 3 or homozygous duplications 4) 

 

Chr Start End Nb CN Chr Start End Nb CN 

1 2404732 2428759 1 3 13 5704290 5788444 1 3 

1 3377373 3430737 1 3 13 7000988 7010566 1 3 

1 6988046 7101467 1 3 13 7359845 7378465 14 3 

1 16485051 16675322 1 1 13 8023293 8336831 7 3 

1 25680190 25688764 1 3 13 13961628 13968758 4 1 

1 28700170 28750510 1 1 13 22580668 22763058 1 3 

1 38333182 38425494 3 3 13 24691212 24715679 1 3 

1 49442370 49612915 1 1 14 1296596 1392437 2 3 

1 54099833 54226216 1 1 14 3819727 3867523 1 3 

1 54099833 54226216 3 3 14 17756907 17826590 1 1 

1 93174703 93315929 1 3 14 18057043 18077886 1 1 

1 93604112 93623884 57 3 14 29605818 29613676 1 3 

1 102790715 102924399 2 1 14 41858449 41859074 1 3 

1 109437334 109473816 26 0 or 1 14 42327252 42341408 1 3 

1 109437334 109473816 1 3 14 45136536 45192152 1 3 

1 111524212 111565898 1 1 14 52997893 53417443 40 3 

1 121724591 121759945 1 1 14 59460837 59463001 3 3 

1 127066527 127072827 1 1 14 59794863 59856137 1 1 

1 127066527 127072827 1 3 14 64933907 64951664 3 1 

1 127890314 127937605 1 3 14 67970273 67973544 1 1 

1 136452610 136587104 1 3 14 68068476 68095557 2 3 

1 138375254 138425445 1 3 14 92832873 92874359 4 3 

1 150538517 150589441 1 1 15 7204308 7215311 1 3 

1 154902949 155593582 1 1 15 13360186 13546091 31 3 

1 155487276 155656642 78 0 or 1 15 21073741 21139258 4 1 

1 155795029 156870455 81 0 or 1 15 36124731 36215145 1 1 

1 158969159 159109725 9 1 15 47772108 47776161 1 1 

1 158969159 159109725 20 3 or 4 15 47772108 47776161 2 3 

1 165920447 166094027 1 3 15 48199824 48278494 16 1 

1 166388258 166511143 1 1 15 57107237 57203204 10 1 

1 169080745 169106171 1 1 15 57107237 57124675 2 3 

1 178553782 178573079 1 1 15 58977518 58988902 1 3 

1 178798269 178815370 1 1 15 59421724 59448498 1 4 

1 178798269 179550475 3 3 15 65519182 65526115 1 3 

2 11066626 11138697 1 1 16 2716637 2787127 11 3 

2 15112913 15284362 1 1 16 15852883 15869728 1 1 

2 23718743 23738529 1 3 16 17790340 17885080 1 3 
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2 33516505 33523263 1 1 16 38714465 38751894 1 1 

2 47257405 47320158 2 0 16 58842993 58952082 1 3 

2 48153515 48240185 1 1 16 63556037 63561798 1 1 

2 51877913 51881552 3 3 16 76887717 76938027 1 3 

2 58352438 58411027 1 3 16 78418181 78701360 1 3 

2 58518774 58529951 1 1 16 80679310 80681397 1 3 

2 71776762 71852657 3 1 17 2877987 3010511 1 3 

2 76470475 76600049 1 1 17 6214434 6412483 1 3 

2 78026093 78027107 1 1 17 7219757 7291227 3 3 

2 83746531 83778839 1 1 17 15505612 15561039 1 1 

2 85856142 85856257 1 3 17 15505612 15512365 1 1 

2 90673871 90752478 1 3 17 20197651 20198683 2 3 

2 96664019 96702010 1 1 17 32444026 32635391 1 3 

2 96664019 96702010 1 3 17 32635391 32770316 1 3 

2 97687916 97689054 2 1 17 32828288 32828619 1 1 

2 97917014 98286668 1 1 17 35323872 35577301 1 3 

2 101905815 101930407 1 3 17 36644251 36688452 1 3 

2 103758278 103782300 1 3 17 36846001 36977325 3 3 

2 106062109 106064917 7 0 or 1 17 38001228 38063886 1 1 

2 106917495 106967946 1 3 17 40886200 41219289 1 3 

2 107853583 107936731 5 3 17 43477906 43563179 1 3 

2 108615709 108630836 1 1 17 44277770 44330951 1 1 

2 110360397 110411873 1 1 17 48562840 48603600 1 1 

2 110487412 110551367 2 1 17 48562840 48603600 1 3 

2 111089904 111104849 1 3 17 49886727 50011096 2 1 

3 21596958 21636056 1 3 17 51747591 51884825 1 1 

3 35305705 35321182 1 1 17 53466267 53539910 1 1 

3 41567820 41635136 8 3 17 55492569 55582048 1 1 

3 41621380 41635136 1 3 17 55690076 55690662 1 1 

3 42828373 42864867 1 3 17 57337550 57338181 4 1 

3 47915872 47970675 1 1 17 57962518 58094803 1 1 

3 51525184 51575785 1 3 17 58048425 58048581 1 1 

3 57169047 57214428 1 1 17 60468135 60479962 1 3 

3 65932710 66015792 11 1 17 62254110 62526107 3 3 

3 65705932 66065643 50 3 17 65459354 65462839 1 1 

3 66838815 66956851 1 1 18 3286734 3440128 2 3 

3 67191980 67212427 1 1 18 9608605 9810377 2 3 

3 67197969 67248561 3 3 18 9608605 9746042 1 3 

3 70627351 70640054 1 3 18 10104665 10224646 1 3 

3 70845155 70967718 1 1 18 10812787 10881369 1 3 

3 73033604 73156602 8 3 18 13135454 13194121 1 3 

3 81610006 81656738 1 1 18 16627010 16713910 1 3 

3 81758548 81778280 1 3 18 24529189 24674961 1 1 

3 90966188 90971491 1 1 18 25534223 25595772 1 1 
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3 100081272 100245562 1 1 18 25803363 25806480 1 1 

3 103598907 103691288 1 1 18 28863825 28964267 2 3 

3 104737609 104821920 1 3 18 36449291 36449543 1 1 

3 114181081 114298463 1 3 18 37572919 37625592 1 1 

4 2309850 2634210 1 1 18 40187377 40342808 1 1 

4 9061371 9121425 2 3 18 46009970 46010221 1 1 

4 9121425 9323693 1 3 18 49404497 49408946 1 3 

4 9310410 9500292 53 0 or 1 18 51078308 51113066 1 1 

4 16830516 16836115 1 3 18 60165814 60166198 1 1 

4 22227867 22288213 1 1 18 60519874 60601238 1 1 

4 22737039 22769640 1 1 18 70473204 70562048 1 3 

4 23011397 23158551 1 1 18 75780975 75879559 27 3 

4 27642526 27651073 1 1 18 75864062 75879559 3 3 

4 29536635 29844870 1 1 18 76611180 76632666 1 1 

4 32764495 32768967 1 1 19 6860 503825 1 3 

4 33736922 33747940 1 1 19 1116053 1669010 1 3 

4 37013872 37014111 1 1 19 1346278 1396027 1 3 

4 38547233 38625012 1 1 19 3679642 3815186 1 1 

4 52194368 52612016 1 3 19 5012965 5014569 2 1 

4 70612792 70683966 1 1 19 5924490 5959965 1 3 

4 72343609 72349365 13 3 19 8396001 8473556 1 1 

4 81521531 81535530 2 1 19 32598913 32638781 46 0 or 1 

4 81577925 81616460 1 1 19 32598913 32621031 5 3 

4 82490516 82508616 1 1 19 38547055 38646893 1 1 

4 85453445 85457390 3 1 19 43032770 43092034 1 1 

4 96922930 97192480 86 3 or 4 19 46577737 46676246 1 1 

4 98289000 98481816 1 1 19 51656828 51766306 1 1 

4 102853989 102936414 1 3 19 51883240 51924633 1 3 

5 15890795 15914852 1 1 19 54601785 54640517 1 3 

5 27624425 27686502 1 1 20 17395157 17406109 1 1 

5 28782503 28814723 1 3 20 22807631 22870569 1 1 

5 37840041 37916448 5 0 20 22837509 22906369 1 1 

5 37994476 37998277 1 1 20 24257326 24485375 1 3 

5 44138490 44261644 9 3 20 26371568 26564881 9 3 

5 45358974 45514810 1 3 20 28355086 28731640 4 1 

5 45442281 45551283 1 1 20 31961012 32367245 19 0 or 1 

5 47239959 47259141 1 1 20 32059082 32250493 9 3 

5 47359920 47399241 47 3 20 37245113 37303121 2 3 

5 53365624 53382340 1 3 20 40725082 40812984 1 3 

5 56110634 56177960 1 3 20 43520722 43544976 3 3 

5 60139794 60239913 1 1 20 45309182 45347364 3 1 

5 63904057 63920127 1 1 20 48306105 48355432 5 1 

5 69413874 69429487 1 1 20 50391131 50435199 1 3 

5 69413874 69429487 1 3 20 50435199 50483331 2 3 
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5 72522420 72674477 1 1 21 976423 1008072 3 3 

5 73582972 73620324 1 3 21 2768320 2859633 1 1 

5 77417050 77435333 1 1 21 8453609 8487022 1 1 

5 77417050 77685828 17 3 21 18811395 18814925 5 3 

5 88243192 88349479 27 3 21 18960857 19035089 1 1 

5 89599857 89784932 1 1 21 23358420 23383825 1 1 

5 99595549 99631010 2 3 or 4 21 31684806 31841466 1 1 

6 286052 337057 1 3 21 34531228 34550625 1 1 

6 8932759 8991955 1 3 21 35167053 35205963 1 3 

6 20120126 20157740 10 3 21 36692422 36697404 1 1 

6 23555139 23576576 1 3 21 37245803 37287979 1 1 

6 26104234 26118925 19 0 or 1 21 37245803 37287979 1 3 

6 26102028 26126581 1 3 21 40039074 40217182 1 1 

6 28525354 28582837 1 3 21 40983019 42820265 2 1 

6 37380955 37550849 1 1 21 42207465 42211062 1 1 

6 38268897 38278874 3 3 22 2493448 2554255 1 1 

6 38756173 38783638 1 1 22 5268548 5383622 1 4 

6 39643333 39648248 1 1 22 12929717 12980228 2 1 

6 45467796 45552702 2 1 22 15434589 15483680 2 1 

6 71956823 72607543 71 0 or 1 22 20254977 20311433 1 1 

6 73072905 73412971 2 1 22 20922073 20926117 2 3 

7 8577492 8584515 1 1 22 23459207 23496489 1 3 

7 9160976 9413168 6 1 22 23909436 24034489 1 3 

7 16006458 16050482 1 1 22 27752979 27827795 1 3 

7 30834310 30995260 1 1 22 36435729 36545238 9 3 

7 31406445 31529855 10 1 22 36732680 36920538 20 0 or 1 

7 52328145 52498211 1 1 22 36850262 36920538 4 3 

7 52610482 52677786 39 3 22 37835325 37868430 1 3 

7 55286808 55351233 1 1 23 41804 275355 2 3 

7 55286808 55410254 2 3 23 4729518 4739287 1 3 

7 73083306 73197149 3 1 23 5855795 6056873 2 1 

7 73371661 73666395 78 0 or 1 23 6284614 6425213 1 3 

7 73504993 73666395 9 3 23 7331191 8512483 9 3 

7 74362741 74418075 3 3 23 8512483 8734195 2 3 

7 92601495 92604434 1 1 23 16302756 16397289 1 3 

8 1722878 2213144 1 1 23 17021853 17100602 2 1 

8 1910659 2115738 3 3 23 18031161 18042294 1 1 

8 2115370 2213144 3 1 23 29305683 29334199 1 1 

8 2897484 2996427 2 3 23 30217610 30259948 1 1 

8 3608369 3821757 54 3 23 37630447 37630804 1 1 

8 4183178 4430473 2 1 23 47584956 47585275 1 1 

8 4391896 4646812 43 0 or 1 24 7904451 7908956 1 1 

8 5712244 5716266 2 3 24 13702903 13726613 1 1 

8 16028660 16028807 1 3 24 13910912 13988805 1 1 
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8 16071303 16171233 2 3 24 27656238 28204834 2 3 

8 16085130 16171233 1 1 24 28564090 28682383 1 1 

8 24030822 24188533 1 3 24 32416012 32628728 20 3 

8 24528856 24575032 1 3 24 35847276 35875578 1 1 

8 28260573 28355849 2 3 24 38370785 38375555 35 3 

8 41810441 41869404 1 1 24 41033593 41035832 2 3 

8 81506440 81550319 1 3 25 2996811 3028209 1 3 

8 82849217 82877751 1 1 25 16489352 16560013 1 1 

8 82877751 82982694 2 3 25 17593725 17703603 1 3 

8 87181631 87279745 2 3 25 17955032 17979476 18 0 or 1 

9 20586158 20588207 1 0 25 17955032 18141741 21 3 

9 21946854 22030940 1 1 25 17703603 17979476 1 3 

9 29889627 29892897 10 0 or 1 25 18481781 18574374 1 3 

9 50803693 50808048 4 0 or 1 25 18860537 18971635 1 3 

9 56052920 56125503 2 1 25 25249663 25309442 2 3 

9 56385984 56567910 1 1 25 26318531 26942120 99 0 or 1 

9 57755597 58055411 17 0 or 1 25 29618659 29684315 28 3 

9 70971456 71020023 2 1 25 37673569 37759471 1 1 

9 70960794 71020023 108 3 25 37673569 37780451 1 3 

9 72114145 72307507 3 3 25 38084663 38546385 9 3 

9 72247701 72307507 1 1 25 38457363 38546385 1 3 

9 74224040 74488164 1 3 26 52232 357957 1 1 

9 81398267 81402542 3 3 26 2942000 2972786 1 1 

9 82977765 83060823 1 1 26 6633318 6643399 1 1 

10 674485 1141923 10 3 26 13391944 13474118 1 1 

10 3909288 4005578 2 3 26 17252368 17325508 1 3 

10 13004730 13070456 2 3 26 18158669 18163088 2 1 

10 13917500 14021914 2 3 26 18834339 19052616 1 1 

10 16554166 16568462 2 3 26 21312489 21381972 2 3 

10 21301438 21335645 1 3 26 25045181 25045560 1 1 

10 26215698 26249034 1 3 26 26883163 26924886 1 1 

10 30764949 30827421 10 3 26 28446287 28500869 1 1 

10 39119202 39541740 1 1 26 33521081 33536968 4 3 

10 48605291 48704891 1 1 26 37233957 37329333 4 3 

10 48866033 48869952 1 1 27 41769 258452 1 3 

10 52948258 52949299 1 1 27 1749770 1797283 1 1 

10 53808057 53837679 1 1 27 5750034 5868146 17 3 

10 53830445 53837679 1 3 27 6539738 6597118 1 3 

10 54831255 54848777 1 3 27 6990066 7033521 1 3 

10 65304239 65372917 1 1 27 13198799 13303733 1 3 

10 69091035 69125778 3 1 27 17601828 17746986 3 3 

10 70245511 70506856 1 1 27 26139989 26381437 1 1 

10 77814178 77851298 1 1 28 14158917 14230291 1 1 

11 635764 780294 6 3 28 16674286 16683495 1 1 
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11 1926549 1926646 1 3 28 35535261 35924600 1 3 

11 2045893 2153152 1 3 29 477117 631698 2 1 

11 2517091 2524317 2 3 29 399673 946361 1 1 

11 3176125 3435909 1 3 29 282613 631698 24 3 

11 10225315 10418099 1 3 29 5666076 5733601 1 1 

11 23950817 23992162 5 3 29 8565963 8611891 1 1 

11 26158220 26328579 1 3 29 16200670 16335779 1 1 

11 33269366 33337791 1 3 29 29212867 29320084 2 3 

11 36069308 36078928 1 1 30 11367620 11430634 1 3 

11 38181763 38192091 1 3 30 13446880 13565090 1 3 

11 54640169 54812394 1 1 30 15052775 15104826 1 3 

11 54812394 54929094 1 1 30 17054598 17084652 1 1 

11 59722467 59737161 1 1 30 17054598 17084652 1 3 

11 60402199 60405936 1 3 30 19565060 19826443 1 1 

12 4475059 4585884 1 1 30 20499484 20500654 1 1 

12 12524489 13488187 32 0 30 24398152 24603312 1 1 

12 13945011 14777981 114 0 or 1 30 30032173 30051326 1 3 

12 14124730 14172327 1 1 31 4829031 5085857 1 3 

12 14587232 14777981 2 1 31 8225583 8227054 1 3 

12 12193543 14913468 240 3 or 4 31 9688131 9865005 1 3 

12 15362879 16525629 2 3 31 11290101 11304886 1 1 

12 20138808 20154683 3 3 31 11852511 11903912 1 1 

12 21568982 21582407 1 3 31 12363898 12778909 1 3 

12 28033991 28066331 2 3 31 17905592 18089361 1 3 

12 30065284 30158615 3 3 31 17951839 17955728 1 1 

13 5704290 5788444 1 1 31 22891972 22950057 1 3 
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Table S2. Characteristics of the 67 common CNVRs: position (Chr: chromosome, Start: start position in bp, End: end position in bp), copy-number (Dupl: 

duplication, Delet: deletion), total number of horses (Nb), number of horses in each breed (W: Warmblood, TR: Trotter, TH: Thoroughbred, DH: Draft Horse), 

results of haplotype-based mapping (localisation in cis and/or trans, –log P value in cis, rank of the test statistic for association mapping in cis, Chr in trans: 

localization of the signal for significant result for association mapping in trans, –log P values for these signals in trans),  familial analyses (P+/O+PP (trio): number 

of parents with the CNV compared to the number of offspring with the CNV in trios, O+/OP+: number of offspring with the CNV amongst the offspring from 

parents with the CNV, Mendelian inconsistencies: 0 duplications, + enrichment for deletions, - no enrichment), genes content and association with RLN  (Number 

of cases / controls / parents, total number of horses, P -values of the Fisher test).  

 

CNV Chr Start End CN Nb W TR TH DH Localisation -LogP in cis Rank Chr in trans -LogP in trans P+/O+PP (trio) O+/OP+ Mendel. Incon. Genes function Case Control Parent Total FISHER 

CNV01 1 93604112 93623884 Dupl 57 45 6 3 3 cis 4.1 2   0 5/21 0 MESP2, AP3S2 29 21 7 57 0.2955 

CNV02 1 109437334 109473816 Delet 26 18 6 2 0 cis 7.4 1   1/2 1/4 + No 14 8 4 26 0.2749 

CNV03 1 155487276 155656642 Delet 78 69 4 3 2 cis 16.0 1   0 2/8 - Olfactory receptors 29 43 6 78 0.0531 

CNV04 1 155795029 156870455 Delet 81 64 7 7 3 cis and trans 12.5 2 Chr 13 12.6 2/2 15/25 + Olfactory receptors 34 37 10 81 0.605 

CNV05 1 158969159 159109725 Delet 9 9 0 0 0 no 1.5 16   0 0/2 - CCNG1 cyclin family 2 6 1 9 0.1692 

CNV06 1 158969159 159109725 Dupl 20 14 4 2 0 cis 9.8 3   1/1 3/6 0 CCNG1 cyclin family 8 8 4 20 0.9999 

CNV07 2 106062109 106064917 Delet 7 6 0 1 0 cis 13.5 1   0 0/1 - No 4 2 1 7 0.6855 

CNV08 2 107853583 107936731 Dupl 5 4 0 1 0 no 1.4 22   0 0/0 0 No 1 4 0 5 0.209 

CNV09 3 41567820 41635136 Dupl 8 8 0 0 0 cis 5.4 1   0 1/1 0 No 6 1 1 8 0.1223 

CNV10 3 65932710 66015792 Delet 11 9 1 1 0 cis 3.1 2   0/2 0/2 + UGT, glucuronosyltransferase 6 3 2 11 0.5036 

CNV11 3 65705932 66065643 Dupl 50 44 3 0 3 cis 11.7 1   0 0/3 0 UGT 21 26 3 50 0.4396 

CNV12 3 73033604 73156602 Dupl 8 8 0 0 0 cis 3.8 2   0 0/0 0 No 2 5 1 8 0.2777 

CNV13 4 9310410 9500292 Delet 53 50 2 0 1 cis 16.0 1   0/1 4/9 + T receptor gamma 14 31 8 53 0.0068 

CNV14 4 72343609 72349365 Dupl 13 13 0 0 0 no 1.1 23   0 0/0 0 No 4 9 0 13 0.1667 
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CNV15 4 96922930 97192480 Dupl 86 63 9 13 1 cis 15.2 1   1/4 3/14 0 Olfactory receptors 37 38 11 86 0.8 

CNV16 5 37840041 37916448 Delet 5 4 1 0 0 cis 14.2 1   0 0/3 + APCS, CRP, Olf recept 3 1 1 5 0.6234 

CNV17 5 44138490 44261644 Dupl 9 8 0 1 0 cis 6.1 2   0 0/2 0 S100 genes 4 3 2 9 0.9999 

CNV18 5 47359920 47399241 Dupl 47 39 4 4 0 cis 5.7 1   0 3/18 0 Fragment of IgG 19 25 3 47 0.3397 

CNV19 5 77417050 77685828 Dupl 17 14 1 2 0 cis 4.5 2   0 0/1 0 CLCA, ODFL 12 4 1 17 0.0719 

CNV20 5 88243192 88349479 Dupl 27 22 0 5 0 cis 16.0 1   0 0/3 0 No 16 8 3 27 0.1412 

CNV21 6 20120126 20157740 Dupl 10 9 0 1 0 cis 6.7 1   0 0/2 0 INPP5D 3 5 2 10 0.4976 

CNV22 6 26104234 26118925 Delet 19 16 1 2 0 cis and trans 8.9 1 Chr 8 8.9 0 1/3 - AQP12B 8 8 3 19 0.9999 

CNV23 6 71956823 72607543 Delet 71 61 9 0 1 cis 11.9 1   0 3/12 + Olfactory receptors 40 24 7 71 0.0568 

CNV24 7 9160976 9413168 Delet 6 6 0 0 0 no 0.9 52   0 0/0 - no 1 5 0 6 0.1168 

CNV25 7 31406445 31529855 Delet 10 10 0 0 0 cis 7.3 1   0 0/0 - Olfactory receptors 6 4 0 10 0.7513 

CNV26 7 52610482 52677786 Dupl 39 30 9 0 0 cis 2.9 3   1/4 2/7 0 Olfactory rec + Zn finger 20 12 7 39 0.1996 

CNV27 7 73371661 73666395 Delet 78 70 3 4 1 cis 16.0 1   0/1 6/15 + Olfactory receptors 40 31 7 78 0.3626 

CNV28 7 73504993 73666395 Dupl 9 8 1 0 0 no 3.3 5   0 0/1 0 Olfactory receptors 2 6 1 9 0.1692 

CNV29 8 3608369 3821757 Dupl 54 36 8 10 0 cis 9.5 1   0 3/7 0 TOP,Ig lambda-like 18 29 7 54 0.0881 

CNV30 8 4391896 4646812 Delet 43 34 2 0 7 cis 6.4 2   0 4/19 + Ig lambda like pptide 18 22 3 43 0.5073 

CNV31 9 29889627 29892897 Delet 10 6 4 0 0 cis 12.8 1   1/2 1/2 + No 7 3 0 10 0.3386 

CNV32 9 57755597 58055411 Delet 17 12 1 4 0 cis 5.2 1   0/2 0/2 + No 8 7 2 17 0.9999 

CNV33 9 70960794 71020023 Dupl 108 82 15 8 3 no 1.1 30   1/5 4/13 0 Gsdmc 49 46 13 108 0.9075 

CNV34 10 674485 1141923 Dupl 10 10 0 0 0 no 2.5 6   0 0/1 0 UQCRFS 6 3 1 10 0.5036 

CNV35 10 30764949 30827421 Dupl 10 4 3 0 3 cis 3.9 1   0 0/1 0 No 9 0 1 10 0.0036 

CNV36 11 635764 780294 Dupl 6 6 0 0 0 cis 2.1 3   0 0/0 0 FOXK, NARF, HEXDC 2 4 0 6 0.4428 

CNV37 11 23950817 23992162 Dupl 5 1 4 0 0 no 0.8 35   0 1/2 0 OSBP 2 1 2 5 0.9999 

CNV38 12 12193543 14913468 Dupl 240 180 38 13 9 cis 16.0 1   5/5 31/47 0 Olfactory receptors 109 103 28 240 0.846 

CNV39 12 12524489 13488187 Delet 32 27 0 5 0 cis 16.0 1   0 2/9 + Olfactory receptors 14 14 4 32 0.9999 

CNV40 12 13945011 14777981 Delet 114 103 0 11 0 cis 16.0 1   0 9/17 + Olfactory receptors 52 50 12 114 0.9999 
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CNV41 13 7359845 7378465 Dupl 14 13 1 0 0 no 2.4 8   0 0/0 0 Cyto P450 10 4 0 14 0.1731 

CNV42 13 8023293 8336831 Dupl 7 7 0 0 0 no 1.7 21   0 0/0 0 PILRA, MCM, TAF 3 4 0 7 0.7202 

CNV43 14 52997893 53417443 Dupl 40 28 5 7 0 cis and trans 7.7 1 Chr 8 10.8 0 2/6 0 No 18 16 6 40 0.8591 

CNV44 15 13360186 13546091 Dupl 31 30 0 1 0 no 0.8 48   0 1/2 0 MAL 14 16 1 31 0.7066 

CNV45 15 48199824 48278494 Delet 16 16 0 0 0 cis and trans 13.5 1 Chr 19 13.1 0 0/0 - No 12 4 0 16 0.0719 

CNV46 15 57107237 57203204 Delet 10 10 0 0 0 no 2.3 8   0 0/0 + No 4 6 0 10 0.5379 

CNV47 16 2716637 2787127 Dupl 11 11 0 0 0 no 2.1 12   0 0/1 0 WNT7 7 3 1 11 0.3386 

CNV48 18 75780975 75879559 Dupl 27 22 3 0 2 cis 2.9 3   0 0/4 0 Aox 14 11 2 27 0.682 

CNV49 19 32598913 32638781 Delet 46 34 7 3 2 cis 13.3 1   1/2 7/27 + DLG 23 17 6 46 0.4092 

CNV50 19 32598913 32621031 Dupl 5 4 1 0 0 no 1.8 16   0 0/0 0 DLG 1 4 0 5 0.209 

CNV51 20 26371568 26564881 Dupl 9 6 2 1 0 no 0.8 45   0 0/4 0 Olfactory receptors, Zn finger P 3 3 3 9 0.9999 

CNV52 20 31961012 32367245 Delet 19 14 2 1 2 cis 7.6 1   0/1 0/1 + TSPAN17 11 8 0 19 0.6408 

CNV53 20 32059082 32250493 Dupl 9 6 3 0 0 no 1.3 19   0/1 0/3 0 TSPAN17 5 1 3 9 0.2155 

CNV54 20 48306105 48355432 Delet 5 4 1 0 0 cis 8.7 1   0 0/0 + No 3 2 0 5 0.999 

CNV55 21 18811395 18814925 Dupl 5 5 0 0 0 cis 4.6 1   0 0/0 0 No 1 4 0 5 0.209 

CNV56 22 36435729 36545238 Dupl 9 8 0 0 1 no 1.4 22   0/1 0/1 0 No 4 4 1 9 0.9999 

CNV57 22 36732680 36920538 Delet 20 18 1 1 0 cis 7.1 1   0 0/2 + No 12 6 2 20 0.2289 

CNV58 23 7331191 8512483 Dupl 9 8 0 1 0 no 1.3 15   0 0/0 0 Solute carrier family, phosphatase 2 7 0 9 0.1006 

CNV59 24 32416012 32628728 Dupl 20 20 0 0 0 cis 16.0 1   0 0/0 0 TTC8 8 12 0 20 0.3652 

CNV60 24 38370785 38375555 Dupl 35 30 0 5 0 cis 11.5 1   0 1/2 0 No  
1

5 
18 2 35 0.5883 

CNV61 25 17955032 17979476 Delet 18 16 1 1 0 no 1.5 20   0 0/2 + Zn finger prot  5 11 2 18 0.1305 

CNV62 25 17955032 18141741 Dupl 21 15 5 1 0 trans 2.4 11 Chr 22 8.2 0 1/5 0 Zn finger prot, solute carrier family  
1

4 
4 3 21 0.0279 

CNV63 25 26318531 26942120 Delet 99 80 15 1 3 cis 16.0 1   0/1 6/10 + Recepteur olfactif  
4

6 
44 9 99 0.9999 
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CNV64 25 29618659 29684315 Dupl 28 27 1 0 0 cis 16.0 1   0 0/0 0 PreBcell leukemia PBX3  
1

4 
14 0 28 0.9999 

CNV65 25 38084663 38546385 Dupl 9 9 0 0 0 cis 2.9 2   0 0/0 0 
K-cl channel, phosphatase, ubiquitin 

ligas 
e 5 4 0 9 0.9999 

CNV66 27 5750034 5868146 Dupl 17 15 1 0 1 trans 1.4 26 Chr 2 9.4 0 0/2 0 ADAM32  8 7 2 17 0.9999 

CNV67 29 282613 631698 Dupl 24 24 0 0 0 trans 0.9 29 Chr 30 16.0 0 1/10 0 Olfactory receptors  
1

1 
8 5 24 0.6408 
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Appendix S1  

Materials and Methods  

Cohorts, phenotypes and genotypes  

We used a previously described RLN case-control cohort including 234 cases  

(laryngeal grade ≥ III.2), 228 breed-matched controls (laryngeal grade I and ≥ 3 years), and 58 unphenotyped 

parents, representing four breeds (419 Warmbloods (W), 53 Trotters (TR), 37 Thoroughbreds (TH) and 11 

draft horses (DH), Dupuis et al. 2011).  All 520 horses were genotyped using the Illumina Equine SNP50 

Beadchip and standard protocols recommended by the manufacturer.  Raw data were analyzed with the 

Illumina GenomeStudio 2010.2 software.  Average and minimum call rate per individual were 99.7% and 

96%, respectively.  Gonosomal SNPs were ignored for CNV analysis.  

Identification of CNVs  

SNP-specific (Log R ratio) and allele-specific (B allele frequency) fluorescence intensities were obtained 

from the Illumina GenomeStudio software and analyzed with PennCNV.  PennCNV uses a Hidden Markov 

Model (HMM) incorporating Log R ratio, B allele frequency, inter-SNP distance and allelic frequency in the 

population for the detection of CNV (Wang et al. 2007).  Overlapping CNVs were merged to define 

copy-number variant regions (CNVR).  

Characterization of gene content  

Analysis of gene content was based on the Ensembl gene Predictions (Ensemble 62, Hubbard et al. 2002).   

Association between SNP and CNVR genotype   

Association between SNP and CNVR genotype was examined for the 67 common  

CNVR detected in at least 5 horses.  The analysis was restricted to the W population.  7622 SNPs (within 

CNVR plus adjacent pairs) were first excluded from the data set.   

Genotypes of the remaining 44,441 SNPs were phased using Phasebook (Druet and Georges, 2010) which 

assigns haplotypes to 20 hidden haplotype states.  We then compared the frequency of haplotype states 

between cases and controls using ASSHAP (Druet et al. unpublished).  ASSHAP uses a generalized mixed 

model including a random polygenic effect (to account for population stratification) for which the 

variance-covariance matrix is proportionate to genome-wide identity-by-state (computed on the basis of 

hidden haplotype states).  
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Results of haplotype-based mapping can show significant association signals in cis, due to an enrichment in 

one or several haplotypes in horses having the CNV, suggesting they had received the variant from a common 

ancestor.  Signals in trans can also be detected for duplication and they can result from transposition of DNA 

from a chromosome to another or from genomic missassemblies.  For example, one signal (CNV67) was 

probably due to an assembly error (the region is limited by two gaps, the orthology with other species is 

broken, and a human orthologous segment on chr 1 for the equine chr 29 flanks the orthologous segment of 

equine chr 30).   

Mendelian inheritance of CNVR  

We used 8 available trios (sire-dam-offspring) to verify whether a CNV in an offspring was detected in at 

least one of the parents, and 74 offspring of 52 single parents to verify whether  

CNVRs detected in parents were transmitted to offspring.  

Association of CNV with RLN  

Association between CNVR genotype and RLN was done by comparing the number of cases and controls 

across the four breeds with CNVR copy number differing from two using Fisher’s exact test.
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Serial translocation by means of circular intermediates underlies colour sidedness in 

cattle 

K. Durkin, W. Coppieters, C. Dröemuller, N. Ahariz, N. Cambisano, T. Druet, C. Fasquelle, A. Haile, P. 

Horin, L. Huang, Y. Kamatani, L. Karim, M. Lathrop, S. Moser, K. Oldenbroek, S. Rieder, A. Sartelet, J. 

Sölkner, H. Stalhammar, D. Zelenika, Z. Zhang, T. Leeb, M. Georges
 
and C. Charlier 

Abstract 

Colour sidedness is a dominantly inherited phenotype of cattle characterized by the polarization of 

pigmented sectors on the flanks, snout and ear tips (Olson 1999).  It is also referred to as ‘lineback’ or 

‘witrik’ (which means white back), as colour-sided animals typically display a white band along their spine.  

Colour sidedness is documented at least since the Middle Ages and is presently segregating in several cattle 

breeds around the globe, including in Belgian blue and brown Swiss (Olson 1999; Porter and Mason 

2002).Here we report that colour sidedness is determined by a first allele on chromosome29 (Cs29),which 

results from the translocation of a 492-kilobase chromosome 6 segment encompassing KIT to 

chromosome29, and a second allele on chromosome6 (Cs6), derived from the first by repatriation of fused 

575-kilobase chromosome 6 and 29 sequences to the KIT locus.  We provide evidence that both 

translocation events involved circular intermediates.  This is the first example, to our knowledge, of a 

phenotype determined by homologous yet non-syntenic alleles that result from a novel 

copy-number-variant-generating mechanism. 

 

Nature 482 (2012) 81-84. 
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Results 

To gain insights into the molecular basis of colour sidedness (Fig. 1) , we genotyped 21 colour-sided and 30 

control Belgian blue animals with a custom-made 50K single nucleotide polymorphism ( SNP ) array 

(Charlier et al. 2008).  As a result of segregation at the roan locus, Belgian blue animals are either black 

spotted (r
Bl

r
Bl

), blue spotted (r
Bl

r
Wh

) or white (r
Wh

r
Wh

)
 
(Charlier et al. 1996).  As white is epistatic to colour 

sidedness, we selected non-white control animals.  We assumed autosomal dominant inheritance (Cs allele) 

and genetic homogeneity in Belgian blue, and thus scanned the genome of colour-sided animals for a shared 

haplotype (present in at least one copy) using the ASSDOM software (see Methods).  This analysis yielded 

a single genome-wide significant signal (P < 0.03), mapping the Cs locus to bovine chromosome 29 (BTA29) 

(Fig. 2a and Supplementary Fig. 1).  A sire transmitting the colour-sided phenotype to all its pigmented 

offspring was homozygous for the corresponding haplotype as expected.  The shared haplotype spanned 1.9 

Mb, and encompassed LUZP2 — not known to be involved in pigmentation — as the only gene.  

Sequencing the LUZP2 open reading frame (ORF) from colour-sided and control animals did not reveal any 

protein-sequence-altering variant (data not shown). 

In an independent effort, we scanned the genome for copy number variants (CNVs) using a database of 50K 

SNP genotypes from .4,500 animals of different breeds and the PennCNV software (Wang et al. 2007).  

Intriguingly, this analysis revealed a private duplication encompassing 26 SNPs on chromosome 6 (BTA6), 

shared by the 21 colour-sided Belgian blue animals (Fig. 2b).  We confirmed and refined the boundaries of 

this ~480 kb duplication by comparative genome hybridization (CGH) of genomic DNA of a Cs/Cs and 1/1 

Belgian blue animal on a genome-wide Nimblegen tiling array (Fig. 2c).  The corresponding CNV 

encompassed the KIT gene, known to be essential for melanocyte migration and survival (Yoshida et al. 

2001), and to be associated with coat colour variation (Brooks et al. 2007; Marklund et al. 1998). 

To reconcile these apparently discrepant results, we performed fluorescence in situ hybridization (FISH) with 

bacterial artificial chromosome (BAC) clones mapping respectively to the BTA29 association interval 

(labeled with a red fluorophore), and to the BTA6 CNV interval (labeled with a green fluorophore) on 

lymphocytes of a Cs/ + and a +/+ animal.  Overlapping red and green signals on one of the BTA29 

homologues of the colour-sided animal demonstrated that the CNV signal resulted from the translocation of 

the ~480kb BTA6 segment to BTA29 (Fig. 2d).  Retrospective examination of the SNP genotypes indicated 

that on average 3.17 of the 26 SNPs mapping to the ~480 kb duplication could not be called in colour-sided 
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animals, yet the remaining genotypes were sufficient to yield a suggestive association signal (genome-wide 

P< 0.37), reflecting the sharing of the extra KIT haplotype by colour-sided animals (Fig. 2a). 

To define the translocation breakpoints, we generated mate-pair libraries from self-ligated, 5 kb DNA 

fragments of a homozygous Cs/Cs Belgian blue animal, and generated, 10 Gb of sequence on an Illumina 

GAIIx instrument.  We expected two clusters of aberrant mate pairs spanning the left and the right 

breakpoint resulting from the insertion of an intact BTA6 fragment in a BTA29 segment.  We refer to the 

intact BTA6 fragment as A–B–C–D–E, the BTA29 segment in which it inserts as a–b, and the resulting left 

and right breakpoints as a–A and E–b, respectively.  However, we observed three aberrant mate-pair clusters 

corresponding respectively to a–D, E–A and C–b fusions (Supplementary Fig. 2). The corresponding 

topology is most parsimoniously explained by assuming that: (1) the translocated BTA6 fragment 

circularized (generating fusion E–A); (2) reopened in the C–D interval; and (3) integrated in the a–b BTA29 

interval (generating fusions a–D and C–b; Fig. 3). 

Using the genomic coordinates of the clustered mate pairs, we designed primer sets to amplify the three 

corresponding fusion points.  Productive amplification was only achieved using genomic DNA from 

colour-sided Belgian blue animals, as expected (Supplementary Fig. 3A).  We sequenced the corresponding 

PCR products to define the breakpoints at single-nucleotide resolution.  The E–A fusion was characterized 

by 2bp micro-homology typical of non-homologous end joining (NHEJ) (Supplementary Fig. 4A), whereas 

the a–D and C–b fusions exhibited micro-duplications and micro-deletions reminiscent of replication 

dependent microhomology-mediated break-induced replication (MMBIR) (Supplementary Fig. 4B) 

(Hastings et al. 2009).  All breakpoints mapped to intersperse non-homologous repeat elements (data not 

shown). 

The dominance of the Cs allele is expected to reflect a gain of function resulting from dysregulated 

expression of the translocated KIT gene.  To verify the transcriptional competence of the translocated KIT 

copy, we performed polymerase chain reaction with reverse transcription (RT–PCR) experiments using 

amplicons spanning two SNPs: the ss469414206 G-to-A transition in intron 1, and the ss469414207 C-to-T 

transition in intron 7.  We extracted total RNA from pigmented and unpigmented skin sectors of a Cs/1 

colour-sided Belgian blue animal with the GG genotype on BTA6 and the A genotype on BTA29 ((GG)6/A29) 

for ss469414206 and the (CC)6/T29 genotype for ss469414207.  The resulting pre-mRNA-dependent RT–

PCR products were directly sequenced and the ratio of T/C and A/G species was estimated using Peakpicker 

(Ge et al. 2005).  T/A transcripts accounted for ~33% of the KIT output in both pigmented and unpigmented 
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sectors, demonstrating the transcriptional potential of the translocated gene copy.  Long-range RT–PCR 

analysis of the near complete KIT mRNA with primers located respectively in exon 1 and the 39 untranslated 

region (UTR) followed by amplicon sequencing did not show evidence for alternate transcripts in 

colour-sided animals (SupplementaryFig.5). 

Linkage analysis performed in a brown Swiss pedigree segregating for colour sidedness with microsatellite 

markers targeting candidate genes (KIT, KITL, MITF, EDNRB, ADAMTS20), yielded a log of odds (lod) score 

of 6.9 maximizing in the immediate vicinity of the KIT locus (Supplementary Table 1).  We genotyped four 

colour-sided (three Cs/Cs and one Cs/1), and five control brown Swiss animals using a 50K SNP array 

(Charlier et al. 2008).  Colour-sided Cs/Cs brown Swiss animals indeed shared a 2.0 Mb autozygous 

haplotype encompassing the KIT locus.  At first glance, these findings suggested a distinct determinism of 

colour sidedness in Belgian blue and brown Swiss. 

We analyzed the corresponding SNP genotypes with PennCNV and performed CGH using genomic DNA 

from brown Swiss Cs/Cs versus +/+ animals.  This revealed the duplication of a ~120-kb BTA6 segment 

nested in the Belgian blue duplication, but excluding the KIT gene.  Intriguingly, it also revealed the 

duplication of a ~418-kb BTA 29 segment immediately flanking the Belgian blue insertion site and 

encompassing the last four of twelve LUZP2 exons (b–c; Fig. 4a, b).  Moreover, fusion point C–b (but not a–

C and D–A), specifying the Belgian blue Cs allele, could be amplified by PCR from genomic DNA of all 

examined brown Swiss colour-sided but not control animals (Supplementary Fig. 3).  These findings 

established a clear link between the Belgian blue and brown Swiss Cs alleles. 

We performed FISH analysis on lymphocytes of a Cs/+ brown Swiss animal using BTA6 and BTA29 BAC 

clones.  Remarkably, we observed overlapping red and green signals on one of the BTA6 homologues, hence 

revealing the translocation of a BTA29 fragment on BTA6 (Fig. 4c).  We generated mate-pair libraries from 

self-ligated ~5-kb and ~2-kb DNA fragments of a brown Swiss Cs/Cs animal and generated ~15 Gb of 

sequence on an Illumina GAIIx instrument (Supplementary Fig. 2).  Analysis of the resulting sequence 

traces revealed two aberrant mate-pair clusters.  The first corresponds to the Belgian blue C–β fusion point, 

previously detected by PCR.  The second corresponds to a novelβ–γ fusion point (Supplementary Fig.2).  

The most parsimonious explanation accounting for all the data is that the brown Swiss Cs allele derives from 

the Belgian blue Cs allele by (1) excision of the B-C-β–γ fragment from the Belgian blue Cs allele on BTA29, 

(2) circularization, and (3) re-integration in the wild-type KIT locus by homologous recombination.  This 
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would result in a novel Cs allele mapping to the KIT locus and characterized by tandem duplicates of the B–

C segment flanking the translocated β–γ BTA29 fragment.(A-B-C-β–γ-B-C-D-E;Fig.3) 

Our model predicts that the C and B BTA6 segments immediately flanking β–γ carry the same haplotype as 

the Cs-allele of Belgian blue.  To test this, we developed long-range PCR assays that would specifically 

amplify B, C, B and C segments from genomic DNA of a Cs/Cs brown Swiss animal, and – by sequencing the 

corresponding amplicons – determined the genotype of B and B and C and C for four SNP positions 

heterozygous in the high-throughput sequence reads of the brown Swiss Cs/Cs animal.  We then determined 

the genotype of the Belgian blue Cs allele for the corresponding variants and showed that it matched the C 

and B segments of the brown Swiss Cs allele, in agreement with our model of homologous – recombination – 

dependent resolution of the circular intermediate (Fig. 3 and Supplementary Fig. 6). 

Using the mate-pair genomic coordinates, we designed primer pairs to amplify the γ-B fusion point.  As 

expected, productive amplification was only achieved using genomic DNA from colour-sided brown Swiss 

animals (Supplementary Fig. 3).  We sequenced the corresponding PCR products to define the breakpoints at 

single-nucleotide resolution.  The γ-B fusion presented hallmarks typical of microhomology mediated break 

induced replication (MMBIR) (Supplementary Fig. 4). 

We obtained genomic DNA from colour-sided animals from seven additional cattle breeds and domestic yaks 

(Supplementary Fig. 7), which we tested by PCR for the presence of the two Belgian-blue-specific fusion 

points (E-A, α-D), the brown-Swiss-specific fusion point (γ-B), and the Belgian blue/brown Swiss shared 

fusion point (C-β).  Colour-sided Dutch witrik and Ethiopian fogera animals were shown to carry the 

Belgian blue Cs allele (Cs29), Austrian pustertaler sprinzen, Czech red-spotted cattle and French vosgienne 

the brown Swiss Cs allele (Cs6), and Irish moiled, Swedish mountain and domestic yak carried both the Cs29 

and Cs6 alleles (Supplementary Fig. 3).  We assume that Cs29 and Cs6 alleles were introgressed in yak after 

domestication via well-documented hybridization of Bos taurus and Bos grunniens.  These findings indicate 

that the Cs29 and Cs6 alleles account for most if not all colour sidedness in cattle. 

Analysis of colour sidedness has revealed a novel CNV-generating translocation mechanism involving 

circular intermediates.  Whether this is a bovine idiosyncrasy or a more common mechanism remains to be 

determined.  That some CNVs reflect translocation events is well established.  As an example, 75 probable 

dispersed duplications in the human genome have been reported (Conrad et al. 2010), as well as at least four 

interchromosomal duplications (Liu et al. 2009, 2010).  We ourselves performed genome-wide association 

mapping between the SNP and CNV genotype in human and cattle, and observed 21 and 4 putative 
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‘trans-associations’ (that is, non-syntenic CNV-defining SNPs and associated SNPs), respectively 

(Supplementary Material).  Some of these dispersed duplications might involve circular intermediates.  In 

support of the occurrence of other instances involving circular intermediates are recent observations of 

repeated translocation of five clustered ORFs in wine and bioethanol strains of Saccharomyces cerevisiae, 

apparently via resolution of circular intermediates (Borneman et al. 2011).The same mechanism may 

contribute to somatic mutations intumours.  Indeed, episomes with theNUP214–ABL1fusiongene 

(observed in ,6% of T-cell acute lymphoblastic leukaemia) have been proposed to result from circularization 

and excision of a chromosome 9 segment bounded by the NUP214 and ABL1 genes, and to reintegrate 

ectopically by the same resolving mechanism proposed for colour sidedness in at least some patients (Graux 

et al. 2009).  The repatriation of exogenous sequences (including exons) back to the original chromosomal 

location via circular ‘shuttling’ intermediates suggests that this mechanism might underlie a specific mode of 

exon shuffling.  

Methods summary 

A custom 50K SNP array
 
(Charlier et al. 2008)

 
was used to genotype 21 colour-sided and 30 control Belgian 

blue animals.  The genome of colour-sided animals was scanned for a shared haplotype using the ASSDOM 

software.  In the brown Swiss, microsatellites adjacent to five candidate genes were genotyped in three 

half-sibling families and two point linkage calculated using the Merlin software (Abecasis et al. 2002).  

CNVs were identified in the 50KSNParraydata using the PennCNV software (Wang et al. 2007).  Array 

CGH was carried out on a custom 2.1 M oligonucleotide array (Roche-Nimblegen) with a non-colour-sided 

Belgian blue used as the reference in each hybridization.  Metaphase spreads were generated from 

short-term lymphocyte cultures.  BACs from the duplicated regions on BTA6 and BTA29 were identified 

using end sequences from the bovine RPCI42 BAC library.  BACs were labelled with the appropriate 

fluorochrome by nick translation (Abbott Molecular), hybridized to the metaphase spreads and examined by 

fluorescent microscopy.  Mate-pair libraries were generated using the Illumina mate-pair library kit v.2 for a 

Cs/Cs Belgian blue and a Cs/Cs brown Swiss animal.  A paired-end library was also generated for a Cs/+ 

Belgian blue using the Illumina paired-end kit.  Sequencing was carried out on an Illumina GAIIx 

instrument.  PCR products spanning regions of interest were purified using QIAquick PCR purification kit 

(Qiagen) sequenced using Big Dye terminator cycle-sequencing kit v.3.1 (Applied Biosystems) and run on an 

ABI PRISM 3730 DNA analyser (Applied Biosystems).  RNA was extracted form skin using the RNeasy 
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fibrous tissue mini kit (Qiagen) and cDNA was synthesized using SuperScript II first-strand Synthesis 

SuperMix (Invitrogen).  Long-range PCR was carried out using the Expand Long Template PCR System 

(Roche). 

Methods 

Association and linkage mapping of the colour-sided locus.  SNP genotyping was conducted using 

custom-made 50K Infinium SNP arrays (Charlier et al. 2008)
 
used according to the instructions of the 

manufacturer.  Microsatellite genotyping was conducted as previously described (Drögemüller et al. 2009).  

Association analysis was conducted using ASSDOM.  ASSDOM searches for chromosome segments 

devoid of SNPs for which cases have alternate homozygous genotype (say 11 versus 22), excluding the 

sharing of an identical-by-descent (single-copy) haplotype.  Intervals bounded by such excluding SNPs 

receive a score corresponding to , where pi is the frequency of the allele missing among n cases, 

estimated in m controls.  The genome-wide statistical significance of the ‘non-exclusion’ signal is 

determined by phenotype permutation of the disease status between the n cases and m controls.  Two-point 

linkage analyses were conducted with Merlin (Abecasis et al. 2002). 

Prediction of CNVs from SNP genotype data.  The log R ratio signal intensity and B allele frequency from 

a custom 50K SNP array (Charlier et al. 2008) were obtained using Illumina BeadStudio software.  

PennCNV, a hidden Markov model based approach that takes into account signal intensity, allelic intensity 

ratio, distance between markers and allele frequency (Wang et al. 2007)
 
was used to call CNVs.  Regions of 

the genome that showed evidence of copy number change were inspected in greater detail.  Plots of log R 

ratio and B allele frequency were examined in BeadStudio (Illumina) and the region checked in the 

University of California, Santa Cruz (UCSC) genome browser (http://genome.ucsc.edu/). 

Detection of CNVs by CGH.  Array CGH was carried out on a custom 2.1 M oligonucleotide array 

(Roche-Nimblegen) based on the UMD3.0bovineassembly.  The array contained 2,152,422 probes (50–75 

mers) with a median spacing of 1,160bp.  The reference animal used in hybridizations was a 

non-colour-sided Belgian blue.  Genomic DNA labelling (Cy3 for sample and Cy5 reference), hybridization 

and washing were performed according to the manufacturer’s instructions and have been described 

elsewhere (Selzer et al. 2005).  Slides were scanned using a GenePix 4000B 5mm microarray scanner 

(Axon Instruments).  Images were processed using NimbleScan software (Roche-Nimblegen).  Spatial 

correction was applied and data normalized
19

, segmentation was performed using the DNACopy algorithm 
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(Olshen et al. 2004).  The log2 ratios for each oligonucleotide were also examined visually for evidence of a 

change in copy number in regions of interest. 

FISH.  Peripheral blood was obtained from colour-sided and wild-type Belgian blue and brown Swiss 

animals.  Pokeweed-stimulated lymphocyte cultures were established and chromosome spreads prepared for 

colour-sided and wild-type animals in each breed following standard cytogenetic procedures.  End 

sequences from the RPCI42 bovine BAC library and the duplicated regions on BTA6 and BTA29 in the 

colour-sided Belgian blue and brown Swiss were downloaded from the National Center for Biotechnology 

Information (NCBI; http://www.ncbi.nlm. nih.gov/).  BLAST was used to identify end sequences located in 

the duplicated regions.  The BACs 160M9 and 156I13 overlap and cover the region chr6:72,566,605–

72,817,995 (bosTau4), while the BACs 37P11 and 116G8 also overlap and cover the region 

chr29:20,772,406–21,035,251 (bosTau4).  BAC clones were initially cultured at 37uC in 1 ml of 2YT media 

containing 30 ul ml
-1 

chloramphenicol.  The cultures were plated on lysogeny broth (LB) agar plats with 30 

ul ml
-1 

chloramphenicol to obtain single colonies, the identity of the BACs was confirmed by PCR using 

primers designed within the area encompassed by the respective BAC (Supplementary Table 2).  The 

positive clones were then used to inoculate 100ml of 2YT media with 30 ul ml
-1 

chloramphenicol.  

Following 24 h at 37℃ with constant agitation, DNA was extracted using the Qiagen midiprep kit, following 

the manufacturer’s instructions.  The DNA was labelled with the nick translation kit from Abbott Molecular, 

using the manufactures protocol.  DNA from BACs 160M9 and 156I13 was mixed and labelled with 

spectrum green (Abbott Molecular) while 37P11 and 116G8 were mixed and labelled with spectrum orange 

(Abbott Molecular).  Labelled DNA (100 ng) was combined with 1 ug of bovine Cot-1 DNA and 2 mg of 

bovine genomic DNA, precipitated then resuspended in 3 ul of purified water and 7 ul of hybridization buffer 

( Abbott Molecular).  The separate probes were denatured at 73 ℃for 5 min and then combined on a slide 

containing metaphase spreads.  These slides had been denatured in 70% formamide in 2 x SSC at 75℃ for 5 

min followed by dehydration in ethanol.  A coverslip was secured with rubber cement and the slide 

incubated overnight at 37 ℃  in a humidified chamber.  Slides were then washed in 0.43 SSC/0.3% 

Tween-20 at 73℃ for 1–3 s followed by washing in 2 x SSC/0.1% Tween-20 at room temperature (~18℃) 

for 1–3 s and air dried.  The slides were counterstained with DAPI II (Abbott Molecular) and visualized by 

fluorescent microscopy. 

Next-generation sequencing of mate-pair and paired-end libraries.  Mate-pair libraries with different 

insert sizes were generated using the Illumina mate-pair library kit, v.2. The manufacturer’s instructions were 
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followed except for the step involving fragmentation of the circularized DNA, for which a bioruptor 

sonicator UCD-200 (Diagenode) was used.  The 300 ml sample was placed in a 1.5 ml Eppendorf tube and 

sonicated for 8 min with the instrument set to high and a cycle of 30s on and 30s off.  A 5-kb insert library 

was generated for a Cs/Cs Belgian blue animal and a 2-kb and 5-kb for a Cs/Cs brown Swiss animal.  A 

paired-end library with a 400 bp insert size was also generated for a Cs/1Belgianblue animal using the 

Illumina paired-end kit, following the instructions of the manufacturer.  The resulting libraries were 

quantified using Pico-Green (Quant-it, Invitrogen) and the Agilent 2100 Bioanalyzer High Sensitivity DNA 

kit (Agilent Technologies).  Sequencing was carried out on an Illumina GAIIx instrument.  Mapping of the 

36bp from each end of the mate-pair libraries and the 110 bp from the ends of the paired-end library was 

performed using the BWA tool (Li and Durbin 2009).  Breakpoints were identified by visually inspecting 

the mate pairs using the integrative genomics viewer (James et al. 2011)
 
in the ~2-Mb region surrounding the 

Cs-specific duplications in Belgian blue and brown Swiss animals and looking for discordant mate pairs.  

PCR amplification of translocation breakpoints.  PCR primers were designed to span each of the 

breakpoints identified by mate-pair sequencing.  The primers were tested on genomic DNA from 

colour-sided and wild-type animals.  PCR products were visualized on a 2% agarose gel.  Primers with 

amplification confined to colour-sided animals were purified using the QIAquick PCR purification kit 

(Qiagen), where multiple bands were observed the relevant band was excised and purified using the 

QIAquick gel extraction kit (Qiagen).  The fragments were then sequenced using Big Dye terminator 

cycle-sequencing kit v.3.1 ( Applied Biosystems) with the purified reaction run on a ABI PRISM 3730 DNA 

analyser (Applied Biosystems).  Primers used are listed in Supplementary Table 2. 

Analysis of Cs29-derived KIT transcripts.  To ensure that no mutations were present in the coding 

sequence of the Cs29-specific KIT gene, primers were designed to amplify all the exons and the 39 UTR from 

genomic DNA (Supplementary Table 2).  The resulting PCR products were sequenced as outlined above, 

which did not reveal any protein altering DNA sequence variant.  Toexamine expression of KIT from the Cs 

29 allele, a small biopsy of skin was removed from the back (white skin) and side (pigmented skin) of a 

colour-sided Belgian blue animal (the relevant ethical procedures were adhered to).  The samples were 

immediately frozen in liquid nitrogen and stored at -80 ℃  untilRNA extraction.  The tissue was 

homogenized using a Tissue Lyser (Qiagen), total RNA was extracted using the RNeasy fibrous tissue mini 

kit (Qiagen), following the manufacturer’s instructions.  First-strand cDNA was synthesized using 

SuperScript II first-strand Synthesis SuperMix (Invitrogen) with a mixture of random hexamers and oligo 
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(dT) primers.  Genomic DNA was extracted from whole blood from the same animal using standard 

phenol-chloroform extraction.  The intronic regions of the KIT gene were searched for SNPs using the 

mate-pair sequences produced from the Cs/Cs Belgian blue animal.  Primers were designed around suitable 

SNPs and sequenced in the tissue donor.  To establish the genotype of the Cs 29 allele, multiple colour-sided 

animals were sequenced.  For SNP ss469414207(C/T) 40 colour-sided animals were sequenced.  For all 

Cs/Cs animals, the C and T alleles had equal peak height, while in the remaining Cs/ + animals the T allele 

produced the smaller peak.  Additionally seven non colour-sided Belgian blue animals were also sequenced 

and none possessed the T allele.  For SNP ss469414206 (G/A), two Cs/Cs and three Cs/+ animals were 

sequenced and showed a pattern of peak heights consistent with the Cs 29 allele having the A genotype.  To 

determine if the Cs29 allele was expressed, the cDNA from the skin biopsies was amplified using primers 

spanning both SNPs and sequenced as outlined above.  Moreover, and to ensure the integrity of Cs29
- 
derived 

KIT transcripts, primers located in the first exon and the 3’UTR (Supplementary Table 2) were used with the 

Expand Long Template PCR System (Roche) to amplify the near full-length KIT cDNA.  The product was 

run on 1% gel and examined for evidence of alternative splicing. 

Genotyping the duplicated B and C segments of the Cs6 allele.  Long-range PCR was carried out using 

the Expand Long Template PCR System (Roche).  The genomic DNA used as template was extracted using 

QIAamp DNA Mini columns (Qiagen) following the manufacturer’s instructions to produce high molecular 

weight DNA.  For each reaction the following mix was prepared: 2 ul Buffer 1, 140uM dNTP, 120nM 

upstream and downstream primer, 0.3 ul enzyme mix and 100ng genomic DNA, final volume was 20ul.  

Extension time and the thermal profile recommended by the manufacturer was followed.  Following 30 

cycles 10 ul of the product was run on a 0.8% agarose gel to check for amplification, the remaining reaction 

mix was retained.  The PCR primers spanning the relevant SNP where then used in a conventional PCR 

reaction using between 0.1 and 0.5 ul (amount determined by intensity of band) of the long-range product as 

template.  When long-range PCR product was used as template the number of cycles was reduced to 20.  

Clean-up and sequencing was carried out as outlined above.  Used primers are reported in Supplementary 

Table 2. 
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Figure 1 Colour-sided Belgian blue and brown Swiss animals. a, represented Belgian blue animals are 

heterozygous Cs/+. In addition to the effect of the Cs locus, which causes polarization of pigmented sectors 

to the flanks, ears and snout, Belgian blue animals exhibit considerable polygenic variation in the degree of 

white spotting. The colour-sided phenotype of the two nearly completely white animals (extensive degree 

of white spotting) is apparent from the pigmentation of ear tips and snout. b, c, In brown Swiss, which are 

generally devoid of white spotting, homozygous Cs/Cs (b) and heterozygous Cs/+ (c) animals differ by the 

extent of pigmentation, explaining why colour sidedness is also referred to as semi-dominant. 

 

 

a  

b c  

Figure 1 | Colour-sided Belgian blue and brown Swiss animals. a , All  
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Figure 2 Identification and mapping of the colour-sided locus in the Belgian blue. a, Genome-wide 

association mapping using ASSDOM (see Methods), revealing a genome-wide significant association (P< 

0.03) on BTA29 (black arrow) and suggestive association on BTA6 (grey arrow). Vertical lines separate 

chromosomes. b, Detection of a duplication on theBTA6 segment shared by 21 colour-sided Belgian blue 

animals using 50K SNP array data (Charlier et al. 2008)
 
and PennCNV (Wang et al. 2007). c, Confirmation 

and boundary definition using CGH on a Nimblegen bovine tiling array. Shaded areas in b and c mark the 

boundaries of the CNV as defined by CGH. d, Demonstration by FISH of the translocation of a 

KIT-encompassing BTA6 segment onto BTA29 in a heterozygous Cs/+ Belgian blue animal. Magnification, 

X100. 
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Figure 3  Model for the generation of the colour-sidedCs29andCs6alleles by serial translocation via circular shuttling 

intermediates. 
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Figure 4 Identification and mapping of the colour-sided locus in brown Swiss animals. a, PennCNV evidence for BTA6 

and BTA29 duplications in brown Swiss colour-sided animals. The slightly different distribution of BTA6 SNPs when 

compared to Fig. 2 is due to the use of a different version of the 50K SNP array (Olson 1999). b, Confirmation and boundary 

definition of the Cs- associated BTA6 and BTA29 duplication in brown Swiss animals using CGH on Nimblegen bovine tiling 

arrays. The shaded areas in a and b mark the boundaries of the CNV, as defined by CGH. c, Demonstration by FISH of the 

translocation of a BTA29 segment onto BTA6 in a heterozygous Cs/ + brown Swiss animal. 
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Supplementary Fig. 1: 

Association mapping of the Cs locus conducted with Glascow (Druet et al. in preparation) in the Belgian 

Blue Cattle population using 21 color‐sided animals and 30 non‐white controls. SNP genotypes were 

first phased using the Hidden Markov Model described by Druet and Georges
 
(2010) and implemented with 

Dualphase.  Dualphase assigns haplotypes to a defined number of Hidden States corresponding to clusters 

of genealogically related chromosomes.  Glascow then searches for association between haplotype states 

and a binary trait.  It uses a Generalized Linear Mixed Model with the logit function as inverse link 

function to transform an underlying linear variable to a binary trait.  The model includes a random 

haplotype effect (with zero covariance between the effects of distinct haplotypes) as well as a random 

polygenic effect (with variance‐covariance matrix proportionate to genomewide SNP identity‐by‐state) 

to correct for stratification.  Following Verbeke & Molenberghs (2003) and Tzeng & Zhang (2007) , we 

evaluated the strength of association using a score test.  Under the null hypothesis, the score test has an 

approximate gamma distribution.  We empirically determined the mean and variance of the gamma 

distribution at each marker position from 1,000 permutations of the residuals (observations corrected for 

modeled effects).   

The graph shows the location scores (expressed as –log(p)) that were obtained using Glascow across the 

genome.  The genome‐wide significant signal on chromosome 29 is highlighted by the arrow. 

 



Part 2 

 147 

 

Supplementary Fig. 2: Integrated Genome Viewer (IGV) (James et al. 2011) screen‐captures showing 

aligned mate‐pair (∼36‐bp) or paired‐end (∼110‐bp) reads around the four breakpoints associated 

with CS alleles (α‐D, A‐E, C-β and γ‐B; cfr. Fig. 3).  Reads from aberrantly mapping pairs are 

color‐coded to indicate the chromosome to which the other pair maps (blue: = BTA6; green: BTA29; 

black: any other chromosome).  The vertical line marks the position of the four breakpoints. Positions 

correspond to bosTau4 assembly.  
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Supplementary Fig. 3: PCR amplification and agarose gel electrophoresis of amplicons spanning the 

breakpoints associated with color‐sidedness (α‐D, A‐E, C‐β, γ‐B and α‐β; cfr. Fig. 3). (A) BB: 

Belgian Blue; Bs: Brown Swiss; (B) Yak: domestic yak; Wit: Witrik; PS: Pustertaler Sprinzen; IM: Irish 

Moiled; Vos: Vosgienne; SM: Swedish Mountain; Fog: Fogera. Data from Czech Red Spotted Cattle not 

shown.  
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Supplementary Fig. 4: (A) Sequence of the E‐A fusion showing the GC micro‐homology at the two 

breakpoints, typical of replication‐independent non‐homologous end joining (NHEJ) (Hastings et al. 

2009). (B) Sequences of the α‐D and C‐β fusion points showing microduplications and micro–deletions 

reminiscent of replication‐dependent microhomology‐mediated break‐induced replication (MMBIR) 
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(Hastings et al. 2009). Examination of the BTA29 sequences flanking the BTA6 Cs29 insertion, suggests the 

occurrence of three slippage events that might have resulted from replication fork stalling and template 

switching (FoSTeS) (Hastings et al. 2009).  The resulting sequence is characterized by an inverted 

palindromic 6‐bp repeat able to form a hairpin loop.  The BTA6 sequences inserted at the base of the 

loop (marked by the asterisk). (C) Sequence of the γ‐B fusion showing signatures of replication‐

dependent micro‐homology‐mediated break induced replication (MMBIR) including the micro‐

insertion (between γ and B) of an inverted 75‐bp sequence originally found 644‐kb downstream of γ, 

flanked on either side by tracks of micro‐homology with the ends of B and γ respectively.
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Supplementary Fig. 5: (A) RT‐PCR analysis of 673‐bp and 533‐bp KIT amplicons, encompassing the 

intron 1 “ss469414206” and intron 7 “ss469414207” SNPs, respectively.  Direct sequencing of the RT‐

PCR products obtained from RNA extracted from white (WS) and pigmented (PS) skin of a color‐sided 

animal with (GG)6/A29 (“rsA”)  and (CC)6/T29 (“rsB”)  genotype reveals BTA29‐derived T and A 

bearing mRNA molecules demonstrating the transcriptional potential of the KIT gene on the Cs29 allele. (B) 

Long range RT‐PCR analysis of the near complete KIT mRNA generates a product with expected size 

(4,527‐bp) using total RNA extracted from white (WS) and pigmented (PS) skin of the same color‐sided 

animal. 
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Supplementary Fig. 6: Determining the origin of BTA6 DNA flanking BTA29 DNA in Cs6. Schematic 

representation of the Cs6 allele: dark blue: non‐duplicated BTA6 segments (corresponding to A (left) and 

D‐E (right)); light blue: duplicated portions of BTA6 (B‐C and B‐C); green: translocated BTA29 

segment (β‐γ).  Primers 1 & 2 and I & II (amplifying segments C & C and B & B, respectively) were 

used to confirm four SNPs (“ss469414208”, “ss469414209”, “ss469414210” and “ss469414211”) identified 

in the Brown Swiss Cs/Cs next generation sequencing reads using conventional PCR followed by Sanger 

sequencing.  Primers 1 and I were then paired (i) with primers 3 and III to amplify (under long range PCR 
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conditions) the B and C segments flanking the non‐duplicated BTA6 sequences, and (ii) with primers 4 

and IV to amplify the B and C segments flanking the BTA29‐derived sequences.  Determining the 

genotype of the Cs29 allele for segment C was achieved by sequencing amplicon 1‐4 obtained from 

genomic DNA of a Belgian Blue color‐sided animal. Determining the genotype of the Cs29 allele for 

segment B was achieved by sequencing amplicon I‐II obtained from genomic DNA of multiple Belgian 

Blue color‐sided animals.  The B and C segments flanking the BTA29 insert (β‐γ) in the Cs6 allele 

were thereby shown to match the B and C segments of the Cs29 allele, as predicted from the resolution of a 

circular intermediate by a non‐allelic homologous recombination event in the B‐C interval. Cs6 = Cs6/+ 

animal; Cs29A, Cs29B, CS29C = Cs29/+ Belgian Blue animals.  
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Supplementary Fig. 7: Genotypes of color‐sided cattle from eight breeds as well as color‐sided 

domestic yaks with regards to the Cs29 and Cs6 alleles.  Both alleles were introgressed from cattle into 

domestic yak by hybridization. Czech Red Spotted Cattle not shown  

Supplementary material 

Association mapping of dispersed duplications in the human and bovine genome.  

Methods:  

Data. We took advantage of genotype data obtained (i) on 856 individuals of Northern European descent 

genotyped with the Human 660W‐Quad V1 DNA Analysis Beadchip array, (ii) 275 Belgian Blue animals 

genotyped with the Illumina Bovine 700K HD SNP array, and (iii) 191 Holstein‐Friesian animals 

genotyped with the Illumina Bovine 700K HD SNP array.   

CNV detection: CNVs were detected using PennCNV (Want et al. 2007).  Overlapping CNVs were 

merged into CNV‐regions (CNVR).  Only CNVR encompassing only duplications (copy number 3 or 4) 

were retained for further analysis. 
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Phasing: Genotypes were phased using Dualphase (Druet and Georges 2010).  As a result, all 

chromosomes in the data are assigned to a predetermined number (in this case 20) of Hidden Haplotype 

Clusters at each SNP position.  

Association mapping:  To perform association analysis between CNV genotype and SNP genotype, we 

considered all individuals with PennCNV assigned copy number of 3 or 4 as “cases” and all individuals 

with PennCNV assigned copy number of 2 as “controls”. The association analysis was conducted using 

Glascow (described under Suppl. Fig. 1).  A random polygenic effect was added to the model for the cow 

data but not for the human data.   

Significance thresholds.  We generated QQ‐plots using all p‐values obtained with marker positions 

that were not syntenic with the SNPs involved in the corresponding CNVR.  In both human and bovine, 

the QQ‐plot revealed a pronounced inflexion at p‐values of 10
‐9

, which was therefore selected as 

significance threshold (A).  

Results:  

We observed 21 putative trans‐associations with p‐value < 10
‐9

 in human and four in the cow.  An 

example of such putative trans‐ association is shown in panel (B).  The main features of the 

corresponding putative dispersed duplications are summarized in table format.
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Summary of putative dispersed duplications identified in human and bovine 

 

  CNVR(egion)     Trans‐association  

ID  Chr  Start  End  Length  Frequ.#  Chr  Pos.  Log(1/p)  

   HUMAN     

1  1  20141  137979  117838  1.6%  17  11395390  10.8  

78  1  142536304  142691538  155234  27.8%  4  52811970  16.0  

339  3  133969263  133980309  11046  3.9%  12  56365699  10.8  

1504  16  32472505  33801989  1329484  21.0%  8  87146973  16.0  

383  4  939113  1092019  152906  42.5%  3  192311220  11.8  

384  4  1237014  1245277  8263  1.7%  8  38433937  10.5  

1190  12  751308  752432  1124  3.3%  3  192311220  10.4  

1393  15  20201673  21259305  1057632  53.0%  2  69990290  11.0  

1578  17  32058858  32066000  7142  6.6%  1  88973472  16.0  

25  1  13374687  13488491  113804  2.0%  13  43798077  9.0  

161  2  29335758  29338734  2976  2.3%  21  39227602  9.6  

305  3  75605823  75615298  9475  4.7%  13  24007495  9.2  

439  4  69371230  69502640  131410  3.5%  6  20487250  9.1  

532  5  26219551  26238133  18582  25.7%  7  18935767  9.0  

867  8  1947417  1951113  3696  3.5%  18  74779866  9.1  

922  8  129763003  129779232  16229  2.2%  11  117322782  9.4  

1382  14  104313212  104314910  1698  2.8%  12  56365699  9.6  

1451  15  101791262  101792488  1226  2.1%  17  31536843  9.5  

1482  16  16460524  16730728  270204  9.0%  9  95753319  9.6  

1507  16  33872091  34191016  318925  1.4%  15  45945513  9.7  

1654  18  44774027  44788908  14881  1.5%  1  218094151  9.8  

   BOVINE     

360  18  27914135  28375996  461861  12.6%  12  809826  14.8  

434  20  39350230  39388277  38047  15.7%  4  751020  16.0  

971  8  51367642  51390418  22776  4.0%  17  12898336  14.4  

1543  15  47513169  47522748  9579  3.6%  27  42483035  10.1  

Frequ
#
.: percentage of individuals with Penn‐CNV copy number 3 or 4.  

Assembly used, Bovine = UMD_3.1, Human = hg19 
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Supplementary Fig. 8: CNVR with all non‐syntenic SNP positions.  A marked inflection was 

observed at ∼ 9, justifying the choice of p‐values  ≤ 10
‐9

 as significance threshold.  Very similar results 

were obtained with the bovine data (not shown). (B) Example of a putative dispersed duplication found by 

association in human.  The main graph shows the QQ‐plot of all –log10p values obtained for the 

corresponding CNVR.  Points in red correspond to all chromosome 15 SNPs, while the ponts in blue 

correspond to the SNP positions on all other chromosomes.  The bar graph in the inset shows the 

frequency of the 20 Hidden Haplotype Clusters in “cases” (i.e. individuals with copy number 3 or 4) in red 

and in “controls” (i.e. individuals with copy number 2) in blue. 
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Supplementary table 1: Linkage analysis in Brown Swiss cattle  

We selected two microsatellites each for five functional candidate genes from the cattle genome sequence 

(UMD 3.1 assembly). We genotyped these 10 microsatellites in three two‐generation paternal half‐sib 

families segregating for color‐sidedness. The three families comprised a total of 37 informative meioses. 

We calculated twopoint linkage using the Merlin software assuming a fully penetrant dominant inheritance. 

The data clearly indicated that the KIT locus on BTA 6 is linked to colorsided in Brown Swiss cattle. 

 

Gene  BTA  Position 

(Mb)  

Repeat 

motif  

Alpha  Heterogeneity 

LOD (HLOD)  

Two point 

LOD  

  

KITLG  

  

5   

  

18.567   

  

(AC)18   

  

0   

  

0   

  

-∞   

KITLG  5   19.360   (AC)20   0.136   0.176   -∞   

ADAMTS20
1) 

  5   37.135   (TA)27   n.d.  n.d.  n.d.  

ADAMTS20  5   37.233   (TA)21   0   0   -∞   

KIT  6   71.789   (TA)8  (TG)20   1   6.894   6.894   

KIT  6   71.844   (TG)11 (TA)15   0.819   3.306   3.236   

EDNRB  12   53.296   (GT)15   0   0   -∞   

EDNRB  12   53.360   (TG)19   0   0   -∞   

MITF  22   31.750   (CA)18   0   0   -1.548   

MITF  22   31.794   (GT)19   0   0   -0.836   

1)
 This marker was not informative in the analyzed families.  

Supplementary table 2: Primer sequences 

 

 

Product Name  Forward (5'-3')  Reverse (5'-3')  Size  bp  Region amplified bosTau4  

Primers to 

ID BACs  

KIT_Ex1B CTCGAAAGAACAGGGGTCAG  AGGAGCAGCAGAACGAAGAG  274 chr6:72,741,131-72,741,404  

BTA29_20.8  TTTACCCGGAAATCCACAAA   GGTTCAGAGCTAGGGTGTGC   379 chr29:20,899,945-20,900,323  

Breakpoint  

primers  

α-D  GGGGAGAATCTGTTTTCCTG   GGAAGGCCTTATTGCACACT   417 

BTA29 to 6 breakpoint 

unique to BTA29  

A-E  GAAGCAACCCAGAGATGAGC     AAGGGAAGCCCATATGATGA     318 Fusion point on BTA6  

C-β  TCAACGAGGGACAACATGAA  CAATTGACCCCTCATTTTGG   606 

Common breakpoint, found 

on BTA6 & BTA29  
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γ-B  GCTGCAGAAAATGTTATTCCA   TCTTGAAGGGCCATAGCATC   525 

BTA29 to 6 breakpoint 

unique to BTA6  

α-β  GGGGAGAATCTGTTTTCCTG  TAAAGTCGCCAGTGCAAGTG  394 

Will not amplify in BTA29 

Cs/Cs animals   

Primers to  

check for  

SNPs in 

KIT 

coding  

sequence  

KIT_Ex1  CTGGGCTCAGCCTTCTACC  TCCTGAAAGACTCGCAGCTC  928 chr6:72,740,730-72,741,657  

KIT_Ex2  GGAAACTTGACCCCGTTGTA   CATACCCGAAGCCACTATGC   743 chr6:72,779,376-72,780,118  

KIT_Ex3  CCGAAAGGCAACGTCTTAGAT  ATTTTGAGGCTGGGAGAACC  500 chr6:72,782,945-72,783,444  

KIT_Ex4  CATGGCTGAGGAAAAATGGT   GTGCTATGCAATGGGGAAAT     516 chr6:72,784,309-72,784,824  

KIT_Ex5  GCACTGCAGAGAATTTGGAA  TTGCTTTTGTGCTCTGGTTG  630 chr6:72,788,425-72,789,054  

KIT_Ex6  TCTTTCCGTTTCATTCTGCTG   AGCCCCAAACTTCCTTCTGT   533 chr6:72,793,394-72,793,926  

KIT_Ex7  GAGGCTGAACAGAGGACCAG  TCATGTGGTCAGCGAATTGT  624 chr6:72,795,451-72,796,074  

KIT_Ex8  GGAGCTTCAGCATCTTCACC  TCTACCTGCAGGCTGGAAAT  786 chr6:72,811,793-72,812,578  

KIT_Ex9  CCGATGCCTTCAGTTGATTT  GCCAGTGATGGAATGGACTT  342 chr6:72,813,937-72,814,278  

KIT_Ex10-11  TGGAGGTGAGAGGTGTTGTG  CTAAAGGCAATGCGATGTGA  459 chr6:72,815,316-72,815,774  

KIT_Ex12-13  CCACCACCACCATTTATTCC  CCATTTGGGTCAAAATCCTG  458 chr6:72,815,948-72,816,405  

KIT_Ex14  CTGACCCCTAATCAGGCAGA  GCCTTTCCCATGTTCCCTAT  862 chr6:72,817,391-72,818,232  

KIT_Ex15  ATAGCCTGCCTCTCACATGC  CAGTGACAACACCACCAAGG  562 chr6:72,819,627-72,820,188  

KIT_Ex16  TTCAGCACCTTCCTGTCCTT  TCAAGCGACACTCTGCATTC  378 chr6:72,820,095-72,820,472  

KIT_Ex17  GGCACCGAATGGTTTAAATG  TTCTCCTGCTGTGACCTTCA  567 chr6:72,821,253-72,821,819  

KIT_Ex18-19  TTGGATCTTTTGTGCTTCCA  GCGACCGAAATAACATTTGC  508 chr6:72,824,397-72,824,904  

KIT_Ex20  GTAAGGGCCCAGATGTCCTT  CCAAGAGAATGGAGGTCCTG  494 chr6:72,824,748-72,825,241  

KIT_Ex21  CATTCCAGCAGAAAAGCACA  TTTCCGCATCAAGGGATAAG  791 chr6:72,826,056-72,826,846  

KIT_3'UTR-A  GTCCTTCCCAAGGTTTCTCC  TGCTGAAAGCCAGGCTACTT  903 chr6:72,826,694-72,827,596  

KIT_3'UTR-B  TGATGCCGTTTGAAAAAGTG  GGAAAGGTGCGAGAGCATAG  712 chr6:72,827,333-72,828,044  

KIT_3'UTR-C  TGTTGTCTCGCAGGATTCAG  CATCTGGGAAACCTCACCTT  756 chr6:72,827,909-72,828,664  

Expression  

primers  

KIT_Intron_Rs1  AAGGAGGCGTTACCAGGTTT   TGCTGGAATGGAAATTAGGC   637 chr6:72,751,987-72,752,623  

KIT_Intron_Rs2  TTATTCCAGGTCCCTGCTTG   AGGGGCATCCTTGAGAGTTT   533 chr6:72,809,532-72,810,064  

KIT_Ex1-3'UTR  CTCTTCGTTCTGCTGCTCCT  GGAAAGGTGCGAGAGCATAG  4,527 KIT cDNA  

 

Supplementary table 3: Primers to determine origin of BTA6 DNA flanking BTA29 DNA in Cs6 
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SupFig6 

1+2 

SupFig6 

1+3 

SupFig6 

1+4    

SNP group 

A  

CGTGTGTGAGCATGCTAGGT  GACCAAAGACCCCACTTCCT  885 chr6:73,008,888-73,009,772  

SNP group 

A 6-6*  

CGTGTGTGAGCATGCTAGGT  CCGCCTCTCTCATTATCAGC  11,164 chr6:73,008,888-73,020,051  

SNP group 

A 6-29  

CGTGTGTGAGCATGCTAGGT  CAATTGACCCCTCATTTTGG  10,909 

BTA6 DNA upstream of 

common breakpoint  

SupFig6 

II+I 

SupFig6 

III+I 

SupFig6 

IV+I 

SNP group 

B  

GCAGTAGATGCCCCCATAGA  AGCAGAGGAAGAAGCAGCAG 792 chr6:72,896,736-72,897,527  

SNP group 

B 6-6#  

GCTAGCCAGATCCAGCAGTC  AGCAGAGGAAGAAGCAGCAG  11,792 chr6:72,885,736-72,897,527  

SNP group 

B 29-6  

GCTGCAGAAAATGTTATTCCA  AGCAGAGGAAGAAGCAGCAG  11,687 

BTA6 DNA downstream of 

BTA6 specific break  

6-6* Primers span region C-D          6-6# Primers span region B and non duplicated part of BTA6 

6-29, Primers span breakpoint C-β       29-6, Primers span breakpoint γ-B    

SNP group A: ss469414208, ss469414209  SNP group B: ss469414210, ss469414211 
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Part 3: Taking advantage of genetic marker information in animal 

breeding 

 

3.1 Marker imputation with low-density marker panels in Dutch Holstein 

cattle 

 

3.2 Identifying cows with subclinical mastitis by bulk single nucleotide 

polymorphism genotyping of tank milk 
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Marker imputation with low-density marker panels in Dutch Holstein cattle 

Z. Zhang and T. Druet 

Abstract 

The availability of high-density bovine genotyping arrays made implementation of genomic selection 

possible in dairy cattle.  Development of low-density SNP panels will allow extending genomic selection 

to a larger portion of the population.  Prediction of ungenotyped markers, called imputation, is a strategy 

that allows using the same low-density chips for all traits (and for different breeds).  In the present study, 

we evaluated the accuracy of imputation with low-density genotyping arrays in the Dutch Holstein 

population.  Five different sizes of genotyping arrays were tested, from 384 to 6,000 SNPs.  According to 

marker density, overall allelic imputation error rate obtained with the program DAGPHASE, which relies 

on LD and linkage, ranged from 11.7 % to 2.0 % and from 10.7 % to 3.3 % with the program CHROMIBD 

which relies on linkage and the set of all genotyped ancestors.  However, imputation efficiency was 

influenced by the relationship between low-density and high-density genotyped animals.  Animals with 

both parents genotyped had particularly low imputation error rates, below 1 % with 1,500 SNPs or more.  

In summary, missing marker alleles can be predicted with 3 to 4 % errors with approximately 1 SNP / Mb 

(~3,000 markers).  CHROMIBD proved more efficient than DAGPHASE only at lower marker densities 

or when several genotyped ancestors are available.  Future studies are required to measure the impact of 

these imputation error rates on accuracy of genomic selection with low-density SNPs panels. 

 

J Dairy Sci. 93 (2010) 5487-5494
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Introduction 

Genomic selection (Meuwissen et al. 2001) is now widely used in dairy cattle (de Roos et al. 2007; 

VanRaden, 2008; VanRaden et al. 2009).  It relies on genotyping a livestock population for thousands of 

SNPs across the entire genome and to use these SNPs to estimate breeding values of any genotyped animal. 

Recently, Habier et al. (2009) proposed to genotype some animals on lower-density marker panels to make 

genomic selection more cost effective.  Unlike strategies based on selection of subset of SNPs associated 

to selected traits, they suggested to use evenly spaced SNPs across the genome.  Indeed, the first strategy, 

as implemented in Weigel et al. (2009), requires different set of SNPs for each trait while with the strategy 

of Habier et al. (2009), the same set of SNPs can be used for all the traits.  This strategy is now considered 

by most dairy cattle breeding organizations that implemented genomic selection.  Such a low-density chip 

with 3,000 SNPs has already been developed in the United States and Illumina plans to commercialize it in 

2010. 

However, the use of low-density marker panels requires methods for transferring information from 

individuals genotyped at higher density.  Prediction of missing markers, or imputation, is one technique 

allowing the use of individuals genotyped on different marker panels.  Imputation is already widely used 

in human genetics (Marchini et al. 2007; Marchini and Howie, 2008).  However, in studies applied to 

human populations commonly used marker arrays are of much higher density (above 300 thousands SNPs) 

and imputation relies mostly on linkage disequilibrium (LD), whereas in livestock species, availability of 

extended pedigrees allows the use of linkage information for imputation.  Druet and Georges (2010) and 

Druet and Farnir (personal communication) proposed two methods adapted for marker imputation with 

low-density SNPs panels in animal and plant breeding.  The objective of the present study is to test these 

two methods with low-density SNPs on a Dutch Holstein dairy cattle data set.  

Material and Methods 

Data 

A set of 4,734 dairy cattle Holstein individuals genotyped for 45,836 SNP markers on the CRV chip, a 

custom-made 60K Illumina panel described in Charlier et al. (2008), was used in this study.  A more 

complete description of this data set can be found in Druet et al. (2010). 
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For testing imputation efficiency, the animals were assigned to two groups: reference individuals were 

genotyped on all the markers while the target animals were genotyped on lower density SNP panels (we 

erased markers not present on the low density panel). 

Different sizes of reference populations were tested (500, 1,000, 1,500 and 2,000 reference individuals).  

Animals with higher number of genotyped descendants were preferentially included in the reference 

population (516 individuals had at least one genotyped descendent).  Remaining reference individuals 

were chosen at random.  Remaining animals (4,234, 3,734, 3,234 and 2,734) were considered as target 

individuals. 

Creation of Low Density Marker Panels 

To mimic low-density genotyping, different low-density panels were defined (see below) and genotypes of 

target animals were erased for the unselected markers.  Five different sizes of marker panels were tested: 

384, 768, 1,536, 3,000 and 6,000 SNPs.  These sizes were chosen according to Illumina GoldenGate and 

iSelect BeadChip technologies which allow custom genotyping with 384 to 1,536 SNPs and with 3,000 to 

60,000 SNPs, respectively.  The markers were selected to obtain a compromise between uniform marker 

density and high minor allelic frequency (MAF) with the following method.  Number of markers per 

chromosome was obtained by multiplying the desired marker density (total number of markers divided by 

the size (in Mb) of the genome) by the size of the chromosome in Mb.  Each chromosome was divided in 

equal segments based on the desired number of markers.  Then, the marker with the highest MAF was 

selected in the first segment.  For subsequent segments, the marker with the highest score combining 

MAF and distance with the marker retained in the previous segment was selected: 

score(i)=MAF(i)*[ssize - |ssize-dist(i)|] 

where i is the indice of the tested marker, ssize is the size of each segment and dist(i) is the distance 

between the tested marker and the selected marker in the previous segment (Matukumalli et al. 2009). 

Marker imputation method  

Haplotype Reconstruction.  Haplotypes of reference and target individuals were first partially 

reconstructed based on linkage and mendelian segregation rules with LinkPHASE (Druet and Georges, 

2010).  Then, haplotypes from reference individuals were fully reconstructed by using iteratively Beagle 

(Browning and Browning, 2007) with scale and shift parameters equal to 2.0 and 0.1 and DAGPHASE 

(Druet and Georges, 2010) as described in Druet and Georges (2010).  In total, 20 such iterations were 
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performed to estimate the directed acyclic graph (DAG) describing reference haplotypes.  Linkage 

information was ignored for parents with 5 offspring or less because Druet and Georges (2010) observed 

that this procedure reduced haplotyping errors. 

Missing Marker Imputation.  Finally, a file containing completely reconstructed haplotypes for reference 

individuals and partially reconstructed haplotypes (obtained from LinkPHASE) for target individuals was 

used for marker imputation.  Two different imputation programs were used: DAGPHASE (Druet and 

Georges, 2010) and CHROMIBD (Druet and Farnir, personal communication). 

With DAGPHASE, linkage information is used when parents are genotyped: partial haplotypes of offspring 

are used to determine which haplotype was received from the parent and marker alleles of the transmitted 

haplotype are then used to fill-in missing markers in the progeny.  For other haplotypes, LD information is 

used by inferring the path of these haplotypes in the DAG which summarizes all reference haplotypes.  

Probabilities of different paths are computed based on partial haplotypes (genotyped markers) with an 

hidden Markov model described in Druet and Georges (2010).  Then, the marker alleles labeling the path 

in the DAG are used to impute missing marker alleles.  The LD modeled in the DAG results from both 

recent and old ancestors.  When the haplotype of a recent ancestor is present in the DAG, the partial 

haplotype will go through the same path as the haplotype of the ancestor over a long portion of the graph.  

Therefore, identification of the path will be precise and possible even with few genotyped markers.  

Portions of haplotypes transmitted from more distant ancestors are shorter and require therefore higher 

marker densities to be inferred precisely.  With DAGPHASE, two outputs can be obtained: prediction of 

all the missing markers based on the most likely “hidden” chain (as in Druet and Georges, 2010) or 

prediction of posterior genotype probabilities based on the Baum-Welch algorithm as described in Druet et 

al. (2010). 

CHROMIBD uses linkage and a hidden Markov model to estimate identity-by-descent probabilities (IBD) 

between a chromosome and parental chromosomes from genotyped ancestors.  It relies only on the set of 

genotyped ancestors and LD is not used.  Haplotypes of these ancestors and IBD probabilities are then 

used to predict posterior genotyped probabilities of missing markers (Druet and Farnir, personal 

communication). 
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Evaluation of Imputation Efficiency 

When marker alleles are predicted, imputation efficiency was estimated by comparing imputed marker 

alleles and real marker alleles (this procedure slightly underestimates precision as real genotypes have 

some errors).  The allelic imputation error rate per animal was then estimated as: 





N

j

ijij nInO
N 1

11 )()(
*2

1
 

where N is the number of markers, )( 1

ijnO  and )( 1

ijnI are the observed (real genotypes) and imputed 

number of allele "1" for individual i at marker j and 2*N is the total number of imputed alleles. 

When posterior genotype probabilities were estimated, the expected number of "1" alleles was first 

computed as: 

)22(*0)12(*1)11(*2)( 1  ijijijij GPGPGPnE  

where )( 1

ijnE is the expected number of allele "1" for individual i at marker j and is )( klGP ij   the 

probability that individual i carries marker alleles k and l at marker j.  The allelic imputation error rate per 

animal was finally estimated as: 
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Imputation efficiency was measured on the 2,734 individuals which were never reference individuals in 

order to compare results obtained with the same set of individuals across all designs. 

Results and discussion 

In this work, three factors affecting imputation efficiency were studied: density of markers in the small chip, 

relationship between target and reference individuals and number of reference individuals.  The impact of 

each factor is dependent on the imputation method used (CHROMIBD or DAGPHASE). 

Results are presented as allelic imputation error rates (proportion of incorrect imputed marker alleles).  

Genotype imputation error rates (proportion of incorrect imputed genotypes) are approximately equal to 

twice the allelic imputation error rates.  With 384 markers, the ratio between error rates was ~1.90.  This 

ratio consistently increased with number of markers and was ~1.98 with 6,000 markers (ratios were 

computed in designs with 1,000 and 2,000 reference individuals). 
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Influence of Marker Density 

The main question when designing low density marker panels is what imputation efficiency can be 

achieved for a given number of SNPs on the small chip.  Figure 1 presents mean imputation error rates 

obtained for small chips with 384 to 6,000 SNPs (with 1,000 reference individuals).  With both 

DAGPHASE and CHROMIBD, the curve describing imputation efficiency as a function of marker density 

presented an hyperbolic pattern with steep decrease at low densities and moderate decrease with higher 

number of markers.  Such a relationship was previously described by Druet et al. (2010).  With 

DAGPHASE, allelic imputation error rates ranged from 11.7 % with 384 SNPs to 2.0 % with 6,000 SNPs.  

With CHROMIBD, relying only on linkage, the differences were smaller: from 10.7 % to 3.3 %.  For 

comparison, imputing genotypes based on the most likely genotypes or randomly according to genotype 

frequencies resulted in respectively 20.0 % and 27.0 % allelic imputation error rates.  With DAGPHASE 

(CHROMIBD), adding approximately 1,500 SNPs decreased errors rates by 6.9 % (5.4 %) when the initial 

number of markers was equal to 384 and by only 1.7 % (1.3 %) when having 3,000 markers instead of 

1,536.  Similarly, using 3,000 markers instead of 384 markers dramatically decreased error rates by 8.6 % 

(6.7 %) whereas adding 3,000 more markers, reduced errors only by 1.1 % (0.7 %).  To obtain overall 

mean allelic imputation error rates around 5 %, chips with 1,536 SNPs or more should be used.  Such 

error rates might still be to high to obtain accurate estimation of breeding values with genomic selection.  

Panels with 3,000 SNPs or more are necessary to get around 3 % error rate or less (with DAGPHASE).  

The relationship between imputation error rates and precision of genomic selection must be studied before 

defining optimal SNPs panels.  Technical and economical considerations must be taken into account to 

decide whether larger chips should be used. 

The results presented for different SNPs panels are overall results, averaged over all animals.  However, 

imputation accuracy is highly dependent on the relationship between target and reference individuals. 

Relationship between Target and Reference Individuals 

Druet et al. (2010) and Druet and Farnir (personal communication) already showed that DAGPHASE and 

CHROMIBD result in higher imputation accuracy when the relationship between target and reference 

individuals is higher.  This relationship was measured as a score equal to the expected proportion of the 

genome inherited from reference individuals (scores of 0.5, 0.75, 0.875, 0.9375 and 0.96875 corresponds to 

all male parents genotyped for 1, 2, 3, 4 and 5 generations, respectively.).  Such behavior is expected since 
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CHROMIBD directly models IBD probabilities between the target and the reference individuals whereas 

DAGPHASE uses haplotypes of reference individuals to estimate the optimal DAG.  If more ancestors of 

an individual were used to construct the DAG, there is more chance that the haplotype of that individual is 

present in the DAG, and over longer stretches (see methods). 

Table 1 contains for all tested marker panels and different categories of relationships between target and 

reference individuals, the mean imputation error rates of DAGPHASE and CHROMIBD.  The computed 

scores ranged from 0.0 to 1.0 with the median equal to 0.9375.  94.8 %, 84.6 % and 70.0 % of the target 

individuals had a score higher or equal to 0.75, 0.85 and 0.90.  When almost no ancestors were genotyped 

(score below 0.50), errors rates ranged according to the marker density from 4.8 % to 20.2 % with 

DAGPHASE and from 22.3 % to 26.8 % with CHROMIBD.  For higher scores, imputation error rates 

decreased, particularly with CHROMIBD.  For target individuals with a score above 0.75, DAGPHASE 

resulted in imputation error rates below 3 and 4 % with 6,000 or 3,000 SNPs.  With CHROMIBD, such 

error rates were obtained only for target individuals with scores above 0.90.  

For animals with both parents in the reference group (score = 1), the mean imputation rate was clearly 

lower than for other animals, ranging from 3.20% to 0.30% with DAGPHASE and from 4.20% to 0.40 % 

with CHROMIBD.  For these animals, haplotypes received from parents are inferred accurately by using 

linkage (for a single generation).  For other animals, the maternal haplotype (and sometimes the paternal 

haplotype too) is more difficult to model.  The imputation error rate per animal is the mean from 

imputation error rates from paternal and maternal haplotypes.  Since sires are most often genotyped, we 

can assume that imputation efficiency for paternal haplotypes is approximately equal to the imputation 

efficiency observed for animals with both parents in the reference group (because all these haplotypes are 

described through linkage).  Therefore, the imputation error rate for maternal haplotypes is probably 

higher (approximately equal to twice the error rate per animal minus the error rate observed when the score 

equals 1). 

Influence of the number of individuals genotyped in the reference panel 

Figure 2 describes the relationship between number of individuals genotyped on all markers and imputation 

efficiency with DAGPHASE or CHROMIBD for 5 different marker densities.  With DAGPHASE, 

imputation efficiency constantly increased when number of reference individuals increased: from 12.2 % to 

11.3 %, 8.8 % to 6.9 %, 5.9 % to 3.9 %, 4.1 % to 2.3 % and 2.7 % to 1.4 % with 384, 768, 1,536, 3,000 and 



Part 3 

 169 

6,000 markers on the small chip, respectively.  With CHROMIBD, almost no differences were observed 

when increasing size of the reference population.  In comparison with the influence of the number of 

SNPs or of the relationship between target and reference individuals, the impact of the number of 

individuals genotyped in the reference panel was small.  

Druet et al. (2010) studied the relationship between number of reference individuals and imputation 

efficiency at higher marker densities.  The benefit was more pronounced when very few reference 

individuals (below 500) were available.  Above 1,000 genotyped reference individuals, only small gains in 

efficiency were observed (by improving estimation of LD between markers).  In many dairy cattle 

populations, large numbers of individuals are already genotyped on high-density marker panels.  

Therefore, the size of the reference population should already be large enough and not be a major factor 

influencing imputation accuracy using small chips for a portion of the population.  The main benefit of 

increasing number of reference individuals will be obtained through increasing relationship between target 

and reference individuals (see above). 

Comparison of Imputation Methods 

The results presented in earlier sections highlighted differences between DAGPHASE and CHROMIBD.  

First, CHROMIBD is more efficient than DAGPHASE with few SNPs per panel whereas DAGPHASE is 

better than CHROMIBD when panels have 1,536 SNPs or more (Figure 1).  Second, the improvement of 

imputation accuracy when relationship between target and reference animals increases is more pronounced 

with CHROMIBD.  With DAGPHASE, the imputation efficiency improves only slightly when the score 

increases from 0.75 to 0.95 whereas with CHROMIBD, the benefit of having additional genotyped 

ancestors still results in large difference in imputation efficiency.  For low scores, CHROMIBD is clearly 

less accurate than DAGPHASE.  CHROMIBD results better for high scores.  However, the score above 

which CHROMIBD achieves lower imputation error rates depends on the number of SNPs on the small 

panel: at low density (384 SNPs), CHROMIBD is better for animals with a score higher than 0.85 whereas 

at higher densities (6,000 SNPs), using CHROMIBD is more efficient for animals with a score higher than 

0.95.  For animals with both parents genotyped, imputation performed with DAGPHASE had the lowest 

error rates.  Indeed, in that situation both methods use the same information (linkage) but DAGPHASE 

models both haplotypes jointly whereas CHROMIBD models them independently.  Finally, CHROMIBD 
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was barely affected by size of the reference population whereas having more reference individuals 

improved imputation with DAGPHASE. 

All these observations can be explained by differences in the methods.  DAGPHASE uses LD due to 

recent and old ancestors.  LD is stronger at higher marker densities and increasing size of reference 

population improves estimation of LD in the DAG.  At low marker densities, LD is relatively weak and, 

as a result, imputation efficiency decreases.  CHROMIBD models the IBD process along a chromosome 

between at target chromosome and a set of parental chromosomes.  It relies therefore on recent ancestors 

which transmitted relatively long chromosome fragments and can work at lower marker densities.  

However, the efficiency is strongly influenced by the number of ancestors which are genotyped. 

As mentioned in the methods section, posterior genotypes probabilities can also be obtained with 

DAGPHASE.  Use of this output resulted in slightly higher imputation error rates (results not shown).  

However, use of posterior genotype probabilities (as with CHROMIBD too) gives additional information 

than simply predicting likely genotypes.  Indeed, the reliability of the imputation is known when using 

posterior probabilities and the user knows which marker alleles can be imputed with limited risk.  It is for 

instance possible to call only marker alleles with posterior genotype probability above a certain threshold.  

In addition, these probabilities can be used to estimate the reliabilities of genomic predictions obtained with 

imputed markers.  Finally, Weigel et al. (2010) mentioned that it may advantageous to use genotype 

probabilities in genomic selection rather than calling genotypes. 

In agreement with Druet and Georges (2010), results obtained with DAGPHASE show that it is beneficial 

to use both linkage and LD information for imputation rather than relying solely on LD (e.g. with Beagle).  

In Druet and Georges (2010), the algorithm of Beagle was found to be more efficient for marker imputation 

than the algorithm of fastPHASE (Scheet and Stephens, 2006).  We also tested HiddenPHASE relying on 

fastPHASE algorithm for description of LD (Druet and Georges, 2010) but imputation error rates and 

running times were higher (data not shown).  Weigel et al. (2010) used fastPHASE (Scheet and Stephens, 

2006) and IMPUTE (Marchini et al. 2007) to study the feasibility of imputation in Jersey cattle for 

different sizes of SNP panels for three chromosomes.  Their imputation method relied purely on LD.  

When comparing results from the two studies, different factors must be considered: the relationship 

between target and reference individuals (the authors mention that most animals had a score above 0.75 

without further detail), the reference panel (2,542 Jersey animals) and LD within breed.  Weigel et al. 

(2010) report that previous studies indicated that LD may be higher in Jerseys than in Holstein (e.g., 
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Villa-Angulo et al. 2009).  With approximately 430, 870, 2,170, 4,340 and 8,680 SNPs, they obtained, 

with their best method, genotype imputation error rates between 25.7 and 31.1 %, 19.9 and 27.3 %, 9.5 and 

11.4 %, 5.8 and 8.3 % and between 3.6 and 5.8 %, respectively.  In our studies, genotyping error rates 

(with 2,000 reference individuals and the best method) were equal to 20.2, 13.0, 7.4, 4.3 and 2.7 % with 

384, 768, 1,536, 3,000 and 6,000 SNPs, respectively.  These results indicate that with fewer markers and 

reference individuals and probably lower LD, our method achieved higher imputation accuracy although it 

is difficult to compare results from different data sets.  Higher accuracy is explained by the fact that the 

method accounts for linkage information.  The study of Weigel et al. (2010) was indeed designed to obtain 

lower bounds of imputation accuracy because it relied on LD alone and ignored linkage information 

(Weigel et al. 2010).  Use of Beagle algorithm (or CHROMIBD) might also achieve better imputation 

accuracy than fastPHASE.  In addition, computational costs of methods used in our study were lower (see 

below).  With fastPHASE and IMPUTE, Weigel et al. (2010) mentioned computational problems and the 

need to break chromosomes in several pieces. 

Computational Requirements 

Computation times and memory requirements were measured on a computer cluster with Intel Xeon 

"Harpertown" L5420 at 2.50 Ghz.  Each chromosome was processed on its own CPU core.  

Computational requirements are presented for a design with 3,000 SNPs on the low density panel and 1,000 

reference individuals.  Estimation of parameters of the DAG and haplotype reconstruction of reference 

individuals required from 5 to 35 minutes per chromosome (Beagle was run with 2 Gb memory and 

DAGPHASE used less memory).  For imputation with DAGPHASE, computation times per chromosome 

ranged from 2 minutes to 10 minutes and memory requirements per chromosome ranged from 275 to 620 

Mb memory.  With CHROMIBD, computational requirements were higher: from 4 minutes to 15 minutes 

and from 420 Mb to 1.16 Gb memory. 

When new genotypes are available, repeating the imputation should improve accuracy of prediction of 

missing markers.  However, repeating imputation for all animals has huge computational costs.  To 

reduce these costs, the DAG should not be estimated at every imputation (unless the DAG has been initially 

estimated on a small sample) and a reference training set might be used for this purpose (not the whole 

genotyped population).  In addition, haplotypes of reference individuals should be re-estimated only new 

available information (such as new progeny or parents genotypes) is expected to significantly improve this 
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process.  Finally, when imputing a set of newly genotyped animals, only haplotypes of these animals and 

of their genotyped parents are needed.  Running the imputation on such a subset would result much faster 

and requires less memory.  Imputation should be redone for individuals only if accuracy will significantly 

increase for them (e.g, if a parent of the target individual has been newly genotyped or if haplotype 

reconstruction of a parent has been improved thanks to new genotyped offsprings). 

Conclusions 

With both tested imputation methods, missing marker alleles can be predicted with 3 to 4 % errors with 

approximately 1 SNP / Mb (~3,000 markers).  These figures can further be reduced by adding more 

markers.  With DAGPHASE, these error rates can be achieved for animals with at least their sire and 

maternal grand-sire genotyped.  With CHROMIBD, four generations (or more) of male ancestors are 

required to obtain error rates below 4 % (with 3,000 SNPs).  Such situations are fortunately frequent in the 

Dutch Holstein population.  When both parents are genotyped, imputation error rates were below 1 % 

with 1,500 SNPs or more.  CHROMIBD is more efficient than DAGPHASE only at lower marker 

densities or when several genotyped ancestors are available. 

Future studies are required to measure the impact of these imputation error rates on accuracy of genomic 

selection with low-density SNPs panels and to determine which animals should be genotyped on low 

density chips to optimize breeding programs.  In addition to genomic selection, use of low-density 

genotypes might also be beneficial in F2 designs used for QTL mapping.  F0 animals would then be 

genotyped at high density and small chips would be used for later generations.  In that case, imputation 

would be efficient since both parents are genotyped.  Such a procedure could speed up QTL mapping and 

keep costs relatively low. 
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Figure 1. Mean allelic imputation error rate (in %) obtained for 1000 reference individuals 

imputed with DAGPHASE (solid line) and CHROMIBD (dashed line) for different sizes of 

low-density panels. 
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Figure 2. Mean allelic imputation error rate (in %) for low-density panel with 384 (◆), 768(■), 

1536(▲), 3000(●) and 6000 (*) SNPs obtained with DAGPHASE (solid line) and CHROMIBD 

(dashed line) for different sizes of reference population. 
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Table 1. Allelic imputation error rates (in %) obtained with DAGPHASE and CHROMIBD for animals grouped by a score representing the expected proportion of 

the genome inherited from a reference individual (results are presented for different sizes of SNPs panels). 

Relationship 

Score 

Number of 

individuals 

DAGPHASE CHROMIBD 

384 768 1,536 3,000 6,000 384 768 1,536 3,000 6,000 

<0.50 14 20.2 15.2 10.8 7.2 4.8 26.8 25.5 24.2 23.2 22.3 

[0.50-0.75) 128 15.5 11.4 7.8 5.3 3.5 20.4 18.7 17.2 16.2 15.4 

[0.75-0.80) 157 13.1 9.0 6.0 4.0 2.7 13.9 11.4 9.6 8.4 7.7 

[0.80-0.85) 122 13.0 8.8 5.6 3.7 2.4 13.1 10.2 8.0 6.6 5.8 

[0.85-0.90) 397 12.7 8.5 5.4 3.6 2.3 11.7 8.5 6.3 5.0 4.2 

[0.90-0.95) 608 12.7 8.5 5.3 3.3 2.1 10.9 7.4 4.9 3.5 2.7 

[0.95-1.00) 943 12.9 8.5 5.1 3.1 1.9 10.2 6.4 3.7 2.3 1.5 

1 365 3.2 1.7 0.9 0.5 0.3 4.2 2.3 1.2 0.6 0.4 

 

 



Part 3 

 176 

Identifying cows with sub-clinical mastitis by bulk SNP genotyping of tank milk 

G. Blard, Z. Zhang, W. Coppieters and M. Georges 

Abstract 

Mastitis remains the most important health issue in dairy cattle.  Improved methods to identify 

cows developing subclinical mastitis would benefit farmers.  We herein describe a novel method 

to determine the somatic cell counts (SCC) of individual cows by bulk genotyping a sample of 

milk from the milk tank with panels of genome-wide single nucleotide polymorphisms (SNP).  

We developed a simple linear model to estimate the contribution of individual cows to the 

genomic DNA present in the tank milk from 1) the known genotypes of individual cows for the 

interrogated SNP and 2) the ratio of SNP alleles in the tank milk.  Using simulations, we estimate 

that 3,000, 50,000, and 700,000 SNP are sufficient to accurately (R
2
> 0.98) estimate individual 

SCC in tanks containing milk from 25, 100, and 500 cows, respectively.  Using actual data, we 

demonstrate that the SCC of 21 cows can be estimated with a co-efficient of determination of 0.60 

using approximately 9,000 SNP.  The proposed method increases the value of the proposition of 

SNP genotyping individual cows for genomic selection purposes.  

 

J Dairy Sci. 95 (2012) 4109-4113
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Introduction 

Mastitis is generally regarded as the most important health issue in dairy farming.  Costs to the 

farmer result from treatment, decreased milk yield and value, and culling.  In the Netherlands, 

the annual cost of mastitis to farmers has been estimated at 80 Euros per cow per year (f.i. 

Hogeveen et al. 2011).  

One often distinguishes clinical from subclinical mastitis.  Mastitis is said to be clinical when 

resulting in either milk or udder anomalies that are manifest to the farmer.  Subclinical mastitis is 

defined as the presence of microorganisms in combination with elevated somatic cell counts (SCC) 

in the milk.  200,000 cells/ml is often utilized as SCC cut-off value.  Subclinical mastitis is 

costly on its own because of its negative impact on milk yield, which is decreasing log-linearly 

with SCC. 

At present, the control of mastitis is primarily driven by the detection and treatment of clinical 

mastitis.  More effective detection of subclinical mastitis would be a valuable addition to mastitis 

control.  In most circumstances, SCC for individual cows are only measured periodically 

(typically every 4-6 weeks) precluding close monitoring of the udder health status of individual 

cows.  Advanced versions of milking robots will precociously detect changes in conductivity or 

even SCC, yet automatic milking has been associated with a decrease rather than an improvement 

in udder health (f.i.  Hovinen & Pyörälä, 2011).  Thus novel approaches to monitor SCC of 

individual cows could be a benefit to the sector.   

We herein propose a method that allows determination of SCC for individual milking cows (and 

hence detection of cows with subclinical mastitis) by genotyping a sample of milk from the farm’s 

tank for a panel of Single Nucleotide Polymorphisms (SNPs).  At present, 3 favored bovine SNP 

panels are available, including approximately 3,000 (3K), 50,000 (50K) and 700,000 (700K) 

SNPs distributed across the genome.  All of these are developed and commercialized by Illumina 

Inc. (http://www.illumina.com/).  The proposed method assumes that individual genotypes for 

the same SNPs are available for all cows on the farm.  As genomic selection is becoming 

common practice in dairy cattle, an increasing proportion of the cow population is being SNP 

genotyped.  As an example, in the spring of 2011, more than 85,000 Holstein-Friesian animals 

had been genotyped with one of the SNP arrays mentioned above in the US alone.  The majority 
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of these were females, and their proportion was rapidly increasing with time.  We anticipate that 

farms in which all cows will be SNP genotyped will be common place in the near future.   

Materials and Methods 

Method. 

Assume a dairy farm with n cows.  Assume that the volume of milk contributed by cow i to the 

milk tank is known (as it is often in reality) and equals vi.  Assume that the somatic cell counts 

per liter of milk contributed to the tank by cow i is ci.  Assume that all cows on the farm have 

been genotyped for an array interrogating m SNPs.  Assume that gij is an indicator variable for 

the genotype of cow i for SNP j (taking a value of 1 for genotype 11, 0.5 for genotype 12, and 0 

for genotype 22).  Assume that a sample of DNA extracted from the milk tank has been 

genotyped with the same array, and that the estimated frequency of allele “1” of SNP j in the milk 

sample is fi.  The proportion of somatic cells contributed by cow i to the tank, pci can be 

estimated from a set of m linear equation of the form: 

 

 by minimizing 

 

From the obtained pci values one can then determine the somatic cell counts per liter of cow i 

relative to the rest of the herd as 

 

in which pvi is the known proportion of the tank’s volume contributed by cow i, and  is the 

average somatic cell count per liter in the herd.  If  is known (it can be measured in the milk 

tank), the absolute somatic cell counts per liter for cow i can be computed from .  

Simulated data 

We simulated farms with 25, 100 and 500 cows.  The cows’ daily milk production (liter) was 

assumed normally distributed with mean 30 l and standard deviation 0.2.  Somatic cell counts per 

liter were assumed to be proportional (x 8x10
6
) to a chi-squared distribution (2df).  We assumed 

the use of SNP arrays with 3,000, 50,000 or 700,000 SNPs corresponding closely to presently 

available commercial products.  Cows were assumed to have genotypes for each SNP (in practice, 
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missing values would be filled in by imputation).  Estimates of SNP allele frequencies (0 < f < 1) 

in the tank milk were assumed normally distributed around the true frequency with standard error 

of 0.05.   

Actual data 

We collected a sample of milk from a tank containing known quantities of milk (mean: 29.5 liter; 

SD: 5.3 liter) contributed the same day by 20 cows that had been previously genotyped using 

either of two custom-made 50K Illumina arrays (Charlier et al. 2008).  Individual somatic cell 

counts were determined on the same day for each cow using a Fossomatic FC instrument (Foss, 

Hilerod, Denmark) DNA was extracted from the milk sample using standard procedures and 

genotyped with the USDA 50K Illumina array (Matukumalli et al. 2009).  Estimates of B-allele 

frequencies (corresponding to fi in Method) were directly obtained from the BeadStudio software 

package (http://www.illumina.com/).  We also had SNP genotypes for 20 cows from the same 

farm that did not contribute milk to the tank. 

To calibrate the relationship between B-allele frequency as computed with BeadStudio, and actual 

B-allele proportion (in the Methods section), we took advantage of DNA samples available for 95 

Dutch Holstein-Friesian samples that had previously been genotyped with the Illumina 

BovineSNP50 genotyping BeadChip (Matukumalli et al. 2009).  The DNA concentrations were 

estimated as the average of 2 independent fluorometric measurements performed using PicoGreen 

(Life Technologies, Carlsbad, CA) according to the instructions of the manufacturer.  We mixed 

equal volumes of DNA solutions from the 95 sires and genotyped the resulting DNA pool using 

the Illumina BovineSNP50 genotyping BeadChip.  The relationship between 1) 

BeadStudio-derived B-allele frequency and 2) B-allele proportion computed from the known SNP 

genotypes and DNA concentrations of the sires is shown in Supplementary Figure 1 (available 

online at http://www.journalofdairyscience.org/) for 45,248 SNP with complete genotype data 

across the 95 sires.  The correlation between both measures was 0.98, yet departure from 

linearity was obvious.  We, therefore, adjusted the relation by fitting local (i.e., for each SNP) 

linear regressions based on 3,000 left- and 3,000 right-sided neighboring SNP (corresponding to 

frequency ranges of ~7.5%).  BeadStudio measured B-allele frequencies were converted to adjust 

using the SNP-specific β0 (intercept) and β1 (slope) estimators (Supplementary Figure 1, available 
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online at http://www.journalofdairyscience.org/).  Mean square errors averaged 0.005, 

corresponding to a residual standard deviations of 0.07 (i.e., comparable to the values used in the 

simulations).  Statistical analyses were conducted in R software (R Foundation for Statistical 

Computing, Vienna, Austria). 

Results 

Simulated data. 

Figure 1 is showing representative examples confronting actual and estimated SCC.  Predictions 

were very accurate with coefficient of determination > 0.98 (i.e. r
2
 = proportion of the variance of 

true SCC accounted for by predictions) with 3K or more SNPs for 25 cows, 50K or more SNPs for 

100 cows and 700K SNPs for 500 cows.  Predictors appeared unbiased under all tested 

conditions.  Thus, our simulations indicated that bulk genotyping of tank milk could be effective 

for SCC monitoring of individual cows, including identification of cows with increased SCC 

indicative of subclinical mastitis.   

Supplementary Figure 1A shows representative examples of frequency distribution of the 

statistical significance (-log(p)) of the pci’s for cows that did contribute milk to the tank, evaluated 

with a standard t-test.  For 80% of the cows, p-values were ≤ 0.0001 when using arrays 

interrogating ≥ 3K SNPs for herds with 25 cows, ≥ 50K SNPs for herds with 100 cows and (500 

cows) As expected p-values were strongly and inversely correlated with the proportion of SCC 

contributed by a given cow to the milk tank (data not shown).  By comparison, the frequency 

distribution of corresponding p-values for cows that did not contribute milk to tank (added one at 

the time in the model), largely followed the uniform distribution expected under the null 

hypothesis, despite a slight excess of low p-values (two-fold excess of p-values < 0.01, including 

three-fold excess of p-values < 0.001)(Supplementary Figure 1B).   

Actual data.  

We selected 8,696 SNP (1) that were interrogated by the 3 SNP panels used and (2) for which 

genotype information was complete for all 40 analyzed cows (21 that did contribute milk to the 

tank and 19 that did not).  Supplementary Figure 3 (available online at 

http://www.journalofdairyscience.org/) shows the distribution of minor allele frequencies in the 

actual data set for these 8,696 SNP.  The distribution was fairly uniform, hence comparable to the 



Part 3 

 181 

simulated SNP sets.Figure 2 shows the relation between measured SCC and SSC estimated from 

the adjusted B-allele proportions (fj ) in the pooled milk sample.  The correlation was highly 

significant ( P < 0.0001; R2 = 0.60), yet lower than in equivalent simulated data sets.  We then 

evaluated our ability to distinguish cows contributing milk to the tank from those that were not.  

The P-values associated with pci were ≤10
−4

 for all cows contributing milk, except the one with 

lowest SCC (10,000/mL; P = 0.006).  However, when adding cows that did not contribute milk to 

the tank one-by-one in the linear model, the  P-value of the corresponding regression coefficients 

( pci) was ≤0.0025 (i.e., a Bonferroni-corrected 5% threshold) for approximately one-third of the 

cows (Supplementary Figure 4, available online at http://www.journalofdairyscience.org/). 

Discussion 

In this work, we present a novel approach for determining SCC for individual cows by genotyping 

a sample of milk from the milk tank, i.e. without having to perform a separate measurement for 

each animal.  The method presupposes that individual SNP genotypes are available for each cow.  

This will increasingly correspond to reality as (i) genotyping costs continue to drop, and (ii) 

applications of genomic selection extend to cows. 

The method proved effective using both simulated and real data.  Not unexpectedly, for 

comparable scenarios in terms of number of cows and SNPs, the coefficient of determination (r
2
) 

was considerably better with the simulated than with the real data.  Several factors could 

contribute to this discrepancy, including (i) inaccuracies in counting somatic cells in real samples, 

(ii) underestimation of the inaccuracies in estimating SNP allele frequencies in the simulation, (iii) 

absence of linkage disequilibrium between simulated SNPs leading to an overestimation of the 

informativeness of the simulated SNP sets, (iv) relatedness between real but not simulated cows.  

For all these reasons, application of the proposed method in the field would certainly benefit from 

maximizing the number of utilized SNPs to compensate for propagation of inaccuracies from 

various sources.   

The SNP genotypes of the individual cows could either be real genotypes, or - assuming that the 

SNP panel used on the tank milk is not identical to that used on the cows – imputed genotypes.  

Methods for genotype imputation are well established and particularly effective in livestock as 

close relatives are often genotyped, allowing exploitation of Mendelian and within-family linkage 
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information in addition to population-wide linkage disequilibrium information.  Alternatively, it 

might be possible to impute allelic frequencies for the tank milk at missing SNP positions from the 

allelic frequencies measured at flanking markers and from the known linkage disequilibrium 

structure in the herd of interest.  The impact of genotype (frequency) imputation on the precision 

of the proposed method will have to be evaluated. 

In Belgium, SCC is typically evaluated 10 times per year at a cost of 25 Euros/cow/year.  In a 

farm with 100 cows, this amounts to 2,500 Euros/year.  At the present price, this corresponds 

to > 25 analyses with a 50K SNP array, and  10 analyses with a 700K SNP array.  Thus the 

argument can be made that - even today - the proposed methodology is price-competitive.  

Analyzing DNA extracted from tank milk will become increasingly useful and cost-effective as 

other applications are becoming available.  Monitoring the milk’s microbiome, including 

detection of putative pathogens, by means of high-throughput sequencing of – for instance - 16S 

rRNA amplicons is certainly one application that is virtually immediately practical.  

We explored the possibility to determine whether specific cows did or not contribute milk to the 

tank.  This might for instance be useful to monitor the respect of exclusion of milk from treated 

cows to the tank.  Related applications have previously been evaluated in the context of human 

genetics (Homer et al. 2008).  In this study, we used the statistical significance of the 

cow-specific pci regression coefficients (measured using a standard t-test) as an indicator of the 

presence or absence of milk of a specific cow in the pool.  While specificity and sensitivity 

appeared satisfactory with the simulated data, this was not the case with real data.  The reasons 

underlying this discrepancy could be multiple and are presently being examined. 

In summary, we herein describe the principles and demonstrate the feasibility of a novel approach 

to determine SCC of individual cows that has the potential to be a valuable addition to the arsenal 

of methods to control mastitis including subclinical.  
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Figure 1:  Simulated data. Representative examples of the relationship between actual SCC and 

predictions based on SNP genotyping of a sample from the tank milk.  Evaluated scenarios 

consider 25, 100 and 500 cows genotyped for 3,000, 50,000 or 700,000 SNPs. R
2
 corresponds to 

the coefficient of determination. 

 

Figure 2: Real data (A) Relationship between measured SCC and SCC estimated by SNP 

genotyping milk from a tank including milk from 20 cows. (B) (Results with imputed genotypes) 
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Supplementary Figure 1:  Relationship between B-allele frequency (estimated from Illumina 

BovineSNP50 Beadchip using Beadstudio) and B-allele proportion (computed from the genotype 

and DNA concentration) in 95 bulls contributing to DNA pool, for 45,248  SNPs with complete 

genotype data.  The black line corresponds to a hypothetical “perfect” regression with 0 intercept 

and slope of one.  The red line corresponds to a curve fitted by performing local linear 

regressions using information from 6,000 “flanking” SNPs (i.e. having comparable B-allele 

frequency).  The green line shows the corresponding residual standard errors.
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 A 

 

B 

Suppplementary Figure 2: Simulated data. (A) Frequency distribution of the statistical 

significance (t-test) of the pci regression coefficients for (i) simulated cows that did not contribute 

milk to the tank added one-by-one in a linear model including all the cows that did contribute milk 

to the tank (blue bars), (ii) simulated cows that did contribute milk to the tank and use of a linear 

model where all cows included in the model contributed milk to the tank (red bars). (B) Expected 

(null hypothesis, red) and observed (blue) distribution of log(1/p) values for simulated cows that 

did not contribute milk to the tank.  In general expected and observed distributions match closely, 

with however a slight excess of observed low p-values.   
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Supplementary Figure 3: Real data. Distribution of minor allele frequency amongst 40 analyzed 

cows for 8,696 SNPs utilized to estimate SCC of individual cows from the SNP allele frequencies 

in the tank milk. 

 

Supplementary Figure 4: Real data. Distribution of the statistical significance (log(1/p) values 

estimated using a standard t-test) of the regression coefficient corresponding to (i) the 20 cows 

that did contribute milk to the tank (Red=In/in: linear model including the 20 cows that did 

contribute milk to the tank; mauve=IN/in+out: linear model including all 40 cows), and (ii) the 20 

cows that did not contribute milk to the tank (Green=Out/in: linear model including the 20 cows 

that did contribute milk to the tank and one that did not; turquoise=Out/in+out: linear model 

including all 40 cows).
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Conclusions and Perspectives 

In this thesis, we describe the development of a novel method for association mapping of variants/genes that 

influence binary traits segregating in outbred populations, as well as of a software package (GLASCOW) to 

implement it (Zhang et al. 2012).   

One of the main features of the proposed approach is that it exploits haplotype information rather than performing 

single-SNP analysis as most available methods do.  Haplotype information is extracted using a previously 

described Hidden Markov Model (Druet & Georges 2010) that simultaneously phases the genotypes and assigns 

the ensuing haplotypes to a predetermined number of ancestral haplotypes corresponding to the hidden states of 

the model.  The method does not require the use of “windows” with often arbitrarily defined boundaries.  It 

allows for seamless integration of within-family linkage and across-family linkage disequilibrium information.   

The use of haplotype information is expected to endow the method with superior performances - at least - in some 

circumstances.  Superiority of a haplotype-based method is expected when none of the SNPs considered 

individually is in high LD with the causative variant(s), but when some of the haplotypes are.  Other scenarios 

where haplotype information may be more powerful than single SNP analysis is in the case of epistatic 

interactions between closely linked variants, i.e. when the biological effects requires a combination of genetic 

variants.  A potential handicap of the haplotype-based methods is related to multiple testing:  we typically 

estimate the effect of 10-20 ancestral haplotypes at each marker position (instead of two alleles).  The balance 

between gains and losses will probably depend on the LD features of the considered locus and the complexity of 

the underlying biology. 

The proposed method may be viewed as a “non-parametric” method in the sense that one tests for deviations from 

random expectations rather than testing a specific genetic model.  As a consequence the method is applicable to a 

broad range of scenarios and can deal with recessivity and dominance, allelic homo- and heterogeneity, 

phenocopies, locus heterogeneity, oligogenic and polygenic inheritance.  The complexity of the determinism will 

of course affect the corresponding detection power. 

Another important feature of the approach is that it corrects for population stratification using a random 

“individual animal” or polygenic model.  The covariance between the animal effects can either be predicted from 

pedigree or from genotype data.  In the former case, we typically use the available haplotype (rather than single 

SNP) information to compute genome-wide IBD probabilities between pairs of individuals, which should – 

intuitively – be more accurate.  Stratification issues, including both polygenic and environmental confounding, 
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are commonplace in animal populations.  It is essential to correct for these when performing association mapping, 

and the animal model is viewed by many as the most effective way to achieve this goal. 

The efficacy of the proposed method was demonstrated on traits with a broad range of genetic determinisms.  It 

was first applied to simple autosomal recessive genetic defects with allelic homogeneity.  This led to the 

localization of the mutations underlying prolonged gestation and arthrogryposis in the Belgian Blue Cattle Breed 

(BBCB) (Zhang et al. 2012).  It was then applied retrospectively to color-sidedness, which is inherited as an 

autosomal dominant trait BBCB (Durkin et al. 2012).  It was subsequently applied successfully to stunted growth 

in BBCB, leading to the detection of an autosomal recessive allele that would explain 40% of reported cases.  

The method could thus overcome the occurrence of as of yet unexplained phenocopies in this specific case 

(Sartelet et al. 2012).  It was also applied to scan the genome for risk loci for recurrent laryngeal neuropathy, a 

multifactorial disease of the horse (Dupuis et al. 2011).  We used a related haplotype-based method designed for 

the analysis of quantitative traits (Druet and Georges, 2010), to fine-map loci influencing hematological traits 

segregating in a porcine line-cross (Zhang et al. 2013).  The latter are also complex multifactorial traits. 

A non-anticipated use of the proposed method is for the genomic localization of Copy Number Variants (CNV).  

CNVs are typically assumed to correspond to tandem or at least closely linked copies of a given genomic segment.  

While this indeed appears to apply to the majority of CNV, a non-negligible proportion of CNV may correspond 

to non-syntenic or at least not closely linked copies of the given genomic segment.  This was unambiguously 

demonstrated for the Cs29 allele causing color-sidedness in BBCB and several other breeds, which was shown to 

correspond to the translocation of a segment of bovine chromosome 6 to chromosome 29 (Durkin et al. 2012).  

This finding spurred us to search for other examples of “non-syntenic CNV”.  We proposed to do this by 

considering CNV genotype as a binary trait (copy number 2 = “controls” versus copy number >2 = “cases”) and to 

scan the genome for regions associated with this newly defined trait. In the case of a classical “syntenic CNV” the 

only genomic region expected to show an association would correspond to the genomic coordinates to which the 

CNV sequences map in the reference genome.  In the case of “non-syntenic CNVs” a significant association 

would be detected somewhere else in the genome.  By doing so in humans, cattle and horse we have detected 

tens such instances of “trans-association”, identifying CNVs of which some might result from the same 

mechanism causing translocation via circular intermediates uncovered for color-sidedness (Durkin et al. 2012; 

Dupuis et al. 2012). 

The last part of this work deals with specific applications of marker information in animal breeding.  Despite 

considerable drops in price witnessed over the last five years, the costs of SNP genotyping remain an obstacle for 
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the systematic application of genomic selection on all or nearly all animals in livestock populations.  Methods 

are therefore being developed to extract a maximum of information from a minimum number of genotyped SNPs.  

One way to reduce the overall genotyping costs would be to only genotype a selected fraction of the population at 

high density (or even sequence them), to genotype the remainder of the population with low-density panels, yet to 

exploit information about relatedness combined with principles of linkage analysis to impute missing SNP 

genotypes upon the entire population.  We have tested the feasibility of this approach in a scenario that would 

mimic the actual situation in dairy cattle in terms of population and available SNP panels.  

We finally propose and evaluate the feasibility of a new application of genome-wide SNP information in dairy 

cattle breeding.  Mastitis remains the most costly health issue in dairy cattle breeding.  Rapid detection of cows 

with subclinical mastitis may contribute to better control of the disease.  We have proposed to achieve this by 

monitoring individual somatic cell counts of all cows in the farm by analyzing one sample of milk from the farm’s 

milk tank, hence containing a mixture of milk from all cows on the farm.  The deconvolution of the signal 

obtained on the milk mixture in order to obtain information for individual cows is achieved by realizing that the 

combination of SNP allele frequencies (measured from the relative intensities of the fluorescence signals 

corresponding to the two alleles at each SNP) observed in the milk tank across all interrogated SNPs, can only be 

obtained by mixing the milk (or rather the somatic cells) of individual cows in computable proportions (provided 

that all cows have been individually genotyped for the same SNPs).  We demonstrate the feasibility of this 

approach “in principle” by simulation, and perform a pilot experiment that indicates that implementation in the 

real world will likely be achievable.  It seems reasonable to speculate that the analysis of nucleic acids in the 

milk tank will become routine in the future particularly for the detection, of specific pathogens.  The proposed 

assay may be combined with microbiological analyses to maximize the extraction of information for the farmer’s 

benefit.  

The mapping methods developed and applied in this thesis still fit within the classical “positional cloning 

paradigm”, in which: (i) the loci of interest are mapped – one-by-one - by association analysis using genetic 

markers that correspond to a relatively small subset of all the genetic variants that segregate in the population, and 

(ii) the identified loci are subject – one-by-one - to a follow-up “fine-mapping” and “functional analysis” to 

hopefully identify causative variants and genes. 

Rapid advances in next generation sequencing may considerably change this paradigm.  It is likely that in the 

near future, the full sequence information will become available for all individuals considered in a “mapping” 

experiment, whether through actual resequencing or imputation.  In this context, the whole issue of the use of 
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haplotype information will become mostly irrelevant as the causative variants will be part of the data.  At present, 

the functional studies are largely disconnected from the actual mapping step.  This may also change in the near 

future as functional information will increasingly be gathered in Encode-like projects, and become accessible in 

public databases.  Thus it will become possible to readily integrate functional information at the mapping stage.  

Examples of such advances can already be guessed from the intents to use functional information to alter prior 

probabilities in Bayesian approaches towards genomic selection, or from the prediction of the disruptive nature of 

variants when performing burden tests. 

It seems reasonable to also speculate that the “one locus-by-one locus” paradigm will evolve in more systematic 

“simultaneous searches”.  By that we mean that the effect of variants will be estimated conditional on that of as 

many as possible if not all other variants.  In some way this is already accomplished by the Bayesian approaches 

towards genomic selection.  However, in these approaches distinct variants are assumed to act additively, while 

there is growing evidence that properly account for epistatic interactions may reveal novel biology. 

Whichever methods and approaches end-up dominating forward genetics, it can be anticipated that tremendous 

progress will be achieved in the near future in establishing genotype-phenotype maps, including for the complex 

traits of relevance to medicine and agriculture. 
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