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Summary

S.1 Introduction

In this thesis we interpret the variability of line profiles for several main-sequence B-type

stars. This study is carried out in the framework of a long-term monitoring of candidate

slowly pulsating B stars led by members of the Institute of Astronomy of the University

of Leuven.

In Sect. S.2 we present the kinds of B-type stars that we study in the scope of this

thesis. Sect. S.3 describes shortly the methodology that we use to analyse data of these

stars. In Sect. S.4, S.5 and S.6 we summarize the three contributions of our work. First we

propose a significant improvement of the moment method for mode identification of mul-

tiperiodic rotating stars. Secondly we study northern slowly pulsating B stars discovered

from the HIPPARCOS mission and more thoroughly the brightest northern SPB of our

sample, HD147394. Finally we outline and analyse four B-type stars that we modelled by

rotational modulation. Sect. S.7 gives our outlook for future work.

S.2 Line-profile B variables

We study several main-sequence variable B stars belonging to two classes: the slowly

pulsating B stars and the Bp variables. The characteristics of both groups are summarized

in the following.

Slowly pulsating B stars

The slowly pulsating B stars (SPBs) were introduced as a new class of pulsating B-type

stars by Waelkens (1991). They are situated along the main sequence with spectral types

ranging between B2 to B9 and masses ranging between 3 M� to 7 M�. They show light

and line-profile variations, which are multiperiodic with periods of the order of days. This

variability is understood in terms of non-radial stellar pulsations and their oscillation

modes are high-order g-modes. Theoretical models attribute the pulsational nature of

SPBs to the κ-mechanism, acting in the iron opacity bump at 2 105 K. The HIPPARCOS

mission greatly increased the number of known SPB stars. About 100 candidate SPBs

have been discovered up to now.

v
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Bp/Ap variables

Bp/Ap variables are main-sequence chemically peculiar (CP) stars for which certain chem-

ical elements show abnormal abundances compared to the Sun. Their temperatures range

between 7 000 K and 18 000 K. The hotter members of Bp/Ap stars are characterized

by strong silicon enhancements (Si stars) but appear to be helium weak (He-weak stars)

in general. They show monoperiodic photometric and spectroscopic variations which are

explained by the rotation of the star in presence of non-homogeneous distributions of

elements on the stellar surface. Theoretical models have been developed for Ap stars.

These ones explain the peculiarities of Ap stars by complex interactions between radia-

tively driven diffusion processes and a stellar magnetic field. The origin of magnetic fields

observed for many Ap stars is not yet clearly understood.

S.3 Methodology

Non-radial pulsation theory

For slowly pulsating B stars we consider the non-radial stellar pulsation theory by Lee &

Saio (1987, 1990), which takes into account the Coriolis force under some approximations

that are reasonably good for low-frequency non-radial modes. We describe the theory

that is useful for a comparison with our spectroscopic observations, i.e. an expression for

the pulsational velocity at the stellar surface, which is then used for the modelling of

line-profile variations.

In this work we also compare observed frequencies to theoretical ones. These latter are

computed with the Code Liégeois d’Evolution Stellaire, that computes equilibrium models,

and with the standard adiabatic code OSC that computes the oscillation frequencies. Both

codes were implemented by Dr. R. Scuflaire. We have adapted OSC to include the Coriolis

force in the framework of this thesis.

Line-profile modelling

Line-profile variations of a pulsating star are mainly caused by the velocity field at the

stellar surface due to oscillatory displacements and by the brightness variations due to

temperature variations. The modelling of the line-profile variations is done as follows.

The stellar surface is divided in many surface elements. Each visible local line profile

is computed to be summed up over the visible stellar surface. Local line profiles are

intrinsic profiles rotationally broadened and Doppler shifted by the velocity field caused by

pulsation. The intrinsic profile is time dependent because of varying effective temperature

and gravity. We underline that this latter effect can be neglected for the modelling of the

Si II 4128-4130 Å doublet in the case of slowly-rotating non-radially pulsating B stars as

was shown by De Ridder et al. (2002a) and Dupret et al. (2002). In this work we generate
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theoretical line-profile variations with the publicly available code BRUCE implemented

by Townsend (1997).

Line-profile variations of chemically peculiar stars are caused by the stellar rotation

and a non-homogeneous distribution of elements on the stellar surface. A simple model

is the following. The flux of a circular spot (or several spots) differs from the flux of the

rest of the stellar surface. Local intrinsic line profiles, taken gaussian and rotationally

broadened, are computed taking into account this different abundance of the considered

element in the spot. They are finally summed up over the visible stellar surface. In this

work we use a code kindly put at our disposal by Dr. L. Balona.

Existing analysis methods

We derive frequencies in the datasets of our studied B variables by means of techniques

commonly used by astronomers, which are Fourier methods (Scargle 1981, Roberts et al.

1987) and the Phase Dispersion Minimization (PDM) method (Jurkevich 1971, Stelling-

werf 1978). The first type of methods is based on the fact that the Fourier transform of

a harmonic signal underlines the frequencies present in this signal. The idea of the PDM

method is that the dispersion of the observations in a phase diagram with respect to a

mean curve is minimal for the frequency which is present in the data. In this work we use

frequency analysis codes kindly put at our disposal by Dr. J. Cuypers and Dr. J. Telting.

The modes of pulsating stars are identified by comparing theoretically computed line-

profile variations for many wavenumbers (`,m) and values of continuous parameters (the

amplitude of the pulsation velocity Ap, the projected rotational velocity vΩ, the angle

of inclination i between the rotation axis and the line of sight, the intrinsic line-profile

width σ) to observed line-profile variations and by choosing the mode and the parameters

that lead to the best fit. Even with current computers, this technique is feasible only

for a monoperiodic star because of computation time. For this reason, among others, the

moment method is particularly useful. The principle of this latter technique is the same

as for the line-profile fitting technique but it considers the first three moments of a line

profile instead of the entire profile. We use the moment method developed by Aerts et

al. (1992) and Aerts (1996) together with our new version improved for multiperiodic

rotating stars (see the following).

The surface abundance distribution of CP variables is obtained from line-profile vari-

ations by an inversion method called Doppler mapping. This technique is an iterative

process that assumes a start abundance distribution, computes a new “improved” abun-

dance map by minimizing an appropriate error function and iterates until the difference

between computed and observed profiles is of the order of the signal-to-noise ratio of the

spectra. We obtain abundance distributions of silicon and helium on the stellar surface

for several B stars by means of the code INVERS11 implemented by Prof. N. Piskunov.
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S.4 A new version of the moment method

A first contribution of this thesis is a significant improvement of the moment method

which is a technique to identify pulsation modes from high-resolution spectroscopic data.

It was first introduced by Balona (1986ab, 1987) and further developed by Aerts et al.

(1992) and Aerts (1996).

The idea of the method is to consider the first three moments of a line profile and

to compare their temporal variations to the ones of theoretically computed moments for

many wavenumbers (`,m) and for a large grid of other continuous parameters Ap, vΩ, i,

σ in order to identify the modes that best fit the observations.

The formulation by Aerts (1996) is valid for slowly-rotating pulsating stars (Prot > 10

Ppuls) and is very powerful for monoperiodic stars. In the case of multiple modes, all the

information contained in the first three moment is not used and multiple modes are deter-

mined independently, often leading to inconsistent values of the continuous parameters.

For an application of the method to slowly pulsating B stars, the version of Aerts (1996)

is unsatisfactory since these stars are multiperiodic and may have a rotation period of the

same order as pulsation periods.

In this thesis we propose a new version of the moment method. The improvements

compared to the previous version are the following. We rewrite the theoretical moment

expressions in order to generalize the technique to rotating pulsating stars by using the

pulsational velocity field derived by Lee & Saio (1987, 1990) for low-frequency non-radial

g-modes. The implementation of our numerical moment method is efficient in computa-

tion time so that we can now consider all the coupling terms appearing in the moment

expressions, in particular the constant term of the second moment. Consequently, all

modes of a multiperiodic star are identified simultaneously, leading to only one consistent

value for vΩ, i, σ. We use a new discriminant which compares theoretical to observed first

three moments at each time of observation instead of their amplitudes which can have

large uncertainties. Tests on synthetic data show that the method performs very well. We

also point out two additional interests of computing moments. For chosen (`, m, i,K)

the range of the amplitude Ap can be restricted to be compatible with the observed first

moment amplitude, which avoids to test useless values. A large number of combinations

of wavenumbers and other parameters can be excluded directly from the observed values

of the first moment amplitude together with the constant term of the second moment.

We applied the new moment method to two β Cephei stars and to one SPB star. For

β Crucis we confirm the ` = 1 nature for the main mode and the higher-degree nature

of two lower-amplitude modes, in agreement with recent space photometry obtained with

the WIRE satellite (Cuypers et al. 2002). Our mode identification for three observed

modes of 16 Lacertae is in full agreement with the one by Dupret et al. (2003) derived

from photometry. For the SPB star HD74195 the identifications of four modes need to be

confirmed by additional data.
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We point out that, in current practical applications, several combinations of modes

may lead to very close values of the discriminant. A statistically justified way to discrim-

inate between these solutions has not been found up to now. De Ridder et al. (2002b)

have taken the first steps to solve this difficult problem for a monoperiodic pulsation.

The power of our new method, however, lies in the fact that it allows to exclude all but

some tens of solutions for the modes and such elimination is crucial for future seismic

modelling.

S.5 The slowly pulsating B star HD 147394

The second contribution of this thesis constitutes the analyses of slowly pulsating B

stars and more precisely the detailed study of HD147394. This work is performed in the

framework of a long-term spectroscopic monitoring led by Mathias et al. (2001) at the

Observatoire de Haute-Provence in France for ten northern candidate SPBs discovered

thanks to the HIPPARCOS mission. The conclusions of this campaign are the following.

A period analysis on the Si II 4128-4130 Å doublet and on HIPPARCOS measurements

shows evidence of multiperiodicity of all except one studied stars, which confirms the

pulsation nature of these B stars. A list of the observed frequencies for our target SPBs is

given. In general the main frequency in photometry is also the main one in spectroscopy,

as was also the case for the sample studied by De Cat (2001). We note that none of the

stars has been reported as chemically peculiar in the literature. Despite the observational

effort done for our sample stars, multiperiodicity in the spectroscopic data is found in

only one star: HD147394 for which we can perform a mode identification.

HD147394 is a B 5 IV star falling in the centre of the SPB instability strip. From

the analysis of variations of the Si II 4128-4130 Å doublet, we report three frequencies

which are f1 = 0.8008 c d−1, f2 = 0.7813 c d−1 and f3 = 0.7175 c d−1 or one of the

aliases of f3 due to bad time sampling. The first frequency is also found in HIPPARCOS

photometry. An objective mode identification is done by means of our new version of the

moment method. Our mode identification for the first two frequencies is not influenced

by the value chosen for the third frequency and we conclude that the three modes are

non-axisymmetric modes with ` ≤ 3. We find that 15-20 combinations of (`,m) fit the

moments in a similar way. These best solutions are found to be the same whatever is the

expression for the pulsational velocity field (usual non-rotating one or Lee & Saio’s one

including the Coriolis force). The rotation period of the star is found to be between 5 and

19 days. We have too limited information to perform seismic modelling at this stage, but

we do show that the different possibilities for the mode identifications are compatible with

current pulsational models for SPBs. Such detailed confrontation between the outcome of

a line-profile study and theoretical models is the first of its kind.
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S.6 Four B-type variable stars modelled by rotational

modulation

The third contribution of our work is to underline a distinct group of several stars in

the sample of southern and northern candidate SPBs selected by Aerts et al. (1999)

and Mathias et al. (2001). A priori the HIPPARCOS photometry and the spectroscopic

variations of these stars are similar to those of other stars of the sample. However our

detailed analyses of the moments of the Si II 4128-4130 Å doublet and of the He I 4121 Å

line exclude pulsation as being the cause of their observed monoperiodic variability. We

show that a rotational modulation model allows us to succeed in explaining the behaviour

of the line-profile variations. More precisely it reproduces the non-sinusoidal first moment

variations, the different temporal behaviour and phasing between the moments of the

Si and He lines as well as the large equivalent width variations. We conclude that the

best explanation for the variability of these four stars is the presence of non-homogeneous

distributions of elements on the stellar surface. The observed periods, that are the stellar

rotation periods, are the following: 1.569 days for HD131120, 1.295 days for HD105382,

2.089 days for HD138769 and 2.769 days for HD55522. By means of the Doppler Imaging

technique we derive abundance maps of the stellar surface of both considered elements.

We show that HD131120, HD105382 and HD138769 are stars for which helium is globally

underabundant compared to the Sun. HD55522 has on average a helium solar abundance

but show very high contrasts over the stellar surface leading to a variation of 0.8 dex for

the observed mean abundance over the cycle of rotation. For the two stars HD131120

and HD105382 we find that regions on the stellar surface where helium is more enhanced

correspond to regions where silicon is more depleted and inversely. We also find that the

equatorial rotation velocities of the four stars are around 100 km s−1. Note that HD131120

and HD138769 were already reported as Bp stars but this is not the case for HD105382

and HD55522.

S.7 Outlook

De Cat et al. (2003) are presently identifying the pulsation modes of several slowly pul-

sating B stars which show a larger number of detected modes than HD147394 (De Cat &

Aerts 2002). The mode identifications are performed by means of our new version of the

moment method for spectroscopy and by means of the improved method of photometric

amplitudes by Dupret et al. (2003) for photometry. This observational study constitutes

the starting point for our future asteroseismic modelling of SPBs.

In order to better understand the chemical inhomogeneities of the four studied rota-

tionally modulated B-type stars, we plan to make a comparison with theoretical models

of diffusion for such stars with a Teff of about 17 500 K. Attempts to detect magnetic

fields, which may be present in these stars, would also be very relevant.
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R.1 Introduction

Dans cette thèse, nous interprétons la variabilité des profils de raie de plusieurs étoiles de

type B de la séquence principale. Cette étude est réalisée dans le cadre d’un suivi à long

terme consacré aux étoiles de type Slowly Pulsating B (SPB), mené par des membres de

l’Institut d’Astronomie de l’Université de Leuven.

Dans la section R.2 de ce résumé, sont présentés les différents types d’étoiles B étudiées

dans cette thèse. La section R.3 décrit brièvement la méthodologie utilisée pour analyser

les données de ces étoiles. Les sections R.4, R.5 et R.6 résument les trois contributions de

ce travail. Premièrement, nous proposons une amélioration significative de la méthode des

moments pour l’identification des modes d’étoiles multi-périodiques en rotation. Ensuite,

sont étudiées des étoiles de type SPB découvertes par la mission HIPPARCOS et, plus

particulièrement, l’étoile SPB la plus brillante de notre échantillon du Nord, HD147394.

Finalement, nous mettons en évidence quatre étoiles de type B pour lesquelles la varia-

bilité est interprétée en termes de modulation rotationnelle. La section R.7 donne les

perspectives pour notre travail futur.

R.2 Etoiles B à profils de raie variables

Nous étudions plusieurs étoiles variables de type B de la séquence principale appartenant

à deux classes : les étoiles de type Slowly Pulsating B et les étoiles variables Bp. Les

caractéristiques des deux groupes sont résumées comme suit.

Etoiles de type Slowly Pulsating B

Waelkens (1991) a introduit une nouvelle classe d’étoiles pulsantes de type B : les étoiles

de type Slowly Pulsating B. Celles-ci sont situées le long de la séquence principale et

possèdent des types spectraux de B2 à B 9. Leur masse se situe entre 3 et 7 masses solaires.

Elles présentent des variations de luminosité et des variations de profils de raie. Celles-ci

sont multi-périodiques avec des périodes comprises entre 1 et 4 jours. Leur variabilité est

interprétée en termes de pulsations stellaires non-radiales. Les modes d’oscillation sont

des modes g d’ordre élevé. Les modèles théoriques montrent que le mécanisme d’excitation

xi
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des étoiles SPB est le mécanisme κ associé à la barrière d’opacité de la zone d’ionisation

partielle du fer à 2 105 K. Un grand nombre de nouvelles étoiles SPB a été découvert

grâce au satellite HIPPARCOS. Jusqu’à présent, une centaine de candidates SPB ont été

découvertes.

Etoiles variables Bp/Ap

Les étoiles variables Bp/Ap sont des étoiles de la séquence principale chimiquement

particulières (CP) pour lesquelles certains éléments présentent des abondances anor-

males par rapport à celles du Soleil. Leur température est comprise entre 7 000 K et

18 000 K. En général, les étoiles les plus chaudes du groupe Bp/Ap sont caractérisées par

une surabondance en silicium (étoiles Si) mais sont sous-abondantes en hélium (étoiles

déficientes en He). Elles présentent des variations photométriques et spectroscopiques

mono-périodiques. Celles-ci sont expliquées par la rotation stellaire en présence de distri-

butions non-homogènes de certains éléments à la surface de l’étoile. Des modèles théoriques

ont été développés pour les étoiles Ap. Ceux-ci expliquent les particularités de ces étoiles

par des interactions complexes entre les processus de diffusion et un champ magnétique

stellaire. L’origine des champs magnétiques observés pour un grand nombre d’étoiles Ap

n’est pas encore clairement comprise.

R.3 Méthodologie

Théorie des pulsations non-radiales

Pour les étoiles de type SPB, nous considérons la théorie des pulsations stellaires non-

radiales de Lee & Saio (1987, 1990). Celle-ci tient compte de la force de Coriolis, en con-

sidérant certaines approximations valables pour des modes non-radiaux de longue période.

Nous décrivons la théorie nécessaire pour une comparaison avec les observations spectros-

copiques. Une expression du champ de vitesse de pulsation à la surface stellaire est déduite.

Celle-ci est utilisée lors de la modélisation des variations des profils de raie.

Dans ce travail, nous comparons également les fréquences observées aux fréquences

théoriques. Celles-ci sont calculées à l’aide de deux programmes développés par Dr. R.

Scuflaire : le Code Liégeois d’Evolution Stellaire et le programme adiabatique OSC. Le

premier calcule les modèles d’équilibre et le second les fréquences d’oscillation. Dans le

cadre de cette thèse, nous avons adapté OSC pour y inclure la force de Coriolis.

Modélisation des profils de raie

Les variations de profils de raie d’une étoile pulsante sont principalement dues au champ

de vitesse de pulsation à la surface stellaire et aux variations de luminosité causées par

des variations de température. Les variations de profils de raie sont modélisées comme
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suit. La surface de l’étoile est divisée en éléments de surface. Chaque profil de raie local

est calculé pour être intégré sur la surface stellaire visible. Les profils de raie locaux sont

des profils intrinsèques élargis et déplacés par effet Doppler à cause de la rotation stellaire

et du champ de vitesse de pulsation. Le profil intrinsèque dépend du temps en raison des

variations de la température effective et de la gravité. Nous insistons sur le fait que ce

dernier effet peut être négligé pour la modélisation du doublet Si II 4128-4130 Å dans

le cas d’étoiles B pulsant non radialement et en rotation lente. Ceci a été prouvé par

De Ridder et al. (2002a) et Dupret et al. (2002). Dans cette thèse, nous générons des

variations de profils de raie théoriques au moyen du programme BRUCE développé par

Townsend (1997). Ce programme est disponible publiquement.

Les variations des profils de raies d’étoiles chimiquement particulières sont dues à la

rotation stellaire et à la distribution non-homogène de certains éléments chimiques à la

surface de l’étoile. Le flux d’une (ou plusieurs) tache(s) circulaire(s) diffère du flux du

reste de la surface stellaire. Des profils de raie intrinsèques locaux, gaussiens et élargis

par la rotation, sont calculés en tenant compte de la différence d’abondance de l’élément

considéré dans la tache. Ils sont finalement intégrés sur la surface stellaire visible. Dans

ce travail, nous utilisons un programme mis à notre disposition par Dr. L. Balona.

Méthodes d’analyse disponibles

Au moyen de techniques couramment utilisées par les astronomes, nous avons déterminé, à

partir de plusieurs ensembles d’observations, les fréquences des étoiles variables étudiées.

Ces techniques sont les méthodes de Fourier (Scargle 1981, Roberts et al. 1987) et la

méthode PDM (Phase Dispersion Minimization) (Jurkevich 1971, Stellingwerf 1978). Les

premières sont basées sur le fait que la transformée de Fourier d’un signal harmonique

met en évidence les fréquences présentes dans ce signal. L’idée de la méthode PDM est

que la dispersion des observations dans un diagramme de phase par rapport à une courbe

moyenne est minimale pour la fréquence présente dans les données. Dans ce travail, nous

utilisons des programmes de détermination des fréquences mis à notre disposition par

Dr. J. Cuypers et Dr. J. Telting.

Les modes des étoiles pulsantes sont identifiés en calculant un grand nombre de

variations de profils de raie théoriques pour différents nombres d’onde (`,m) et différentes

valeurs des paramètres continus (l’amplitude de la vitesse de pulsation Ap, la vitesse de

rotation projetée vΩ, l’inclinaison i entre l’axe de rotation et la ligne de visée, la largeur

du profil intrinsèque σ). On choisit alors les modes et les paramètres qui reproduisent

au mieux les variations de profils de raie observées (line-profile fitting technique). Même

avec les ordinateurs actuels, à cause du temps de calcul trop long, cette technique n’est

applicable qu’à des étoiles mono-périodiques. Pour cette raison, entre autres, la méthode

des moments est particulièrement utile. Le principe de cette technique est le même que

celui de la technique “line-profile fitting” mais considère les trois premiers moments d’un

profil de raie à la place du profil entier. Nous utilisons la méthode des moments développée
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par Aerts et al. (1992) and Aerts (1996) ainsi que notre nouvelle version optimisée pour

des étoiles multi-périodiques en rotation (voir ci-dessous).

La distribution des abondances de surface des variables CP est obtenue à partir des

variations de profils de raie au moyen d’une méthode d’inversion appelée “Doppler Map-

ping”. Celle-ci est basée sur le processus itératif suivant. On considère une distribution

d’abondance initiale. Une nouvelle distribution en surface est calculée de manière à mieux

reproduire les observations en minimisant une fonction d’erreur appropriée. L’itération se

poursuit jusqu’à ce que la différence entre les profils calculés et observés soit de l’ordre

du rapport signal sur bruit des spectres. Dans cette thèse, nous obtenons les distributions

d’abondance du silicium et de l’hélium à la surface de plusieurs étoiles B au moyen du

programme INVERS11 développé par Prof. N. Piskunov.

R.4 Une nouvelle version de la méthode des moments

Une première contribution de cette thèse est une amélioration significative de la méthode

des moments. Celle-ci est une technique qui permet d’identifier les modes de pulsation à

partir de données spectroscopiques à haute résolution. Elle a d’abord été introduite par

Balona (1986ab, 1987) et ensuite développée par Aerts et al. (1992) et Aerts (1996).

L’idée de la méthode des moments est de considérer les trois premiers moments

d’un profil de raie et de comparer leurs variations temporelles à celles des moments

théoriquement calculés pour beaucoup de nombres d’onde (`,m) et pour une large grille

des paramètres continus Ap, vΩ, i, σ. Le but est d’identifier les modes qui correspondent

au mieux aux observations.

La version développée par Aerts (1996) est valable pour des étoiles pulsantes à rotation

lente (Prot > 10 Ppuls) et est très efficace pour des étoiles mono-périodiques. En cas de

multi-périodicité, toutes les informations contenues dans les trois premiers moments ne

sont pas utilisées et les modes multiples sont déterminés indépendamment. Ceci conduit

souvent à des valeurs incohérentes des paramètres continus. Cette version de la méthode

n’est donc pas appropriée aux étoiles de type Slowly Pulsating B puisqu’elles sont multi-

périodiques et peuvent présenter une période de rotation du même ordre que les périodes

de pulsation.

Dans cette thèse, nous proposons une nouvelle version de la méthode des moments.

Les améliorations par rapport à la version précédente sont les suivantes. Dans le but de

généraliser la technique aux étoiles pulsantes en rotation, nous réécrivons les expressions

des moments théoriques en employant le champ de vitesse de pulsation obtenu par Lee

& Saio (1987, 1990) pour des modes g non-radiaux de longue période. La programma-

tion de notre méthode numérique est efficiente en temps de calcul, de sorte que tous les

termes couplés qui apparaissent dans les expressions des moments peuvent dorénavant

être considérés (en particulier, le terme constant du deuxième moment). Par conséquent,
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tous les modes d’une étoile multi-périodique sont identifiés simultanément, impliquant une

seule valeur cohérente pour vΩ, i, σ. La comparaison entre moments observés et moments

théoriques n’est plus réalisée sur les amplitudes en raison des trop grandes incertitudes que

celles-ci peuvent présenter. Nous utilisons un nouveau discriminant qui compare les trois

premiers moments théoriques aux moments observés à chaque moment d’observation. Des

tests sur des données synthétiques montrent que la méthode fonctionne très bien. Nous

attirons également l’attention sur deux intérêts supplémentaires de calculer ces moments.

Pour des `, m, i et K choisis, le domaine de variation de l’amplitude Ap peut être limité

afin d’être compatible avec l’amplitude du premier moment observé, ce qui permet d’éviter

de tester des valeurs inutiles. Des valeurs observées de l’amplitude du premier moment et

du terme constant du deuxième, un grand nombre de combinaisons de couples (`,m) et

d’autres paramètres peut être directement exclu.

Nous avons appliqué la nouvelle méthode des moments à deux étoiles β Cephei et à

une étoile de type Slowly Pulsating B. Pour β Crucis, nous confirmons la valeur ` = 1

du mode principal et les degrés élevés des deux modes de plus faible amplitude. Ceci

est en accord avec la photométrie obtenue pour l’étoile par le satellite WIRE (Cuypers

et al. 2002). Notre identification de modes pour les trois modes observés de 16 Lacertae

est en accord avec celle obtenue à partir de la photométrie par Dupret et al. (2003).

Pour l’étoile SPB HD74195, l’identification des quatre modes doit être confirmée par des

données supplémentaires.

Nous soulignons que, pour les applications pratiques, plusieurs combinaisons de modes

peuvent conduire à des valeurs très proches du discriminant. On n’a pas encore trouvé de

méthode statistiquement justifiée permettant de discriminer ces solutions. De Ridder et

al. (2002b) ont commencé à tenter de résoudre ce problème difficile pour une pulsation

mono-périodique. Cependant, la puissance de notre nouvelle méthode réside dans le fait

qu’elle permet d’exclure toutes les combinaisons de modes, excepté quelques dizaines. Une

telle élimination de solutions est cruciale pour une modélisation sismique future.

R.5 L’étoile de type Slowly Pulsating B HD 147394

Les analyses d’étoiles de type Slowly Pulsating B et plus précisément l’étude détaillée

de l’étoile HD147394 constituent la deuxième contribution de cette thèse. Ce travail est

réalisé dans le cadre du projet à long terme mené par Mathias et al. (2001) à l’Observatoire

de Haute-Provence (France) de dix étoiles candidates SPB, découvertes lors de la mis-

sion HIPPARCOS. Les conclusions de cette campagne sont les suivantes. Une analy-

se de période sur le doublet Si II 4128-4130 Å et sur les mesures HIPPARCOS mon-

trent de manière évidente la multi-périodicité de toutes les étoiles, sauf une. Ceci con-

firme la nature pulsationnelle de ces étoiles de type B. Nous donnons une liste des

fréquences observées pour les étoiles SPB considérées. En général, la fréquence prin-

cipale obtenue par l’analyse des données photométriques est aussi celle provenant des
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données spectroscopiques, comme ce fut aussi le cas dans l’échantillon étudié par De Cat

(2001). Nous notons qu’aucune de ces étoiles n’est mentionnée comme étoile chimique-

ment particulière dans la littérature. Malgré les efforts d’observations consacrés à ces

étoiles, une seule d’entre elles présente clairement plusieurs modes dans les données spec-

troscopiques :HD147394, pour laquelle nous pouvons donc effectuer une identification des

modes.

HD147394 est une étoile de type B 5 IV et se situe au centre de la bande d’instabilité

des étoiles de type Slowly Pulsating B. De l’analyse des variations du doublet Si II 4128-

4130 Å, nous déterminons trois fréquences, qui sont f1 = 0.8008 c j−1, f2 = 0.7813 c j−1

et f3 = 0.7175 c j−1 ou un des alias de f3, en raison d’un mauvais échantillonnage tem-

porel. La première fréquence est également déduite de la photométrie HIPPARCOS. Une

identification objective des modes est effectuée au moyen de notre nouvelle version de la

méthode des moments. Notre identification pour les deux premières fréquences n’est pas

influencée par la valeur choisie pour la troisième fréquence et nous concluons que les trois

modes sont des modes non-axisymétriques, avec ` ≤ 3. De 15 à 20 combinaisons de nom-

bres d’onde (`,m) reproduisent les moments de manière similaire. Ces meilleures solutions

ne dépendent pas de l’expression du champ de vitesse de la pulsation (expression usuelle

ou expression de Lee & Saio incluant la force de Coriolis). La période de rotation de l’étoile

est comprise entre 5 et 19 jours. Actuellement, nous possédons trop peu d’informations

pour réaliser une modélisation sismique de l’étoile, mais nous montrons que les différentes

possibilités pour l’identification des modes sont compatibles avec les modèles actuels de

pulsation pour les étoiles de type Slowly Pulsating B. Une telle confrontation entre les

résultats de l’étude des profils de raie et les modèles théoriques est la première du genre.

R.6 Quatre étoiles de type B modélisées par modula-

tion rotationnelle

La troisième contribution de ce travail est la mise en évidence d’un groupe distinct de

plusieurs étoiles dans l’ensemble des candidates SPB du Sud et du Nord sélectionnées

par Aerts et al. (1999) et Mathias et al. (2001). A priori, les variations de la photométrie

HIPPARCOS et de la spectroscopie de ces étoiles sont semblables à celles des autres

étoiles de l’échantillon. Cependant, nos analyses détaillées des moments du doublet Si II

4128-4130 Å et de la raie He I 4121 Å excluent la pulsation comme cause de leur vari-

abilité mono-périodique observée. Ensuite, nous montrons qu’un modèle de modulation

rotationnelle parvient à expliquer le comportement des variations de profils de raie. Plus

précisément, il reproduit les variations non-sinusoidales du premier moment, le comporte-

ment temporel différent et le déphasage entre les moments des raies Si et He, de même que

les grandes variations de largeur équivalente. Nous concluons que la meilleure explication

pour la variabilité de ces quatre étoiles est la présence de distributions non-homogènes

d’éléments à la surface de l’étoile. Les périodes observées, qui sont donc les périodes
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de rotation des étoiles, sont les suivantes : 1.569 jours pour HD131120, 1.295 jours pour

HD105382, 2.089 jours pour HD138769 et 2.769 jours pour HD55522. Au moyen de

la technique de “Doppler Imaging”, nous déterminons des cartes d’abondance des deux

éléments considérés à la surface de l’étoile. Nous montrons que HD131120, HD105382

et HD138769 sont des étoiles pour lesquelles l’hélium est globalement sous-abondant par

rapport au Soleil. Par contre, HD55522 a en moyenne une abondance en hélium iden-

tique au Soleil mais présente des contrastes très importants à la surface conduisant à

une variation de 0.8 dex de l’abondance moyenne observée sur un cycle de rotation. Pour

les deux étoiles HD131120 et HD105382, des régions de la surface stellaire où l’hélium

est plus présent correspondent à celles où le silicium est plus rare, et inversement. Nous

trouvons aussi que les vitesses équatoriales des quatre étoiles sont d’environ 100 km s−1.

Nous notons que HD131120 et HD138769 sont déjà classées comme étoiles Bp dans la

littérature, contrairement aux deux autres étoiles.

R.7 Perspectives

Actuellement, De Cat et al. (2003) identifient les modes de pulsation de plusieurs étoiles

de type Slowly Pulsating B qui présentent un plus grand nombre de modes détectés que

HD147394 (De Cat & Aerts 2002). Les identifications des modes sont réalisées au moyen

de notre nouvelle méthode des moments pour la spectroscopie et à l’aide de la méthode

des amplitudes photométriques améliorée par Dupret et al. (2003) pour la photométrie.

Cette étude observationnelle-ci constitue le point de départ de notre future modélisation

astérosismique des étoiles de type Slowly Pulsating B.

Dans le but de mieux comprendre les inhomogénéités chimiques des quatre étoiles

B modélisées par la modulation rotationnelle, il est nécessaire d’entreprendre une com-

paraison avec les modèles théoriques de diffusion pour de telles étoiles possédant une Teff

d’environ 17 500 K, mais également de tenter de détecter des champs magnétiques qui

pourraient être présents dans ces étoiles.





Introduction

Variability of brightness and spectra in main-sequence B stars is common. When the

observed variations are periodic, they are attributed to two main causes: stellar pulsation

or the presence of non-homogeneous distribution of elements on the stellar surface.

The study of pulsating stars is of particular interest since it provides a way to probe

internal structure of stars by using their observed pulsational characteristics (pulsation

periods and modes). The study of spotted stars contributes to a better understanding of

diffusion mechanisms in stellar atmospheres, which are responsible of chemical peculiari-

ties.

High-resolution spectroscopy is very suited to derive pulsation frequencies and modes

of pulsators as well as to map surface abundance distributions of elements of chemically

peculiar stars. Such analyses of observed line-profile variations of B stars were performed

in the scope of this thesis.

The manuscript is subdivided in three parts. Part I is devoted to the methodology. We

first describe the two classes of B variables for which we studied several of their members:

the slowly pulsating B stars and the Bp variables (Chapter 1). Then, Chapter 2 describes

theoretical aspects of stellar pulsation needed for a comparison with observations. Chapter

3 gives the ingredients for the modelling of line-profile variations of both kinds of stars.

Chapter 4 explains different techniques for frequency analysis, mode identification and

Doppler mapping. We end this part by proposing a new version of the moment method

for mode identification, improved for multiperiodic rotating pulsating stars (Chapter 5).

In Part II, we present the analyses of pulsating B stars. Chapter 6 shows the results

of the frequency analysis on spectroscopic data of a sample of eight new northern slowly

pulsating B stars discovered from the HIPPARCOS mission. Chapter 7 is devoted to a

detailed study of one of these stars, HD147394, for which we also performed a mode

identification and a comparison with theoretical models.

In Part III, we describe the analyses of chemically peculiar B stars. Chapters 8, 9,

10 and 11 are devoted respectively to the following four stars: HD131120, HD105382,

HD138769 and HD55522. We explain why we attributed the variations of these stars to

rotational modulation instead of stellar pulsation. Then we show the abundance map-

ping of two elements (silicon and helium) on the stellar surface. We end the thesis with

conclusions and outlook for follow-up studies of line-profile variable B stars.
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Chapter 1

Line-profile B variables

In this chapter, we describe one class of pulsating B stars as well as one group of chemically

peculiar B stars for which we studied the line-profile variations of several of their mem-

bers. They are respectively the slowly pulsating B stars (Sect. 1.1) and the Bp variables

(Sect. 1.2).

1.1 Slowly pulsating B stars

In this section, we remind the main observational and theoretical steps achieved in the

understanding of slowly pulsating B stars (SPBs) from their discovery in the 1980s to

current studies. In particular, we present the long-term project led by members of the

Institute of Astronomy of the University of Leuven which is devoted to this kind of

pulsating B-type stars and in which we are involved.

1.1.1 Their discovery

In the 1980s, C. Waelkens carried out a systematic survey of early-type star photometric

variability, using the Geneva photometry. This study allowed the discovery of a new

group of B-type main-sequence photometric variables (Waelkens & Rufener 1985). The

group was composed of seven stars which have the following photometric characteristics.

Multiperiodic photometric variability with periods of the order of days (0.5 to 4 days)

is observed. The amplitudes are of a few millimagnitudes and decrease for increasing

wavelength. No phase lag is found between the variations in different colours. At that

time, a class of B-type line-profile variables was known: the 53 Persei stars (Smith 1977)

whose variability is multiperiodic with periods of the order of days. It was then natural

to think that the two groups of stars form a unique group.

In 1991, C. Waelkens interpreted the photometric variability in terms of non-radial

pulsation in high-order g-modes and introduced a new class of pulsating B-type stars: the

slowly pulsating B stars (SPBs, Waelkens 1991).

5
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In 1993, the interpretation of the variability was confirmed by theoretical models. The

latter ones predict that many high-order g-modes are unstable simultaneously for stars

close to the main sequence and with masses below 7 M�. Gautschy & Saio (1993) and

Dziembowski et al. (1993) attribute the pulsation mechanism of SPBs to the κ-mechanism,

acting in the metal opacity bump at 2 105 K.

In 1998, it was confirmed that SPBs and 53 Persei stars have several members in

common. In particular, Chapellier et al. (1998) showed that the prototype of 53 Persei

stars satisfies all the observational characteristics of an SPB and De Ridder et al. (1999)

showed that this star is situated within the theoretical SPB instability strip.

1.1.2 The HIPPARCOS mission

The principal objective of the HIPPARCOS mission was the production of a star catalogue

of unprecedented precision for the astrometric position parameters (i.e. ecliptic longitude

and latitude), the parallaxes and the proper motions of about 120 000 stars. Besides

this, the satellite gathered photometric measurements, which allowed the discovery of

an enormous number of new variable stars, including 267 B-type variables with periods

ranging from a few hours up to 0.5 years (Eyer 1998). Among these B-type variables, 72

were classified as new candidate slowly pulsating B stars (Waelkens et al. 1998). Fig. 1.1

illustrates the position of these SPB candidates in the HR diagram. They are situated

along the main sequence with spectral types ranging between B2 to B9, which corresponds

to effective temperatures of 12 000 K up to 18 000 K. Their masses range between 3 M�

to 7 M�. We point out that the new SPBs almost fully cover the theoretical instability

strip calculated by Pamyatnykh (1999).

We note that, before the HIPPARCOS mission, about 100 β Cephei stars were already

known while only 12 SPBs were discovered. The space mission underlined only 8 new

β Cephei stars but 72 new SPBs. This imbalance can be explained as a selection effect.

Indeed, ground-based surveys are more likely to detect stars with periods of hours than

periods of the order of one day while the opposite is true for the HIPPARCOS data.

To discriminate between the different classes of B-type variables a multivariate dis-

criminant analysis was performed by Waelkens et al. (1998). The parameters were the

main frequency f found in the HIPPARCOS data and the Geneva parameters X, Y, Z

which are closely related to the effective temperature, the surface gravity and the surface

magnetic field respectively (Golay 1980). The classes to discriminate were SPBs, β Cephei

stars and CP (chemically peculiar) variables of spectral type B1, which were represented

by 11, 39 and 21 prototypes respectively. We point out that the prototypes of the CP

variables were chosen so that they are distinguished as clearly as possible from both other

1Stars which could not be classified in one of the three classes were then assigned to one of the other
groups (B-type supergiants, Be stars and eclipsing binaries) by means of bivariate plots of Y versus X

and f versus Z.
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Figure 1.1: Position of known SPBs in the HR diagram (open symbols: SPBs known
before HIPPARCOS, full symbols: candidate SPBs discovered thanks to HIPPARCOS).
The theoretical SPB instability strip is calculated by Pamyatnykh (1999) and is based
on OPAL G93/21 opacities for a chemical composition (X,Z) = (0.70,0.02), without over-
shooting.
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classes. Consequently, this way of selection does not discriminate CP variables falling in

the SPB domain from real SPBs. In Part III, we show that two stars were misclassified

as SPBs and are in fact CP variables for which the monoperiodic variability is explained

by rotational modulation.

1.1.3 Long-term ground-based photometric and spectroscopic

monitoring of a sample of bright SPBs

In the course of 1996, asteroseismologists of the Katholieke Universiteit Leuven started a

long-term ground-based photometric and spectroscopic monitoring of seventeen selected

candidate SPBs in the southern hemisphere (Aerts et al. 1999, De Cat et al. 2000, De Cat

& Aerts 2002). The goal of such a study was to provide an inventory of the observational

characteristics of the pulsations of SPBs for a sample of stars that covers the whole

instability strip in the HR diagram. This observational study of bright southern slowly

pulsating B stars constitutes the PhD thesis of P. De Cat (2001). In order to increase

the sample selected in the southern hemisphere, ten bright northern candidate SPBs were

chosen for long-term spectroscopic monitoring in the course of 1998 (Mathias et al. 2001).

The basic analysis of this sample is described in Chapter 6. A detailed study of one of the

northern targets, the SPB HD147394, is performed in Chapter 7.

Both sets of SPBs were selected among the many SPBs discovered from the HIPPAR-

COS mission (Waelkens et al. 1998) as well as among the confirmed SPBs that were studied

by Waelkens (1991). We had then at our disposal HIPPARCOS photometry for the se-

lected HIPPARCOS SPBs but also for the selected confirmed SPBs. Besides HIPPARCOS

photometry, two other datasets were gathered during several years2: multicolour Geneva

photometry and high-resolution spectroscopy (high S/N profiles of the Si II-doublet cen-

tered at 4128-4130 Å). In the southern hemisphere, the observations were obtained with

the Swiss Telescope of the Geneva Observatory situated at La Silla in Chile and with the

Coudé Auxiliary Telescope / Coudé Echelle Spectrometer (CAT/CES) combination of the

European Southern Observatory, also situated at La Silla. In the northern hemisphere,

the spectroscopic observations were obtained with the AURELIE spectrograph at the

Coudé focus at the 1.52 m telescope situated at the Observatoire de Haute-Provence in

France. Geneva photometric observations are presently being gathered with the Mercator

telescope of the University of Leuven, which is situated at La Palma in Spain.

Observational properties of the southern SPBs

Among the seventeen southern SPBs studied by De Cat (2001), at least nine are found to

be close spectroscopic binaries for which the orbital parameters are derived. Single-lined as

well as double-lined spectroscopic binaries were observed. Orbits with a large eccentricity

2Such a long-term monitoring and an even much longer one is needed because of the long (beat)
periods of SPBs.
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were found as well as circular orbits. Two stars turn out to be chemically peculiar variables

instead of SPBs. Their modelling in terms of rotational modulation is performed in this

thesis (Part III). Another star turns out to be misclassified as an SPB because no temporal

shifts due to binarity and no changes in shape are observed in its line profiles. Nine of

the targets are confirmed to be multiperiodic stars and are therefore pulsators. A mode

identification was performed from the photometric and from the spectroscopic data. In

some cases, no consistency was found between the results derived from both datasets,

which underlines the necessity to improve current mode identification methods.

The properties resulting from the datasets can be summarized as follows. All the con-

firmed SPBs exhibit line-profile variations. For most of the targets, the derived equivalent

widths of the profiles of the Si II-doublet are in full agreement with the expected values for

their effective temperature. For all the pulsating targets, the observed equivalent width

(EW) variations during the pulsation cycle are well below 10% of the average equivalent

width value. There is no evidence for a correlation between the EW variations and the

amplitudes of the variations in the radial velocity, nor between the EW variations and the

photometric variations. For most of the observed pulsation frequencies, the amplitudes

of the photometric variations show a strict correlation with the amplitudes in the radial

velocity. The phase difference between the radial velocity and light variations is close to

0.25 for all the observed pulsation modes. The variations in the different photometric

filters of the Geneva systems are in phase.

Based on a set of 22 confirmed and 50 suspected SPBs, the following other charac-

teristics were derived by De Cat (2002). The observed frequencies are centered around

0.8 c d−1; the observed K-values3 are centered around 10-25, which means that the hori-

zontal component of the velocity is larger than the vertical one. A marginal increase in the

observed frequencies towards lower temperatures is observed. The observed ratios of the

rotational frequency to the main pulsational frequency are generally larger than 0.1. The

correlation between stellar rotation and pulsation has been investigated by De Cat (2002).

No firm evidence is found for amplitude damping due to rotation, nor for the excitation of

higher degree modes in rapid rotators. However, more observations of fast-rotating SPBs

are needed for more definitive conclusions.

1.2 Bp/Ap variables

In our sample of candidate SPBs, we discovered that several stars were misclassified

and are in fact chemically peculiar B variables. In this section we remind observational

properties of Bp/Ap variables as well as proposed theories to explain their peculiarities.

3The K-value is defined as the amplitude of the ratio of the horizontal component of the velocity to
the amplitude of the vertical component of the velocity. To a good approximation, it is given by K ≈ GM

σ2R3

were M is the stellar mass, R is the stellar radius and σ is the angular pulsation frequency.
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1.2.1 Observational peculiarities

Chemically peculiar (CP) stars are stars for which certain chemical elements show abnor-

mal abundances compared to solar values. Chemically peculiar A and B-type stars are

situated on or close to the main sequence in the temperature range of 7 000 to 18 000 K.

Several groups of CP stars have been defined (Preston 1974); some of them appear at

the same positions in the HR diagram. In this work, we studied four members of the class

of Bp/Ap stars. We note that these stars are situated in a part of the HR diagram which

corresponds partly to the instability domain of SPBs. The hotter members of Bp/Ap stars

are characterized by strong silicon enhancements (Si stars) but appear to be helium weak

(He-weak stars) in general.

The Bp/Ap stars show monoperiodic photometric and spectroscopic variations as well

as for many of them magnetic field variations, with the same period in each dataset. These

light and line-profile variations are explained by the rotation of the star in presence of

non-homogeneous distributions of elements on the stellar surface. Magnetic variations are

attributed to the stellar rotation together with a magnetic axis oblique to the rotation

axis. This latter model is referred to as the oblique rotator model.

The presently known values of the rotation periods of peculiar stars are in agreement

with the conclusion that these stars rotate on average much slower than normal stars of

the same spectral type (Catalano & Renson 1997).

1.2.2 Proposed theories

Many mechanisms and models have been introduced to attempt to explain the abundance

anomalies and the non-homogeneous distribution of certain elements at the stellar surface

of Bp/Ap stars. At present, the most convincing theoretical models are based on complex

interactions between radiatively driven diffusion processes and the stellar magnetic field.

A diffusion model that explains abundance anomalies was first introduced by Michaud

(1970). It assumes that in a stellar atmosphere only two main forces affect a particle:

the gravitation and the radiative pressure. Depending on which force is dominant on a

certain element in a certain atmospheric layer, a particle may diffuse upwards driven by

radiation or settle down below the line forming region via gravitation, which corresponds

respectively to an observed overabundance or underabundance of the element. Moreover,

diffusing elements are guided by the magnetic field, leading to patches. We point out

that a slow rotation rate is assumed a necessary condition for a diffusive segregation of

elements to occur in atmospheres of these stars. Abt & Morrell (1995) suggest that a slow

rotation is even a sufficient condition for a star to become chemically peculiar.

Note that the origin of the observed magnetic fields is not clearly understood. Two

different theories exist. The first one proposes that a severe field strength has been devel-

oped already in the proto-stellar medium and was involved in the star formation process
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until the present. The second model assumes that the star functions as a dynamo due to

differential rotation which is responsible for the surface magnetic field. Moreover, in the

Sun and in other late-type stars, such a dynamo is believed to be driven by outer layer

convection zones, which are certainly not present in early A- and in B-type stars.





Chapter 2

Non-radial pulsation theory

In this chapter, we outline the basic equations describing stellar pulsations of a rotating

star as derived by Lee & Saio (1987, 1990). In particular, we give the theoretical back-

ground that is directly relevant for a comparison between theory and observations. More

precisely, we show how to derive theoretical pulsation frequencies (Sect. 2.1) as well as

a theoretical expression of the pulsational velocity field at the stellar surface (Sect. 2.2),

which manifests itself through spectral line variations.

2.1 Pulsation frequencies

Basic equations

We introduce a right-handed inertial frame of orthogonal cartesian coordinates. The lin-

earized perturbed equations of hydrodynamics in the adiabatic assumption, written in

the Eulerian formalism, are

• the equation of motion:

∂2~ξ

∂t2
= − grad Φ′ +

ρ′

ρ2
grad P − 1

ρ
grad P ′, (2.1)

• the continuity equation:

ρ′ + div(ρ ~ξ) = 0, (2.2)

• the Poisson equation:

∆Φ′ = 4πGρ′, (2.3)

• the adiabatic equation:

P ′

P
+
~ξ

P
. grad P = Γ1





ρ′

ρ
+
~ξ

ρ
. grad ρ



 , (2.4)

where primes indicate Eulerian perturbations, ~ξ is the displacement vector and Γ1 ≡
(

∂lnP

∂lnρ

)

S

is one of the generalized adiabatic coefficients. The symbols Φ, P, and ρ are

13
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respectively the gravitational potential, the pressure and the mass density of the non-

perturbed configuration.

We consider a star which rotates uniformly and we denote its constant angular ve-

locity vector by ~Ω. The absolute acceleration is the acceleration in the co-rotating frame

plus a Coriolis term and a centrifugal term.

We note that, if convection is not considered, the equilibrium configuration of the star

is solely affected by the centrifugal force, because of which the star deviates from its spher-

ical symmetry. In this thesis, we drop the centrifugal force and consider a spherically

symmetric star in hydrostatic equilibrium. This implies that the formalism is valid for

small Ω. Note that the centrifugal term that we neglect is of second order in Ω.

The equation of motion is then written in the co-rotating frame:

∂~vc
∂t

+ 2 ~Ω ∧ ~vc = − grad Φ′ +
ρ′

ρ2
grad P − 1

ρ
grad P ′, (2.5)

where ~vc is the velocity in the co-rotating frame.

We search for solutions for which the temporal dependence is expressed by exp(i σct).

Equation (2.5) is then written as

−σ2
c
~ξ + 2iσc~Ω ∧ ~ξ = − grad Φ′ +

ρ′

ρ2
grad P − 1

ρ
grad P ′. (2.6)

Naturally we pass on to a system of spherical coordinates (r, θ, φ) whose polar axis

coincides with the axis of rotation. By using the expressions of the differential operators

in spherical coordinates, and since ~Ω = (Ω cos θ,−Ω sin θ, 0) in spherical coordinates, the

equations (2.6), (2.2), (2.3) and (2.4) become

• the r-component of the equation of motion:

−σ2
c ξr − 2iσcΩ sin θ ξφ = −∂Φ

′

∂r
+

ρ′

ρ2

dP

dr
− 1

ρ

∂P ′

∂r
, (2.7)

• the θ-component of the equation of motion:

−σ2
c ξθ − 2iσcΩ cos θ ξφ = −1

r

∂Φ′

∂θ
− 1

ρr

∂P ′

∂θ
, (2.8)

• the φ-component of the equation of motion:

−σ2
c ξφ + 2iσcΩ (cos θ ξθ + sin θ ξr) = − 1

r sin θ

∂Φ′

∂φ
− 1

ρr sin θ

∂P ′

∂φ
, (2.9)

• the continuity equation:

ρ′ + ξr
dρ

dr
+ ρ

{

1

r2

∂

∂r
(r2ξr) +

1

r sin θ

∂

∂θ
(sin θ ξθ) +

1

r sin θ

∂ξφ
∂φ

}

= 0, (2.10)
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• the Poisson equation:

1

r2

∂

∂r

(

r2∂Φ
′

∂r

)

− 1

r2
L2Φ′ = 4πGρ′, (2.11)

• the adiabatic equation:

P ′

P
+
ξr
P

dP

dr
= Γ1

[

ρ′

ρ
+
ξr
ρ

dρ

dr

]

, (2.12)

where

L2 = − 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

− 1

sin2 θ

∂2

∂φ2
.

These equations form a system of 6 partial differential equations for the 6 unknown

functions ρ′, P ′, Φ′, ξr, ξθ, ξφ.

In treating the horizontal components of the equation of motion, it is more appropriate

to use the equation obtained by taking the divergence in the θ- and φ-directions of equation

(2.6) and the equation for the radial component of vorticity i.e., the r-component of the

curl of equation (2.6) instead of equations (2.7)-(2.9). These three new equations are

• the r-component of the equation of motion:

−σ2
c ξr − 2iσcΩ sin θ ξφ = −∂Φ

′

∂r
+

ρ′

ρ2

dP

dr
− 1

ρ

∂P ′

∂r
, (2.13)

• the divergence in the θ- and φ-directions of the equation of motion:

−σ2
c

[

1

r sin θ

∂

∂θ
(sin θ ξθ) +

1

r sin θ

∂ξφ
∂φ

]

+ 2iσcΩ

[

− 1

r sin θ

∂

∂θ
(cos θ sin θ ξφ) +

1

r sin θ

∂

∂φ
(cos θ ξθ + sin θ ξr)

]

− 1

r2
L2

(

P ′

ρ
+ Φ′

)

= 0, (2.14)

• the r-component of the curl of the equation of motion:

−σ2
c

[

1

r sin θ

∂

∂θ
(sin θ ξφ) −

1

r sin θ

∂ξθ
∂φ

]

+2iσcΩ

[

1

r sin θ

∂

∂θ

(

cos θ sin θ ξθ + sin2 θ ξr
)

+
1

r sin θ

∂

∂φ
(cos θ ξφ)

]

= 0. (2.15)
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One subsequently makes use of the fact (see Appendix A.1) that the displacement

vector ~ξ(r, θ, φ) can be decomposed in terms of three functions S(r, θ, φ), H(r, θ, φ) and

T (r, θ, φ) in the following way:

~ξ

r
= S ~er +

(

∂H

∂θ
+

1

sin θ

∂T

∂φ

)

~eθ +

(

1

sin θ

∂H

∂φ
− ∂T

∂θ

)

~eφ, (2.16)

where ~er, ~eθ and ~eφ are the unit vectors in r-, θ-, φ-directions. The terms proportional

to H and T are respectively called the spheroidal and the toroidal components of the

horizontal motion.

The functions ρ′, P ′, Φ′, S, H, T are then developed in terms of the spherical

harmonics, which form a complete orthogonal basis:

f(r, θ, φ) =
∞
∑

`=0

∑̀

m=−`

f`m(r) Y m
` (θ, φ),

with

Y m
` (θ, φ) = (−1)(m+|m|)/2

[

2`+ 1

4π

(`− |m|)!
(`+ |m|)!

]1/2

P
|m|
` (cos θ) eimφ,

where P
|m|
` (cos θ) denotes the associated Legendre polynomials (see Appendix A.2).

The displacement vector ~ξ(r, θ, φ, t) is then given by

~ξ

r
=

∞
∑

`=0

∑̀

m=−`

{

S`m(r) ~er + ~eθ

(

H`m(r)
∂

∂θ
+ T`m(r)

1

sin θ

∂

∂φ

)

+ ~eφ

(

H`m(r)
1

sin θ

∂

∂φ
− T`m(r)

∂

∂θ

) }

Y m
` (θ, φ) exp(iσct) (2.17)

and the Eulerian perturbation of any scalar quantity f ′(r, θ, φ, t) is expressed as

f ′(r, θ, φ, t) =
∞
∑

`=0

∑̀

m=−`

f ′
`m(r) Y m

` (θ, φ) exp(iσct). (2.18)

By introducing (2.17) and (2.18) into the equations (2.13)-(2.15) and (2.10)-(2.12) one

obtains:

∞
∑

`=0

∑̀

m=−`

{

−σ2
crS`m − 2iσcΩr

[

H`m
∂

∂φ
− T`m sin θ

∂

∂θ

]

+
dΦ′

`m

dr
− ρ′`m

ρ2

dP

dr
+

1

ρ

dP ′
`m

dr

}

Y m
` (θ, φ) exp(iσct) = 0, (2.19)
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∞
∑

`=0

∑̀

m=−`

{

σ2
c H`m L2 + 2iσcΩ H`m

∂

∂φ
− 2iσcΩ T`m

[

sin θ
∂

∂θ
+ cos θ L2

]

+ 2iσcΩ S`m
∂

∂φ
− 1

r2

(

P ′
`m

ρ
+ Φ′

`m

)

L2

}

Y m
` (θ, φ) exp(iσct) = 0, (2.20)

∞
∑

`=0

∑̀

m=−`

{

−σ2
c T`m L2 − 2iσcΩ H`m

[

cos θ L2 + sin θ
∂

∂θ

]

− 2iσcΩ T`m
∂

∂φ
+ 2iσcΩ S`m

[

2 cos θ + sin θ
∂

∂θ

]}

Y m
` (θ, φ) exp(iσct) = 0, (2.21)

∞
∑

`=0

∑̀

m=−`

{

ρ′`m + rS`m
dρ

dr
+ ρ

1

r2

d

dr
(r3S`m) − ρ H`m L2

}

Y m
` (θ, φ) exp(iσct) = 0,

(2.22)

∞
∑

`=0

∑̀

m=−`

{

1

r2

d

dr

(

r2dΦ
′
`m

dr

)

− 1

r2
Φ′
`mL

2 − 4πGρ′`m

}

Y m
` (θ, φ) exp(iσct) = 0, (2.23)

∞
∑

`=0

∑̀

m=−`

{

P ′
`m

P
+
rS`m
P

dP

dr
− Γ1

[

ρ′`m
ρ

+
rS`m
ρ

dρ

dr

]}

Y m
` (θ, φ) exp(iσct) = 0. (2.24)

These equations contain L2 Y m
` (θ, φ), cos θ Y m

` (θ, φ) and sin θ
∂Y m

` (θ, φ)

∂θ
. By using the

following relations of spherical harmonics:

L2 Y m
` (θ, φ) = `(`+ 1) Y m

` (θ, φ), (2.25)

cos θ Y m
` (θ, φ) = Jm`+1 Y

m
`+1(θ, φ) + Jm` Y m

`−1(θ, φ), (2.26)

and

sin θ
∂Y m

` (θ, φ)

∂θ
= ` Jm`+1 Y

m
`+1(θ, φ) − (`+ 1) Jm` Y m

`−1(θ, φ), (2.27)

where

Jm` =















(

`2 −m2

4`2 − 1

)1/2

if ` > |m|,
0 if ` ≤ |m|,

one succeeds in writing the equations in the following form:

∞
∑

`=0

∑̀

m=−`

F`m(r) Y m
` (θ, φ) exp(iσct) = 0.
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In that way the coefficients F`m(r) of the sum of spherical harmonics vanish, as these

latter functions form a basis. We note that equation (2.25) is a well-known property

of spherical harmonics and equations (2.26) and (2.27) are directly deduced from the

recurrence relations of the associated Legendre polynomials (see Appendix A.2).

For each m, we obtain an infinite set of equations coupled in `:

rS`m − mηrH`m − iηr
[

(`− 1)Jm` T`−1,m − (`+ 2)Jm`+1T`+1,m

]

=
1

σ2
c

(

dΦ′
`m

dr
− ρ′`m

ρ2

dP

dr
+

1

ρ

dP ′
`m

dr

)

, (2.28)

[`(`+ 1) −mη]H`m − iη
[

(`2 − 1)Jm` T`−1,m + `(`+ 2)Jm`+1T`+1,m

]

−mη S`m − `(`+ 1)

r2σ2
c

(

P ′
`m

ρ
+ Φ′

`m

)

= 0, (2.29)

[`(`+ 1) −mη]T`m + iη
[

(`2 − 1)Jm` H`−1,m + `(`+ 2)Jm`+1H`+1,m

]

−iη
[

(`+ 1)Jm` S`−1,m − ` Jm`+1S`+1,m

]

= 0, (2.30)

ρ′`m + r
dρ

dr
S`m + ρ

1

r2

d

dr
(r3S`m) − ρ `(`+ 1) H`m = 0, (2.31)

1

r2

d

dr

(

r2dΦ
′
`m

dr

)

− 1

r2
`(`+ 1) Φ′

`m = 4πGρ′`m , (2.32)

P ′
`m

P
+
rS`m
P

dP

dr
= Γ1

[

ρ′`m
ρ

+
rS`m
ρ

dρ

dr

]

, (2.33)

where η =
2Ω

σc
.

Equations (2.28) and (2.29) show that the spheroidal components associated with `

couple with toroidal components associated with `−1 and `+1. Moreover equation (2.30)

shows that the toroidal components associated with ` couple with spheroidal components

associated with ` − 1 and ` + 1. For each m, we are then dealing with two independent

sets of infinitely coupled differential equations. The first infinite set of equations corre-

sponds to spheroidal components with ` = |m|, |m| + 2, . . . and toroidal components

with `′ = |m| + 1, |m| + 3, . . .. The second corresponds to spheroidal components with

` = |m| + 1, |m| + 3, . . . and toroidal components with `′ = |m|, |m| + 2, . . .. Lee & Saio

(1987) speak of even-modes and odd-modes respectively.

Let us write the system of equations in a vectorial form. We introduce the column

vectors with infinite dimensions Y1, Y2, Y3, Y4, H and T whose j-th (j = 1, 2, . . . , ∞)

elements are given by S`j m , ρ′`j m , P ′
`j m

, Φ′
`j m

, H`jm and T`′
j
m

, where
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1

{

`j = |m| + 2(j − 1), `′j = |m| + 2(j − 1) + 1 for even-modes,
`j = |m| + 2(j − 1) + 1, `′j = |m| + 2(j − 1) for odd-modes.

Equations (2.28)-(2.33) are then written as:

rY1 −mηrH − iηrCT =
1

σ2
c

(

dY4

dr
− Y2

ρ2

dP

dr
+

1

ρ

dY3

dr

)

, (2.34)

LH − iηM̄T −mηΛ−1Y1 =
1

r2σ2
c

(

Y3

ρ
+ Y4

)

, (2.35)

L̄T + iηMH − iηKY1 = 0, (2.36)

Y2 + r
dρ

dr
Y1 + ρ

1

r2

d

dr

(

r3Y1

)

− ρΛH = 0, (2.37)

1

r2

d

dr

(

r2dY4

dr

)

− 1

r2
ΛY4 = 4πGY2, (2.38)

Y3

P
+
rY1

P

dP

dr
= Γ1

[

Y2

ρ
+
rY1

ρ

dρ

dr

]

, (2.39)

where Λ, L and L̄ are infinite diagonal matrices whose j-th element is given by

Λjj = `j(`j + 1),

Ljj = 1 − mη

`j(`j + 1)
,

L̄jj =



















1 − mη

(`j + 1)(`j + 2)
for even-modes,

1 − mη

`j(`j − 1)
for odd-modes,

and where C, K, M , and M̄ are infinite bi-diagonal matrices whose non-zero elements

are given by






























































Cjj = −(`j + 2)Jm`j+1, Cj+1,j = (`j + 1)Jm`j+2,

Kjj =
Jm`j+1

`j + 1
, Kj,j+1 = −

Jm`j+2

`j + 2
,

Mjj =
`j

`j + 1
Jm`j+1, Mj,j+1 =

`j + 3

`j + 2
Jm`j+2,

M̄jj =
`j + 2

`j + 1
Jm`j+1, M̄j+1,j =

`j + 1

`j + 2
Jm`j+2,

for even-modes, and,

1One speaks of even-modes and odd-modes because these have respectively even and odd ` − |m|,
corresponding to a symmetry and an antisymmetry around the equator.
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Cjj = (`j + 1)Jm`j , Cj,j+1 = −(`j + 2)Jm`j+1,

Kjj = −
Jm`j
`j
, Kj+1,j =

Jm`j+1

`j + 1
,

Mjj =
`j + 1

`j
Jm`j , Mj+1,j =

`j
`j + 1

Jm`j+1,

M̄jj =
`j − 1

`j
Jm`j , M̄j,j+1 =

`j + 2

`j + 1
Jm`j+1,

for odd-modes (Lee & Saio 1987).

Approximations

We show in what follows that, under some approximations, we may decompose the infinite

system of equations into an infinite number of independent systems of equations.

First we neglect the horizontal component of the angular velocity of rotation −Ω sin θ,

which corresponds to neglecting the Coriolis force associated with the radial motion

−Ω σc sin θ ξr and the radial component of the Coriolis force associated with horizontal

motion Ω σc sin θ ξφ. This approximation, which is called the traditional approxima-

tion in the literature, is reasonably good for low-frequency non-radial modes (g-modes),

in which the horizontal motion dominates the oscillation2. The traditional approximation

is in general fine for the treatment of the g-modes in SPBs. We do point out that it is

not valid in the core regions where the radial motion is comparable with the horizontal

motion, even for low-frequency modes.

In the traditional approximation, the terms with sin θ ξr disappear in equations (2.14)

and (2.15) so that the terms proportional to Y1 in the algebraic equations (2.35) and

(2.36) disappear. One can then express H in terms of Y3 and Y4 as well as T in terms of

H:














H =
1

r2σ2
c

(

L− η2M̄L̄−1M
)−1

(

Y3

ρ
+ Y4

)

,

iT = ηL̄−1MH.

Moreover, the term with sin θ ξφ disappears in equation (2.13) so that the terms pro-

portional to the toroidal components T and to the spheroidal components H in equation

(2.34) disappear. In that way, equations (2.34), (2.37), (2.38) and (2.39) form a system

for Y1, Y2, Y3 and Y4:

2For high-frequency modes (p-modes), the perturbation-expansion formalism (e.g. Aerts & Waelkens
1993) is still more appropriate.
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σ2
cr Y1 =

dY4

dr
− Y2

ρ2

dP

dr
+

1

ρ

dY3

dr
, (2.40)

Y2 + r
dρ

dr
Y1 + ρ

1

r2

d

dr

(

r3Y1

)

− ρ

r2σ2
c

W

(

Y3

ρ
+ Y4

)

= 0, (2.41)

1

r2

d

dr

(

r2dY4

dr

)

− 1

r2
ΛY4 = 4πGY2, (2.42)

Y3

P
+
rY1

P

dP

dr
= Γ1

[

Y2

ρ
+
rY1

ρ

dρ

dr

]

, (2.43)

where W is an infinite symmetric tri-diagonal matrix defined by

W = Λ
(

L− η2M̄L̄−1M
)−1

,

with the elements of the matrix W−1 given by

(W−1)jj =

1

`j(`j + 1)























1 − mη

`j(`j + 1)
−

η2(`2j − 1)(Jm`j )2

`2j

[

1 − mη

`j(`j − 1)

] −
η2`j(`j + 2)(Jm`j+1)

2

(`j + 1)2

[

1 − mη

(`j + 1)(`j + 2)

]























,

and

(W−1)j,j+1 = (W−1)j+1,j = −η2
Jm`j+1J

m
`j+2

(`j + 1)(`j + 2) −mη
.

We point out that the coupling between equations is now expressed by the single matrix

W . Moreover, this matrix can be brought into the form

W = BDB̃,

where D is a diagonal matrix whose non-zero elements are given by the eigenvalues of W ,

and B is an orthogonal matrix (the matrix inverse is the matrix transpose: B−1 ≡ B̃).

Multiplying equations (2.40)-(2.43) by B−1 from the left, we obtain

σ2
cr Z1 =

(

dZ4

dr
− Z2

ρ2

dP

dr
+

1

ρ

dZ3

dr

)

, (2.44)

Z2 + r
dρ

dr
Z1 + ρ

1

r2

d

dr

(

r3Z1

)

− ρ

r2σ2
c

D

(

Z3

ρ
+ Z4

)

= 0, (2.45)

1

r2

d

dr

(

r2dZ4

dr

)

− 1

r2
B−1ΛY4 = 4πGZ2, (2.46)

Z3

P
+
rZ1

P

dP

dr
= Γ1

[

Z2

ρ
+
rZ1

ρ

dρ

dr

]

, (2.47)

where
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Z1 = B−1Y1, Z2 = B−1Y2, Z3 = B−1Y3, Z4 = B−1Y4,

and where D = B−1WB is a diagonal matrix.

Diagonalizing W into D corresponds to changing the basis of spherical harmonics

into a new basis and allows to decouple the system of equations. In equation (2.46), the

matrix B−1 does not commute with the diagonal matrix Λ, which shows that the change

of basis is not appropriate for the Poisson equation. This can be understood in another

way: the operator L2 disappears in the Poisson equation because the spherical harmonics

are eigenfunctions of L2, which is not the case of another basis. To decouple the equations,

we are then obliged to make the Cowling approximation, which assumes that Φ′ = 0.

This approximation is quite good for modes with a large number of nodes, as is the case

for the modes in SPBs.

For each `j (j = 1, . . . , ∞), we then have

σ2
cr(Z1)j = − (Z2)j

ρ2

dP

dr
+

1

ρ

d(Z3)j
dr

, (2.48)

(Z2)j + r
dρ

dr
(Z1)j + ρ

1

r2

d

dr

(

r3(Z1)j
)

− ρ

r2σ2
c

λ`jm

(

(Z3)j
ρ

)

= 0, (2.49)

(Z3)j
P

+
r(Z1)j
P

dP

dr
= Γ1

[

(Z2)j
ρ

+
r(Z1)j
ρ

dρ

dr

]

, (2.50)

where we recall that λ`jm is an eigenvalue of the matrix W . We note that, in order to

compute the eigenvalues, the infinite matrix W must be truncated (Lee & Saio 1987).

We observe that, under both the traditional approximation and the Cowling approxi-

mation, the adiabatic equations governing the pulsations of a spherically symmetric star

rotating uniformly are identical to the non-rotating pulsation equations with the replace-

ment of `(`+ 1) by λ`m in the continuity equation. These equations may be solved as an

eigenvalue problem Ax = λx (λ ≡ σ2
c ) with appropriate boundary conditions.

The theoretical frequencies reported in this thesis were computed by using two codes

implemented by Dr. R. Scuflaire. They are OSC, which solves the equations (2.48) - (2.50)

for a non-rotating star and CLES (Code Liégeois d’Evolution Stellaire), which computes

the equilibrium models. We point out that we have adapted OSC to the formalism de-

scribed above by computing λ`m instead of `(` + 1) in equations (2.48) - (2.50) in the

framework of this thesis. To achieve this, we have made use of subroutines written by

Dr. R. Townsend (BRUCE, Townsend 1997).

We note that, in the non-rotating case, pulsational frequencies are the same for modes

with the same ` regardless of the value of m. One speaks of a (2` + 1)-fold degeneracy,

which is lifted for a rotating star.
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2.2 Pulsational velocity field at the stellar surface

In order to model line-profile variations, one needs an expression for the pulsational ve-

locity field at the stellar surface. As the perturbed velocity vector in the co-rotating frame

is given by ~vc = ∂~ξ/∂t = i σ ~ξ, we derive an expression for the displacement vector at the

stellar surface in what follows.

In the previous section, we have shown that introducing the Coriolis force leads to

eigenfunctions which contain only spherical harmonics of the same azimutal order m.

Moreover, only harmonics of the same parity (even-modes or odd-modes) are coupled.

In vectorial form, the displacement vector ~ξ(r, θ, φ) is written as

~ξ

r
= Y1 . Φ ~er + ∇h(H . Φ) + ∇h ∧ (T . Φ′~er), (2.51)

where ∇h is the horizontal component of the gradient operator in spherical coordinates,

∇h =

(

0,
1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)

.

Y1(r), T (r) and H(r) are vectors of infinite dimension, containing information concerning

the radial dependence; Φ(θ, φ) and Φ′(θ, φ) are again vectors of infinite dimension, de-

scribing the angular dependence and whose j-th (j = 1, 2, . . . , ∞) elements are given

by

Φj = Y m
`j

(θ, φ) and Φ′
j = Y m

`′
j
(θ, φ),

where
{

`j = |m| + 2(j − 1), `′j = |m| + 2(j − 1) + 1 for even-modes,
`j = |m| + 2(j − 1) + 1, `′j = |m| + 2(j − 1) for odd-modes.

By analogy to the transformation of the radial displacement vector function Z1 =

B−1Y1, the horizontal and toroidal displacement vector functions are given by Z5 = B−1H

and Z6 = B′−1T where B′ is the eigenvector matrix of the coupling matrix W ′ associated

with the same value of m but the opposite parity to that of W . Equation (2.51) is then

given by

~ξ

r
= Z1 . Ψ ~er + ∇h(Z5 . Ψ) + ∇h ∧ (Z6 . Ψ′~er),

where the identity BZ1 . Φ ≡ Z1 . B
−1Φ, and similar expressions, have been used to

define a new angular basis Ψ, given by

Ψ = B−1Φ and Ψ′ = B′−1Φ′,

and, more explicitely, by
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Ψj =
∞
∑

k=0

(B−1)jk Y
m
`k

(θ, φ)

and

Ψ′
j =

∞
∑

k=0

(B′−1)jk Y
m
`′
k
(θ, φ).

For chosen `j, one may impose (Z1)k = 0, (Z2)k = 0 and (Z3)k = 0 for k 6= j so that

Z5 = hj
(Z3)j
r2σ2

cρ

and

Z6 = −itj
(Z3)j
r2σ2

cρ
,

where the two vectors hj and tj are given by

(hj)i = (B−1Λ−1WB)ij

and

(tj)i = (ηB′−1L̄MΛ−1WB)ij.

Following Lee & Saio (1990), at the surface of the star, the Z-boundary3 may be used

to find an expression for (Z3)j in terms of (Z1)j, which is (Z1)j =
1

gρ
(Z3)j in the Cowling

approximation.

At the stellar surface, the displacement vector for a pulsation mode associated with

m and `j is then given by

~ξ(R, θ, φ, t)

R
=

Ap<
{[

Ψj~er +
GM

R3σ2
c

(

∇h

∞
∑

k=1

(hj)kΨk + ∇h ∧
∞
∑

k=1

−i(tj)kΨ′
k~er

)]

exp(iσct)

}

,

where Ap is the value of (Z1)j at this boundary, M the stellar mass and R the stellar

radius. (Lee & Saio 1990)

We point out that the functions Ψj represent the normal mode set of angular functions

for a rotating star (within the traditional and Cowling approximations) in analogy to the

spherical harmonics in the non-rotating case.

We also point out that the dimensionless quantity
GM

R3σ2
c

=
ξh(R)

ξr(R)
is generally denoted

by K. This so-called K-value indicates which of the horizontal or vertical displacement is

dominant for a given pulsation mode. In general, the horizontal one is much larger than the

vertical one for low frequencies (g-modes) while the opposite is true for high frequencies

(p-modes). Note that the co-rotating angular frequency is related to the observed angular

frequency with σobs = σc −mΩ.

3The Z-boundary refers to the so-called zero boundary condition which imposes a vanishing pressure
at the stellar surface.



Chapter 3

Line-profile modelling

For the B-type stars that we studied, two models were considered in order to interpret

observed line-profile variations: the non-radial stellar pulsation model (Sect. 3.1) and the

rotational modulation model (Sect. 3.2). In this chapter, we explain the ingredients of

both models.

3.1 Non-radial pulsation model

A short description of line-profile modelling is the following. First, the intrinsic broadening

of the spectral line is due to different mechanisms: atomic broadening, pressure broaden-

ing and thermal broadening. This so-called intrinsic profile is often taken gaussian1 and

constant:

I(λ) = I0
1√
2πσ

exp

(

−(λ− λ0)
2

2σ2

)

, (3.1)

where σ is called the intrinsic line-profile width. One can also use flux spectra calculated

for a given temperature T and surface gravity g by using a stellar atmosphere code. For

both cases, we take into account angular dependence using a limb-darkening law which

has often a linear form:

Iλ(µ) = Iλ(0)(1 − uλ + uλ cosµ) = Iλ(0)hλ(cosµ), (3.2)

where uλ ∈ [0; 1] is called the limb-darkening coefficient and depends on the considered

wavelength range, cos µ is the cosine of the angle between the normal of a surface el-

ement and the line of sight, Iλ(0) is the intensity of a surface element in the line of

sight represented by the gaussian or the flux spectra. A third possibility (the better one

but time-consuming) is to use angle-dependent intensity spectra calculated for a given

temperature T , surface gravity g and angle parameter cosµ.

1The thermal broadening is the dominant broadening mechanism in hot stars and is described by a
gaussian. Note also that the Si II-doublet centered at 4128-4130 Å, that we used for the analysis of B-type
stars, is well approximated by a gaussian.
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Another cause of line broadening is the rotation of the star. Particles moving towards

the observer cause a blue shift and particles moving from the observer cause a red shift.

This rotational broadening is symmetric and independent of time if we assume a uniform

rotation.

The two main causes leading to temporal variations of the line profiles of a pulsating star

are the velocity field generated by oscillatory displacements and the brightness variations

due to temperature variations.

At a given time, the synthetic spectra of a star which undergoes pulsations is calculated

as follows. We consider an inertial frame and we use the spherical coordinates (r, θ, φ)

whose polar axis coincides with the axis of rotation. We divide the stellar surface into

many surface elements (θ, φ) by taking steps of ∆θ in θ and ∆φ in φ. An expression for

cos µ is then given by cosµ = cos θ cos i−sin θ cosφ sin i where i is the angle of inclination,

i.e. the angle between the line-of-sight and the rotation axis. For each surface element,

the intensity at the observed wavelength λ is given by

Iλr
(µ)Aproj, (3.3)

where Aproj is the projection on the line of sight of the surface element and is given by

R2 sin θ cosµ∆θ∆φ with R the stellar radius. λr is the rest wavelength related to the

observed wavelength λ through the Doppler formula:

λr =
λ

1 − vproj/c
(3.4)

where vproj is the sum of the pulsation and rotation velocity in the line of sight, c is the

speed of light. An expression for the pulsational velocity field at the surface of a rotating

star in the co-rotating frame was already derived in Chapter 2. The rotational velocity

in the line of sight is given by vrot = Ω R sin i sin θ sin φ ≡ vΩ sin θ sinφ with Ω the

angular frequency of rotation. Finally, the line profile p(λ, t) is obtained by summing up

all the contributions for all the visible surface elements:

p(λ, t) =
∑

j,k

Iλr
(µjk)R

2 sin θj cosµjk∆θj∆φk,

where the sum is taken over the visible surface (i.e. cosµjk > 0).

We generated theoretical line-profile variations by using a code called BRUCE imple-

mented by Dr. R. Townsend (1997) and made publicly available, which uses the pulsational

velocity field derived by Lee & Saio (1987, 1990) for rotating stars, taking into account

the Coriolis force within the traditional and Cowling approximations (Chapter 2). This

code uses temperature variations at the stellar surface given by:

δT (φ, θ)

T
= ∆T∇ad

[

λ`j ,m

σ2
c

− 4 − σ2
c

]

ξr(θ, φ)

r
exp(iψT ),
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where ∆T and ψT are introduced to take into account the deviations of the temperature

perturbation amplitude and phase from adiabaticity; in the purely adiabatic case, ∆T and

ψT take the values 1 and 0 respectively. The term with λ`j ,m is a generalisation of the one

occurring for a non-rotating formulation in the traditional approximation. We note that

BRUCE also takes into account geometric perturbations, which are essentially a variation

in the area associated with the surface element and a variation in the surface normal of

the element.

Recently, De Ridder (2001) implemented a code called PULSTAR, which generates

line-profile variations using the usual velocity field of a non-rotating star but which takes

into account temperature variations at the stellar surface by using non-adiabatic eigen-

functions in the outer layers of the star. The latter were computed with a new non-

adiabatic pulsation code called EXSTAR developed by Dupret (2001). We point out that

Dupret et al. (2002) and De Ridder et al. (2002a) show that, for slowly-rotating non-

radially pulsating B stars such as SPBs, the line-profile variations of silicon lines are very

little affected by temperature variations at the stellar surface and can be well approxi-

mated with a pulsational velocity field only.

3.2 Rotational modulation model

In order to compare observed line-profile variations with a rotational modulation model

we used a code implemented by Dr. L. Balona who kindly put it at our disposal. Such a

model assumes that the line-profile variations are due to the rotation of the star in the

presence of one (or more) spot(s), whose intensity of radiation differs from the intensity

of the rest of the star. The observed period of the variations in the data is considered as

the rotation period and consequently the observed period must be equal to the calculated

rotation period Prot =
2πR

veq
, where R is the radius of the star and veq its equatorial

velocity.

We introduce a right-handed inertial frame of orthogonal cartesian coordinates (x′′,y′′,

z′′) with its origin at the centre of the star and the z′′-axis pointing towards the observer.

In this frame of reference we pass on to a system of spherical coordinates (r ′′, θ′′, φ′′)

whose polar axis coincides with the z′′-axis. We divide the visible stellar surface (θ′′ ∈
[0◦; 90◦], φ′′ ∈ [0◦; 360◦[) into surface elements by taking steps of ∆θ′′ in θ′′ and ∆φ′′ in φ′′.

The contribution of a surface element to the line profile is given by

I√
2π σ

exp

(

−(λr − λ0)
2

2σ2

)

hλ(θ
′′) R2 sin θ′′ cos θ′′ ∆θ′′ ∆φ′′,

as derived in Sect. 3.1 (see equations (3.1), (3.2), (3.3)) where vproj of equation (3.4) is

now the projected rotation velocity in the line of sight. The line profile p(λ, t) is obtained

by summing up all the contributions from all the visible surface elements.
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A difference between the flux of a spot I = Ispot and the flux of the rest of the

star I = Istar causes variations in the line profile. Ispot < Istar corresponds to an under-

abundance of the considered element in the spot compared to the rest of the star while

Ispot > Istar corresponds to an overabundance of the element.

We must determine if the point (R′′, θ′′, φ′′) on the stellar surface belongs to the spot or

not. This is done by considering a co-rotating frame of right-handed orthogonal cartesian

coordinates (x′, y′, z′) with its origin at the centre of the star and z′-axis coinciding with

rotation axis. The angle between the z′-axis and the z′′-axis is then the inclination angle

of the star. We use spherical coordinates (r′, θ′, φ′) with polar axis z′.

Let α be the longitude, β the latitude and γ the radius of a circular spot in the

system (x′, y′, z′). All these quantities are expressed in degrees. A point of the surface

(R, θ′, φ′) belongs to the spot if α − γ < φ′ < α + γ and if the angle between the

centre of the spot and the considered point is smaller than the spot radius. By using

spherical trigonometric relations one can show that this latter condition comes down to

cos γ > cos(90◦ − β) cos θ′ + sin(90◦ − β) sin θ′ cos(α− φ′).

We still have to determine the spherical coordinates of (R, θ′′, φ′′) in the system

(x′, y′, z′): (R, θ′, φ′). By considering a right-handed inertial frame of orthogonal carte-

sian coordinates (x, y, z) with its origin at the centre of the star, the z-axis coinciding

with the z′-axis, the x-axis and the y-axis coinciding respectively to the x′′-axis and the

y′′-axis at t0 = 0, we have








cos θ = cos i cos θ′′ + sin i sin θ′′ cosφ′′

cosφ =
cos i sin θ′′ cosφ′′ − sin i cos θ′′√

1 − cos2 θ
.

From these latter expressions we deduce (θ, φ). Finally, θ′ = θ and φ′ = φ+ Ωt, where Ω

is the angular frequency of rotation.

Summarising, Balona’s code prompts for the following parameters: the radius R, the

projected rotational velocity vΩ, the angle of inclination i, the linear limb-darkening co-

efficient uλ, the intrinsic line-profile width σ, the longitude α, the latitude β, the spot

radius γ in degrees, the flux of the spot relative to the photosphere F . One then obtains

emission profiles without continuum. To match them to the observed profiles one needs to

invert them and scale them so that the equivalent width matches the observed equivalent

width.

We note that the inclination angle can be restricted to the range [0◦, 90◦]. Indeed a

line profile with the parameters vΩ, i, α, β at the time t is equivalent to a line profile with

the parameters vΩ, 180◦ − i, α, −β, at the time t or −vΩ, 180◦ + i, α, −β, at the time

t + Prot/2 or −vΩ, 360◦ − i, α, β, at the time t + Prot/2. Moreover, to take −vΩ instead

of vΩ is equivalent to making a symmetric image of the line profile. We also note that

modifying the longitude is equivalent to making a temporal translation. Consequently the

longitude can be restricted to the range [0◦; 90◦] if the observed profiles are shifted by

0.25, 0.5, 0.75 period.



Chapter 4

Existing analysis methods

In this chapter, we give a description of the methods that we used for the analysis of data

of several pulsating B stars (Part II) and chemically peculiar B stars (Part III). First, we

remind the basic ideas to find frequencies in astronomical time series (Sect. 4.1). Then,

we describe how line-profile variations (LPVs) are used to identify modes of pulsating

stars (Sect. 4.2) and to derive surface abundance structures of chemically peculiar stars

(Sect. 4.3).

4.1 Frequency analysis

A variable star is a star for which observable variations in time are detected in certain

of its physical properties such as its brightness, colour index, spectrum and magnetic

field. In order to search for periodicity in astronomical time series, different techniques

have been developed. The Fourier techniques (Scargle 1981, Roberts et al. 1987) and the

Phase Dispersion Minimization method (Jurkevich 1971, Stellingwerf 1978) are described

hereafter. To perform frequency analysis, we used codes implemented by Dr. J. Cuypers

and Dr. J. Telting, who kindly made them available to us.

4.1.1 The Fourier methods

4.1.1.1 Basic idea, classical and Lomb-Scargle periodograms

The Fourier transform of x(t) is defined as

F (f) =
∫ +∞

−∞
x(t) exp(i2πft) dt.

In particular, for x(t) = cos(2πf0t), we have

F (f) =
δ(f − f0) + δ(f + f0)

2
,

where δ(f) indicates the δ-Dirac function. Consequently, F (f) = 0 except at ±f0. The

Fourier transform hence underlines the frequency which is present in the signal. Generally
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speaking, the Fourier transform of an harmonic signal for which the frequencies are f1,

. . ., fM takes zero values except at ±f1, . . . , ±fM .

In practice, we know x(t) at tj (j = 1, . . . , N) and we define:

xs(t) = x(t)

∑N
j=1 δ(t− tj)

N
= x(t) s(t).

So, instead of F (f), we are able to calculate the Fourier transform of xs(t):

Fs(f) =
N
∑

j=1

x(tj) exp(i2πftj),

as well as the Fourier transform of s(t), which is called the spectral window:

W (f) =
1

N

N
∑

j=1

exp(i2πftj).

By the convolution theorem, we have

Fs(f) = F (f) ∗W (f),

where ∗ denotes the convolution product.

For x(tj) = cos(2πf0tj)(j = 1, . . . , N), we have

Fs(f) =
W (f − f0) +W (f + f0)

2
,

and, in the case of equidistant observations, i.e. x(t) is observed at tj = t1 + (j − 1)∆t

(j = 1, . . . , N), it is easy to show that,

W (f) =
1

N

sin(πfN∆t)

sin(πf∆t)
.

Knowing the signal on a limited total span time T = N∆t leads to spectral leakage, i.e.

there is a spreading of the “energy” of the frequency f0 towards close frequencies and

knowing the signal at discrete values leads to the presence of alias frequencies, i.e. |Fs(f)|
has maxima at ±f0, but also, at ±f0 ± k

∆t
(k integer). The more common aliases are

one-day-aliases (±f ±k c d−1) since ground-based observations are taken only during the

local nights. We also point out that errors on the measurements may introduce false peaks

in the periodogram.

Due to the fact that real observations are non-equidistant, the spectral window is a

complex function. One then determines |W (f)|, which exhibits a forest of peaks. One also

calculates the so-called classical periodogram

Pcl(f) =
|Fs(f)|2
N

=
1

N















N
∑

j=1

x(tj) sin(2πftj)





2

+





N
∑

j=1

x(tj) cos(2πftj)





2










.
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We note that Pcl(f) depends on the reference epoch chosen to treat the data.

If the signal has several periodic components, each frequency produces its sidelobes.

Consequently, the value of the periodogram at certain frequencies is influenced by the

values at other frequencies. We speak of “dependent frequencies”. Moreover, if the signal

has a constant component, the peak which is situated at f = 0 contaminates the whole

periodogram. The adopted solution is to subtract the average of the data before calculating

the periodogram.

We notice that, if the signal is multiperiodic, it may happen that the highest peak does

not correspond to a real frequency. We also note that there is no rigorous mathematical

expression allowing to calculate the accuracy of the frequency found. This latter remark

is valid for each of the methods described here. Generally, one searches for the frequency

with the step 1
T
, where T is of the order of the total time base of the data.

Another periodogram has been proposed and is now commonly used by astronomers.

It was introduced by Lomb (1976) and was further developed by Scargle (1981). It is

defined as

PLS(f) =
1

2











(

∑N
j=1 x(tj) sin (2πf(tj − τ))

)2

∑N
j=1 sin2 (2πf(tj − τ))

+

(

∑N
j=1 x(tj) cos (2πf(tj − τ))

)2

∑N
j=1 cos2 (2πf(tj − τ))











,

where

τ =
1

4πf
arctan

(
∑N
j=1 sin(4πftj)

∑N
j=1 cos(4πftj)

)

.

This periodogram comes from a least-squares method for which the model is a cosine. It

is independent of the reference epoch, i.e. it is independent of the phase of the signal. To

remove the influence of f = 0, we subtract the average of the data before calculating the

periodogram.

J. D. Scargle proposed a statistical test allowing to know if one peak in the periodogram

is due to a periodic component or to noise. Unfortunately, we cannot use it because of

the problem of “frequencies dependence” which still remains for multiperiodic stars.

4.1.1.2 The CLEAN method

As explained above

Fs(f) = F (f) ∗W (f),

where ∗ denotes the convolution product and where Fs(f) and W (f) are known. The aim

of the CLEAN method is to remove the sidelobes due to the structure of W (f), i.e. to

construct an estimation of F (f) from Fs(f) and W (f).

Let us describe the method proposed by Roberts et al. (1987) for a single cosinusoid

x(t) = A cos(2πf0t+ ψ).
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We have

F (f) = aδ(f − f0) + a∗δ(f + f0),

where a =
A

2
exp(iψ) and

Fs(f) = aW (f − f0) + a∗W (f + f0).

A few calculations lead to

a =
Fs(f0) − F ∗

s (f0)W (2f0)

1 − |W (2f0)|2
.

In the case of a single cosinusoid without noise, the sidelobes are removed completely by

subtracting the spectral window shifted to the frequency of the signal. However, for real

observations, there is an error on the frequency derived from |Fs(f)|. One then needs an

iterative process for which one peak and its sidelobes are reduced to a fraction g at each

iteration in order to ensure the stability of the procedure.

The CLEAN algorithm performs as follows:

(1) We search the frequency fmax for which |Fs(f)| is maximum.

(2) We remove partly the contribution of this so-called clean component with its sidelobes

by subtracting from Fs(f)

cW (f − fmax) + c∗W (f + fmax),

where

c = g
Fs(fmax) − F ∗

s (fmax)W (2fmax)

1 − |W (2fmax)|2
,

with 0.1 ≤ g ≤ 1.

One obtains a residual spectrum, which is then a new Fs(f).

We repeat (1) and (2) Niter times.

Generally one takes g = 0.2 and Niter = 100, but an in-depth statistical study of the

influence of chosen values for g and Niter does not exist.

(3) We convolve the clean components with an appropriate gaussian to make the frequency

resolution ∼ 1/T and we add the final residual spectrum to preserve the noise level.

The clean spectrum is formed.

We note that, if the higher peak does not correspond to a real frequency, which may

happen for multiperiodic stars, CLEAN will subtract a component that does not exist

and will fail. Moreover, we do not know the efficiency of the method in the presence of

noise.
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4.1.2 The PDM method

Let x(t) be a function of the time t. The phase corresponding to the frequency f is given

by

ψ(t) = [f(t− t0)],

where t0 is a chosen reference epoch and brackets indicate the decimal part. The graph

which represents x in function of ψ is called a phase diagram.

In practice, we have N observations xi at different times ti, which are spread over

the time T . For a set of tested frequencies, we can construct phase diagrams. If the

tested frequency is close to the frequency which is in the data, the dispersion of the

observations in the phase diagram with respect to the mean curve will be small. On the

other hand, the dispersion will be large if the tested frequency is not present in the data.

The Phase Dispersion Minimization (PDM) method searches for the frequency for which

the dispersion of the observations with respect to the mean curve is minimal.

Let us describe the method more precisely. We divide the phase interval [0;1] into

M equal intervals called bins. We assume that the j-th bin contains Nj observations

(j = 1, . . . , M). The mean and the variance of the observations of the j-th bin are







































x̄j =
Nj
∑

i=1

xij
Nj

,

s2
j =

Nj
∑

i=1

(xij − x̄j)
2

Nj − 1
,

where xij is the observation xi which is in the j-th bin. We denote s2 =
M
∑

j=1

s2
j .

The mean and the variance of all observations are



































x̄ =
N
∑

i=1

xi
N

,

S2 =

N
∑

i=1

(xi − x̄)2

N − 1
.

For a set of tested frequencies, the PDM method chooses the one for which the so-called

Θ-statistic
s2

S2
is minimal. We have explicitly
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Θ =

M
∑

j=1

Nj
∑

i=1

(xij − x̄j)
2

M
∑

j=1

Nj −M

N
∑

i=1

(xi − x̄)2

N − 1

.

We note that Θ-statistics are contaminated by aliases due to the temporal distribution

and the errors on data. Moreover, sidelobes are found at the harmonics kf and the sub-

harmonics f/k (k integer) of the real frequency.

This technique was proposed by Jurkevich (1971) and was then generalized by Stelling-

werf (1978). The latter author proposed the same statistic Θ with another bin structure.

We divide the phase interval [0;1] into Nb bins of length 1
Nb

. The phase interval is then

covered by Nc covers of Nb bins, each cover shifted in phase by 1
NbNc

from the previous

cover. Such a bin structure is denoted by (Nb, Nc). Nb is generally taken from 5 to 20 and

Nc from 1 to 10.

It would be interesting to find a stastistical test in which the null hypothesis H0 is

s2 ≈ S2. In this way, if the test rejects H0, we can affirm that the frequency is significantly

present in the data. Unfortunately, no precise test has been found up to now.

4.1.3 Search for multiperiodicity

We search for several frequencies in the measurements in the following way. By applying

the methods of period determination, we find a significant frequency f . Then, we subtract

from the measurements the sine

A sin(2πft+ ψ) + C,

which best fits the measurements (we prewhiten the data with the significant frequency).

A, C and ψ are obtained by the least-squares method. Afterwards, we search for another

frequency in the residuals. We repeat the prewhitening until we obtain only peaks at the

noise level, i.e. until the standard deviation of the residuals is smaller than the errors on

the measurements.

We point out that there is no statistically justified criterion allowing to decide if the

frequency corresponding to one peak in the periodogram is really present in the data or is

due to noise. At present, some astronomers use the 4S/N criterion, which was introduced

by Breger et al. (1993). They defined the noise level as the average amplitude in an

oversampled periodogram in the surroundings of the suspected frequency, computed after

prewhitening of the suspected frequencies. Frequencies for which the peak amplitude is

higher than 4 times the noise level are retained.
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4.2 Mode identification

The pulsation of a star manifests itself through an observed periodic variability in its

brightness and/or in its spectra. The natural way to identify the pulsation modes is

then the following: by comparing the theoretically calculated variations with observed

photometric and/or spectroscopic ones for different values of the wavenumbers (`,m),

one chooses the modes which best fit the observations. In this thesis, we describe only two

methods which are based on spectroscopy: line-profile fitting and the moment method.

These are the only two methods available thus far which allow the complete determination

of all the unknown parameters of the velocity field.

4.2.1 The line-profile fitting technique

The identification of modes is performed by comparing the observed line-profile variations

with theoretically calculated ones. We refer to Chapter 3 for the description of theoretical

line-profile variations due to non-radial stellar pulsation.

The determination of pulsation modes is done as follows. For a given mode (`,m), the

free parameters needed to construct line-profile variations caused by non-radial pulsation

are: the projected rotational velocity vΩ, the angle of inclination i between the rotation

axis and the line of sight, the amplitude of the radial part of the pulsation velocity Ap,

the intrinsic line-profile width σ (if the intrinsic profile is assumed to be gaussian) and

the initial phase of the mode ψ. We search for the parameters for which the calculated

profiles best fit the observed profiles by considering a large grid of possible wavenumbers

and parameters. We define the “best fit model” as the one which has the smallest standard

deviation in the intensity over all profiles Σ ≡ 1
N

∑N
j=1

√

1
nj

∑nj

i=1

(

Iji,obs − Iji,th
)2

, with N

the number of spectra and nj the number of wavelength pixels in the spectra j.

4.2.2 The moment method

The method of line-profile fitting suffers of a major drawback: the unrealistic computation

time for a simultaneous identification of multiple modes. The idea of the moment method

is to replace each line profile by its first three moments, which are connected to respectively

the centroid velocity of the line, the line width and the line skewness. The wavenumbers

(`,m) and the other continuous velocity parameters are then determined in such a way

that the theoretically computed moment variations best fit the observed ones. The moment

method was first introduced by Balona (Balona 1986ab, 1987) and was further developed

by Aerts et al. (1992) and Aerts (1996). They derived analytical expressions of the first

three moment variations, which are valid for stars with a long rotational period compared

to the pulsational periods.

In this thesis, we propose a new numerical version of the technique which is more

efficient than the previous one for rotating multiperiodic stars (see Chapter 5).
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4.3 Doppler Imaging

The surface abundance distributions of elements can be obtained by a technique called

Doppler Imaging, which inverts rotationally modulated line-profile variations into a two

dimensional abundance distribution. To do this, we used a code called INVERS11 im-

plemented and made available to us by Prof. N. Piskunov. We refer to Piskunov & Rice

(1993) and Rice (1996) who describe Doppler Imaging methods in general.

4.3.1 Procedure

The input parameters for performing surface mapping are the effective temperature Teff ,

the gravity log g, the projected rotational velocity vΩ, the inclination angle of the star i.

The observed period in the line-profile variations is considered to be the rotation period

of the star Prot.

A short description of the Doppler Imaging procedure is the following. An initial guess

for abundances of the considered elements is made. The stellar surface is divided into many

surface elements and local line profiles and continuum intensity are obtained from model

atmospheres that are calculated from Kurucz’s ATLAS programs (Kurucz 1993). They

are then used for the integration over the visible stellar surface, resulting in rotationally

broadened line profiles, computed at observed phases ψ:

p(λ, ψ) =

∫ ∫

I(λ+ ∆λD,M, µ) cosµ dM
∫ ∫

Ic(M,µ) cosµ dM
,

where M is the position on the stellar surface, µ is the angle between the normal to the

surface at M and the line of sight, I(λ) is the intensity of the line at the wavelength λ,

∆λD is the Doppler shift at M caused by the rotation of the star, Ic is the continuous

intensity (i.e. the intensity that would be observed if the line was absent). Followed by

the line-profile calculation for a start abundance distribution A0(M), the error

E =
∑

ψ

∑

λ

[pcalc(λ, ψ) − pobs(λ, ψ)]2

is computed. An improved abundance map A(M) is then determined by minimizing the

error function

E + r [A(M )]

where

r[A(M)] = −
∫ ∫

M
|gradA(M)|2 dM

is a regularization component of Tikhonov’s (1963) form1, which involves the abundance

gradient between adjacent surface elements and hence favors distributions with smooth

1The use of a selection algorithm is needed to find a distinctive map among the huge number of
possible solutions of that ill-posed inverse problem.
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contrasts. The minimization itself is performed using the conjugate gradient method. From

this new map, new line-profile variations are computed and the error function is minimized

in order to find a better map. This process is iterated until the difference between the

calculated and observed line profiles is of the order of the signal-to-noise ratio of the input

spectra. Procedures that have to be performed for the inversion of observed spectra into

a surface abundance pattern of a star are illustrated in Fig. 4.1.

4.3.2 Observational requirements

Observational requirements, such as good phase coverage (30 spectra well distributed over

the rotation period), high signal-to-noise ratio (S/N of at least 200) and an appropriate

spectral resolution, have to be fulfilled when applying the Doppler Imaging technique.

Kuschnig (1998) tested the influence of the uncertainties of the input parameters on

the results of the inversion process. Deviations of vΩ of one or two percent of the real

value do not severely affect the results. A precision of 0.01% for the rotation period is

sufficient. The influence of incorrect determinations of model atmosphere parameters Teff

and log g generally do not affect the overall elemental distribution on the surface of the

star but mainly the abundance values of the determined structure.

Lüftinger (2000) tested the influence of the wavelength and continuum shifts respec-

tively caused by, e.g., errors in the wavelength calibration and introduced during the

normalization of the spectra. Wavelength shifts, as long as they are much smaller than

the width of the line, do not cause significant changes in the surface abundance distribu-

tions. However, continuum shifts can cause severe changes in the abundance structures.

As they are introduced during the reduction procedure of data and affect different spectral

lines in a different way, it is in principle needed to map several lines of the same element

in different spectral regions in order to check the reliability of the mapping.

Note also that the best mappings are obtained for intermediate values of the angle of

inclination i (around 40◦). Indeed, for i near 90◦, features at the northern hemisphere also

appear at the same southern latitudes even if they do not exist. For angles below 20◦, the

star is almost seen pole on and, due to geometrical projection, the rotational modulation

of the line profile appears to be very weak.
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Atmospheric
parameters:

start abundances
Teff, log g, vsini, i

Local line profile

calculation

Initial distribution:
Mo

(start map)

minimization with regularization:

Pcalc(Mx)

Observations:
Pobs

(k phases)

Final distribution:

Mf

Mx+1

x+1 distribution

E~(S/N)obs

Calculate line profiles

and

INVERSION

error function determination:
E(Mx)=Pcalc(Mx)-Pobs

E+f(Mx+1)=minimum

Surface grid
definition:

n longitude elements

Tikhonov form

iteration

Next

after f iterations

m latitude elements

Figure 4.1: Principle steps and procedures needed to perform an inversion of observed
spectral line-profile variations into a two-dimensional abundance map (from Kuschnig
1998).



Chapter 5

A new version of the moment
method

(this chapter was originally published as Briquet M., Aerts C., 2003, A&A 398, 687,

A new version of the moment method, optimized for mode identification in multiperiodic

stars)

5.1 Introduction

Recent studies of multiple datasets of non-radial oscillators have shown the need to im-

prove current mode identification methods. In particular, the outcomes of mode identi-

fication based on photometric and spectroscopic data of the same star and for the same

mode are often discrepant (e.g. De Cat 2001). This is very unsatisfactory if one wants to

use the non-radial oscillations for detailed modelling of the internal structure of the stars.

This thesis contributes to the improvement of one of the identification methods which is

developed for the interpretation of time-series of high-resolution spectroscopic data.

The idea of the moment method is the following. By comparing theoretical moment

variations of a line profile to observed ones, one derives the wavenumbers (`,m) and other

continuous velocity parameters that lead to the best fit. Balona (1986ab, 1987), Aerts

et al. (1992) and Aerts (1996) derived analytical expressions of the first three moment

variations that are valid for stars with a long rotational period compared to the pulsational

periods (Prot > 10 Ppuls). The major drawback of the moment method in the formulation

by Aerts (1996) is the fact that all the modes are identified separately in the case of

multiple modes. With such an approach, one cannot force there to be only one unique

solution for the inclination angle of the star and the stellar rotational velocity. This is

rather unsatisfactory, as conflicting values of these parameters are quite often encountered

in practical applications of the method. The reason of Aerts (1996) for not performing one

unified mode identification for all occurring modes simultaneously was of numerical origin,

as it resulted in unrealistic computation times. This is no longer the case with the efficiency

of current computers and with some clever re-arrangements of the theoretical moment

39
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expressions. In this thesis, we present a numerical version of the moment method, which

improves considerably the efficiency of the technique by performing the simultaneous

identification of all the modes that are present in the data. Our identification code is

available upon request.

The chapter is organized as follows. In Sect. 5.2, we describe the new version of the

method. Tests on synthetic data are performed in Sect. 5.3. Sect. 5.4 provides a summary

of the best optimal mode identification strategy. In Sect. 5.5, we apply our new method

to three multiperiodic B-type stars: β Crucis, 16 Lacertae and HD74195. Finally, we give

conclusions in Sect. 5.6.

5.2 A numerical version

In order to be able to outline our new application of the moment method, we repeat here

its basic ingredients, adapted to our numerical approach. The reader is referred to Aerts

et al. (1992) and Aerts (1996) for a more in-depth description of the moment method.

5.2.1 The moments of a line profile

Let v be the observed velocity (in km s−1) of a point on the stellar surface. The n-th

normalized moment of a line profile I(v, t) is defined as

< vn >I (t) =

∫ +∞

−∞
vn I(v, t) dv

∫ +∞

−∞
I(v, t) dv

.

We note that the denominator in this formula is the equivalent width of the line.

A line profile is the convolution of an intrinsic profile g and the component of the

velocity field f . We assume that g is time-independent and symmetric, which is a good

approximation. The first three moments can then be written as

< v >I=< v >f ,
< v2 >I=< v2 >f +σ2,
< v3 >I=< v3 >f +3σ2 < v >f ,

where the constant < v2 >g is denoted by σ2.

Let vrot and vpuls be respectively the velocity in the line of sight due to rotation and

pulsation. We use a system of spherical coordinates (r, θ, φ) whose polar axis coincides

with the axis of rotation and we consider a star which rotates uniformly. We assume also

a constant intensity over the stellar surface and we use a limb-darkening law of the form

hλ(µ) = 1 − uλ + uλ cosµ where µ is the angle between the local radial vector and the

line of sight. We divide the stellar surface into surface elements by taking steps of dθ in

θ and dφ in φ. One then has the following approximation
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< vn >f=
1

m0

n
∑

k=0

n!

k!(n− k)!

∫ ∫

vn−krot (θ, φ) vkpuls(θ, φ, t) (1 + β cos µ) cosµ sin θ dθ dφ,

(5.1)

where the integral is taken over the visible stellar surface (cosµ > 0). In this expression,

β ≡ uλ/(1−uλ) and m0 ≡
∫ ∫

(1+β cos µ) cosµ sin θ dθ dφ. The rotational velocity in the

line of sight is given by vrot = Ω R sin i sin θ sinφ ≡ vΩ sin θ sinφ with Ω the angular

frequency of rotation, R the radius of the star and i the angle of inclination of the star.

We note that we neglect temperature effects on moment variations. For slowly-rotating

pulsating B stars this is justified, as the moment variations are very well approximated

with a pulsational velocity field only (Dupret et al. 2002 and De Ridder et al. 2002a).

5.2.2 The pulsation velocity field

For linear theory, the general form for the temporal dependence of the projected pulsation

velocity field due to N modes is given by

vpuls =
N
∑

j=1

A
mj

`j
cos(2πfjt+ ψj) +B

mj

`j
sin(2πfjt+ ψj), (5.2)

with

A
mj

`j
= Ajp[C

mj

`j
(i) +KjD

mj

`j
(i)], (5.3)

and

B
mj

`j
= Ajp[E

mj

`j
(i) +KjF

mj

`j
(i)], (5.4)

where the parameters Ap and K denote respectively the velocity amplitude and the ratio

of the amplitude of the horizontal and of the vertical motion.

In Eqs. (5.3) and (5.4), the quantities C
mj

`j
, D

mj

`j
, E

mj

`j
and F

mj

`j
are given by

C
mj

`j
= (cos i cos θ + sin i sin θ cosφ) V j

r (θ) cos(mjφ),

D
mj

`j
= (− cos i sin θ + sin i cos θ cosφ) V j

θ (θ) cos(mjφ) − sin i sin φ V j
φ (θ) sin(mjφ),

E
mj

`j
= −(cos i cos θ + sin i sin θ cosφ) V j

r (θ) sin(mjφ),

F
mj

`j
= (cos i sin θ − sin i cos θ cos φ) V j

θ (θ) sin(mjφ) − sin i sinφ V j
φ (θ) cos(mjφ),

where

Vr(θ) = N
mj

`j
P
mj

`j
(cos θ),

Vθ(θ) = N
mj

`j

∂P
mj

`j
(cos θ)

∂θ
,

Vφ(θ) =
mj

sin θ
N
mj

`j
P
mj

`j
(cos θ),

for a pulsating star in the non-rotating formalism. In these latter expressions, Pm
` is the

associated Legendre polynomial and Nm
` is a normalisation factor.



42 A new version of the moment method Chapter 5

5.2.3 The first three moments

For the identification of the modes, we only use the first three moments < v >, < v2 >

and < v3 > because the higher order observed moments are often too noisy. Moreover,

the first three moments suffice to determine correctly the pulsation modes (Aerts et al.

1992).

From Eqs. (5.1) and (5.2) and after deleting the terms that equal zero due to symmetry

properties, we have

< v >=
N
∑

j=1

Aj1 cos(2πfjt+ ψj),

< v2 >=
N
∑

j=1

Cj
1 cos(2(2πfj)t+ 2ψj) +

N
∑

j=1

Dj
2 sin(2πfjt + ψj)

+
N
∑

j=1

N
∑

k 6=j

Cjk
b1 cos(2π(fj − fk)t + ψj − ψk) +

N
∑

j=1

N
∑

k 6=j

Cjk
s1 cos(2π(fj + fk)t + ψj + ψk)

+
N
∑

j=1

Ej
12 + Erot + σ2,

< v3 >=
N
∑

j=1

F j
1 cos(3(2πfj)t+3ψj)+

N
∑

j=1

Gj
2 sin(2(2πfj)t+2ψj)+

N
∑

j=1

RST j1 cos(2πfjt+ψj)

+
N
∑

j=1

N
∑

k 6=j

Gjk
b2 sin(2π(fj − fk)t + ψj − ψk) +

N
∑

j=1

N
∑

k 6=j

Gjk
s2 sin(2π(fj + fk)t+ ψj + ψk)

+
N
∑

j=1

N
∑

k 6=j or n6=j

F jkn
11 cos(2π(fj + fk + fn)t + ψj + ψk + ψn)

+
N
∑

j=1

N
∑

k 6=j or n6=j

F jkn
21 cos(2π(−fj + fk + fn)t− ψj + ψk + ψn)

+
N
∑

j=1

N
∑

k 6=j or n6=j

F jkn
31 cos(2π(fj − fk + fn)t+ ψj − ψk + ψn)

+
N
∑

j=1

N
∑

k 6=j or n6=j

F jkn
41 cos(2π(fj + fk − fn)t+ ψj + ψk − ψn),

where

Xj(kn) =
1

m0

∫ ∫

xj(kn) (1 + β cosµ) cosµ sin θ dθ dφ

with
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Xj(kn) xj(kn)
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)
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)2)
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mj

`j
)2]
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`j
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4
[(A

mj
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`j
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mj

`j
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mj

`j
Bmk

`k
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mj
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`k
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11 −3

4
B
mj

`j
Amk
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3
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4
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`j
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`n

We point out that < v > varies with frequency fj; < v2 > varies with frequency fj
and 2fj and also with the coupling frequencies fj + fk and fj − fk; < v3 > varies with fj,

2fj, 3fj and also with coupling frequencies fj + fk, fj − fk, fj + fk + fn, −fj + fk + fn,

fj − fk + fn, fj + fk − fn for j, k, n = 1, . . . , N . All these coupling characteristics were

also already given in Mathias et al. (1994), but were never implemented so far.

From Eqs. (5.3) and (5.4) and by denoting

I[x] ≡ 1

m0

∫ ∫

x (1 + β cosµ) cosµ sin θ dθ dφ,

we have

Aj1 = Ajp
{

I[C
mj

`j
] +KjI[D

mj

`j
]
}

.

The expressions for the amplitudes of the second and third moments are given in Appendix

A.3 in order to keep this section readable.
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The great advantage of such a writing is that the integrals I[x] can be computed and

memorized in files once and for all for chosen wavenumbers (`,m) and inclinations i. This

leads to an important gain of computation time in the computation of the moments for

different values of the other parameters Ap, K, σ and vΩ.

We point out that, for chosen (`, m, K, i), the amplitude Ap is no longer a free

parameter. We limit its range by imposing that the theoretical first moment amplitude

Ath = Ap A(`, m, K, i) must be equal to the observed one Aobs. This condition, which was

not considered by Aerts (1996), allows us to reduce greatly the grid of tested parameters.

Such an approach is fully justified, as the relative standard error of Aobs is always much

smaller than the ones of any of the other amplitudes of the higher-order moments.

5.2.4 A new discriminant

In the version of Aerts (1996), the mode identification is achieved by comparing the

theoretically calculated amplitudes of < v >, < v2 > and < v3 > with the observed ones

through a discriminant. In general, the observed amplitudes of the first moment as well as

the constant term of the second moment are determined accurately. However, the other

observed moment amplitudes can have large uncertainties. For this reason, we prefer using

the moment values calculated at each time of observation tk (k = 1, . . . , Nobs) instead of

the amplitudes of their fit.

We propose to choose the modes and the parameters for which the following new

discriminant attains the lowest value

Σ = { 1

Nobs

Nobs
∑

k=1

[( < v > (tk)− < v >obs (tk))
2

+| < v2 > (tk)− < v2 >obs (tk)|
+( < v3 > (tk)− < v3 >obs (tk))

2/3
]}1/2

,

where < vn >obs denotes the n-th observed moment.

5.2.5 An upper limit for the degree `

The moment method is particularly suited to identify modes whose frequency is clearly

present in the observed moments. Consequently, the degrees of the modes corresponding

to these frequencies are expected to be relatively low (` ≤ 6).

In what follows, we give a simple criterion allowing to derive an upper limit for ` using

the observed first moment amplitude Aobs and the constant term of the observed second

moment Cobs, which can both be very accurately determined from the observed line-profile

variations. By imposing the theoretical positive constant E12 to be smaller than Cobs, we

have the following condition:

(a (Aobs)
2 + b Cobs) K2 + (c (Aobs)

2 + d Cobs) K + (e (Aobs)
2 + f Cobs) < 0 (5.5)
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with
a = I[(Dm

` )2] + I[(Fm
` )2],

b = −2(I[Dm
` ])

2
,

c = 2I[Cm
` Dm

` ] + 2I[Em
` Fm

` ],

d = −4I[Cm
` ] I[Dm

` ],

e = I[(Cm
` )2] + I[(Em

` )2],

f = −2(I[Cm
` ])

2
.

The quantities a, b, c, d, e and f are precomputed for several values of the inclination

i. Considering (5.5) as an inequation in K > 0, one can exclude the modes with degree `

for which no solution is found. One then avoids to test useless modes, which again saves

a considerable amount of computation time.

5.2.6 Generalization to rotating pulsating stars

The technique described above is no more restricted to slow rotators as was the case for

the method by Aerts (1996). Here we extend the application to rotating pulsating stars

by using the theory derived by Lee & Saio (1987, 1990, Chapter 2). We remind that the

velocity field depends on the ratio η = 2Ω/σc between the angular frequency of rotation

and the angular co-rotating frequency of pulsation. Note that taking Ω = 0 leads to the

same description as the one of a non-rotating pulsating star.

We implemented this version of the moment method by using Townsend’s code (1997)

BRUCE, which computes the pulsation velocity field for this theory. A nice feature of our

current version of the method is that this numerical version can be easily generalized to

an improved formalism for the pulsational velocity, e.g. one that would take into account

the effects of the centrifugal forces, should this become available.

5.3 Tests on synthetic data

We applied the moment method in our present new version to a large number of synthetic

datasets in order to test its efficiency and our implemented version. Sets of artificial data

were generated in such a way that they resemble real data as much as possible. For each

set, we computed 254 line profiles at times of real observations. We added gaussian noise

corresponding to a signal-to-noise of about 200 and finally we computed the first three

moment variations.

We first tested the method for a monoperiodic star for all the sectoral, tesseral, and

axisymmetric modes with 0 ≤ ` ≤ 3 (m = −`, . . . , `). It performs the identification

without any problem, as it was already the case with the previous version (Aerts 1996).

We note that, as expected, axisymmetric modes may be confused with axisymmetric
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Table 5.1: Examples of mode identification through the discriminant Σ with the new version

of the moment method for two modes. The input parameters are shown, followed by the five

best solutions of the mode identification. Ap is the amplitude of the radial part of the pulsation

velocity, expressed in km s−1; i is the inclination angle; vΩ is the projected rotational velocity,

expressed in km s−1 and σ is the intrinsic line-profile width, also expressed in kms−1.

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(1,−1) (1,0) 2.25 0.53 65.54 12.03 6 26 5.5

(1,−1) (1,0) 2.86 0.58 56.64 10.39 5 22 4 1.68
(1,−1) (2,0) 2.86 0.32 56.64 10.39 5 22 4 1.77
(1,−1) (3,0) 2.86 0.58 56.64 10.39 5 22 4 2.85
(1,1) (1,0) 2.86 0.58 56.64 10.39 5 22 4 4.99
(1,1) (2,0) 2.86 0.32 56.64 10.39 5 22 4 5.07

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(2,0) (1,1) 10.38 21.92 0.082 0.086 16 23 5.5

(2,0) (1,1) 9.99 23.27 0.094 0.099 15 21 7 1.53
(1,0) (3,3) 9.06 93.26 0.094 0.099 35 10 7 1.68
(1,0) (2,1) 7.92 12.82 0.094 0.099 20 25 3 1.87
(2,0) (2,1) 10.82 12.82 0.094 0.099 20 24 4 1.95
(2,0) (3,1) 9.99 24.59 0.094 0.099 15 13 10 1.95

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,2) (1,−1) 1.69 0.77 6.48 17.40 52 19 5.5

(3,2) (1,−1) 1.45 0.52 8.20 22.02 60 19 5 2.56
(1,−1) (2,2) 4.90 2.19 8.20 22.02 20 14 1 2.87
(3,2) (2,2) 2.64 0.61 4.41 11.86 60 19 5 2.99

(1,−1) (1,−1) 3.37 0.90 8.20 22.02 30 17 6 3.17
(2,2) (1,−1) 10.00 1.90 4.41 11.86 25 16 3 3.29

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,−3) (2,0) 32.97 9.60 0.085 0.095 87 10 5.5

(3,−3) (2,0) 38.49 10.44 0.051 0.057 80 9 5 2.39
(2,−2) (2,0) 17.16 11.88 0.051 0.057 75 18 2 2.40
(3,−3) (1,1) 38.49 5.42 0.051 0.057 80 9 5 2.53
(3,−3) (2,1) 49.42 10.12 0.051 0.057 65 8 3 2.57
(3,−2) (1,1) 40.01 6.17 0.051 0.057 60 11 5 2.64

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(2,2) (1,−1) 4.02 0.91 5.61 19.74 37 19 5.5

(1,−1) (1,−1) 2.88 0.66 7.05 24.79 45 23 2 2.19
(2,2) (1,−1) 4.30 1.18 3.79 13.35 45 23 1 2.20

(1,−1) (2,2) 6.09 1.67 4.34 15.25 30 21 3 2.23
(3,1) (1,−1) 2.10 0.46 7.05 24.79 90 22 1 3.04
(2,2) (3,1) 2.16 0.85 3.79 13.35 85 22 2 3.19
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Table 5.2: Examples of mode identification through the discriminant Σ with the new version of

the moment method for two modes. The input parameters are shown, followed by the five best

solutions of the mode identification. The meanings of the symbols are the same as in Table 5.1.

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(2,−1) (1,−1) 30.45 21.69 0.085 0.099 17 11 5.5

(3,−1) (2,−1) 40.09 11.17 0.054 0.062 30 16 2 2.30
(3,−1) (1,−1) 42.16 15.91 0.054 0.062 25 14 3 2.52
(2,−1) (2,−1) 29.18 15.16 0.054 0.062 20 14 6 2.53
(3,−2) (2,−2) 46.16 12.86 0.054 0.062 60 14 4 2.54
(2,−1) (1,−1) 29.18 19.72 0.054 0.062 20 15 6 2.56

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(2,0) (1,1) 0.45 6.98 11.45 4.91 16 23 5.5

(2,0) (1,1) 0.30 1.84 16.99 5.21 15 19 8 1.88
(1,0) (1,1) 0.58 1.84 16.99 5.21 15 19 8 1.91
(3,0) (1,1) 0.69 1.84 9.14 12.82 10 16 9 2.44

(2,−1) (1,1) 0.70 1.84 16.99 3.97 20 18 8 3.72
(1,0) (3,2) 2.93 1.84 9.14 2.67 70 25 1 3.74

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,−2) (2,2) 35.19 13.21 0.086 0.091 52 16 5.5

(3,−2) (2,2) 36.24 12.33 0.071 0.075 55 16 4 2.39
(3,−3) (3,2) 37.90 30.83 0.071 0.075 75 13 2 2.57
(2,−2) (2,2) 30.80 16.56 0.071 0.075 45 19 2 2.79
(3,−3) (2,2) 37.90 8.85 0.071 0.075 75 13 5 2.87
(3,−3) (3,1) 34.14 23.50 0.071 0.075 90 14 4 3.43

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,3) (2,1) 2.04 1.88 5.14 8.81 81 24 5.5

(3,3) (2,1) 1.35 1.10 7.84 13.45 80 26 4 2.25
(3,3) (3,0) 2.22 0.98 5.43 9.31 70 23 7 2.82
(3,3) (2,0) 2.46 0.92 4.22 7.24 80 25 6 2.85
(3,3) (2,−1) 1.35 1.10 7.84 13.45 80 26 4 3.53
(3,3) (3,1) 4.32 0.72 6.64 11.38 45 17 8 3.68

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,2) (1,−1) 36.20 7.24 0.078 0.097 52 19 5.5

(3,2) (1,−1) 36.61 6.96 0.076 0.095 55 20 5 1.79
(2,2) (1,−1) 37.95 8.88 0.076 0.095 40 21 5 2.07
(3,2) (2,−1) 36.61 8.36 0.076 0.095 55 20 5 2.16
(2,2) (2,−1) 37.95 7.99 0.076 0.095 40 21 5 2.45
(3,2) (1,0) 39.91 5.69 0.076 0.095 45 16 7 2.93
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Table 5.3: Examples of mode identification through the discriminant Σ with the new version of

the moment method for two modes. The input parameters are shown, followed by the five best

solutions of the mode identification. The meanings of the symbols are the same as in Table 5.1.

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(2,1) (1,0) 16.10 4.80 0.080 0.095 37 12 5.5

(2,1) (1,0) 22.63 4.48 0.054 0.064 25 10 6 1.95
(1,1) (1,0) 34.83 4.33 0.054 0.064 20 10 6 2.01
(2,1) (2,0) 27.09 6.17 0.054 0.064 20 8 6 2.07
(3,1) (1,0) 44.34 4.33 0.054 0.064 20 6 2 2.08
(3,1) (2,0) 44.34 6.17 0.054 0.064 20 6 1 2.13

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,−1) (2,−2) 0.84 0.21 16.40 27.36 86 25 5.5

(3,−1) (2,−2) 0.88 0.23 15.54 25.93 90 27 3 1.83
(1,1) (2,−2) 1.04 0.37 19.43 32.42 45 19 10 1.94
(1,1) (3,−1) 0.89 0.19 25.26 42.14 40 16 11 2.28
(1,1) (2,−1) 1.13 0.34 13.60 22.69 65 28 2 2.64
(1,1) (3,−2) 0.59 0.31 25.26 42.14 75 14 11 3.16

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(1,1) (1,0) 25.54 4.34 0.080 0.095 27 12 5.5

(1,1) (1,0) 74.02 4.41 0.053 0.063 10 4 4 2.07
(1,1) (2,0) 29.54 7.27 0.053 0.063 25 10 6 2.12
(2,1) (2,0) 23.82 7.27 0.053 0.063 25 9 6 2.12
(2,1) (1,0) 18.44 5.56 0.053 0.063 40 14 4 2.16
(3,1) (1,0) 41.23 4.71 0.053 0.063 25 7 3 2.31

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,−2) (2,−1) 0.54 0.35 21.86 16.32 47 15 5.5

(3,−2) (2,−1) 0.94 0.62 12.30 9.18 50 15 6 1.88
(3,−3) (2,−1) 0.86 0.35 22.84 17.06 55 11 6 2.10
(3,−3) (2,−2) 0.47 0.33 22.84 17.06 90 13 7 2.22
(3,−1) (2,−1) 0.44 0.38 22.84 17.06 30 19 2 2.59
(3,−2) (2,−2) 0.55 0.41 22.84 17.06 65 18 3 2.60

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,−1) (2,1) 34.05 7.83 0.084 0.093 42 12 5.5

(3,−1) (1,1) 33.13 9.81 0.058 0.065 35 12 6 2.27
(3,−1) (2,1) 33.13 8.60 0.058 0.065 35 12 6 2.29
(3,−2) (1,1) 58.29 5.81 0.058 0.065 75 11 2 2.55
(2,−1) (2,1) 17.56 9.31 0.058 0.065 60 20 1 2.65
(2,−1) (1,1) 15.47 8.75 0.058 0.065 40 17 5 2.67
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Table 5.4: Examples of mode identification through the discriminant Σ with the new version of

the moment method for two modes. The input parameters are shown, followed by the five best

solutions of the mode identification. The meanings of the symbols are the same as in Table 5.1.

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,−3) (2,1) 0.57 0.64 40.24 8.95 52 18 5.5

(3,−3) (2,1) 0.51 1.89 26.24 5.83 75 19 5 2.77
(3,−2) (2,1) 0.26 0.53 48.73 10.84 50 22 2 2.99
(3,−3) (2,0) 0.26 0.71 48.73 10.84 80 18 6 3.50
(3,−3) (3,0) 0.55 1.75 26.24 5.83 70 18 5 3.56
(3,−3) (3,1) 1.31 1.57 26.24 5.83 45 14 1 3.60

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(2,0) (2,2) 12.62 44.62 0.082 0.082 26 30 5.5

(2,0) (2,2) 10.02 68.16 0.11 0.11 20 25 9 2.01
(2,0) (3,2) 16.22 25.03 0.11 0.11 35 30 5 2.02
(1,0) (2,2) 7.53 68.16 0.11 0.11 20 25 9 2.22
(1,0) (3,2) 7.36 108.36 0.11 0.11 15 13 2 2.31
(3,0) (2,2) 20.27 120.87 0.11 0.11 15 17 10 3.18

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,0) (3,2) 1.52 1.93 11.45 7.49 32 10 5.5

(3,1) (3,2) 3.42 2.44 7.03 4.60 70 16 1 3.78
(3,0) (3,2) 3.29 2.09 7.03 4.60 45 14 2 4.04
(3,0) (2,2) 1.74 5.31 7.03 4.60 30 19 1 4.31
(2,0) (3,2) 3.81 1.95 7.03 4.60 50 14 6 4.50
(2,0) (2,2) 3.81 2.25 7.03 4.60 50 20 1 4.78

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(3,1) (2,−1) 44.57 43.88 0.080 0.097 86 24 5.5

(3,1) (2,−1) 42.84 33.76 0.095 0.11 85 25 6 2.59
(3,1) (1,0) 42.84 35.41 0.095 0.11 85 22 9 3.29
(3,1) (2,1) 42.84 33.76 0.095 0.11 85 27 3 3.30
(2,2) (3,−1) 25.31 19.44 0.095 0.11 50 13 13 3.43
(2,2) (2,−1) 14.94 33.76 0.095 0.11 85 16 12 3.57

(`1,m1) (`2,m2) A1
p A2

p K1 K2 i vΩ σ Σ
(2,1) (1,0) 1.11 0.68 7.81 12.03 32 17 5.5

(2,1) (2,0) 1.43 0.31 8.78 13.52 20 11 8 2.47
(2,1) (1,0) 2.15 1.02 4.73 7.28 25 12 8 2.48
(3,1) (1,0) 2.22 1.02 4.73 7.28 25 5 9 2.49
(3,1) (2,0) 1.22 0.35 8.78 13.52 25 4 9 2.49
(3,3) (1,0) 5.03 1.44 4.73 7.28 50 3 7 2.64
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Table 5.5: Examples of mode identification through the discriminant Σ with the new version of

the moment method for three modes. The input parameters are shown, followed by the five best

solutions of the mode identification. The meanings of the symbols are the same as in Table 5.1.

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(3,0) (1,−1) (3,1) 1.45 0.67 0.57 11.45 14.11 13.75 73 11 5.5

(3,0) (1,−1) (3,1) 1.17 0.53 0.38 14.88 18.34 17.87 75 10 6 2.07
(3,0) (2,2) (3,1) 1.17 0.30 0.38 14.88 18.34 17.87 75 12 5 2.11
(2,1) (1,−1) (3,1) 4.03 0.65 0.33 11.45 14.11 13.75 85 7 2 2.28
(3,0) (2,2) (1,−1) 2.16 0.55 0.46 8.01 9.87 9.62 75 11 6 2.29
(3,0) (1,−1) (1,−1) 2.16 0.93 0.46 8.01 9.87 9.62 75 11 6 2.30

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(2,−1) (1,−1) (2,1) 25.13 14.05 10.05 0.084 0.086 0.092 64 20 5.5

(2,−1) (1,−1) (2,1) 28.31 15.86 11.51 0.084 0.085 0.092 60 16 7 2.22
(1,−1) (1,−1) (1,1) 17.00 15.15 6.91 0.084 0.085 0.092 65 19 6 2.44
(1,−1) (1,−1) (2,1) 18.81 16.77 10.61 0.084 0.085 0.092 55 17 7 2.46
(2,−1) (1,−1) (1,1) 28.31 15.86 7.23 0.084 0.085 0.092 60 18 6 2.47
(1,−1) (1,−1) (2,1) 17.00 15.15 13.01 0.084 0.085 0.092 65 20 5 2.53

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(3,2) (2,−2) (1,0) 1.55 0.50 0.31 7.6 20.46 16.31 44 12 5.5

(3,2) (2,−2) (2,−1) 1.34 0.51 0.15 9.12 24.55 19.57 40 14 5 2.06
(3,2) (2,−2) (1,0) 1.46 0.56 0.27 8.36 22.51 17.94 40 14 5 2.07
(3,2) (2,−2) (2,0) 2.26 0.87 0.41 5.32 14.32 11.41 40 14 5 2.21
(3,2) (3,−1) (2,0) 1.82 0.24 0.13 9.88 26.60 21.20 30 11 5 2.26
(3,2) (3,−1) (1,0) 1.82 0.24 0.20 9.88 26.60 21.20 30 11 5 2.30

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(1,1) (3,−2) (2,0) 3.01 0.21 0.21 7.35 49.73 16.31 37 23 5.5

(1,1) (3,−2) (1,0) 2.85 0.19 0.26 7.35 49.73 16.31 40 25 2 1.87
(1,1) (3,−2) (2,0) 3.12 0.21 0.28 6.61 44.76 14.68 40 25 1 1.92
(1,1) (3,−2) (2,−1) 3.45 0.24 0.20 5.88 39.78 13.05 40 25 2 2.28
(1,1) (3,−3) (2,−1) 1.77 0.21 0.13 9.56 64.65 21.20 55 22 5 2.48
(1,1) (3,−3) (1,0) 2.05 0.33 0.22 9.56 64.65 21.20 45 19 6 2.61

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(2,−1) (1,0) (2,2) 0.85 1.54 0.29 13.93 12.03 10.90 68 13 5.5

(2,−2) (1,0) (1,−1) 0.56 2.06 0.42 15.33 13.23 11.99 75 9 7 2.20
(2,−2) (1,0) (2,2) 0.62 2.25 0.27 13.93 12.03 10.90 75 9 7 2.20
(2,−1) (1,0) (1,−1) 0.82 1.56 0.44 15.33 13.23 11.99 70 12 6 2.22
(2,−1) (1,0) (2,2) 0.90 1.70 0.29 13.93 12.03 10.90 70 15 4 2.23
(2,−1) (2,0) (1,−1) 0.58 1.14 0.63 13.93 12.03 10.90 45 9 7 2.28
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Table 5.6: Examples of mode identification through the discriminant Σ with the new version of

the moment method for three modes. The input parameters are shown, followed by the five best

solutions of the mode identification. The meanings of the symbols are the same as in Table 5.1.

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(1,0) (1,−1) (1,1) 0.91 0.77 1.39 11.45 28.75 8.19 27 24 5.5

(1,0) (1,−1) (1,1) 1.13 0.87 1.48 9.16 23.00 6.55 30 26 3 2.15
(2,0) (1,−1) (1,1) 0.54 0.83 1.44 11.45 28.75 8.19 25 22 7 2.24
(1,0) (2,2) (1,1) 1.17 2.40 2.42 8.01 20.12 5.73 20 21 2 2.68
(2,0) (2,2) (1,1) 0.67 2.40 2.42 8.01 20.12 5.73 20 21 2 2.77
(2,0) (1,−1) (2,2) 0.43 1.34 5.55 11.45 28.75 8.19 15 14 8 2.93

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(3,−2) (1,1) (3,2) 0.60 1.72 0.70 26.05 8.74 8.29 34 14 5.5

(3,−2) (1,1) (3,2) 0.72 2.09 0.88 20.84 6.99 6.63 35 16 5 2.34
(3,−2) (1,−1) (3,2) 0.72 2.09 0.88 20.84 6.99 6.63 35 16 5 3.13
(3,−3) (1,1) (3,2) 0.72 1.38 0.63 20.84 6.99 6.63 60 18 3 3.43
(3,−2) (1,1) (2,2) 1.38 3.17 2.74 18.24 6.12 5.80 25 13 1 3.69
(3,−3) (1,−1) (3,2) 1.07 1.39 0.54 26.05 8.74 8.29 45 14 2 3.71

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(2,0) (1,0) (2,2) 0.49 0.55 6.00 11.45 12.03 3.91 22 25 5.5

(2,0) (1,0) (2,2) 0.49 0.61 15.52 10.30 10.82 3.52 15 17 8 2.06
(2,0) (1,0) (3,2) 0.63 0.76 11.75 8.01 8.42 2.74 15 7 10 2.12
(2,0) (2,0) (2,2) 0.49 0.32 15.52 10.30 10.82 3.52 15 17 8 2.15
(1,0) (1,0) (2,2) 0.93 0.61 15.52 10.30 10.82 3.52 15 17 8 2.24
(1,0) (2,0) (1,−1) 0.68 0.24 3.41 14.88 15.64 5.08 20 28 2 2.24

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(1,0) (3,3) (1,1) 1.44 1.94 0.49 11.45 6.33 12.40 56 15 5.5

(1,0) (3,3) (1,1) 0.93 1.96 0.41 14.88 8.23 16.12 50 13 6 2.15
(2,−1) (3,3) (1,1) 2.00 1.32 0.45 10.30 5.70 11.16 80 16 4 2.54
(2,−1) (3,3) (2,0) 1.06 1.52 0.48 10.30 5.70 11.16 70 16 5 2.78
(1,0) (3,3) (3,0) 2.49 2.15 0.54 8.01 4.43 8.68 65 16 5 2.81

(2,−1) (3,3) (3,−1) 2.54 1.68 0.67 8.01 4.43 8.68 80 16 4 2.81

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(3,3) (2,0) (1,0) 1.47 0.65 0.86 7.67 12.03 16.31 75 11 5.5

(3,3) (2,0) (1,0) 2.05 0.88 1.11 5.37 8.42 11.41 75 11 6 2.26
(3,3) (3,0) (1,0) 2.49 0.97 0.68 5.37 8.42 11.41 65 10 6 2.28
(3,3) (2,0) (2,−2) 2.23 1.08 0.26 5.37 8.42 11.41 70 11 6 2.33
(3,3) (3,0) (2,−1) 2.49 0.97 0.30 5.37 8.42 11.41 65 10 6 2.34
(3,3) (2,0) (2,−1) 1.12 0.48 0.25 9.97 15.64 21.20 75 11 6 2.36
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Table 5.7: Examples of mode identification through the discriminant Σ with the new version of

the moment method for three modes. The input parameters are shown, followed by the five best

solutions of the mode identification. The meanings of the symbols are the same as in Table 5.1.

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(1,1) (2,1) (2,−2) 1.88 0.61 0.09 8.38 8.74 45.84 57 21 5.5

(1,1) (2,1) (2,−2) 1.35 0.68 0.05 10.89 11.36 59.60 70 23 3 2.04
(1,1) (2,1) (3,−1) 1.80 0.44 0.08 10.89 11.36 59.60 45 17 8 2.21
(1,1) (2,1) (2,−1) 1.93 0.47 0.05 10.05 10.48 55.01 45 19 7 2.27

(3,−1) (2,0) (2,−2) 2.41 0.99 0.09 5.86 6.11 32.09 85 22 3 2.60
(1,1) (2,1) (2,0) 3.69 0.69 0.03 10.89 11.36 59.60 20 10 10 2.60

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(2,2) (3,2) (1,0) 110.38 100.95 4.34 0.078 0.080 0.095 26 10 5.5

(3,2) (3,2) (2,0) 82.39 75.46 14.96 0.048 0.049 0.058 40 12 7 3.62
(3,2) (3,2) (1,0) 82.39 75.46 5.38 0.048 0.049 0.058 40 12 7 3.67
(3,2) (3,2) (1,−1) 86.03 78.79 6.21 0.048 0.049 0.058 40 11 8 4.39
(3,2) (3,2) (2,−1) 82.39 75.46 9.45 0.048 0.049 0.058 40 11 8 4.87
(3,2) (3,2) (1,1) 86.03 78.79 6.21 0.048 0.049 0.058 70 17 4 4.88

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(2,0) (3,1) (1,1) 0.42 4.90 7.28 11.45 2.74 3.15 8 23 5.5

(2,0) (2,1) (1,1) 0.58 13.17 14.55 8.01 1.92 2.21 5 22 5 2.26
(1,0) (2,1) (1,1) 1.03 13.17 14.55 8.01 1.92 2.21 5 22 5 2.32
(3,0) (2,1) (1,1) 0.93 11.76 13.20 9.16 2.19 2.52 5 22 3 3.11
(2,0) (2,−1) (1,−1) 0.58 13.17 14.55 8.01 1.92 2.21 5 22 5 3.29
(2,0) (3,1) (1,1) 0.43 3.97 5.83 11.45 5.83 2.64 10 27 1 3.32

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(3,−3) (3,−1) (2,1) 1.14 0.43 0.24 34.30 16.43 11.95 38 13 5.5

(3,−3) (3,−1) (2,1) 1.41 0.64 0.31 24.01 11.50 8.37 40 15 7 2.76
(3,−3) (2,−2) (2,1) 0.49 0.56 0.40 24.01 11.50 8.37 65 22 7 2.77
(3,−3) (2,−2) (3,0) 0.57 0.62 0.54 24.01 11.50 8.37 60 20 8 2.81
(3,−3) (2,−2) (2,0) 0.44 0.52 0.59 24.01 11.50 8.37 70 21 8 2.82
(3,−2) (2,−1) (2,1) 0.70 0.53 0.36 24.01 11.50 8.37 30 19 8 2.94

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(2,−1) (3,1) (3,−2) 0.38 0.88 0.04 21.71 7.33 135.78 33 22 5.5

(2,−1) (3,1) (3,−2) 0.53 1.27 0.05 15.20 5.13 95.05 35 23 5 1.78
(2,−1) (3,1) (3,−3) 0.50 1.38 0.14 15.20 5.13 95.05 40 21 6 2.88
(2,−2) (3,1) (3,−2) 0.54 0.88 0.02 28.22 9.53 176.52 45 24 1 3.00
(2,−2) (3,1) (3,−3) 1.21 1.38 0.14 15.20 2.30 95.05 40 20 6 3.16
(1,0) (3,1) (3,−2) 0.72 1.25 0.07 15.20 5.13 95.05 30 20 8 3.38
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Table 5.8: Examples of mode identification through the discriminant Σ with the new version of

the moment method for three modes. The input parameters are shown, followed by the five best

solutions of the mode identification. The meanings of the symbols are the same as in Table 5.1.

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(2,2) (1,1) (2,1) 26.12 14.77 8.92 0.077 0.081 0.091 58 28 5.5

(2,2) (1,1) (1,1) 25.32 14.33 6.66 0.102 0.107 0.121 70 28 6 1.86
(2,2) (1,1) (2,1) 23.96 13.94 19.93 0.102 0.107 0.121 75 29 4 1.99
(2,2) (2,1) (1,1) 27.23 27.97 6.91 0.102 0.107 0.121 65 26 7 2.57
(2,2) (2,1) (2,1) 38.16 21.77 10.13 0.102 0.107 0.121 50 23 9 3.05
(3,2) (1,1) (1,1) 67.14 14.86 6.91 0.102 0.107 0.121 70 22 1 3.20

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(1,−1) (2,2) (3,2) 1.95 8.23 2.29 20.64 5.18 6.30 18 12 5.5

(1,−1) (2,2) (3,2) 1.50 5.82 1.55 24.77 6.22 7.56 20 14 7 2.34
(1,−1) (2,2) (2,2) 2.03 6.24 2.82 14.45 3.63 4.41 25 20 6 3.58
(1,−1) (3,2) (3,2) 1.72 4.44 2.00 14.45 3.63 4.41 30 23 4 3.68
(1,−1) (1,1) (3,2) 2.21 4.53 2.30 16.51 4.14 5.04 20 14 9 3.74
(1,−1) (1,−1) (3,2) 0.83 1.81 0.57 26.84 6.74 8.19 35 24 2 3.75

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(1,0) (1,1) (3,1) 13.79 18.09 20.30 0.08 0.081 0.092 43 19 5.5

(1,0) (1,1) (3,1) 14.30 20.86 27.55 0.078 0.077 0.087 40 17 6 2.08
(1,0) (1,1) (2,1) 19.09 16.34 11.00 0.078 0.077 0.087 55 21 4 2.51
(1,0) (1,1) (1,1) 15.49 18.95 9.19 0.078 0.077 0.087 45 19 6 2.89
(1,0) (2,1) (2,1) 15.49 21.32 10.34 0.078 0.077 0.087 45 17 7 3.01
(1,0) (2,1) (1,1) 12.66 24.70 13.03 0.078 0.077 0.087 30 11 9 3.15

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(2,1) (2,2) (3,1) 2.21 13.34 0.64 5.22 3.05 6.58 17 21 5.5

(2,1) (2,2) (3,1) 1.48 8.42 0.45 6.79 3.96 8.56 20 25 1 2.42
(3,1) (3,2) (3,3) 2.40 3.08 2.83 3.65 2.13 4.61 40 18 9 2.92
(2,1) (1,−1) (3,1) 1.91 5.87 0.57 6.79 3.96 8.56 15 22 7 3.10
(3,1) (3,2) (3,−3) 1.48 4.47 0.45 6.79 3.96 8.56 20 27 1 3.19
(2,1) (2,2) (3,−1) 1.59 9.06 0.49 6.27 3.66 7.90 20 25 1 3.36

(`1,m1) (`2,m2) (`3,m3) A1
p A2

p A3
p K1 K2 K3 i vΩ σ Σ

(3,3) (2,2) (1,1) 164.32 43.79 8.68 0.075 0.079 0.092 42 19 5.5

(3,3) (2,2) (1,1) 123.82 34.74 7.49 0.071 0.075 0.087 55 20 8 4.02
(3,3) (3,2) (1,1) 123.82 63.13 10.40 0.071 0.075 0.087 55 19 3 4.30
(3,3) (3,2) (2,1) 123.82 63.13 10.40 0.071 0.075 0.087 55 19 3 4.30
(3,3) (2,2) (2,1) 151.52 39.75 9.92 0.071 0.075 0.087 50 17 1 4.50
(3,3) (2,2) (1,0) 151.52 39.75 6.74 0.071 0.075 0.087 50 18 1 4.89
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modes of another degree for low values of the inclination, because of their very similar

visible configuration.

We then tested 144 combinations of two modes including all kinds of modes until

` = 3. The value for vΩ was randomly chosen between 10 and 30 km s−1 and σ was taken

equal to 5.5 km s−1. Ap was chosen so that the value of the radial velocity amplitude is

compatible with observed values for β Cephei stars and SPB stars. Each time, the velocity

amplitude of the second mode was chosen so that its first moment amplitude is smaller

than the one of the first dominant mode. The K-values were also taken according to typical

values of these two kinds of B-type oscillators. In Tables 5.1, 5.2, 5.3 and 5.4, we show the

values of the input parameters for several sets, together with the five best solutions of the

mode identification. We can conclude that the method performs the identification very

well. However, sometimes, the real combination of the two modes does not correspond to

the lowest value of the discriminant but appears in the list of the few best solutions. In

general, the estimates for the continuous parameters (Ap, K, i, vΩ, σ) are good, although

large deviations do sometimes occur. Such failing of estimating these parameters well was

already put forward by De Ridder et al. (2002b).

For evident computational reasons, we made less tests for three modes than for two.

Some examples are given in Tables 5.5, 5.6, 5.7 and 5.8. Also for these testcases the

identifications are very conclusive, while the same remark as above for the continuous

parameters applies here.

We strongly encourage users of our mode identifcation method to study Tables 5.1 to

5.8 in order to obtain a feeling of the accuracy and the power, but also of the limitations,

of the identification method.

A large number of tests indicates that the first three moments suffice to identify the

modes correctly. In Appendix A.4, we show in a rigorous way that it is indeed not necessary

to add higher order moments. Finally, we note that the computation time required to

calculate the discriminant depends very much on the number of modes. It ranges from

about half an hour for a monoperiodic star to several days for stars with three modes

(with a Pentium 4, 2.4 GHz / 512 Mb RAM). We note that, with the previous version of

the moment method, the identification of one mode required several days of computation,

and the identification of three modes simultaneously would have required several months

or more.

5.4 Mode identification strategy

It is evident from Tables 5.1 to 5.8 that, in many cases, one clear combination of different

wavenumbers does not occur from the discriminant, as several solutions are almost equiv-

alent in fitting the moment variations. This situation is inherent to the problem of mode

identification, with whatever method, as several combinations of the velocity parameters
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result in almost the same line-profile variations. The strength of the moment method is

precisely that it allows one to severely restrict the number of possible solutions.

One would hope that a statistically justified test would inform the user how many of

the candidate modes can be rejected with safety from comparison of the different values

of Σ. At present, such a significance test is still lacking. The main difficulty lies in defining

a suitable test for the combination of discrete and continuous parameters. De Ridder et

al. (2002b) have taken the first steps in this direction for a monoperiodic pulsation.

In view of the lack of a significance test, one needs to evaluate the “few” best solutions

resulting from the moment method, by constructing theoretical line-profile variations and

by comparing these with the observed ones. One can do this for the profiles themselves,

or else for their variation of amplitude and phase across the profile (for a definition of

the latter diagnostic values, we refer to Schrijvers et al. 1997). The value of a “few”

depends on the complexity of the pulsation. We advise the user to look at at least the

5 best (`,m) for a monoperiodic star, the 10 best combinations of the wavenumbers for

a biperiodic oscillator and so on. A recent example of such a procedure is provided in

Aerts et al. (2003a) for the β Cep star ENLac — see also below. We strongly urge users

of our method not to omit this last step. We also stress, however, that, even after such

an additional test, ambiguity among the solutions that survive the test will still remain,

i.e. one single outcome will seldomly be reached. However, the number of possibilities will

have decreased significantly, to such an extent that seismic modelling can be tried on the

basis of the remaining accepted combinations of the wavenumbers.

5.5 Application to β Ceps and SPBs

5.5.1 β Crucis

Aerts et al. (1998) presented numerous high signal-to-noise spectroscopic data of the

β Cephei star β Crucis with a total time span of 13 years. They found three frequencies

in the moments of the Si III 4553 Å line: f1 = 5.2305468 c d−1, f2 = 5.958666 c d−1 and

f3 = 5.472165 c d−1. The corresponding observed first moment amplitudes are A1
obs = 1.41

km s−1, A2
obs = 0.62 km s−1 and A3

obs = 0.34 km s−1. Note that only the first frequency was

known and detected in photometric observations before their study. A mode identification

with the 1996-version of the moment method was performed. It pointed towards non-

axisymmetric and non-radial modes. The mode corresponding to f1 was found to be a

low-degree sectoral mode with ` = 1 while f2 and f3 clearly correspond to higher degrees

(` = 3 or ` = 4), explaining why the two newly found frequencies were not detected

photometrically. Meanwhile, these two additional modes have also been detected clearly

in space photometry gathered by the WIRE satellite (Cuypers et al. 2002), as well as two

additional candidates. It is then clear that this star exhibits multiple non-radial modes

and is hence an interesting asteroseismic target.
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Table 5.9: The ten best solutions of the mode identification through the discriminant Σ for the

β Cephei star β Crucis, using the Si III 4553 Å line for which the amplitudes of the first moment

are A1
obs = 1.41 km s−1, A2

obs = 0.62 kms−1 and A3
obs = 0.34 km s−1. Ap is the amplitude of the

radial part of the pulsation velocity, expressed in km s−1; i is the inclination angle; vΩ is the

projected rotational velocity, expressed in kms−1 and σ is the intrinsic line-profile width, also

expressed in km s−1.

(`1,m1) (1,0) (1,−1) (0,0) (1,−1) (0,0) (1,0) (0,0) (1,0) (0,0) (2,0)

(`2,m2) (4,2) (4,3) (4,2) (4,2) (3,3) (3,3) (3,2) (3,2) (4,3) (4,2)

(`3,m3) (3,3) (3,3) (3,3) (3,2) (2,2) (2,2) (3,1) (3,1) (3,3) (2,2)

A1
p 6.51 8.32 7.24 10.66 7.24 5.88 7.24 5.41 7.24 11.21

A2
p 104.70 108.18 104.70 102.16 165.87 165.87 172.12 172.12 108.18 120.19

A3
p 36.35 9.21 36.35 7.93 15.92 15.92 13.25 13.25 9.21 11.39

i 35 65 35 45 25 25 10 10 65 30

vΩ 15 16 15 19 23 23 13 13 17 14

σ 19 19 19 19 19 19 11 11 19 17

Σ 5.43 5.43 5.44 5.44 5.45 5.45 5.45 5.46 5.46 5.47

In order to validate and/or improve the mode identification done by Aerts et al. (1998),

we performed a mode identification by our new optimized version of the moment method,

using the same K-values as adopted by Aerts et al. (1998): K1 = 0.028, K2 = 0.021 and

K3 = 0.025. In doing so, we force the amplitudes of the first moment to be equal to the

observed values mentioned above. The outcome, which is given in Table 5.9, is compatible

with the previous one. In particular, we recover the ` = 1 nature of the main mode and

the higher-degree nature of the two lower-amplitude modes. While Aerts et al. (1998)

found ` = 3 and 4 for respectively f2 and f3, we find the reverse here. This is not too

surprising as these two modes resemble each other for a view at moderate inclination.

The continuous parameter estimates (i, vΩ, σ) we find here are intermittent to the three

different values for the three modes in Aerts et al. (1998).

Data with a better time spread are needed to check the validity of the best solutions

as outlined in Sect. 5.4, as the beating between the three modes is very badly covered. We

therefore cannot yet perform seismic modelling of the star, but the studies by Aerts et al.

(1998) and by Cuypers et al. (2002) have pushed this star upward in the list of potential

asteroseismic targets for future space missions.

5.5.2 EN (16) Lacertae

EN (16) Lacertae is one of the most studied β Cep stars ever. Lehmann et al. (2001) made

for the first time a detailed spectroscopic study of EN (16) Lacertae, which is an eclipsing

and spectroscopic binary. Besides providing accurate orbital parameters, they recovered

and refined the three intrinsic frequencies known for this star from photometry in their
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Table 5.10: The ten best solutions of the mode identification through the discriminant Σ for

the β Cephei star 16 Lacertae, using the He I 6678 Å line for which the amplitudes of the first

moment are A1
obs = 2.57 kms−1, A2

obs = 2.71 km s−1 and A3
obs = 1.10 km s−1. The meanings of

the symbols are the same as in Table 5.9.

(`1,m1) (0,0) (0,0) (0,0) (1,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0)

(`2,m2) (2,0) (1,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (1,0) (1,0)

(`3,m3) (1,0) (2,0) (2,−2) (2,−2) (2,2) (2,2) (2,−1) (2,1) (1,−1) (1,1)

A1
p 13.45 13.45 12.10 8.38 12.10 8.38 12.10 12.10 13.45 13.45

A2
p 27.71 29.21 16.80 16.80 16.80 16.80 27.71 27.71 26.29 26.29

A3
p 12.38 11.98 39.99 39.99 39.99 39.99 12.69 12.69 4.82 4.82

i 75 70 25 25 25 25 75 75 70 70

vΩ 38 39 1 1 1 1 6 6 7 7

σ 5 2 19 19 19 19 19 19 19 19

Σ 3.86 3.86 3.87 3.87 3.87 3.87 3.88 3.89 3.90 3.90

radial-velocity data: f1 = 5.91128 c d−1, f2 = 5.85290 c d−1 and f3 = 5.50279 c d−1.

The corresponding observed first moment amplitudes are A1
obs = 2.57 km s−1, A2

obs = 2.71

km s−1 and A3
obs = 1.10 km s−1 (Aerts et al. 2003a). Chapellier et al. (1995) summarized

all photometric mode identification efforts so far and concluded that `1 = 0, `2 = 2 and

`3 = 1.

The first spectroscopic mode identification for this star was recently done by Aerts

et al. (2003a) who considered a subset of 940 high-resolution high S/N spectra gathered

by Lehmann et al. (2001). Our mode identification presented here, which was done using

K1 = 0.0824, K2 = 0.0841 and K3 = 0.0951, is one of the identification results adapted by

Aerts et al. (2003a), who considered also other spectroscopic diagnostics for identification.

Our result is given in Table 5.10. It is compatible with the one resulting from the other

method adapted by Aerts et al. (2003a). We refer to Aerts et al. (2003a) for an in-

depth interpretation of the spectroscopic variability of this star and for a comparison

of the moment method outcome with the observed line-profile variations as described in

Sect. 5.4. We also note that a more recent and improved photometric mode identification

by Dupret et al. (2003) leads to the same outcome.

5.5.3 HD 74195

De Cat (2001) studied the slowly pulsating B star HD74195, among 12 other such stars.

Based on multicolour Geneva photometry and high-resolution spectroscopy, he found four

frequencies: f1 = 0.35475 c d−1, f2 = 0.35033 c d−1, f3 = 0.34630 c d−1 and f4 = 0.39864

c d−1. The corresponding observed first moment amplitudes are A1
obs = 2.36 km s−1,

A2
obs = 2.36 km s−1, A3

obs = 1.18 km s−1 and A4
obs = 1.43 km s−1. The mode identification

from the moments of the Si II 4128 Å line based on the moment method in the version
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Table 5.11: The ten best solutions of the mode identification through the discriminant Σ for

the slowly pulsating B star HD 74195, using the Si II 4128 Å line for which the amplitudes of the

first moment are A1
obs = 2.36 km s−1, A2

obs = 2.36 km s−1, A3
obs = 1.18 km s−1 and A4

obs = 1.43

km s−1. The meanings of the symbols are the same as in Table 5.9. The table corresponds to an

identification using the non-rotating formalism and fixing K-values.

(`1,m1) (1,0) (1,0) (2,0) (2,0) (2,−1) (2,0) (2,−1) (1,0) (1,0) (2,0)

(`2,m2) (2,−2) (2,−2) (2,−2) (3,−1) (3,−1) (2,−2) (3,−1) (3,−1) (3,−1) (3,−1)

(`3,m3) (2,1) (2,2) (2,2) (2,1) (2,2) (2,1) (3,1) (2,1) (2,2) (2,2)

(`4,m4) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1)

A1
p 0.27 0.34 0.30 0.30 0.24 0.16 0.20 0.28 0.26 0.18

A2
p 1.04 0.36 0.44 0.25 0.23 1.04 0.23 0.23 0.23 0.22

A3
p 0.11 0.17 0.21 0.09 0.48 0.11 0.11 0.10 0.48 0.34

A4
p 0.62 0.37 0.41 0.41 0.62 0.62 0.46 0.53 0.62 0.52

i 25 45 40 40 25 25 35 30 25 30

vΩ 17 23 23 20 15 15 17 15 12 14

σ 5 3 1 6 8 6 8 9 9 9

Σ 5.50 5.50 5.51 5.52 5.52 5.53 5.54 5.54 5.54 5.55

by Aerts (1996) attributed the first three frequencies to ` = 2 modes and f4 to an ` = 1

mode. The identification from photometry, however, was found to be incompatible with

this result by De Cat (2001) since it points towards ` = 1 modes for f1, f2 and f3 and an

` = 6 mode for f4.

In an attempt to resolve the issue, we performed a new identification with our version of

the moment method. We point out that the values of the observed first moment amplitudes

and of the observed constant term of the second moment clearly impose ` ≤ 3 for the four

frequencies, directly excluding a high degree mode for f4. By eliminating degrees greater

than 3 in the photometric outcome, the new candidate degree from Geneva data is also

` = 1 for the fourth frequency.

The result with the new moment method by taking K1 = 41, K2 = 42, K3 = 43

and K4 = 32 is given in Table 5.11. This identification is not too different from the

spectroscopic one found by De Cat (2001). Our calculations clearly point towards an

` = 1 sectoral mode for f4. However, the identification for the other frequencies still needs

to be confirmed.

One can doubt the reliability of a mode identification by fixing K-values of SPBs.

Indeed, because there are large uncertainties on the mass and radius of most of these

stars, K-values can have uncertainties up to 30%, which is very large. In order to test

our mode identification as done above, we performed a new one by varying the parameter

from 0.7 K to 1.3 K with a step of 0.1 K and we obtained the outcome given in the upper

part of Table 5.12.
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Table 5.12: The ten best solutions of the mode identification through the discriminant Σ for

the slowly pulsating B star HD 74195, using the Si II 4128 Å line for which the amplitudes of the

first moment are A1
obs = 2.36 km s−1, A2

obs = 2.36 km s−1, A3
obs = 1.18 km s−1 and A4

obs = 1.43

kms−1. The meanings of the symbols are the same as in Table 5.9. The upper part of the table

is the result by varying the K-values from 0.7 K to 1.3 K with a step of 0.1 K. The lower one

is the outcome for an identification using Lee & Saio’s formalism for the pulsational velocity of

a rotating star.

(`1,m1) (1,0) (1,0) (2,0) (2,0) (2,0) (2,−1) (2,−1) (1,0) (1,0) (1,0)

(`2,m2) (2,−2) (2,−2) (2,−2) (3,−1) (2,−2) (3,−1) (3,−1) (2,−2) (3,−1) (3,−1)

(`3,m3) (2,1) (2,2) (2,2) (2,1) (2,1) (2,2) (3,1) (1,0) (2,1) (2,−2)

(`4,m4) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1)

A1
p 0.38 0.26 0.23 0.23 0.22 0.18 0.15 0.37 0.22 0.22

A2
p 1.49 0.28 0.34 0.19 1.49 0.18 0.18 1.46 0.17 0.20

A3
p 0.16 0.13 0.16 0.07 0.16 0.38 0.08 0.18 0.08 0.42

A4
p 0.88 0.28 0.31 0.32 0.88 0.47 0.35 0.86 0.41 0.51

K1 28 52 52 52 28 52 52 28 52 49

K2 29 53 53 53 29 53 53 29 53 50

K3 29 55 55 55 29 55 55 29 55 51

K4 22 41 41 41 22 41 41 22 41 39

i 25 45 40 40 25 25 35 25 30 25

vΩ 27 23 23 20 17 15 17 17 15 12

σ 5 3 1 6 5 8 8 5 9 9

Σ 5.49 5.50 5.50 5.51 5.51 5.52 5.54 5.54 5.54 5.55

(`1,m1) (2,0) (1,0) (1,0) (2,0) (2,0) (2,0) (1,0) (1,0) (2,0) (2,0)

(`2,m2) (3,−1) (3,−1) (2,−1) (3,−1) (2,−1) (3,−1) (2,−1) (3,−1) (3,−1) (3,−1)

(`3,m3) (3,1) (3,1) (3,1) (2,2) (2,2) (2,1) (2,2) (2,2) (1,0) (2,0)

(`4,m4) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1) (1,−1)

A1
p 0.23 0.30 0.27 0.23 0.18 0.23 0.28 0.30 0.23 0.23

A2
p 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03

A3
p 0.16 0.16 0.17 0.82 1.21 0.15 1.21 0.82 0.14 0.11

A4
p 0.25 0.25 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25

K1 40 40 40 40 40 40 40 40 40 40

K2 139 139 281 139 180 139 180 139 139 139

K3 19 19 15 11 9 19 9 11 42 42

K4 88 88 152 88 108 88 108 88 88 88

i 35 35 25 35 30 35 30 35 35 35

vΩ 20 20 20 20 20 20 20 20 20 20

σ 6 6 6 6 6 6 6 6 6 6

Σ 5.51 5.52 5.52 5.53 5.55 5.55 5.55 5.56 5.56 5.56
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The identification of the modes leads to exactly the same outcome as before, except

that the values of Ap differ. One can conclude that the uncertainty on the K-value does

not affect the identification of (`,m). This result is not too surprising since line-profile

variations of an SPB are mainly due to the horizontal velocity field variations and slightly

to the vertical ones. The relevant amplitude is then the horizontal one Ah = Ap K,

which is indeed found to be about the same for each of the modes in the two different

identifications.

One can also doubt the reliability of a mode identification for SPB stars by using

the non-rotating theory since their observed ratios of the rotational frequency to the

pulsational frequency are in general larger than 0.1. Again to test our mode identification,

we performed a new one using the formalism of Lee & Saio (1987, 1990). The K-values

are then computed using the co-rotating angular frequency related to the observed one by

σc = σobs+mΩ. The identification is given in the lower part of Table 5.12. This again leads

to a very similar outcome for the wavenumbers (`,m). Basically, the same combinations

for (`,m) occur each time. The K-values change considerably, but this is compensated by

the values for Ap and does not affect the mode identification appreciably. We do point out

that the formalism of Lee & Saio (1987, 1990) does not apply to modes with m = 0 so

that axisymmetric modes mentioned in the lower part of Table 5.12 were computed using

the non-rotating formalism.

It is clear that, particularly in the case of multiple g-modes, we need additional ob-

servational information to pinpoint definitely the wavenumbers (`,m) of all the different

modes. Our method, however, implies a serious improvement for the spectroscopic mode

identification in such cases. In the particular case of HD74195, De Cat et al. (2003) are

currently using Dupret et al.’s (2003) method in order to improve the photometric mode

identification. Line-profile fitting and an attempt at seismic modelling will be performed

after further elimination of combinations from Table 5.11 according to the multicolour

mode identification in progress and is beyond the scope of this thesis.

5.6 Conclusions

The study of the oscillations of a pulsating star allows us to probe its internal struc-

ture. A successful application of asteroseismic techniques requires the identification of

many pulsation modes. Therefore, high quality data as well as powerful mode identifica-

tion methods are needed. Among the techniques of mode identification from line-profile

variations, only the line-profile fitting method and the moment method derive the full

pulsational information. However, even with current computers, a simultaneous identi-

fication of multiple modes is not possible by direct line-profile fitting. Moreover, mode

identification with the moment method was still difficult for multiperiodic stars. Indeed,

because of large computation time, the previous version of the moment method did not

take into account coupling terms appearing in the second and third moments of a mul-
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tiperiodic star so that multiple modes were determined independently, often leading to

inconsistent values of the continuous velocity parameters.

We implemented a new numerical version of the moment method, which is efficient

in computation time and which identifies all the modes by requiring that the rotational

velocity, the inclination angle and the intrinsic line width have one unique value. Con-

sequently, all observed terms of the first three moments can be used, in particular the

constant term of the second moment which is an important constraint. By means of a

new discriminant which compares theoretical to observed first three moments, the new

version identifies the wavenumbers of the multiple modes simultaneously, leading to only

one derived value for vΩ, i, and σ.

We performed a large number of tests on artificial data representing the presence of

respectively one, two and three modes. It appears that the method performs very well on

synthetic datasets. An application to two β Cephei stars and one SPB star was done. We

subsequently plan to use the new version of the moment method in the near future to

several datasets of pulsating B stars of different kinds. Our new method is also relevant

to obtain reliable mode identification in multiperiodic bright δ Scuti and γDoradus stars.
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Chapter 6

Eight new northern SPBs

(this chapter was originally published as Mathias P., Aerts C., Briquet M., De Cat

P., Cuypers J., Van Winckel H., Le Contel J.M., 2001, A&A 379, 905, Spectroscopic

monitoring of 10 new northern slowly pulsating B star candidates discovered from the

HIPPARCOS mission)

6.1 Observations and programme stars

In 1998, a spectroscopic monitoring of ten selected candidate SPBs started in the north-

ern hemisphere (Mathias et al. 2001). The target SPBs were chosen from the brightest

ones among the many candidate new SPBs discovered from the HIPPARCOS mission

(Waelkens et al. 1998) and the observations were gathered with the AURELIE spec-

trograph at the Coudé focus at the 1.52 m telescope situated at the Observatoire de

Haute-Provence in France. A logbook of the eight dedicated observation campaigns is

given in Table 6.1. The target list, together with the observation parameters, are given in

Table 6.2. The spectral domain was chosen in order to get the Si II-doublet with lines at

λλ 4128, 4130 Å. It was [4085-4155] Å, containing also the Hδ line and the He I lines 4026

Å, 4120 Å and 4143 Å. The resolving power was around 15 000. The obtained raw spectra

were reduced by Dr. P. Mathias. Each spectrum has been corrected for the pixel-to-pixel

response by flat-field and offset spectra. The wavelength calibration was based upon about

30 lines of a thorium lamp. Finally, the spectra were normalized to the continuum by a

cubic spline function.

Some physical parameters of the programme stars are given in Table 6.3. The effective

temperature and the gravity were obtained by using the available Geneva photometric

indexes and by means of the calibration by North & Nicolet (1990). Masses were estimated

by interpolation between the evolutionary tracks published by Schaller et al. (1992).

In the following section, we present the frequency analysis performed on HIPPARCOS

photometry and on spectroscopic measurements (Sect. 6.2). In Sect. 6.3, we summarize

the outcome of this campaign for northern SPBs.

65
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Table 6.1: Overview of the spectroscopic campaigns. Columns are self-explanatory.

Period Nights Observer(s)

February 98 7 Mathias

June 98 5 Mathias

July 98 8 De Cat

August 98 6 Van Winckel

October 98 6 Mathias

December 98 8 Mathias

April 99 7 Aerts/Mathias

May 99 6 Briquet/Le Contel

Table 6.2: Observation summary for the different targets. The columns are: the HD
number of the SPB, its HR number (and name), the number of recorded spectra, the
covered time base (range, in days), the averaged exposure time (in minutes), and the 1-σ
averaged signal-to-noise ratio.

HD HR (name) Spectra Range Exposure S/N

1976 91 26 197 58 140

21071 1029 35 436 64 80

25558 1253 (40 Tau) 25 313 59 140

28114 1397 17 305 64 90

138764 5780 16 185 58 130

140873 5863 14 186 60 110

147394 6092 (τ Her) 280 460 15 190

182255 7358 (3 Vul) 53 348 48 150

206540 8292 25 159 77 100

208057 8356 (16 Peg) 36 201 52 140
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Table 6.3: Summary of the physical characteristics of the programme stars. For each star,
we give the HD number, the spectral type, the V-magnitude, log Teff , logL/L� and log g
provided by HIPPARCOS and Geneva photometry, stellar masses and radii interpolated
from Schaller et al. (1992), and the projected rotation velocity we measured from the
Si II-doublet. Note that, because we were unable to remove the lines of the companion for
HD140873, the corresponding vΩ value is omitted.

HD ST V log Teff logL/L� log g M/M� R/R� vΩ

1976 B5 IV 5.6 4.20 2.92 4.07 5.0 3.41 < 140

21071 B7V 6.1 4.15 2.53 4.36 4.1 2.21 < 62

25558 B3V 5.3 4.23 2.81 4.21 5.1 2.93 < 22

28114 B6 IV 6.1 4.16 3.02 4.03 5.0 3.57 < 11

138764 B6 IV 5.2 4.15 2.69 4.24 4.3 2.60 < 13

140873 B8 III 5.4 4.15 2.44 4.37 3.9 2.13 -

147394 B5 IV 3.9 4.17 2.80 4.00 5.0 3.70 < 36

182255 B6 III 5.2 4.15 2.60 4.28 4.2 2.46 < 14

206540 B5 IV 6.1 4.14 2.81 4.14 4.5 2.99 < 10

208057 B3Ve 5.1 4.23 2.87 4.12 5.2 3.28 < 110
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Figure 6.1: Phase diagrams of the Hp-data of HD1976. Left: fit for f1 = 0.93914 c d−1.
Right: fit on the residuals for f2 = 0.39934 c d−1.

6.2 Frequency analysis

For the ten stars, a search for multiperiodicity was performed in the HIPPARCOS pho-

tometry and in the radial velocity computed from both lines of the Si II-doublet and the

Hδ line. The radial velocity was computed as the mean of a gaussian fit to the whole

profile (only the line core for Hδ). However, because of the non-radial pulsations, the Si II

lines are very asymmetric. For this reason, the first moment as defined by Aerts et al.

(1992) was also used to calculate the radial velocity. The mean value of the radial velocity

determined from both methods and from the three lines was then considered.

The period analysis was performed by means of four methods: Fourier analysis,

CLEAN (Roberts et al. 1987), Vanicek (1971), and PDM (Stellingwerf 1978). For the

CLEAN method, 100 iterations were performed, with a gain of 0.5. For the PDM method,

the bin structure was (5,2). Frequencies were tested in the [0;3] c d−1 interval and a fre-

quency was accepted when it was found by each of the methods. Multiperiodicity was

searched by prewhitening. We note that the HIPPARCOS photometry allows the detec-

tion of multiperiodicity for SPBs (De Cat 2001) thanks to the appropriate time sampling

for finding periods of the order of one day and thanks to the long time base of 3.3 years.

The outcome of the period analysis for each star is described in the following.

HD 1976

In the HIPPARCOS photometry, two frequencies appear: f1 = 0.93914 c d−1 and f2 =

0.39934 c d−1. They have respectively an amplitude of 0.0097 mag and 0.0106 mag. The

standard deviation of the data is reduced from 0.0106 mag to 0.0062 mag after prewhiten-

ing with both frequencies. No third frequency could be found. Phase plots for both ac-

cepted frequencies are shown in Fig. 6.1.
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Figure 6.2: Phase diagrams of the Hp-data of HD21071. Left: fit for f1 = 1.18843 c d−1.
Right: fit on the residuals for f2 = 1.14942 c d−1.

The radial velocity has a large peak-to-peak amplitude of some 30 km s−1, which is

connected to the orbital motion of this spectroscopic binary. Tokovinin (1997) derived an

amplitude around 23.4 km s−1 and an orbital period of 25.44 d. After removing the orbital

motion from the radial-velocity variations, no well-defined frequency could be found.

However, there is some indication for the second frequency f2 found in the HIPPARCOS

data to be present in the line-profile variations.

HD21071

Two frequencies were derived from the space data: f1 = 1.18843 c d−1 with an amplitude

of 0.0190 mag and f2 = 1.14942 c d−1 with an amplitude of 0.0058 mag. They reduce the

standard deviation from 0.0175 mag to 0.0058 mag (Fig. 6.2).

The frequency analysis applied to the radial-velocity data leads to a common peak

around 1.14 c d−1, close to the f2 value derived from photometry. However, a harmonic fit

to the radial velocity with both frequencies f1 and f2 leads respectively to amplitudes of

3.3 and 0.9 km s−1. A phase diagram for f1 is shown in the left panel of Fig. 6.3. Note that

the radial-velocity variations reach a peak-to-peak amplitude around 13 km s−1, which is

large for an SPB (De Cat 2001) and might indicate that HD21071 is multiperiodic.

HD25558

For HD25558, only one clear frequency is found in the HIPPARCOS data: f1 = 0.65284

c d−1, which has an amplitude of 0.0181 mag and reduces the standard deviation from

0.0142 mag to 0.0067 mag (left panel of Fig. 6.4). Two candidate frequencies appear after

prewhitening: f2 = 0.7318 c d−1 and f ′
2 = 1.9298 c d−1. They both additionally reduce

the standard deviation by a millimag but cannot be accepted without futher observational

evidence.
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Figure 6.3: Phase diagram of the mean heliocentric velocities of HD21071 for f1 = 1.18843
c d−1 (left) and of HD25558 for f1 = 0.65284 c d−1 (right).

The different periodograms for the radial velocity show peaks in the neighbourhood

of the frequency f1, which accounts for 52% of the variance. Harmonic fits with f1 and f2

on the one hand, and with f1 and f ′
2 on the other hand, do not allow to choose the second

frequency. Amplitudes for f1 and f2 or f ′
2 are respectively 2.1 and 0.9 km s−1. The phase

diagrams for f1 is represented in the right panel of Fig. 6.3. The peak-to-peak amplitude

is 7 km s−1.

HD 28114

The frequency f1 = 0.79104 c d−1, with an amplitude of 0.0159 mag, is found in the

photometric data and reduces the standard deviation from 0.0132 mag to 0.0060 mag

(right panel of Fig. 6.4). The HIPPARCOS team gave a different frequency of 0.93 c d−1

but it reduces the standard deviation to only 0.0078 mag.

The low projected rotation velocity of the star allows to see the line-profile variations

immediately (Fig. 6.5). An amplitude of 1.7 km s−1 is found for f1. Wolff (1978) claims,

from 9 low-resolution spectrograms, that the star is a spectroscopic binary, with a 0.2-0.4

c d−1 orbital frequency and a peak-to-peak variation of 13 km s−1. It is very likely that

she misinterpreted the radial-velocity variations. The 17 spectra of HD28114 are by far

too few to disentangle the pulsational behaviour, but the clear profile variability allows

to conclude that the star pulsates with a velocity amplitude compatible with the one

reported by Wolff (1978).

HD 138764

HD138764 was already extensively studied by De Cat (2001) by means of spectra and

photometry taken from La Silla in Chile. This star is a slow rotator, with vΩ = 18

km s−1, and presents well-marked line-profile variations in the OHP spectra (Fig. 6.6).
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Figure 6.4: Left: phase diagram of the Hp-data of HD25558 for f1 = 0.65284 c d−1.
Right: phase diagram of the Hp-data of HD28114 for f1 = 0.79104 c d−1.

A frequency search in the radial velocity led to the value provided in De Cat (2001),

f1 = 0.7944 c d−1, with an amplitude of 4.7 km s−1 (Fig. 6.7). In De Cat (2001), the

second frequency f2 = 0.6372 c d−1 is reported. This frequency is also present in the OHP

spectra and corresponds to an amplitude of about 2 km s−1. We refer to De Cat (2001)

for a more detailed analysis.

HD140873

HD140873 was also already studied by De Cat (2001) by means of spectra and photometry

taken from La Silla in Chile. He showed that the star is a spectroscopic binary with a

39 d orbital period and an eccentric orbit. The large line-profile variations of the star

are due to both the pulsation of the primary, which has a quite high projected rotation

velocity and the presence of weak, sharp lines of the secondary. The northern data are

not numerous enough, and have a too low signal-to-noise ratio, to remove the lines of the

companion. Therefore no frequency search has been attempted. Note that De Cat (2001)

found the frequency f1 = 1.1515 c d−1.

HD147394

The first frequency found in the HIPPARCOS data of HD147394 is f1 = 0.80027 c d−1

with an amplitude of 0.0099 mag. It reduces the standard deviation to 0.0070 mag

(Fig. 6.8). Several frequencies are candidate after prewhitening with f1. They all reduce

the standard deviation to about 0.006 mag but it is not clear which one is the most likely.

After prewhitening with any of them, we find candidates for a third frequency which all

differ from each other.

Adelman et al. (2001) reported that on some of their high-resolution, high signal-

to-noise spectra, the metal lines are asymmetric. Line-profile variations have also been
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Figure 6.5: Line-profile variations of the Si II-doublet 4128-4130 Å for HD28114. Obser-
vation dates are indicated on the right of the panel (+2450850 JD).

Figure 6.6: Same as Fig. 6.5 but for the star HD138764.
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Figure 6.7: Same as Fig. 6.3, but for HD138764 for f1 = 0.7944 c d−1 (left) and for the
star HD182255 for f1 = 0.79220 c d−1 (right). Note that the orbital motion has been
removed first for HD182255.

reported by Masuda & Hirata (2000), who obtained 30 spectra in 5 nights for He I 4471 Å

and Mg II 4481 Å. From these data, these authors proposed one frequency: 0.855 c d−1

or its alias 1.866 c d−1. These two frequencies do not correspond to the main frequency

found in the HIPPARCOS data and account for less than 2% of the radial velocity vari-

ations. Our much more extensive dataset of 280 spectra provides a better view of the

line-profile variations and allows to find multiperiodicity. We refer to Chapter 7 for a

detailed spectroscopic analysis of the star.

HD182255

The Hp-measurements of HD182255 have a large standard deviation of 0.0192 mag. Three

frequencies are clearly present in these data: f1 = 0.79220 c d−1, f2 = 0.97191 c d−1 and

f3 = 0.47233 c d−1, with an amplitude of 0.0173 mag, 0.0155 mag and 0.0065 mag

respectively. The three frequencies together reduce the standard deviation to 0.0086 mag.

Two additional candidate frequencies appeared after subsequent prewhitening. They occur

in a less convincing way than the first three ones: f4 = 1.14708 c d−1 with an amplitude

of 0.0058 mag and f5 = 0.65933 c d−1 with an amplitude of 0.0046 mag. The phase

plots for the first three frequencies are shown in Fig. 6.9. After prewhitening with the five

frequencies, we obtain a standard deviation of 0.007 mag.

Line-profile variations of this star were first reported by Hube & Aikman (1991), who

observed “traveling bumps” in the Si II-doublet profiles and classify the star as a member

of the 53 Persei class. Therefore, HD182255 must be regarded as an already known,

confirmed SPB before the present study. Its clear line-profile variations (Fig. 6.11) are

easily seen thanks to the low projected rotation velocity. These variations are superposed

on line shifts due to orbital motion. Indeed, HD182255 is a member of a single-lined

spectroscopic binary which has an orbital period of 367 d (Hube & Aikman 1991).
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Figure 6.8: Phase diagram of the Hp-data of HD147394 for f1 = 0.80027 c d−1.

The frequency analysis after removal of the orbital motion, according to the orbital

elements given in Hube & Aikman (1991), leads to the two frequencies f1 and f2. The

amplitude of f1 amounts to 3.5 km s−1 and the one of f2 is around 2.1 km s−1. The other

frequencies are not significantly present in the spectroscopic data. The resulting phase

diagram for f1, free of the binary motion, is represented in the right panel of Fig. 6.7.

Hence, HD182255 has a complex pulsational pattern with at least three, and possibly

five, non-radial g-modes. Since there are many modes excited in this SPB, our current

spectroscopic data are unfortunately not numerous enough to perform detailed modelling

of the modes.

HD 206540

The standard deviation of the HIPPARCOS dataset of HD206540 is 0.0132 mag. The

search for a main frequency results in two competing candidate aliases: f1 = 0.65359

c d−1 and f ′
1 = 0.76237 c d−1. One cannot prefer one above the other on the basis of the

reduction in standard deviation, amplitude or phase diagram (Top panels of Fig. 6.10).

The HIPPARCOS team reports a frequency of 0.69 c d−1, which is close to the average of

the two candidates. This star has a complex variability pattern in the space photometry,

with at least three frequencies, but it is not possible to derive one unique most likely

solution because several combinations of three periods lead to fits of the same quality.

Line-profile variations are well seen for this star (Fig. 6.12) with its low projected

rotation velocity. The HIPPARCOS catalogue frequency 0.694 c d−1 is not present in our

periodograms of the radial velocity dataset either. Our spectroscopic data are too limited

to perform an independent frequency search. A comparison between sine-fits for f1 and f ′
1

leads to the conclusion that f ′
1 is the dominant frequency in the radial-velocity variations.
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Figure 6.9: Phase diagrams of the Hp-data of HD182255. The different panels display
the data after subsequent prewhitening stages. From top to bottom: f1 = 0.79220 c d−1,
f2 = 0.97191 c d−1, f3 = 0.47233 c d−1.
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Figure 6.10: Top: phase diagrams of the Hp-data of HD206540 for f1 = 0.6536 c d−1 (left)
and for f ′

1 = 0.7624 c d−1 (right). Bottom: phase diagrams of the Hp-data of HD208057
for f1 = 0.80172 c d−1 (left) and of the residuals for f2 = 0.89045 c d−1 (right).
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Figure 6.11: Same as Fig. 6.5, but for the star HD182255.

Figure 6.12: Same as Fig. 6.5, but for the star HD206540.
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HD 208057

Two frequencies emerge clearly from the period search in the Hp-data: f1 = 0.80172

c d−1 with an amplitude of 0.0097 mag and f2 = 0.89045 c d−1 with an amplitude of

0.0079 mag. They reduce the standard deviation from 0.0114 mag to 0.0058 mag (Bottom

panels of Fig. 6.10). After subsequent prewhitening we find additional evidence of another

frequency, but we cannot choose between the three candidates around 0.5844, 0.9406 and

1.4403 c d−1.

This SPB has very broad lines due to the high projected rotation velocity. Therefore,

line-profile variations, although present, are not easily seen. A frequency search on the

radial-velocity datasets reveals a long period around 25 d, which might point towards

binarity. In the range of SPB-like periods, no clear peak is present. Therefore we imposed

the two frequencies found in the space photometry. Both are present in the variations,

the “dominant” one being f2. The peak-to-peak amplitude is around 13 km s−1. This,

together with the observation that the average velocity changes from one observing season

to another, allows to suspect that the variability in the radial velocity is not caused

by pulsations alone. We therefore tentatively propose that HD208057 is a long-period

spectroscopic binary, although this star has no known companion (Abt & Cardona 1984).

6.3 Summary

From this study, we conclude the following. All stars, except HD28114, show evidence of

multiperiodicity, confirming their pulsational nature. HD28114 should be still considered

as an SPB candidate since Adelman & Philip (1996) found abundances for this star to

be compatible with values for normal main-sequence stars of similar temperatures. Note

that all other targets have never been mentioned as CP stars. Each star shows line-profile

variations with periods of the order of days. Except for HD1976 and HD208057, the main

photometric frequency is also the main spectroscopic frequency, which means that these

stars have a dominant low-degree mode. We note that additional spectroscopic observa-

tions are needed before concluding that, for both exceptions, the observed photometric

variability is mainly due to a low-degree mode while the observed spectroscopic variabil-

ity is dominated by a high-degree mode. Indeed, both stars are rapid rotators, for which

the determination of the velocity curve is difficult and they are members or suspected

members of binary systems. In Table 6.4, a summary of the outcome of the frequency

analysis is given together with the values of the pulsation constant Qp computed from

the frequencies found in the photometry. Finally, we point out that we have sufficient

spectra for only one star, HD147394, to find multiperiodic signals in the line profiles and

use these to undertake a mode identification, which is done in Chapter 7.
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Table 6.4: Summary of the HIPPARCOS data used and of the results of the frequency analyses

for 8 northern SPBs (for the results on HD 138764 and HD 140873 we refer to De Cat 2001).

T stands for the total time span in days and N for the number of data points. σ denotes the

original standard deviation of the data, σN the standard deviation due to the errors of the

measurements, and σres the standard deviation of the residuals after prewhitening with all the

listed frequencies fp. All standard deviations are expressed in magnitudes. Successively are then

given the accepted frequencies in the photometric (fp) and spectroscopic (fs) data [c d−1], and

the pulsation constant Qp [d] computed from the photometric frequencies.

HD T N σ σN σres fp fs Qp

1976 1173 188 0.0106 0.0055 0.0062 0.93914 0.39934 0.38
0.39934 0.89

21071 905 85 0.0175 0.0060 0.0059 1.18843 1.18843 0.52
1.14942 0.54

25558 766 90 0.0142 0.0045 0.0057 0.65284 0.65284 0.69
0.7318? 0.61
1.9298? 0.23

28114 919 56 0.0132 0.0065 0.0076 0.79104 0.79104 0.42
147394 1192 116 0.0095 0.0036 0.0059 0.80027 0.80027 0.44

0.7813
182255 1040 204 0.0192 0.0054 0.0086 0.79220 0.79220 0.67

0.97191 0.97191 0.55
0.47233 1.13
1.14708? 0.46
0.65933? 0.81

206540 1084 98 0.0132 0.0063 0.0076 0.65359 0.76237 0.63
0.76237 0.54

208057 1113 88 0.0114 0.0047 0.0058 0.80172 0.89045 0.48
0.89045 0.43

All eight target stars are currently being monitored in Geneva photometry with the

Mercator telescope at La Palma, Spain. This photometric monitoring will continue during

several years and will allow us to derive much more complete frequency spectra of the

lowest degree modes in the forthcoming years.





Chapter 7

The SPB star HD147394

(this chapter is published as Briquet M., Aerts C., Mathias P., Scuflaire R., Noels

A., 2003, A&A 401, 281, Spectroscopic mode identification for the slowly pulsating B star

HD147394)

7.1 Introduction

This chapter is devoted to the analysis of HD147394. It is the SPB for which most high-

resolution spectra are available thus far. We performed a frequency analysis on these

data, followed by a mode identification from the line-profile variations. The plan of the

chapter is the following. In Sect. 7.2 we give a description of our data and we derive some

physical parameters of HD147394. The results of the frequency analysis from derived

quantities based upon the spectroscopic observations are described in Sect. 7.3. In Sect. 7.4

we identify the modes of HD147394 by means of our new version of the moment method

(Chapter 5). As this is one of the first spectroscopic mode identifications ever done for

an SPB, we compare our identification results with theoretical pulsation models as a

compatibility check in Sect. 7.5. Finally, we give a summary in Sect. 7.6.

7.2 Data and physical parameters

We selected HD147394 among the many SPBs discovered from the HIPPARCOS mission

(Waelkens et al. 1998) so that we have at our disposal HIPPARCOS photometry, which

clearly reveals the frequency 0.80027 c d−1 (Mathias et al. 2001, Sect. 6.2). We note that

this dataset shows evidence of multiperiodicity but a value for a second frequency is not

clear.

Line-profile variations have already been reported by Masuda & Hirata (2000), who

gathered 30 spectra in 5 nights. We have a much more extensive dataset which consists

in 250 useful spectra obtained with the spectrograph Aurélie at OHP during 6 separate

weeks of monitoring spread over 460 days. The number of observations and the ranges of

81
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Table 7.1: Observing logbook of our spectroscopy of HD147394.

Number of JD
observations 2450850 +

Start End

47 1 6
14 113 117
14 155 162
13 186 192
117 431 437
45 457 461

their Julian Dates are given in Table 7.1. The spectral domain is limited and was chosen

in order to get the Si II-doublet with lines at λλ 4128, 4130 Å. The signal-to-noise ratio is

about 200. For a complete description of the observations and data reductions we refer to

Mathias et al. (2001). Fig. 7.1 represents several of the observed line-profile variations.

We also have a few Geneva data points at our disposal of the star from which we

derive the stellar parameters, as the spectra have only very small spectral coverage. The

effective temperature and the gravity of HD147394 are obtained by means of the photo-

metric calibration by Künzli et al. (1997) to the mean magnitudes in the Geneva filters.

The distance, derived from the parallax measured by HIPPARCOS, and the average vi-

sual magnitude, give the absolute visual magnitude. Taking into account the bolometric

correction (BC), which is calculated by means of Flower’s relation (1996) between Teff

and BC, one obtains the bolometric magnitude and the luminosity. With the values for

the effective temperature and the luminosity one estimates the mass, e.g. by using the

evolutionary tracks published by Schaller et al. (1992). We also calculated the radius. The

results are the following:































log Teff = 4.17 ± 0.01,
log g = 4.00 ± 0.15,
logL/L� = 2.80 ± 0.15,
M = 5.0 ± 0.5 M�,
R = 3.7 ± 0.8 R�.

Because we have only a few Geneva data, we checked our result with those available in the

literature and derived from spectroscopic data. In Smith (1997), we found logTeff = 4.18

and log g = 3.93, which is in agreement with our estimates based on the Geneva pho-

tometry. Smith & Dworetsky (1993) have found the star to have solar iron abundance

(log N(Fe) = 7.65 ± 0.15).
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Figure 7.1: Line-profile variations of the Si II 4128-4130 Å doublet. Observation dates are
indicated on the right of the panel (+2450850 JD).

Figure 7.2: Position of HD147394 in the HR diagram. The theoretical SPB instability
strip is calculated by Pamyatnykh (1999). The star is situated on the evolutionary track
published by Schaller et al. (1992) corresponding to some 5 M�.
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The position of this B 5 IV star in the theoretical HR diagram falls in the centre of

the SPB instability strip (see Fig. 7.2).

7.3 Frequency analysis

We extracted the measurements of the doublet Si II centered at λλ 4128, 4130 Å. From

these spectral lines we computed the first three velocity moments < v >, < v2 > and

< v3 > with the aim of performing a frequency analysis. We used the PDM method

(Stellingwerf 1978), Scargle method (Scargle 1981) and the CLEAN method (Roberts et

al. 1987). We tested frequencies from 0 to 3 cycles per day (c d−1) with a frequency step

of 0.0001 c d−1. The error estimate of our determined frequencies is between 0.0001 c d−1

and 0.001 c d−1. We obtained the same results with the three methods and for both Si

lines.

In < v >, < v2 > and < v3 >, we found the frequency f1 = 0.8008 c d−1, which

corresponds to the frequency found in the HIPPARCOS data. After prewhitening of the

data with this dominant frequency, we obtained a second frequency clearly present in

< v > and < v3 >, which is f2 = 0.7813 c d−1. These two frequencies reduce the standard

deviation of the first moment by 50%. Note that a fit for 1 + f2 is slightly less good. f1

and 1 + f2 reduce the standard deviation by 48%. A fit with f1 and 1 + f2 leads to a

smaller amplitude for the second mode compared to a fit with f1 and f2: 1.70 km s−1 for

1 + f2 instead of 2.05 km s−1 for f2. We then kept f2 for the second frequency. Scargle

periodograms are shown in Fig. 7.3 and phase diagrams of the first moment for the Si II

4130 Å line are shown in Fig. 7.4.

After prewhitening of the data with f1 and f2, the residuals show evidence of a third

frequency. Two frequencies are apparent: f3 = 0.7175 c d−1 or f ′
3 = 0.6710 c d−1. The first

one (f3) occurs after prewhitening with f1 and f2 (see third panel of Fig. 7.3) while the

second one (f ′
3) is the highest peak if we prewhiten with slightly different values for f1 and

f2 (e.g. 0.8006 c d−1 and 0.7814 c d−1) within the error estimate. Together with f1 and

f2, they reduce respectively 61% and 59% of the standard deviation in the first moment.

Phase diagrams of the radial velocity, prewhitened with f1 and f2, for f3 = 0.7175 c d−1

and for f ′
3 = 0.6710 c d−1 are shown in Fig. 7.4. We note that f3 reduces the standard

deviation slightly better than f ′
3. The difference between both candidate frequencies is

0.0465 c d−1, which corresponds to about three weeks. We also notice that the time span

between two missions of observations is about three weeks or about a multiple of three

weeks except between the second and third missions. This indicates that the frequencies

may be aliases. We computed the window function for frequencies between 0.0001 c d−1

and 10 c d−1 with a step of 0.0001 c d−1. The 15 highest peaks of this function are listed

in Table 7.2. The 14-th peak is exactly 0.0465 c d−1. One also remarks that only four

frequencies of the list are independent. We conclude that f3 and f ′
3 are aliases due to the

time sampling. We also note that additional aliases of f3 and f ′
3 cannot be excluded (see
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Figure 7.3: From top to bottom: Scargle periodograms of the radial velocity derived from
the Si II 4130 Å line, of this data prewhitened with f1, of this data prewhitened with f1

and f2, of this data prewhitened with f1, f2 and f3. The 4 S/N level is situated at 0.74
km s−1 in the third panel.
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Figure 7.4: Left: upper panel: phase diagram of the radial velocity computed from the Si II
4130 Å line for f1 = 0.8008 c d−1. Lower panel: phase diagram of the data prewhitened
with f1 for f2 = 0.7813 c d−1. Right: upper panel: phase diagram of the radial velocity
computed from the Si II 4130 Å line, prewhitened with f1 and f2, for f3 = 0.7175 c d−1.
Lower panel: phase diagram of the data prewhitened with f1 and f2, for f ′

3 = 0.6710
c d−1.
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Table 7.2: Highest peaks in the window function (expressed in c d−1).

p1 1.0001 p9 0.0024
p2 1.0026 p10 1.0070
p3 0.0068 p11 0.0397
p4 0.9957 p12 0.9629
p5 0.0440 p13 0.9561
p6 0.0372 p14 0.0465
p7 1.0398 p15 2.0027
p8 0.0044

third panel of Fig. 7.3). In the following, we continue to work with f3 and f ′
3, just to see

if our results for the two main modes f1 and f2 are influenced by using different values

for the frequency of the third mode.

In order to determine the significance of both aliases, we considered the 4 S/N criterion

introduced by Breger et al. (1993). We refer to Sect. 4.1.3 for a definition of the noise level.

In Fig. 7.3 we show the Scargle periodogram. As the 4 S/N level is 0.74 km s−1, both aliases

must be retained based on this criterion.

The amplitudes and phases of the least-squares sine fits to the observed first moment

for the combinations f1, f2, f3 and f1, f2, f
′
3 are listed in Table 7.3.

7.4 Mode identification with the moment method

A mode identification was performed by means of our new version of the moment method

(Chapter 5). Because of the alias problem for the third mode, we identified modes simul-

taneously for both the combination f1, f2 and f3 and the combination f1, f2 and f ′
3 in

order to check the consistency of the results. Moreover, for both cases, we performed one

identification by using the non-rotating formalism and one identification by using Lee &

Saio’s formalism (1987, 1990).

To compute the theoretical moments, we took a linear limb-darkening coefficient u of

0.36 (see e.g. Wade & Rucinski 1985). To identify the modes, we covered the parameter

space by varying the free parameters in the following way: the projected rotational velocity

vΩ from 1 to 35 km s−1 with a step 1 km s−1, the inclination of the star i from 5◦ to 90◦

with a step 5◦, the line-profile width from 1 to 20 km s−1 with a step 1 km s−1. We used the

K-value given by K = GM/σ2R3, where M is the mass, R the radius and σ the angular

pulsation frequency. For each tested (`,m, i), the velocity amplitude Ap was chosen so

that the theoretical amplitudes of the first moment are equal to the observed ones (see

Table 7.3).
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Table 7.3: Amplitudes and phases of the least-squares sine fits to the observed first
moment computed from the Si II 4130 Å line, together with their standard errors for f1,
f2 and f3, for f1, f2 and f ′

3.

Amplitude (km s−1) Phase (degrees)

f1 3.28 ± 0.11 109 ± 2
f2 2.05 ± 0.11 136 ± 2
f3 1.37 ± 0.11 60 ± 5

f1 3.07 ± 0.12 108 ± 2
f2 1.84 ± 0.12 135 ± 3
f ′

3 1.07 ± 0.11 152 ± 6

The results of the mode identification by means of the non-rotating formalism using

f1, f2 and f3 and using f1, f2 and f ′
3 are given in respectively the upper and lower part

of Table 7.4. We used K1 = 11, K2 = 12, K3 = 14 and K ′
3 = 16. We first of all find

that the discriminating function Σ has lower values for the combination f1, f2, f3, giving

slight preference for that combination. A clear conclusion is that none of the three modes

is axisymmetric. One can conclude that the choice of the frequency for the third mode

does not influence the idenfication of the second mode, for which we systematically find

(`2, m2) = (3,−1) or (2,−1). The most likely identification for f1 is (`1, m1) = (1, 1),

although (3,−2) and (2,−2) also occur among the best possibilities. The second solution

may then point towards components of a multiplet, as f1, f2 are close frequencies. One

also remarks that, even if it is difficult to determine the third mode, both identifications

do not differ very much.

We then performed a mode identification by means of Lee & Saio’s formalism. The

K-values were computed using the co-rotating angular frequency related to the observed

one by σc = σobs + mΩ, where Ω is the angular frequency of rotation. We checked each

time if the K-values remain sufficiently low in order to obtain physically relevant velocity

values, i.e. we eliminate too large K-values. For computation time reasons, we tested vΩ

from 5 to 35 km s−1 with a step 5 km s−1. The results using f1, f2 and f3 and using f1, f2

and f ′
3 are given in respectively the upper and lower part of Table 7.5. The identifications

for the first and second modes are confirmed and do not change compared to those derived

with the neglect of the effect of rotation.

We find systematically a projected rotational velocity above 9 km s−1. Assuming that

the rotation frequency equals f1−f2 = 0.0195 c d−1 leads to an equatorial rotation velocity

of only 3.7 km s−1. This excludes the possibility that f1 and f2 correspond to subsequent

components of one multiplet.
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Table 7.4: The ten best solutions of the mode identification by means of the non-rotating
formalism through the discriminant Σ, using the Si II 4130 Å line. Ap is the amplitude
of the radial part of the pulsation velocity, expressed in km s−1; vr,max and vt,max are
respectively the maximum radial and tangential surface velocity due to the three modes,
expressed in km s−1; i is the inclination angle; vΩ is the projected rotational velocity,
expressed in km s−1 and σ is the intrinsic line-profile width, also expressed in km s−1. The
second-but-last column contains the solution that occurs at position 20. The upper and
lower part of the table correspond respectively to an identification for f1, f2, f3 and for
f1, f2, f

′
3.

(`1,m1) (1,1) (3,−2) (1,1) (3,−2) (1,1) (3,−2) (1,1) (1,1) (2,−2) (2,−2) . . . (3,−2) . . .

(`2,m2) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (2,−1) (2,−1) (2,−1) (2,−1) . . . (3,−1) . . .

(`3,m3) (1,1) (3,−2) (2,−2) (1,1) (2,−1) (2,−2) (3,−1) (1,1) (1,1) (3,−1) . . . (5,4) . . .

A1
p 1.94 1.29 1.94 1.29 1.94 1.29 1.60 1.60 0.91 0.91 . . . 1.29 . . .

A2
p 1.78 1.78 1.78 1.78 1.78 1.78 3.12 3.12 3.12 3.12 . . . 1.78 . . .

A3
p 0.66 0.43 0.46 0.66 0.32 0.46 0.55 0.54 0.54 0.55 . . . 2.22 . . .

vr,max 1.29 0.61 1.17 0.67 1.21 0.63 0.73 0.72 0.28 0.26 . . . 0.61 . . .

vt,max 7.28 17.37 8.84 13.83 4.75 14.6 28.7 29.1 29.5 29.1 . . . 51.40 . . .

i 55 55 55 55 55 55 85 85 85 85 . . . 55 . . .

vΩ 23 12 25 11 19 11 35 35 35 35 . . . 12 . . .

σ 17 19 16 19 18 19 11 11 11 11 . . . 7 . . .

Σ 5.95 5.97 5.97 5.99 6.03 6.04 6.04 6.04 6.07 6.07 . . . 6.14 . . .

(`1,m1) (1,1) (1,1) (1,1) (2,−2) (2,−2) (2,−2) (3,−3) (1,1) (1,1) (2,−2) . . . (2,−2) . . .

(`2,m2) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (2,−1) (3,−1) . . . (3,−1) . . .

(`′

3,m
′

3) (2,−2) (2,−1) (1,1) (2,−2) (1,1) (2,−1) (5,−3) (1,0) (5,3) (5,−3) . . . (2,0) . . .

A1
p 1.82 1.59 1.59 0.96 0.96 0.96 1.20 1.82 1.50 0.86 . . . 0.96 . . .

A2
p 1.59 2.16 2.16 2.16 2.16 2.16 1.00 1.59 2.80 0.88 . . . 2.16 . . .

A
′
3

p 0.31 0.32 0.40 0.23 0.40 0.32 2.39 0.46 1.80 1.80 . . . 0.39 . . .

vr,max 0.99 1.22 1.35 0.29 0.52 0.39 0.78 1.12 0.27 0.65 . . . 0.50 . . .

vt,max 5.44 4.23 4.55 4.53 4.48 3.58 29.0 3.62 33.1 26.4 . . . 4.50 . . .

i 55 70 70 70 70 70 80 55 85 85 . . . 70 . . .

vΩ 20 27 27 27 31 27 9 20 29 20 . . . 27 . . .

σ 18 15 15 15 13 15 3 18 3 12 . . . 15 . . .

Σ 6.08 6.09 6.10 6.10 6.12 6.12 6.13 6.13 6.14 6.14 . . . 6.17 . . .
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Table 7.5: The ten best solutions of the mode identification by means of Lee & Saio’s
formalism through the discriminant Σ, using the Si II 4130 Å line. The meanings of the
symbols are the same as in Table 7.4. The second-but-last column contains the solution
that occurs at position 20. The upper and lower part correspond respectively to an iden-
tification for f1, f2, f3 and for f1, f2, f

′
3.

(`1,m1) (1,1) (3−2) (1,1) (1,1) (3,−2) (2,−2) (2,−2) (2,−2) (3,−2) (3,−2) . . . (2,−1) . . .

(`2,m2) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) . . . (3,−1) . . .

(`3,m3) (2,−2) (1,1) (1,1) (2,−1) (2,−2) (1,1) (2,−2) (2,−1) (3,−3) (2,−1) . . . (2,−2) . . .

A1
p 2.20 0.93 2.20 2.20 0.93 0.44 0.44 0.44 0.76 0.93 . . . 0.42 . . .

A2
p 1.11 1.47 1.11 1.11 1.47 0.74 0.74 0.74 1.29 1.47 . . . 0.36 . . .

A3
p 0.21 0.72 0.76 0.22 0.33 0.80 0.12 0.17 0.28 0.27 . . . 0.07 . . .

vr,max 1.09 0.58 1.22 1.10 0.51 0.23 0.14 0.11 0.45 0.50 . . . 0.14 . . .

vt,max 9.22 14.86 6.42 4.93 15.91 12.68 16.88 11.53 21.48 16.43 . . . 12.36 . . .

K1 8.47 16.33 8.47 8.47 16.33 43.54 43.54 43.54 20.04 16.33 . . . 23.60 . . .

K2 17.32 14.32 17.32 17.32 14.32 21.37 21.37 21.37 15.71 14.32 . . . 25.34 . . .

K3 35.16 11.99 10.22 21.29 21.30 8.81 68.44 26.90 40.78 17.26 . . . 137.01 . . .

i 55 55 55 55 55 55 55 55 55 55 . . . 50 . . .

vΩ 20 10 20 20 10 30 30 30 15 10 . . . 35 . . .

σ 18 19 18 18 19 14 14 14 18 19 . . . 12 . . .

Σ 6.08 6.09 6.10 6.13 6.14 6.14 6.14 6.15 6.16 6.17 . . . 6.21 . . .

(`1,m1) (1,1) (1,1) (1,1) (2,−2) (2,−2) (2,−2) (1,1) (3,−3) (3,−1) (3,−3) . . . (3−3) . . .

(`2,m2) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−1) (3,−2) (2,−2) (3,−2) . . . (3,−2) . . .

(`′

3,m
′

3) (2,−1) (2,−2) (2,1) (1,0) (2,−1) (2,−2) (1,0) (2,−2) (2,−2) (3,−3) . . . (3,−1) . . .

A1
p 2.06 2.06 2.06 0.66 0.66 0.66 2.06 0.77 0.79 0.77 . . . 0.77 . . .

A2
p 0.99 0.99 0.99 0.99 0.99 0.99 0.99 2.35 1.15 2.35 . . . 2.35 . . .

A
′
3

p 0.14 0.13 0.28 0.46 0.14 0.13 0.46 0.16 0.45 0.17 . . . 0.32 . . .

vr,max 1.02 0.96 1.01 0.13 0.14 0.10 1.01 0.30 0.42 0.31 . . . 0.17 . . .

vt,max 3.07 5.70 5.66 8.18 8.09 12.35 3.34 40.11 29.30 40.31 . . . 39.32 . . .

K1 8.47 8.47 8.47 25.15 25.15 25.15 8.47 17.93 15.24 17.93 . . . 17.93 . . .

K2 17.32 17.32 17.32 17.32 17.32 17.32 17.32 16.16 22.77 16.16 . . . 16.16 . . .

K ′

3 25.11 43.57 11.44 16.31 25.11 43.57 16.31 23.10 35.08 28.21 . . . 19.26 . . .

i 55 55 55 55 55 55 55 85 30 85 . . . 85 . . .

vΩ 20 20 20 20 20 20 20 10 10 10 . . . 10 . . .

σ 18 18 18 18 18 18 18 17 20 17 . . . 17 . . .

Σ 6.25 6.26 6.27 6.27 6.27 6.27 6.28 6.29 6.29 6.29 . . . 6.32 . . .
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Figure 7.5: Comparisons between the observed first three moments (dots) to four of
the best solutions (full lines) given in italic in Table 7.4. The dashed line represents the
solution that occurs at position 20 in Table 7.4. Left: from top to bottom: phase diagram
for f1 of < v > prewhitened with f2 and f3, phase diagram for f2 of < v > prewhitened
with f1 and f3, phase diagram for f3 of < v > prewhitened with f1 and f2. Middle: from
top to bottom: phase diagram for f1 of < v2 > prewhitened with all frequencies except
f1 and 2f1, phase diagram for f2 of < v2 > prewhitened with all frequencies except f2

and 2f2, phase diagram for f3 of < v2 > prewhitened with all frequencies except f3 and
2f3. Right: from top to bottom: phase diagram for f1 of < v3 > prewhitened with all
frequencies except f1, 2f1 and 3f1, phase diagram for f2 of < v3 > prewhitened with all
frequencies except f2, 2f2 and 3f2, phase diagram for f3 of < v3 > prewhitened with all
frequencies except f3, 2f3 and 3f3. Note that the errors on < v >, < v2 > and < v3 >
are respectively given by 0.45 km s−1, 20 (km s−1)2 and 1000 (km s−1)3.
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Given that we cannot discriminate well between f3, f
′
3 and other aliases due to bad

time sampling, and that a biperiodic solution explains only about 50% of the standard

deviation present in the first moment, we do not attempt line-profile fitting with the best

candidate modes found in Table 7.4 for f1 and f2. Indeed, we cannot hope to discriminate

between such fits in a meaningful way, as there is clearly still variability due to at least

one, and probably even more, low-amplitude modes. Such modes are sort of filtered out

in the moment variations but not in the line profiles themselves. For this reason, we have

determined theoretical values for < v >, < v2 > and < v3 > for the best solutions listed

in the upper panel of Table 7.4. For four of these solutions, we compare the moment values

with the observed ones in Fig. 7.5. The four solutions are indicated in italic in Table 7.4. We

point out that all first 15 best solutions result in very similar moment values and that we

are unable to discriminate between the different possibilities for the mode identification.

The only result that we can conclude upon with certainty is that we are dealing with non-

axisymmetric ` ≤ 3 modes. Additional data with full coverage of the overall beat-period

is needed to obtain unique mode identifications. A visual check shows that the (`,m)

combinations from position 16 onwards explain less well the observed moment variations.

For comparison, we also list in Table 7.4, and show in Fig. 7.5, the solution that occurs on

position 20. One can see from the dashed line in the lowest and rightmost panel of Fig. 7.5

that this solution leads to a too large amplitude for f3 in the third moment. Moreover,

its maximal tangential velocity is quite high. We conclude that we cannot discriminate

between some 15-20 solutions from the discriminant. It will become possible to obtain

unambiguous mode identifications for this star if we are able to detect a limited number

of additional modes, by combining the results of the discriminant and of seismic models

(see further below).

For all solutions i ∈ [50◦;85◦], vΩ ∈ [10;35] km s−1. For the radius 3.7 R�, this leads

to a rotation period between 4.3 and 18.7 days.

7.5 Comparison with theoretical pulsation models

The mode identification for f1 and f2 is the first one derived from a spectroscopic time

series for this SPB. Moreover, we find evidence for an ` = 3 mode, which is seldom ob-

served in pulsating stars. In order to check if such a solution is compatible with theoretical

model predictions, we have determined evolutionary model sequences from the main se-

quence that pass the position of HD147394 in the HR diagram (see Fig. 7.6) with the

Code Liégeois d’Évolution Stellaire written by Dr. R. Scuflaire, assuming no convective

overshooting. For each model with 4.15 ≤ logTeff ≤ 4.19 we have subsequently calculated

the oscillation frequencies using a standard adiabatic code (Boury et al. 1975). For each

evolutionary sequence, we have selected the models which give an exact fit for f1 and f2

according to the identification (`1, m1) = (1, 1) and (`2, m2) = (3,−1), taking into account

the Ledoux rotational splitting constant and by varying the equatorial rotation velocity
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Figure 7.6: Evolutionary tracks of a 5 M� star without overshooting, with X = 0.70
and for different values of the metallicity Z, computed with CLES. The box delimits
the position of HD147394 in the HR diagram derived from photometry. Dots represent
models that fit f1 and f2 according to the mode identification (`1, m1) = (1, 1) and
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in the range [10;50] km s−1 with a step of 0.1 km s−1. Fig. 7.7 represents theoretical fre-

quencies compared to observed ones for one of the many models that we found compatible

with the observations. For this example, f1 corresponds to the g12 mode and f2 to the

g40 mode. We note that, even with a constraint coming from mode identification, the

sets of theoretical frequencies are quite dense, which makes it difficult to find one unique

solution, especially as the rotation frequency is also a free parameter to a certain extent.

We have limited to the combination (`1, m1) = (1, 1) and (`2, m2) = (3,−1) for our

compatibility check with the models. We stress, however, that other mode identifications

would also lead to agreement with models of slightly different stellar parameters.

7.6 Summary

Our study of the slowly pulsating B star HD147394 was based on 250 high-resolution high

signal-to-noise spectra spread over 460 days. The moment variations of the Si II 4128-4130

Å doublet clearly reveal multiperiodicity with frequencies f1 = 0.8008 c d−1, f2 = 0.7813

c d−1 and f3 = 0.7175 c d−1 or its aliases due to the time sampling. We performed a

mode identification by means of our new version of the moment method which identifies

multiple modes simultaneously, leading to only one derived estimate for vΩ, i and σ for

each of the (`,m) combinations. We did it by using the non-rotating formalism as well

as the one derived by Lee & Saio (1987, 1990) for low-frequency g-mode pulsators. Both

identifications lead to almost the same list of best candidate solutions whatever is the

chosen value for the third frequency. The identification for the modes is not unique but

we conclude that they are non-axisymmetric with ` ≤ 3. The rotation period of the star

must be between 4 and 19 days.

It turns out that less than 20 combinations of (`,m) are found to be equivalent by

the discriminant for this SPB. It therefore should be possible to derive correct mode

identifications from the discriminant and seismic modelling should we detect a small

additional number of modes in the star.



Part III

Analyses of chemically peculiar
B stars
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The stars HD131120 and HD55522 were originally in the list of candidate SPBs discovered

from the HIPPARCOS mission (Waelkens et al. 1998). Together with the supposedly Be

star HD105382 and the Bp star HD138769, they showed line-profile variations similar

to those of SPBs at first sight and hence were kept in photometric and spectroscopic

observing runs led for the study of slowly pulsating B stars. In this part we show that these

four stars are distinguishable from confirmed SPBs (De Cat 2001, Mathias et al. 2001)

and we present the results of our line-profile modelling in terms of rotational modulation

instead of stellar pulsation.
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Chapter 8

The B 2.5 III star HD131120

(part of this chapter was originally published as Briquet M., De Cat P., Aerts C.,

Scuflaire R., 2001, A&A 380, 177, The B-type variable HD131120 modelled by rotational

modulation)

8.1 Introduction

The star HD131120 was classified as an SPB from the HIPPARCOS mission (Waelkens

et al. 1998). However, this star shows peculiarities compared to confirmed SPBs (De Cat

2001). In Aerts et al. (1999) it is pointed out that only one frequency is found in the data

of this star, while other SPBs are multiperiodic. Moreover, the first moment of the Si II

4128-4130 Å lines is non-sinusoidal: the first harmonic of the frequency found is necessary

to obtain a good fit.

In this thesis we compare the observed photometric data and line-profile variations

of HD131120 with a non-radial pulsation (NRP) model and with a spot model in order

to conclude on the best explanation for the origin of the periodic variability in the star.

The chapter is organized as follows. In Sect. 8.2 the description of the data and some

physical parameters are given. In Sect. 8.3 the result of the frequency analysis on the data

is described. In Sect. 8.4 we attempt to perform a mode identification. We do this for

the photometric data using the method of photometric amplitudes. For the spectroscopic

data we use both the moment method and line-profile fitting. Then we try to model the

variations with a rotational modulation model (Sect. 8.5). The outcome of the modelling

of the variations of the star is discussed in Sect. 8.6.

8.2 Data and physical parameters

We have three datasets at our disposal: HIPPARCOS photometry, multicolour Geneva

photometry and high-resolution spectroscopic data. The Geneva photometric observations

were obtained with the Swiss telescope situated at La Silla in Chile, during several 3-weeks

99
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Table 8.1: Observing log for Geneva photometry (upper) and spectroscopy (lower).

Number of JD
observations 2450000 +

Start End

32 485 503
69 541 583
7 588 601

27 163 170
15 188 194
13 272 277
4 490 498
4 513 528
6 571 576
8 633 638

runs in the course of 1997. The spectroscopic data were obtained with the CAT/CES

telescope of ESO in Chile, during 7 separate weeks of monitoring spread over 1996-1998.

The spectral domain was [4115,4135] Å in order to get the Si II-doublet with lines at

λλ 4128, 4130 Å. The signal-to-noise ratio is about 400. The number of observations and

the ranges of their Julian Dates are given in Table 8.1 for the Geneva photometry and the

spectroscopy. For a complete description of the observations and data reductions we refer

to Aerts et al. (1999) and De Cat (2001).

In Aerts et al. (1999) some physical parameters of the star are given. They are:































log Teff = 4.26 ± 0.01,
log g = 4.1 ± 0.15,
logL/L� = 3.13 ± 0.15,
M = 6.1 ± 0.6 M�,
R = 3.6 ± 0.8 R�.

de Geus et al. (1989) found similar values for the parameters of the star: log Teff = 4.27,

log g = 4.22 and logL/L� = 3. In Borra et al. (1983) a photometric spectral type with ob-

served UBV colors is given for the star, which is B 2.5. With these parameters, HD131120

is situated in the upper part of the SPB instability domain, close to the β Cep instability

domain (see e.g. Pamyatnykh 1999).
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Table 8.2: Standard deviation of the Geneva data in the different filters and of the residuals
after fitting with a sine for the frequency f = 0.6374 c d−1.

Filter Standard deviation

Data Residuals

U 0.0151 0.0091

B1 0.0120 0.0072

B 0.0106 0.0065

B2 0.0111 0.0073

V1 0.0090 0.0058

V 0.0091 0.0055

G 0.0096 0.0059

8.3 Frequency analysis

The frequency analysis on the three datasets was performed using the PDM method

(Stellingwerf 1978) and the CLEAN method (Roberts et al. 1987). We refer to Chapter 4

for a description of these methods. We tested frequencies from 0 to 3 cycles per day

(c d−1) with a frequency step of 0.0001 c d−1 and we searched for multiple periods by

prewhitening.

The frequency of 0.6374 c d−1 is found in the HIPPARCOS photometry. The same

frequency is obtained from the Geneva data in the 7 filters. In Table 8.2 the standard

deviation of the data in the different filters is given as well as the one of the residuals after

fitting with a sine. A phase diagram for the U-filter is shown in Fig. 8.1. This frequency

reduces the standard deviation in the U filter by 40%. An additional frequency cannot be

found either in the HIPPARCOS data or in the Geneva data.

From the doublet Si II centered at λλ 4128, 4130 Å we computed the first moment and

performed a frequency analysis. We again obtained the frequency 0.6374 c d−1. A sine

fit to the first moment for this frequency explains 67% of the standard deviation and a

slightly better fit leading to a reduction in standard deviation of 69% is obtained with its

first harmonic included (see upper panel of Fig. 8.2). No other frequency can be found in

the data and it is clear that this star is monoperiodic.

8.4 Non-radial pulsation model

In order to confront the observations with a NRP model we have to make a mode identi-

fication. To this end we used the method of photometric amplitudes, the moment method
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Figure 8.1: Phase diagram of the U-magnitude data (dots) and the best sinusoidal fit (full
line) for the indicated frequency.

and the line-profile fitting technique. In this section, the photometric method is briefly

described. For a full description, we refer to Heynderickx et al. (1994). For spectroscopic

methods, we refer to Part I of this thesis.

8.4.1 The Geneva photometric data

The method of photometric amplitudes as described by Watson (1988) allows us to de-

rive the degree ` of the pulsation mode from multicolour photometry by comparing the

observed amplitudes at some wavelengths (i.e. those of the central wavelengths of the

passbands of the used photometric system) with the theoretical amplitudes calculated for

several values of ` and a free parameter S taking into account non-adiabatics effects (S ∈
[0;1], 0: fully non-adiabatic, 1: adiabatic). As the theoretical amplitudes are proportional

to an unknown wavelength-independent function, ratios of the amplitudes are considered

in order to eliminate this function. In Table 8.3 we give the amplitudes obtained with a

sine fit for the separate Geneva filters, together with the amplitude ratios with respect

to the U-filter. We refer to Heynderickx et al. (1994) for a full description of the method

we used in this work. In general the mode identification by this method is successful for

β Cep stars (see e.g. Heynderickx et al. 1994) and SPBs (De Cat 2001). We adopt here

the formalism and notation introduced by De Cat (2001). For HD131120 we tested `

from 0 to 7 and we choose the degree ` using a discriminant η`(S). This discriminant is

the square root of the sum of squares of the differences between the observed and theo-

retical amplitude ratios divided by 7. For each ` we determine the value of S for which

the discriminant η`(S) is minimal. Then we choose the mode for which the discriminant

attains the lowest value. The minima of the discriminant η` are given in the left columns

of Table 8.4. The best solutions are ` = 1, 2, 4 and 6. They all have very similar values

for the discriminant and so are equivalent in quality. Moreover the derived amplitude
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Table 8.3: Amplitudes of the least-squares sine fits to the Geneva data in the different
filters, computed together with their standard errors using the SAS-software package.
Ratios of the amplitudes with respect to the U-filter are also listed.

Filter Amplitude Ratio

U 0.0183 ± 0.0013 1

B1 0.0145 ± 0.0010 0.792 ± 0.077

B 0.0125 ± 0.0009 0.685 ± 0.069

B2 0.0123 ± 0.0010 0.672 ± 0.072

V1 0.0103 ± 0.0008 0.566 ± 0.060

V 0.0109 ± 0.0008 0.599 ± 0.058

G 0.0111 ± 0.0008 0.608 ± 0.061

ratios have a large uncertainty (see Table 8.3). This observational uncertainty is larger

than the difference between the competing pulsational models. We then conclude that the

photometric data do not allow us to determine the degree `, should the star be oscillating.

8.4.2 The spectroscopic data

8.4.2.1 Mode identification by the moment method

We calculated the first three observed moments of a line profile < v >, < v2 > and

< v3 > (Chapter 5). For the first moment we only found the frequency f = 0.6374 c d−1.

The linear pulsation theory predicts that < v2 > varies with both f and 2f while < v3 >

varies with f , 2f and 3f . In order to compare the frequencies found in the observed

moments to the theoretical predictions we performed a frequency analysis on the observed

moments. In the second moment, it was not possible to determine a frequency and in the

third moment we found only the frequency f = 0.6374 c d−1. A phase diagram for the

frequency f = 0.6374 c d−1 for < v >, < v2 > and < v3 > is shown in Fig. 8.2. It is clear

that the second moment does not vary with f nor with 2f . Such a situation does not

correspond to linear pulsation theory as described above. We also computed the moment

of order zero, which is the equivalent width of the line. The same frequency of 0.6374

c d−1 is present in it and a phase diagram is shown in Fig. 8.3. We point out that the

relative EW variation is about 10%. Such a large value is not encountered for confirmed

SPBs (see De Cat 2001).

To perform a mode identification, we used the 1996 version of the moment method

for which the discriminant is a function of the differences between the observed and

theoretically calculated amplitudes of the first three moments (Aerts 1996). For each set
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Figure 8.2: Phase diagrams of the first three moments of the Si II 4128 Å line. We show
the observed values (dots), the fit using 0.6374 c d−1 and its first harmonic (solid line),
and the moments of the best spot model (dashed line).
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the dashed line.

Table 8.4: Left: the different minima of the discriminant η` of the method of photometric
amplitudes together with the most likely value of the free parameter S taking into account
non-adiabatic effects. Right: the different minima of the discriminant Γm` of the moment
method for the Si II 4128 Å line for the best solutions. vp is the amplitude of the radial
part of the pulsation velocity, expressed in km s−1; i is the inclination angle; vΩ is the
projected rotational velocity, expressed in km s−1 and σ is the intrinsic line-profile width,
also expressed in km s−1.

` η` S ` m Γm` vp i vΩ σ

1 0.025 0.09 3 0 0.30 0.2 63◦ 57 5

4 0.034 0.14 3 ± 1 0.31 0.2 33◦ 57 3

2 0.038 1.00 1 0 0.34 0.5 76◦ 41 20

6 0.068 0.07 1 ± 1 0.38 0.8 11◦ 57 2

5 0.133 1.00 3 ± 2 0.39 0.3 73◦ 44 17

7 0.135 1.00 2 0 0.43 0.4 68◦ 48 15

3 0.172 1.00 2 ± 2 0.46 0.2 31◦ 53 12
...

...
...

...
...

...
...
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of wavenumbers (`,m) we determine the values of vp, i, vΩ and σ for which the discriminant

Γm` (vp, i, vΩ, σ) is minimal. Then we chose the mode for which the discriminant attains

the lowest value.

The outcome of the mode identification with the discriminant is listed in the right

columns of Table 8.4 for the best solutions in parameter space. We tested ` from 0 to 6.

The other velocity parameters were varied in the interval [0.1; 2] km s−1 with a step 0.1

km s−1 for the amplitude of the radial part of the pulsation velocity vp, [1◦; 90◦] with a

step 1◦ for the inclination angle i, [40; 70] km s−1 with a step 1 km s−1 for the projected

rotational velocity vΩ and [1; 20] km s−1 with a step 1 km s−1 for the intrinsic line-profile

width σ. The more probable mode is (`,m) = (3, 0). However, there are other candidates

of almost equal probability, as can be seen in Table 8.4.

Unfortunately no confidence intervals for the minima of the discriminant and the

corresponding velocity parameters vp, i, vΩ and σ can be determined. Consequently

we generated theoretical line-profile variations for the modes for which the discriminant

attains the lowest value (see Table 8.4) in order to choose the mode which gives the best

fit compared to the observed line-profile variations. We found that the smallest standard

deviation in the intensity averaged over all profiles Σ has about the same value for the

most likely modes listed in Table 8.4, which is 0.004 and we are then again not able to

determine the most likely mode from the discriminant.

8.4.2.2 Mode identification by line-profile fitting

For a comparison between observed line-profile variations with theoretically calculated

ones, we used Townsend’s (1997) code, BRUCE. We refer to Chapter 3 for a description

of the modelling of the line-profile variations.

We search for the parameters for which the calculated profiles best fit the observed

profiles by considering a large grid of possible wavenumbers and parameters. In order to

keep the computation time feasible we averaged out all the observed profiles in phase

bins of 0.05 of the variability cycle and worked with these 20 averaged observed profiles.

They are shown as dotted lines in Fig. 8.4. The observed profiles are compared to the

theoretical profiles and to their orthogonal symmetric profiles in order not to favour a

sense of rotation. As a measure of the goodness of fit we use the standard deviation Σ in

the intensity averaged over all profiles. The most likely mode and parameters are those

that minimize Σ.

First we consider only the velocity perturbation and we cover the parameter space by

varying the free parameters in the following way: ` from 0 to 6, the projected rotational

velocity vΩ from 30 to 60 km s−1 with a step 5 km s−1, the angle of inclination between

the rotation axis and the line of sight i from 10◦ to 90◦ with a step 10◦, the amplitude

of the radial part of the pulsation velocity Ap from 2 to 20 km s−1 with a step 2 km s−1

(Ap from 0.5 to 1.5 km s−1 with a step 0.5 km s−1 for modes with m = 0), the intrinsic
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Figure 8.4: Observed line profiles of the Si II 4128 Å line (dots) averaged over phase bins
of 0.05 and theoretical line profiles (full lines) for the NRP model with (`,m) = (2, 0).
The theoretical profiles were adjusted to have the same equivalent width as the observed
profiles.
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line-profile width σ from 2.5 to 20 km s−1 with a step 2.5 km s−1, the initial phase of

the mode from 0 to 0.95 period with a step 0.05 period. Then we consider adiabatic

temperature variations and used theoretical intrinsic profiles kindly provided by Dr. T.

Rivinius. These are constructed using the atmospheric codes ATLAS 9 and BHT (Baschek-

Holweger-Traving, see Gummersbach et al. 1998) and fixing the microturbulence at 2

km s−1. Finally we consider non-adiabatic temperature effects by introducing two extra

parameters which are the non-adiabatic temperature perturbation scaling factor ∆T and

the non-adiabatic temperature perturbation phase shift ψT . We take ∆T from 0.2 to 1

with a step 0.2 and ψT from 0◦ to 360◦ with a step 45◦.

The parameters that give the smallest Σ are:














































































` = 2,

m = 0,

vΩ = 55 km s−1,

i = 90◦,

Ap = 0.5 km s−1,

∆T = 0.2,

ψT = 180◦,

K = 24,

Σ = 0.0040 continuum units.

We note that the amplitude of light variability corresponding to this solution is about 0.02

mag, which is compatible with the observed one. The fit for these parameters is shown in

Fig. 8.4. This solution leads to the same line-profile variations as the solution without the

inclusion of temperature effects and is not able to reproduce the large observed equivalent

width variation. The theoretical profiles were adjusted to have the same equivalent width

as the observed profiles. We note that these profiles for (`,m) = (2, 0) are not very different

from those corresponding with the other (`,m) combinations listed in Table 8.4. All NRP

solutions lead more or less to the same value of Σ. Thus we have shown that the pulsation

hypothesis does not agree well with the data.

8.5 Rotational modulation model

8.5.1 A Bp star

We searched the literature for chemical inhomogeneities in this star. Hiltner et al. (1969)

indeed classified HD131120 as a Bp star and reported spectral peculiarities similar to

those found in 3 Sco and HD144334. These latter stars appear to be He-weak Si stars

(see Garrison 1967 and Norris 1971). The average equivalent width of the He I 4121 Å

line measured in our data is about 68.9 mÅ. By comparing this value with the ones for

normal B 2.5 stars in Didelon (1982), we can confirm that HD131120 is a He-weak star.

We note that, in SIMBAD, we find a MK spectral type of B 7, which is misleading as it
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relies on He line strengths. The average equivalent width of the Si II 4128 Å line is about

95.7 mÅ which is quite normal for a B 2.5 star.

The chemically peculiar Bp stars show monoperiodic variations. Whenever light and

line-profile variations are present, the same frequency is found in both datasets. The

observed periods range from 1 to 20 days in the majority of cases. The periods show an

inverse correlation with the projected rotational velocity. All these characteristics indicate

that the variations of Bp stars are due to rotational modulation. Moreover, up to now,

the variability of He-weak stars is explained by the rotation of the star in the presence of

a non-homogeneous distribution of helium on the stellar surface.

8.5.2 Model with two spots

We compared the line-profile observations of HD131120 with a rotational modulation

model by using a code kindly put at our disposal by Dr. L. Balona (Chapter 3). We

took the equatorial and polar radii Re = Rp = 3.6 R�, the equatorial and polar fluxes

Fe = Fp = 1 and the linear limb-darkening coefficient u = 0.36.

As HD131120 appears to be a He-weak star, it was important to test the rotational

modulation model also on the He I 4121 Å line. First we computed the first three moments

of this line. The frequency search again leads to f1 = 0.6375 c d−1 and f2 = 2f1 = 1.275

c d−1 for < v > and < v3 >. No frequency can be found for < v2 >. The frequency f1

and its first harmonic f2 reduce the standard deviation by 53% for < v > and by about

37% for < v3 >. A phase diagram for the frequency f1 = 0.6375 c d−1 for < v >, < v2 >

and < v3 > is shown in Fig. 8.5. Fig. 8.6 shows that the EW also varies with the same

frequency. The relative EW variation of the He I line is about 16%.

We point out that the first moment of the Si II 4128 Å line and of the He I 4121 Å line

do not have the same form. This observation is an additional strong argument against a

NRP model. Morever, they are not in phase. This is not compatible with a NRP model.

Such variations can be reproduced by a spot model if the difference of longitude

between a spot of Si and a spot of He is 180◦. They can also appear if for one spot silicon

is overabundant and helium is underabundant or silicon is underabundant and helium is

overabundant.

A non-sinusoidal first moment with f and 2f can be obtained if we consider two spots

of the same element, which have a longitude difference of 180◦. Two spots give 13 free

parameters to fit the line profiles, which leads to an enormous computational time. In

order to reproduce the form of the first moment, we decided to test the following cases:


































λ1 = λ2 + 180◦,

β1 = β2 ,

γ1 = γ2,

F1 6= F2,

σs1 = σs2,
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and



































λ1 = λ2 + 180◦,

β1 = β2 ,

γ1 6= γ2,

F1 = F2,

σs1 = σs2,

where the indices 1 and 2 are respectively for the first spot and the second spot. We refer

to Chapter 3 for the meanings of the symbols. We compared such a spot model to both

the He line and the Si line. We again determine the parameters for which the theoretical

profiles best fit the observations by minimizing the standard deviation Σ in the intensity

over all profiles as done for the fitting with BRUCE. Then the parameters were varied

around the best set of parameters in order to refine the solution.

For the He line, the following parameters lead to a good fit, as we can see in Fig. 8.7:















































































λ1 = 90◦, λ2 = 280◦,

β1 = 50◦, β2 = 80◦,

γ1 = 60◦, γ2 = 60◦,

F1 = 0.35, F2 = 0.4,

vΩ = 54 km s−1,

i = 30◦,

σi = 12 km s−1,

σs = 12 km s−1,

Σ = 0.0022 continuum units.

In Fig. 8.5 the first three moments of the theoretical profiles shown in Fig. 8.7 are

compared to the ones of the observed profiles of He. In Fig. 8.6 the variation of the

theoretical EW is compared to the observed EW variation. It results that the behaviour

of the observed moments is well reproduced by the theoretical moments.

For the Si line, we also obtain a good fitting with these parameters (see Fig. 8.7):















































































λ1 = 310◦, λ2 = 130◦,

β1 = 70◦, β2 = 70◦,

γ1 = 80◦, γ2 = 80◦,

F1 = 1.4, F2 = 1.9,

vΩ = 54 km s−1,

i = 30◦,

σi = 12 km s−1,

σs = 12 km s−1,

Σ = 0.0026 continuum units.
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Figure 8.5: Phase diagrams of the first three moments of the He I 4121 Å line. We show
the observed values (dots), the fit using 0.6375 c d−1 and its first harmonic (solid line),
and the moments of the best spot model (dashed line).
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Figure 8.6: Phase diagram of the equivalent width of the He I 4121 Å line, which is
expressed in Å. The comparison with the equivalent width for the best spot model is
represented as a dashed line.

In Fig. 8.2 the first three moments of the theoretical profiles are compared to those of

the observed profiles of Si and in Fig. 8.3 we show the comparison between the observed

and theoretical EW variations of the Si line. Again we find a good agreement between

observed moments and theoretical moments. We note that the amplitude of the theoretical

second moment is very small, which is compatible with the fact that the observed second

moment is very noisy.

We point out that the models for the He line and for the Si line are compatible

since they have the same value for the parameters vΩ and i. We also point out that we

end up with a model for which helium is underabundant in huge spots while silicon is

overabundant there. This naturally explains the very weak He line and the strong Si line.

It would be interesting to compute the variation of the luminosity of HD131120 in

order to compare it to the observed photometric amplitudes. As we do not know if the

star presents additional non-homogeneous distributions of other elements on the stellar

surface, we cannot compute this variation as long as we do not have a complete view of

the chemical abundances.

8.5.3 Abundance surface mapping

Our analysis described in the previous sections clearly shows that the observed monope-

riodic variability of HD131120 is due to its rotation and inhomogeneities of elements on

its stellar surface. The best method available to map surface abundances of CP stars is
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Figure 8.7: Observed line profiles (dots) of the He I 4121 Å line (left) and of the Si II 4128
Å line (right) averaged over phase bins of 0.05 and theoretical line profiles (full lines) for
the spot model with two spots.
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the Doppler Imaging technique (Chapter 4). With the help of Theresa Lüftinger (Vienna

University) and thanks to the code INVERS11 kindly put at our disposal by Prof. N.

Piskunov, we mapped the surface silicon and helium abundance by using the Si II-doublet

with lines at λλ 4128, 4130 Å, the He I 4121 Å line and the He I 4143 Å line.

We varied the parameters Teff and log g around their values derived from Geneva

photometry. All derived maps showed very similar distributions of elements. We then

decided to choose the maps for the Teff and log g values found from Geneva data. To

illustrate it, Fig. 8.8 and Fig. 8.9 correspond respectively to Teff = 18 600 K, log g = 4.2

(values found by de Geus 1989) and Teff = 18 250 K, log g = 4.1. The figures are divided

as follows:

’a’ is the mercator projection of the abundance distribution and comprises contour lines

around regions of equal abundance.

’b’ shows the mapped stellar surface in four rotational phases (0.0, 0.25, 0.5, 0.75). Below

each phase, values for the mean abundance averaged over the visible part can be found.

Dark colour means high, bright colour means low abundance.

The projected rotational velocity vΩ was derived so that theoretical profiles repro-

duce the observed width of the line. The angle of inclination i was determined from

Pobs = 2πR sin i/vΩ by taking into account an uncertainty on the stellar radius R. Con-

sequently we varied vΩ from 55 km s−1 to 65 km s−1 with a step of 5 km s−1 and i

from 20◦ to 60◦ with a step of 10◦. We then chose the combination of parameters which

minimizes the residuals between observations and the computed line profiles. Note that a

difference of 10◦ for the inclination does not change very much the outcome, as illustrated

by comparing Fig. 8.9 and Fig. 8.10.

The final maps were computed for Teff = 18 250 K, log g = 4.1, vΩ = 60 km s−1 and

i = 30◦. Fig. 8.9 was derived from the He I 4121 Å line, Fig. 8.10 from the same line but

for i = 40◦, Fig. 8.11 from the He I 4143 Å line, Fig. 8.12 from the He I 4121 Å line taking

into account the blends of Fe and O and Fig. 8.13 from the Si II-doublet with lines at

λλ 4128, 4130 Å. Taking into account blends of other elements evidently gives a better fit

but does not change the structure of the maps. Fig. 8.14 compares the observed and the

calculated He and Si profiles at different phases of observation from phase zero (top) to

the end of the rotation period (bottom).

Fig. 8.11 and Fig. 8.12 show that helium is globally significantly depleted at the stellar

surface relative to solar abundance (−1.05 dex). Both figures show the same distribution

of helium while they were derived from different lines, which gives confidence in our result.

We note that the He I 4143 Å line is significantly blended by lines of other elements, and

shows relatively large deviations for the fits for this line. A comparison between, on the

one hand Fig. 8.11 and Fig. 8.12, and on the other hand Fig. 8.13, shows that helium is

enhanced in regions of the stellar surface where silicon is depleted and inversely. We note

that this result is entirely compatible with the one that we obtained in the previous section

using a simple model with two spots for direct line-profile fitting.
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Figure 8.8: The helium distribution on the surface of HD131120 obtained with INVERS11
from the He I 4121 Å line for Teff = 18 600 K, log g = 4.2, vΩ = 60 km s−1 and i = 30◦.
For further explanation we refer to the text.

Figure 8.9: The helium distribution on the surface of HD131120 obtained with INVERS11
from the He I 4121 Å line for Teff = 18 250 K, log g = 4.1, vΩ = 60 km s−1 and i = 30◦.
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Figure 8.10: The helium distribution on the surface of HD131120 obtained with IN-
VERS11 from the He I 4121 Å line for Teff = 18 250 K, log g = 4.1, vΩ = 60 km s−1 and
i = 40◦.

Figure 8.11: The helium distribution on the surface of HD131120 obtained with IN-
VERS11 from the He I 4143 Å line for Teff = 18 250 K, log g = 4.1, vΩ = 60 km s−1 and
i = 30◦.
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Figure 8.12: The helium distribution on the surface of HD131120 obtained with IN-
VERS11 from the He I 4121 Å line for Teff = 18 250 K, log g = 4.1, vΩ = 60 km s−1 and
i = 30◦, taking into account the blends of Fe and O.

Figure 8.13: The silicon distribution on the surface of HD131120 obtained with IN-
VERS11 from the Si II 4128-4130 Å doublet for Teff = 18 250 K, log g = 4.1, vΩ = 60
km s−1 and i = 30◦.
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Figure 8.14: Observed line profiles (crosses) of the Si II 4128-4130 Å lines (left) and of
the He I 4121 Å line (right) at different phases of observation and computed line profiles
(full lines) obtained with INVERS11.
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8.6 Conclusions

Our study of the star HD131120 was based on multicolour photometry and high-resolution

spectroscopy spread over respectively one and two years. From the period analysis on all

the data it is clear that this star is monoperiodic with a period of 1.569 days. We compared

the variations in the data with a non-radial pulsation model. The mode identification by

three methods does not allow to choose one particular pulsation mode. Moreover, the line-

profile behaviour of the Si and He lines is very different as far as the temporal behaviour

and phasing is concerned. Such a difference cannot be explained by a pulsational model.

Next we tried to interpret the monoperiodic variations by rotational modulation. We

compared the line-profile variations with a model with two spots in order to reproduce the

first moment of the observed spectral lines. This leads to very good results for both He and

Si lines. The best spot model is able to reproduce the behaviour of the first three moments

of the lines, as well as the large equivalent width variations. Moreover, we showed that

a spot model can well explain the different temporal behaviour of the moments of the

two different lines. We conclude that rotational modulation is the best explanation of the

variability of HD131120 and remove the star from the list of SPBs.

Finally, we mapped surface abundance distributions for helium and silicon by means

of the Doppler Imaging technique. We confirm that the star is a He-weak star for which

helium is globally significantly depleted on the stellar surface. Regions more enhanced in

helium are depleted in silicon. The presence of such surface inhomogeneities for Ap stars

are generally correlated to an observed magnetic field. The search for a magnetic field for

HD131120 was done by Borra et al. (1983) who concluded that the observed magnetic

field strength of 106 ± 168 Gauss is not significant. New detections with higher precision

would be needed in order to definitely conclude on the presence or not of a weak magnetic

field for the star.





Chapter 9

The B 2 IIIe star HD 105382

(part of this chapter was originally published as Briquet M., Aerts C., De Cat P., 2001,

A&A 366, 121, Optical variability of the B-type star HD105382: pulsation or rotation?)

9.1 Introduction

In Briquet et al. (2001) we have made an extensive study of the B 2 IIIe star HD105382

by means of multicolour photometry and high-resolution spectroscopy spread over respec-

tively one and two years. We confronted the line-profile variations with both a non-radial

pulsation model and with a spot model. The latter model gives a slightly better explana-

tion for the line-profile variations, but the difference between the rivalling hypotheses was

only marginal. In fact, none of the two models was able to explain the variability in a sat-

isfactory way. The true nature of HD105382 remained a puzzle. This analysis illustrates

the fact that to derive a correct interpretation of the variability of one single line can

be difficult. Another example is the one of the analyses of high-quality line-profile varia-

tions of the Be star 28CMa. Balona et al. (1999) have interpreted the observed variations

in terms of a spot model, while Maintz et al. (2000) were able to produce a successful

pulsation model to explain the data.

Together with HD105382 two other stars in the sample of selected SPBs (Aerts et

al. 1999) have line profiles that vary in a similar way to those of HD131120: the star

HD138769 which is reported as a Bp star and HD55522 for which chemical peculiarities

were never reported before. As for HD131120, a comparison of the moment variations of

the silicon lines to the ones of a helium line allowed us to exclude the pulsation model

for the three stars. We hence interpret their observed variations in terms of a rotational

modulation model and we derive abundance maps for both elements on the stellar surface

by means of the Doppler Imaging technique.

This chapter is devoted to HD105382 and is organized as follows. In Sect. 9.2 we

disprove the Be nature of the star. In Sect. 9.3 we describe the observations that we have

at our disposal and we derive some physical parameters of the star. The frequency analysis
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is given in Sect. 9.4. The variations of the moments of a Si line and a He line are described

in Sect. 9.5. Abundance distributions on the stellar surface of both elements are derived

in Sect. 9.6. A summary is finally given in Sect. 9.7.

9.2 Disproving the Be nature of the star

Different opinions about the Be character of HD105382 are present in the literature.

The star was classified as a Be star by Hiltner et al. (1969), who found clear emission

in the Balmer lines. On the other hand, Dachs et al. (1981) took spectrograms in 1978

and concluded that the star should be deleted from all Be catalogues. Next, Aerts (2000)

reports a clear broad Hα emission profile, which shows double-peaked emission with a

maximum of 7.5 continuum units observed in May 1996. Rivinius (private communication)

pointed out to us that the Hα spectrum shown in Aerts (2000) is very alike the one he took

in May 1996 of the B 2 IV e star δCen, who is situated only a few arcminutes away from

HD105382. Moreover, he found HD105382 to exhibit absorption in Hα in January 2000.

Because of these contradictions, we have subsequently taken several high-resolution Hα

spectra during two weeks in February 2000, all of which are narrow and show absorption.

We note that all our data taken for HD105382 were obtained by remote control from

Garching, so that the observer has only a very limited view of the sky.

Other authors also disprove the Be nature of the star. Slettebak et al. (1975) found

that no emission is visible in April 1974 and that the spectral type (B 2 III ne) by Hiltner

et al. (1969) appears to be too early. We note that this spectral type is also the one of

δ Cen. Claria et al. (1981) obtained Hα and Hβ observations of a group of normal B and

Be stars, among which HD105382 that they classified as normal. We therefore conclude

that HD105382 was confused several times with δ Cen and that it is not a Be star.

9.3 Data and physical parameters

The satellite HIPPARCOS made 172 useful measurements of HD105382 spread over a

little more than 3 years. Measurements in the Geneva seven colour photometric system

were obtained in 1997. We have 105 spectra gathered with the CAT/CES during 10

separate weeks of monitoring spread over 1996-1998. The number of observations and the

ranges of their Julian Dates are given in Table 9.1.

The effective temperature and the gravity of HD105382 are obtained by means of the

photometric calibration by Künzli et al. (1997) to the mean magnitudes in the Geneva

filters. The parallax measured by HIPPARCOS provides the distance. This, together

with the average visual magnitude, gives the absolute visual magnitude. One obtains the

bolometric magnitude and consequently the luminosity taking into account the bolometric

correction (BC), which is calculated by means of Flower’s relation (1996) between Teff

and BC. With the values for the effective temperature and the luminosity one estimates
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Table 9.1: Observing log for Geneva photometry (upper) and spectroscopy (lower).

Number of JD
observations 2450000 +

Start End

64 465 503
67 541 578
1 588 588

44 163 170
12 188 194
11 272 277
10 490 498
4 513 528
3 571 576
1 608 608
7 633 638
3 779 786
8 825 831
2 882 882

the mass by using the evolutionary tracks published by Schaller et al. (1992). We also

calculated the radius. The results are:



































log Teff = 4.24 ± 0.01,

log g = 4.18 ± 0.15,

logL/L� = 2.89 ± 0.15,

M = 5.7 ± 0.4 M�,

R = 3.0 ± 0.6 R�.

With these parameters HD105382 is situated in the upper and blue part of the SPB

instability domain (see e.g. Pamyatnykh 1999).

9.4 Frequency analysis

We performed a frequency analysis on the photometric and spectroscopic data by means

of the PDM method (Stellingwerf 1978) and the CLEAN method (Roberts et al. 1987).

We tested frequencies from 0 to 3 cycles per day (c d−1) with a frequency step of 0.00001

c d−1.
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Figure 9.1: Θ -statistic of the HIPPARCOS photometric data.

The HIPPARCOS and Geneva photometric data

The Θ -statistic for the HIPPARCOS photometric data is represented in Fig. 9.1. The

frequency which corresponds to the minimum of Θ is 0.77213 c d−1. A phase diagram

with this frequency in terms of a least-squares sine fit, is shown in the left panel of Fig. 9.2.

This frequency reduces the standard deviation by 63%. Once we had found a significant

frequency we searched for an additional frequency. To do so, we subtracted the sine fit

from the measurements (i.e we prewhitened the data with the significant frequency) in

order to apply the PDM method on the residuals. We obtained a variance of the residuals

comparable with the mean error of the measurements and we could not find another

frequency.

Geneva data also reveal the frequency 0.77214 c d−1. A phase diagram with this

frequency for the filter U is shown in the right panel of Fig. 9.2. Again we do not find an

additional frequency.

The spectroscopic data

We extracted the measurements of the doublet Si II centered at λλ 4128, 4130 Å. From

these spectral lines we computed the first moment with the aim of performing a frequency

analysis. For each of the lines we found subsequently f = 0.7721 c d−1, 2f and 3f . The

outcome of the CLEAN method for the different steps of the frequency search on the first

moment of the Si II 4128 Å line is represented in Fig. 9.3. After prewhitening with f , 2f ,

3f , no periodicity is present any more in the data. A phase diagram of < v > for f , 2f

and 3f is shown in the upper left panel of Fig. 9.4.
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Figure 9.2: Phase diagrams of the HIPPARCOS photometric data and of the U-magnitude
data. The dots are the observations and the full line is the best sinusoidal fit with the
indicated frequency.

9.5 Moment variations

In order to compare the observations to theoretical predictions of a non-radial pulsation

model, we also computed the second and third moments of the Si II 4128 Å line and we

performed a frequency analysis on them. In the second moment we found the frequency

2.3163 c d−1 = 3f only, while f = 0.7721 c d−1 was found as single frequency in the

third moment. We do not obtain the frequencies expected from the theory of non-radial

oscillations, so we conclude that the silicon moment variations of HD105382 (see left part

of Fig. 9.4) are not typical for a standard linear pulsational model.

We then computed the first three moments of the He I 4121 Å line in order to compare

their temporal variations to those of the Si lines. In < v > we found subsequently 2f and

f , which reduce together the standard deviation by 65%. In < v2 > we found subsequently

2f , f and 3f . In < v3 > we found 2f . Phase diagrams for < v >, < v2 > and < v3 >

computed from the He line are shown in the right part of Fig. 9.4.

A comparison of the behaviour of both lines allows to conclude that the cause of the

observed variability of the star cannot be stellar pulsation. Indeed, for a pulsating star,

we recall that the temporal behaviour and phasing of the moments are the same whatever

is the line. Moreover the amplitude of the first moment, which is the radial velocity in the

case of pulsation, does not depend too much on the lines for SPBs. Clearly, for HD105382,

the frequency 2f dominates the moments of the He line while it is the frequency f for

the Si line. The minimum value for < v > and < v3 > of the Si line corresponds to a

maximum value for the He line. The peak-to-peak amplitude in < v > obtained from the

He line is about 20 km s−1 while the one obtained from the Si line is about 10 km s−1.
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Figure 9.3: Outcome of the CLEAN method applied to the first moment derived from the
Si II 4128 Å line (upper panel), to the data prewhitened with f = 0.7721 c d−1 (middle
panel), to the data prewhitened with 2f (lower panel).
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Figure 9.4: First three observed moments of the Si II 4128 Å line (dots, left) and of the
He I 4121 Å line (dots, right). < v >, < v2 > and < v3 > are expressed respectively in
km s−1, (km s−1)2 and (km s−1)3. The full lines represent the best harmonic fits for the
indicated frequency.
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Figure 9.5: Observed equivalent width variations of the Si II 4128 Å line (dots, left) and
of the He I 4121 Å line (dots, right), expressed in Å. The full line is the best harmonic fit
for the indicated frequency.

We also show the equivalent width variations of the Si II 4128 Å line and of the He I

4121 Å line respectively in the left and right panel of Fig. 9.5. The equivalent widths vary

with the same frequency as the higher order moments. The relative EW variations of the

Si line and of the He line are about 9% and 7% respectively, which is large compared

to the ones of confirmed SPBs (De Cat 2001). Moreover De Ridder et al. (2002a) have

shown that relative EW variations of Si lines never exceed a few percent for slowly-rotating

non-radially pulsating B stars.

All these peculiarities of the variations of the line profiles led us to exclude the pulsa-

tional model as an explanation for the variability of HD105382. As the moment variations

of the Si and He lines resemble those of HD131120, we also attributed the variability of

HD105382 to rotational modulation. For HD131120, the simple model implemented by

Dr. L. Balona, that considers circular spots, was very useful to show that the character-

istics of the observed moment variations can be easily reproduced and the results were

fully compatible with those derived from the Doppler mapping. For HD105382 and the

two additional stars discussed in the following two chapters we only used the Doppler

Imaging technique to map the quite complex abundance patterns on the stellar surface.

9.6 Abundance surface mapping

In this section we derive abundance surface maps for silicon and helium. For HD131120

we have shown that an uncertainty of a few hundred Kelvin on Teff and of 0.1 on log g

does not influence significantly the outcome of the Doppler mapping. We therefore fixed

the values of these parameters to those found from Geneva photometry. The angle of

inclination of the star i is determined from the projected rotational velocity vΩ that is
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Figure 9.6: The silicon distribution on the surface of HD105382 obtained with INVERS11
from the Si II 4128-4130 Å doublet for Teff = 17 400 K, log g = 4.2, vΩ = 70 km s−1 and
i = 50◦.

Figure 9.7: The helium distribution on the surface of HD105382 obtained with INVERS11
from the He I 4121 Å line for Teff = 17 400 K, log g = 4.2, vΩ = 70 km s−1 and i = 50◦.
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estimated from the width of the line profile, from the rotation period that is derived from

the periodicity of the variations, and from the stellar radius. However, the value of the

stellar radius has a large uncertainty. For this reason, we varied vΩ from 60 km s−1 to

75 km s−1 with a step of 5 km s−1 and i from 20◦ to 60◦ with a step of 10◦ in order to

choose the parameters that minimize the deviation between observations and computed

line profiles. As for the previous star, an angle of inclination of the star i that is 10◦ lower

or higher led to very similar maps. It was then not useful to refine the grid of parameters.

The derived maps are shown in Fig. 9.6 and Fig. 9.7 respectively for silicon and helium.

For a description of the figures we refer to the analysis of HD131120 (Sect. 8.5.3). Fig. 9.8

compares the observed profiles to computed ones at different phases of observation.

We conclude the following. Silicon is depleted on average over the stellar surface com-

pared to the Sun (−4.49 dex). Helium is significantly depleted on the majority of the

stellar surface. On average the stellar surface is very depleted in helium compared to the

solar abundance (−1.05 dex). Two strong spots have a longitude difference of 180◦. This

corresponds to the two bumps observed in the first moment of the line (see right part

of Fig. 9.4). A less strong third spot is also visible. As for HD131120 the comparison of

maps of both elements shows that roughly where helium is depleted, silicon is enhanced

and inversely. This corresponds to the dephasing observed in the first moment of the lines

(see Fig. 9.4).

9.7 Summary

We provide evidence that HD105382 is misclassified as a Be star. All photometric and

spectroscopic data point out that there is only one period of 1.295 days present in the data

of the star. Moment variations of the Si II 4128 Å line and the He I 4121 Å line cannot be

due to pulsation for the three following main reasons. First the temporal behaviour and

phasing of both lines are different. Secondly the amplitude of the first moment computed

from the two lines are different. Finally the equivalent width variations are large. We

attribute the variability of the star to non-homogeneous distributions of elements on the

stellar surface and we derive Doppler maps for silicon and helium. Regions in which helium

is enhanced seem to correspond to regions in which silicon is depleted. The abundance

of He is on average lower than the solar value. We then classify HD105382 as a He-weak

star. We note that the star was never reported as a Bp star before. We also note that a

search for the presence of a magnetic field for the star was never reported upon.
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Figure 9.8: Observed line profiles (crosses) of the Si II 4128-4130 Å lines (left) and of the
He I 4121 Å line (right) at different phases of observation and computed line profiles (full
lines) obtained with INVERS11.





Chapter 10

The B 3 IVp star HD138769

10.1 Introduction

The B3 IVp star HD138769 is a member of the Scorpio-Centaurus OB-association (Sco

OB2). It is classified as a shell star first by de Geus et al. (1989) and then by Jaschek

& Jaschek (1992). These latter authors observed a double emission centered on a broad

absorption Hβ line. Light variations were first reported by Jakate (1979), who concluded

that the star could be a slow variable with an amplitude not greater than 0.015 mag.

This chapter, reporting on our analysis of the star, is organized as follows. In Sect. 10.2

we describe observations at our disposal and we give the physical parameters of the star.

In Sect. 10.3 we perform the frequency analysis on photometric and spectroscopic data.

In Sect. 10.4 we show the variations of the moments of a Si line and a He line. Abundance

distributions on the stellar surface of both elements are obtained in Sect. 10.5. A summary

is finally given in Sect. 10.6.

10.2 Data and physical parameters

The number of observations for HD138769 and the ranges of their Julian Dates are given

in Table 10.1 for the multicolour Geneva photometry and the high-resolution spectroscopy,

which were gathered with the Swiss Telescope of the Geneva Observatory and with the

CAT/CES combination of ESO. We refer to De Cat (2001) for a description of the data

reductions. Besides these data we also have 83 photometric observations obtained by the

HIPPARCOS mission.

We determined the physical parameters of HD138769 in the same way as for HD105382

(Sect. 9.3). We obtained the following results:






























log Teff = 4.24 ± 0.01,
log g = 4.22 ± 0.15,
logL/L� = 2.98 ± 0.15,
M = 5.4 ± 0.4 M�,
R = 3.4 ± 0.6 R�.
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Table 10.1: Observing log for Geneva photometry (upper) and spectroscopy (lower).

Number of JD
observations 2450000 +

Start End

20 485 502
72 541 601

9 188 194
12 272 277
1 513 513
1 526 526
3 571 576
2 608 608
6 633 638
1 878 878

10.3 Frequency analysis

The HIPPARCOS and Geneva photometric data

In the HIPPARCOS measurements all three methods (see Sect. 4.1) led to a clear fre-

quency, which is f = 0.4786 c d−1. The Θ-statistic is shown in the left panel of Fig. 10.1.

This frequency reduces the data standard deviation by 30%. A phase diagram for this fre-

quency is represented in the left panel of Fig. 10.2. Note that the peak-to-peak amplitude

of Hp-data is only 0.015 mag and the standard deviation of the residuals is some 0.00464

mag, which is only slightly larger than the average error on the data of 0.0043 mag. We

searched for another frequency in the data but we were not able to determine one. The

PDM and Scargle methods led to different candidates.

We found the same main frequency f in the seven filters of Geneva photometry, which

reduces the standard deviation by 25%. The Scargle periodogram computed for the U-

magnitude and a phase diagram for this frequency are respectively shown in the right

panel of Fig. 10.1 and Fig. 10.2. As for HIPPARCOS photometry we were not able to

derive a second frequency.

The spectroscopic data

Through the PDM method we found the frequency f in the first moment computed from

the Si II 4128 Å line. After prewhitening with f we found a frequency very close to 2f .
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Figure 10.1: Left: Θ-statistic of the HIPPARCOS data. Right: Scargle periodogram of
the Geneva U-magnitude data.
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Figure 10.2: Phase diagrams of the HIPPARCOS data and of the U-magnitude data
(dots) are compared with their best sinusoidal fits for the indicated frequency (full lines).
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Figure 10.3: Θ -statistic of the first moment computed from the He I 4121 Å line (upper
panel) and of the data prewhitened with f = 0.4786 c d−1 (lower panel).

In < v > computed from the He I 4121 Å line, the PDM method leads subsequently to

the frequencies f and 2f (Fig. 10.3). Using the Scargle method we obtained 1− f as first

frequency and 2f after prewhitening with f . Phase diagrams for < v > are shown in

the upper part of Fig. 10.4. The frequency f and its first harmonic reduce the standard

deviation of < v > computed from the He line by 74%.

10.4 Moment variations

In the second and third moment of the Si II 4128 Å line we were not able to determine

a frequency. Concerning the He I 4121 Å line, its second moment does not show a clear

frequency while the third moment clearly presents the frequency f and its first harmonic
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Figure 10.4: First three observed moments of the Si II 4128 Å line (dots, left) and of the
He I 4121 Å line (dots, right). < v >, < v2 > and < v3 > are expressed respectively in
km s−1, (km s−1)2 and (km s−1)3. The full lines represent the best harmonic fits for the
indicated frequency whenever it was found from a time series analysis.
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Figure 10.5: Observed equivalent width variations of the Si II 4128 Å line (dots, left) and
of the He I 4121 Å line (dots, right), expressed in Å. The full line is the best fit for the
EW of the He I line.

2f . Phase diagrams of these moments of both lines are represented in Fig. 10.4. The

behaviour of < v >, < v2 > and < v3 > resemble the one of HD131120 (see Fig. 8.2 and

Fig. 8.5). Consequently we conclude that the variability of the star is due to rotational

modulation. The equivalent width of both lines varies with f as shown in Fig. 10.5. The

relative equivalent width variation is about 9% and 17% for respectively the Si line and

the He line.

10.5 Abundance surface mapping

We derived abundance maps for silicon and helium for HD138769 by taking Teff = 17 500

K and log g = 4.2 and by varying vΩ from 60 km s−1 to 70 km s−1 with a step of 5 km s−1

and i from 30◦ to 70◦ with a step of 10◦. The best silicon map was obtained for vΩ = 70

km s−1 and i = 40◦ and is shown in Fig. 10.6. Silicon is clearly underabundant compared

to the Sun (−4.49 dex). Its observed mean abundance is constant during the rotation of

the star. A depleted region is found at the pole while an enhanced spot is situated at the

equator. For helium the deviation between observed and calculated profiles is very large

so that we have less confidence concerning the reliability of the derived map. However it

is clear that the star is also a He-weak star since the helium mean abundance is lower

than the solar abundance. Fig. 10.7 compares the observed profiles to calculated ones at

different phases of observation for the Si line.
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Figure 10.6: The silicon distribution on the surface of HD138769 obtained with IN-
VERS11 from the Si II 4128-4130 Å doublet for Teff = 17 500 K, log g = 4.2, vΩ = 70
km s−1 and i = 40◦.

10.6 Summary

All photometric and spectroscopic datasets of HD138769 point towards the frequency

f = 0.4786 c d−1. The first and third moments of the He I 4121 Å line vary with f but

also with its first harmonic 2f . The variability of the moments of the Si II 4128 Å line is

less clear but the frequency f is also present. As we attribute the variability of the star

to chemical inhomogeneities on the stellar surface, we derive abundance maps for both

elements but we are only confident for the silicon result. The star is clearly underabundant

in silicon and in helium compared to the Sun. We confirm the star to be a Bp star as

already reported in literature and we classify it as a He-weak star.
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Figure 10.7: Observed line profiles (crosses) of the Si II 4128-4130 Å lines at different
phases of observation and computed line profiles (full lines) obtained with INVERS11.



Chapter 11

The B 2 IV/V star HD 55522

11.1 Introduction

The B2 IV/V star HD55522 was already reported as a B-type variable star by van Hoof

(1975) who observed light variations of the order of days. He attributed these light vari-

ations with a period of 2.68 days and an amplitude of 37 mmag to ellipsoidal variability.

This light variability was confirmed by Jerzykiewicz & Sterken (1977) but it was never

proven that this object is a binary.

De Cat (2001) performed an extensive study of the star by means of Geneva photo-

metric data and spectroscopic data. From radial velocities that he had at his disposal, he

was not able to confirm or rule out a binary scenario for HD55522. The spectroscopic data

show that the star might be a spectroscopic binary but with a long period of the order

of years which is irrelevant for the interpretation of the short-period variability reported

by van Hoof (1975). In the intrinsic photometric and spectroscopic variations he found

one single frequency of 0.3664 c d−1 together with some of its harmonics. This frequency

corresponds to the one already reported for this star by van Hoof (1975).

HD55522 is situated in the instability strip of SPBs and reveals a frequency expected

for SPBs. Moreover the star was never reported as a chemically peculiar star. Consequently

De Cat (2001) compared the variability of the star to non-radial pulsation. From an appli-

cation of the method of photometric amplitudes to Geneva data and from a comparison

of line-profile variations to a NRP model, he concluded that the observed monoperiodic

variability of HD55522 is not well explained with stellar pulsation.

In this thesis we focus on the interpretation of the variability of HD55522 in terms of

rotational modulation. The chapter is organized as follows. In Sect. 11.2 we describe the

data used for the analysis and we give the physical parameters of the star. In Sect. 11.3

we show the outcome of the frequency analysis on photometric and spectroscopic data.

In Sect. 11.4 we describe the variations of the moments of a Si line and a He line. An

abundance distribution on the stellar surface of both elements is obtained in Sect. 11.5.

A summary is finally given in Sect. 11.6.
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Table 11.1: Observing log for Geneva photometry (upper) and spectroscopy (lower).

Number of JD
observations 2450000 +

Start End

12 389 407
52 465 503
25 542 582
23 745 805

6 166 170
9 188 194
14 490 498
8 736 742
7 779 786
12 825 831

11.2 Data and physical parameters

HD55522 is a bright southern B star for which multicolour Geneva photometry and

high-resolution spectroscopic data (Si II 4128-4130 Å doublet and He I 4121 Å line) were

gathered respectively with the Swiss Telescope of the Geneva Observatory at La Silla

and with the CAT/CES combination of ESO, also situated at La Silla. The number of

observations and the ranges of their Julian Dates are given in Table 11.1. For a complete

description of the observations and data reductions we refer to De Cat (2001). We also have

HIPPARCOS photometry at our disposal, which consists in 187 useful measurements.

In De Cat (2001) some physical parameters of the star are given. They are:































log Teff = 4.24 ± 0.01,
log g = 4.15 ± 0.15,
logL/L� = 2.95 ± 0.15,
M = 5.5 ± 0.3 M�,
R = 3.3 ± 0.6 R�.

We point out that HD55522, HD105382 and HD138769 are situated very close to each

other in the upper and blue part of the SPB instability domain very near the main

sequence (see e.g. Pamyatnykh 1999). Note that HD131120 is not far away in the blue

part too.
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Figure 11.1: Phase diagrams of the HIPPARCOS data and of the U-magnitude data. The
dots are the observations and the full line is the best harmonic fit with the indicated
frequency.

11.3 Frequency analysis

The HIPPARCOS and Geneva photometric data

We performed a frequency analysis by means of the Scargle method (Scargle 1981). De

Cat (2001) already made a period search by also using other methods, which led to the

same result. In this thesis we show again the variations of photometry to underline the

different behaviour of the star compared to confirmed SPBs. For both HIPPARCOS and

Geneva photometric data we found subsequently the frequency f = 0.3664 c d−1 and

2f . f with 2f reduce the standard deviation by 53% and 69% for HIPPARCOS and

Geneva data respectively. Phase diagrams for both types of photometric data are shown

in Fig. 11.1. Clearly the variability of the star is dominated by only one frequency and its

first harmonic. The Scargle periodograms for the different steps of the frequency search

on the U-magnitude data is represented in the left part of Fig. 11.2. No other frequencies

can be found in the photometric datasets.

The spectroscopic data

The frequency analysis on the Si II 4128-4130 Å doublet does not lead to a clear frequency

although the frequency f seems to be present in the first moment of the Si II 4128 Å line.

However in the first moment of the He I 4121 Å line, the frequency f is clearly found

and even its harmonics up to 4f . The frequency search led to f , 2f and 3f subsequently.

The Scargle periodograms for the different steps of the frequency search on < v > are

shown in the right panel of Fig. 11.2. Note that 4f is also present in the periodogram after

prewhitening with f , 2f and 3f . The frequencies f and its first three harmonics reduce

the standard deviation of < v > by 76% for the helium line.
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Figure 11.2: Left: Scargle periodograms of the U-magnitude data, of the data prewhitened
with f = 0.3664 c d−1, of the data prewhitened with 2f . Right: Scargle periodograms of
the first moment computed from the He I 4121 Å line, of the data prewhitened with f , of
the data prewhitened with 2f .
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Figure 11.3: First three observed moments of the Si II 4128 Å line (dots, left) and of the
He I 4121 Å line (dots, right). < v >, < v2 > and < v3 > are expressed respectively in
km s−1, (km s−1)2 and (km s−1)3. The full lines represent the best harmonic fits for the
indicated frequency.
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Figure 11.4: Observed equivalent width variations of the Si II 4128 Å line (dots, left) and
of the He I 4121 Å line (dots, right), expressed in Å. The full line is the best harmonic fit
for the indicated frequency.

11.4 Moment variations

In < v2 > and < v3 > of the Si II 4128-4130 Å lines it was not possible to find a frequency.

Phase diagrams for f are shown in the left part of Fig. 11.3. The moments are very noisy

and no clear periodicity is observed. For the He I 4121 Å line, however, we found in < v2 >

the frequency f followed by 3f and in < v3 > we found f followed by 2f . Phase diagrams

of the first three moments of the helium line are shown in the right part of Fig. 11.3. No

other frequency could be found in < v > nor < v2 > or < v3 >. The star is clearly

monoperiodic.

As for HD131120, HD105382 and HD138769 we conclude that such typical variations

of the moments are not due to pulsation but can be caused by rotational modulation. We

recall again their characteristics. Harmonics of the frequency are present in the datasets.

The moment variations of the He line are completely different from those of the Si lines.

The peak-to-peak amplitude of the first moment computed from the He line is four times

larger than the one computed from the Si line. In Fig. 11.4 the equivalent width variations

of both considered lines are represented. The ones of the Si line do not show any periodicity

and are very noisy while the EW variations of the He line present a clear periodicity with

f and harmonics as for the higher order moments. We note that the relative EW variation

of the He line is about 35%, which is very large.

11.5 Abundance surface mapping

We derived abundance maps for silicon and helium for HD55522 in the same way as for

the previous stars (Sect. 8.5.3). We took Teff = 17 400 K and log g = 4.1.
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Figure 11.5: The silicon distribution on the surface of HD55522 obtained with INVERS11
from the Si II 4128-4130 Å doublet for Teff = 17 400 K, log g = 4.1, vΩ = 75 km s−1 and
i = 80◦.

Figure 11.6: The helium distribution on the surface of HD55522 obtained with INVERS11
from the He I 4121 Å line for Teff = 17 400 K, log g = 4.1, vΩ = 75 km s−1 and i = 80◦.



148 The B2 IV/V star HD55522 Chapter 11

We varied vΩ from 70 km s−1 to 80 km s−1 with a step of 5 km s−1 and i from 60◦

to 90◦ with a step of 10◦. The optimum maps were obtained for vΩ = 75 km s−1 and

i = 80◦. They are shown in Fig. 11.5 and Fig. 11.6 for Si and He respectively. For silicon,

depleted regions compared to the rest of the stellar surface are situated along the equator

while enhanced regions are close to the poles. The average abundance of silicon over the

stellar surface is almost constant and lower than solar abundance (−4.49 dex). The mean

abundance of helium varies by 0.8 dex on half a period of rotation, which reflects the very

large variations of the equivalent width of this line. A strong helium spot is present on the

equator surrounded with a very depleted region. For this star, the maps of both elements

are very different as already suggested by the very different variations of the moments

of the different lines. Fig. 11.7 compares the observed profiles to the calculated ones at

different phases of observation.

11.6 Summary

HIPPARCOS and Geneva photometric data vary clearly with only one frequency f =

0.3664 c d−1 and its harmonic 2f . Such a non-sinusoidal temporal behaviour is also ob-

served in the moments of the He I 4121 Å line in which harmonics up to 4f are present.

However the moments of the Si II 4128-4130 Å doublet do not show a clear variability

although the frequency f seems to be present in the Si II 4128 Å line. From the very

different temporal behaviour of both Si and He lines it is clear that pulsation is not the

cause of the variability of the star. We interpreted it by rotational modulation and we

modelled the abundance surface distributions of silicon and helium by means of Doppler

mapping. The main result is that the distribution of helium on the stellar surface has a lot

of contrasts which makes the mean helium abundance vary by 0.8 dex over the rotation

period. No magnetic field has already been searched for this star.
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Figure 11.7: Observed line profiles (crosses) of the Si II 4128-4130 Å lines (left) and of
the He I 4121 Å line (right) at different phases of observation and computed line profiles
(full lines) obtained with INVERS11.





Summary

In the following table we summarize the physical parameters that we found for the four

chemically peculiar B stars that we studied in Part III. Rotation periods are well deter-

mined, which is the case of very few B stars. Equatorial velocities are around 100 km s−1.

Silicon is found slightly underabundant for the four stars. However their average Si equiv-

alent widths are not too different from the ones of confirmed SPBs (De Cat 2001). Three

stars have on average an abundance of helium smaller than the solar one which is −1.05

dex. For HD131120, helium is underabundant by a factor of 12 and for HD105382, he-

lium is underabundant by a factor of 4.5. HD138769 is also He-weak while HD55522 has

on average the helium solar abundance. Future magnetic field measurements on the one

hand would be very helpfull to understand the surface abundance patterns of our four

studied stars. On the other hand, it would be interesting to try and explain our findings

for the surface helium and silicon structures from diffusion processes as they are currently

understood.

HD131120 HD105382 HD138769 HD55522

Teff (K) 18250 ± 420 17400 ± 400 17500 ± 400 17400 ± 400

log g 4.10 ± 0.15 4.18 ± 0.15 4.22 ± 0.15 4.15 ± 0.15

log L/L� 3.13 ± 0.15 2.89 ± 0.15 2.98 ± 0.15 2.95 ± 0.15

Prot (days) 1.569 ± 0.001 1.295 ± 0.001 2.089 ± 0.001 2.729 ± 0.001

i 30◦ ± 10◦ 50◦ ± 10◦ 40◦ ± 10◦ 80◦ ± 10◦

veq (km s−1) [86;190] [75;116] [85;150] [70;85]

R (R�) [2.7;5.9] [1.9;3.0] [3.5;6.2] [3.8;4.6]

Average Si
abundance (dex) −4.59 −4.76 −5.35 −4.92

Si abundance
range (dex) [−4.53;−4.02] [−5.36;−4.16] [−5.70;−5.05] [−5.29;−4.49]

Average He
abundance (dex) −2.12 −1.70 He-weak −1.06

He abundance
range (dex) [−2.53;−1.48] [−2.34;−0.82] ? [−2.26;0.46]

Magnetic field
detection (Gauss) 106 ± 168 ? ? ?
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Conclusions and outlook

In this thesis, we analysed the variability of several main-sequence B-type stars through

their line-profile variations. This study was performed in the framework of a collaboration

with members of the University of Leuven who led a long-term project for monitoring

candidate slowly pulsating B stars (Aerts et al. 1999 and Mathias et al. 2001) selected

among many candidate SPBs discovered from the HIPPARCOS mission (Waelkens et al.

1998).

The main goal of such a study of pulsating B stars is to perform asteroseismology, i.e. to

probe their internal structure by using their observed pulsation characteristics. To achieve

this, many pulsation modes must be detected and identified. Consequently, high quality

data as well as powerful mode identification techniques are needed. Our work contributed

to the improvement of the moment method for mode identification from high-resolution

spectroscopy. We proposed a numerical version of the technique. This new version requires

less computation time than the previous one, allowing users to consider all the informa-

tion contained in the first three moments of a multiperiodic star and to identify multiple

modes simultaneously, leading to only one consistent value for the projected rotational

velocity vΩ, the angle of inclination of the star i, and the intrinsic line-profile width σ,

which was not the case for previous versions. This, together with the use of a new dis-

criminant that considers the moments calculated at each time of observation, increases

considerably the feasibility and the accuracy of the mode identification for multiperiodic

stars. Moreover, the technique is extended to rotating pulsating stars by using Lee &

Saio’s (1987, 1990) formalism for low-frequency non-radial g-modes. These improvements

were necessary for a more confident application of the technique to SPBs which are mul-

tiperiodic and for which the rotation period may be of the same order of magnitude as

the pulsation periods. Unfortunately, one single unambiguous mode identification will sel-

dom be obtained in current practical applications and a statistically justified test that

gives how many candidate combinations of modes must be kept is still lacking. However,

the number of possibilities is significantly decreased with our new method and the use

of additional observational information (i.e. multicolour photometric data) can allow to

pinpoint definitely the wavenumbers of all modes, as was achieved for the β Cephei star

16 Lacertae (Aerts et al. 2003a).

We confirm the pulsational nature of eight northern candidate slowly pulsating B stars

and give a list of observed frequencies in HIPPARCOS photometric data and in spectro-
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scopic data that were gathered with the AURELIE spectrograph at the Observatoire de

Haute-Provence (Mathias et al. 2001). We performed a more detailed analysis of the SPB

HD147394 for which most high-resolution spectra are available thus far. This B 5 IV star

is a typical SPB of about 5 M� which is situated in the HR diagram in the centre of

the instability strip of such a kind of stars. Our gathered 250 line profiles of the Si II

4128-4130 Å doublet reveal at least three modes. Two frequencies are well determined:

f1 = 0.8008 c d−1 and f2 = 0.7813 c d−1 but due to bad time sampling, the value of

the third one f3 = 0.7175 c d−1 is less certain and may be one of its aliases. We used

our new version of the moment method to identify the corresponding pulsation modes.

The use of Lee & Saio’s description of the pulsational velocity led to the same set of best

solutions as the use of the usual non-rotating model. Several combinations of modes lead

to very close values for the discriminant and we are unable to discriminate between some

15-20 solutions. A clear conclusion is that all three modes are non-axisymmetric ` ≤ 3

modes. The rotation period of the star must be between 5 and 19 days. By means of the

Code Liégeois d’Évolution Stellaire that computes evolutionary model sequences and of

a standard adiabatic code that computes the oscillation frequencies, we also showed that

the different possibilities for the mode identifications are compatible with current stel-

lar structure models for SPBs. However, as the frequency spectrum revealed only three

modes so far and in view of the dense frequency spectra of potential modes, HD147394

is at present not the best target for a detailed seismic analysis. Indeed, De Cat & Aerts

(2002) found several SPBs with a larger number of detected modes, mainly in those ob-

jects for which very long-term multicolour photometry is available. It is our intention to

apply our improved moment method and the recently improved photometric amplitudes

method by Dupret et al. (2003) to all the targets in the list of De Cat & Aerts (2002). With

state-of-the-art mode identifications at hand, we subsequently plan to compute numer-

ous theoretical models to derive the stellar parameters of the SPBs with unprecedented

precision and, if possible, to derive information on the (internal) rotational behaviour of

these massive gravity-mode oscillators, according to the strategy outlined in Aerts et al.

(2003b).

When the observed variability is monoperiodic, it can be unclear from the analysis

of the variations of one single line profile to which cause they must be attributed. The

example of our extensive study of the star HD105382 (Briquet et al. 2001) speaks for itself:

our first attempt to interpret its variability was not successful since we could not choose

between rivalling hypotheses which are non-radial pulsation or rotational modulation.

Afterwards, we were able to discriminate between stellar pulsation and stellar spots. The

analysis of the moment variations of different spectral lines allowed us to exclude the

non-radial pulsation model for HD105382 as well as for three other stars, which were first

classified as candidate SPBs: HD131120, HD138769 and HD55522. The peculiarities

of these stars compared to confirmed SPBs are the following. The stars appear to be

monoperiodic while SPBs of our sample are multiperiodic (De Cat 2001 and Mathias et
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al. 2001). The photometry and spectroscopy led to the same period, which is 1.569 days

for HD131120, 1.295 days for HD105382, 2.089 days for HD138769 and 2.769 days for

HD55522. The moments of the studied spectral lines are not sinusoidal but harmonics

of the frequency are also present in data. For HD55522, such a non-sinusoidal signal is

also observed in HIPPARCOS and Geneva photometry. The moments computed from the

Si II 4128-4130 Å doublet and from the He I 4121 Å line do not behave in the same way

and are not in phase. The equivalent width variations are large compared to values for

SPBs. In particular, the relative EW variation of the He I 4121 Å line for HD55522 is

about 35% which is remarkably large. All these characteristics cannot be reproduced by

pulsation. Consequently, we compared the observed monoperiodic variability of the stars

to rotational modulation. For HD131120, we first modelled the line-profile variations by

means of a simple model with circular spots for which the flux in the spots differs from the

one of the rest of the star. Such a basic model was able to reproduce the first three moment

variations of the lines, the large equivalent width variations as well as a different behaviour

of moments of silicon and helium lines. We then concluded that a good explanation for the

variability of the star is its rotation in the presence of non-homogeneous distributions of

elements on the stellar surface. As the moments of the line profiles of the three other stars

vary in a very similar way as those of HD131120, we also interpreted their variability in

terms of rotational modulation. For the four stars, we derived stellar surface abundance

maps for silicon and helium by means of the Doppler Imaging technique. A future goal

is to derive the surface abundance mapping for more elements in these four stars. For

HD131120, we found that helium is significantly depleted over all its stellar surface,

which confirms that the star is a He-weak star as already reported in the literature. For

this star, regions in which helium is enhanced correspond to regions in which silicon is

depleted. This result is also found for HD105382 that we classify as a new He-weak star

since we also found that helium is depleted on average over the whole stellar surface. We

suggest that HD105382 be removed from all Be catalogue since we provide evidence that

the star does not belong to this class. HD138769, which is reported as a shell star in the

literature, is clearly a Bp He-weak star for which helium is underabundant compared to

the Sun but also silicon. For HD55522, we found the mean abundance value of helium

to vary by 0.8 dex during the stellar rotation. We point out that it is the first time that

such detailed spectroscopic analyses and abundance mapping are performed for chemically

peculiar B stars with such a high Teff of about 17 500 K. Theoretical diffusion models for

such temperatures are needed for a comparison. Moreover, inhomogeneities on the stellar

surface are probably correlated to a magnetic field. A search for a magnetic field was only

performed for the star HD131120 but was not conclusive. Such investigations would then

be very useful for a better understanding of the surface patterns of these four stars.





Appendix

A.1 The displacement vector in terms of scalar po-

tentials

According to Helmholtz’s decomposition theorem, the displacement vector may be ex-

pressed as the sum of the gradient of a scalar potential Ψ and the curl of a divergence-free

vector potential ~A:
~ξ = grad Ψ + rot ~A (A.1)

with

div~A = 0 (A.2)

(see e.g. Morse and Feshbach 1953, section 1.5).

The curl of ~A may be replaced by the sum of a toroidal and a poloidal component so that

Helmholtz’s theorem becomes

~ξ = grad Ψ + rot (T~er) + rot rot(P~er), (A.3)

where T and P are scalar potentials (see e.g. Morse and Feshbach 1953, section 13.1).

By expressing (A.3) in spherical coordinates, one obtains (2.16).

A.2 The associated Legendre polynomials

The associated Legendre polynomials are given by

Pm
` (z) =

(1 − z2)m/2

2``!

d`+m

dz`+m
(z2 − 1)`. (A.4)

They are the solutions of the associated Legendre equation:

(1 − z2)
d2Pm

` (z)

dz2
− 2z

dPm
` (z)

dz
+

[

`(`+ 1) − m2

1 − z2

]

Pm
` (z) = 0. (A.5)

The following recurrence relations hold:

(`−m + 1) Pm
`+1(z) = (2`+ 1) z Pm

` (z) − (`+m) Pm
`−1(z), (A.6)

(z2 − 1)
dPm

` (z)

dz
= ` z Pm

` (z) − (`+m) Pm
`−1(z) (A.7)

(see e.g. Abramowitz and Stegun 1964).
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A.3 The amplitudes of the first three moments
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A.4 Three moments are sufficient for mode identifi-

cation

In all versions of the moment method for slowly rotating stars, one limits the discrimi-

nating function for mode identification to the first three moments (Balona 1986ab, 1987;

Aerts et al. 1992, Aerts 1996). We provide here a justification for this.

For one mode, we rewrite the first three moments as follows:

< v > (t) = A cos(2πft+ ψ)

< v2 > (t) = C cos(2(2πf)t+ 2ψ) +D sin(2πft+ ψ) + E + Erot + σ2

< v3 > (t) = F cos(3(2πf)t+ 3ψ) +G sin(2(2πf)t+ 2ψ) +RST cos(2πft+ ψ),

with
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A = Ap(c1 + c2K)

C = A2
p(c3 + c4K + c5K

2)

F = A3
p(c6 + c7K + c8K

2 + c9K
3)

where c1, c2, . . . , c9 depend on (`,m, i).

Aerts et al. (1992) have shown that the second moment discriminates easily between

axisymmetric modes and non-axisymmetric modes.

We search for different (`,m) and (`′, m′) so that < v > (t) =< v >′ (t), < v2 > (t) =

< v2 >′ (t) and < v3 > (t) =< v3 >′ (t) for all t, i.e. so that A = A′, C = C ′, F = F ′ for

appropriate values of the parameters. We use the fact that the K-value is determined for

a given star and for a given frequency (K = K ′). For chosen (`,m, i) and (`′, m′, i′), we

then have the following system of three equations for Ap, A
′
p and K to solve:



























(1) Ap(c1 + c2K) = A′
p(c

′
1 + c′2K)

(2) A2
p(c3 + c4K + c5K

2) = A′2
p (c′3 + c′4K + c′5K

2)

(3) A3
p(c6 + c7K + c8K

2 + c9K
3) = A′3

p (c′6 + c′7K + c′8K
2 + c′9K

3).

One excludes (`,m, i) for which the first moment has no time variation, which corre-

sponds to c1 = 0 and c2 = 0. One also considers m = 0, . . . , ` since the absolute value of

the amplitudes of the moments are the same for positive and negative m.

From (1) and (2) (Ap, A
′
p 6= 0), one obtains an equation in K which can be solved

analytically for chosen (`,m, i) and (`′, m′, i′):

(c2
′

1 c3 − c21c
′
3) + (c2

′

1 c4 + 2c′1c
′
2c3 − c21c

′
4 − 2c1c2c

′
3)K + (c2

′

1 c5 + c2
′

2 c3 + 2c′1c
′
2c4 − c21c

′
5 − c22c

′
3 −

2c1c2c
′
4)K

2 + (c2
′

1 c4 + 2c′1c
′
2c5 − c21c

′
4 − 2c1c2c

′
5)K

3 + (c2
′

2 c5 − c22c
′
5)K

4 = 0.

The coefficients of this equation are not simultaneously equal to zero. Consequently, the

equation has four solutions or less.

From (1) and (3) as well as from (2) and (3), one obtains two equations in K, which

must also be satisfied by the solutions. We tested numerically the feasibility of more than

one solution (`,m, i) by varying ` from 0 to 4 with m = 0, . . . , `. We varied i from 0◦

to 90◦ with a step of 1◦. For each combination (`,m, i) and (`′, m′, i′), we searched for

solutions which satisfy the equations in K. Note that we did not confront an axisymmetric

mode with a non-axisymmetric mode since they are discriminated by the behaviour of the

second moment. We did not confront the same couples of wavenumbers with different i

either. The outcome is that the system of three equations (1), (2) and (3) has no solution

for each tested case. So the first three moments discriminate the different modes whatever

the values of the velocity parameters are.

In practice, because of too few and/or too noisy data, and because of the uncertainty of

K, it obviously happens that several couples (`,m) fit the moment variations with almost

the same quality. However, the message we want to bring here is that it in principle suffices

to consider the three moments to discriminate between the wavenumbers.
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Eyer L., 1998, Les étoiles variables de la mission Hipparcos, PhD Thesis, Geneva Univer-

sity, Switzerland

Flower P.J., 1996, ApJ 469, 355, Transformations from theoretical Hertzsprung-Russell

diagrams to color-magnitude diagrams: effective temperatures, B-V colors, and bolo-

metric corrections

Garrison R.F., 1967, ApJ 147, 1003, Some characteristics of the B and A stars in the

upper Scorpius Complex

Gautschy A., Saio H., 1993, MNRAS 262, 213, On non-radial oscillations of B-type

stars

Golay M., 1980, Vistas in Astronomy 24, 141, The Geneva seven-colour photometric

system
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