Hands-on-practice tutorial on SPECTROSCOPIC MODE IDENTIFICATION with the HELAS software package FAMIAS – June 4-6 2008

Mode identification from spectroscopy

Maryline Briquet

Institute of Astronomy, Leuven University, Belgium

Hands-on-practice tutorial on SPECTROSCOPIC MODE IDENTIFICATION with the HELAS software package FAMIAS – June 4-6 2008

Overview

- * Why do we need empirical mode identification?
- * Modelling of line-profile variations due to NRP
- * Spectroscopic mode identification techniques
- * Generalities

Institute of Astronomy, Leuven University, Belgium

ASTEROSEISMOLOGY

Mode identification from spectroscopy

ASTEROSEISMOLOGY

Observational constraints from spectroscopy:

OVERVIEW

- * What causes LPVs?
- * Basic line profile model
- * Sophisticated line profile model
- * Line profile model in FAMIAS

WHAT CAUSES LPVs?

- At the stellar surface:
- Oscillatory displacements due to pulsation
- Periodic temporal variations of
- * velocity field _____ Doppler shift

- * local temperature local brightness local line profile (width and EW changes)

BASIC LINE PROFILE MODEL

Distorted stellar surface divided into many surface elements

For each surface element, one computes:

Intensity

Sum up all the contributions of all the visible surface elements * Weighted by the on the line-of-sight projected area of the surface element

* Doppler shifted by the on the line-of-sight velocity fields caused by rotation and pulsation

BASIC LINE PROFILE MODEL

Distorted stellar surface divided into many surface elements

For each surface element, one computes: Intensity Rotation velocity Pulsation velocity

Project onto the line-of-sight

Sum up all the contributions of all the visible surface elements Approximations Spherical stellar surface (not distorted)

 (θ, φ)

BASIC LINE PROFILE MODEL

Approximations

Distorted stellar surface divided into many surface elements

For each surface element, one computes:

Intensity Rotation velocity Pulsation velocity

Project onto the line-of-sight

Sum up all the contributions of all the visible surface elements

Gaussian absorption line profile

$$1 - \frac{\mathbf{EW}}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\lambda - \lambda_0)^2}{2\sigma^2}\right)$$

Constant in time and over the stellar surface

+ linear limb-darkening law for continuum intensity

$$I_c = I_0 \ (1 - u + u \ \cos \chi)$$

BASIC LINE PROFILE MODEL

Approximations

Distorted stellar surface divided into many surface elements

For each surface element, one computes: Intensity

Rotation velocity Pulsation velocity

Project onto the line-of-sight

Sum up all the contributions of all the visible surface elements

Uniform and time-independent stellar rotation

 $v_{\rm rot}(\theta, \varphi) = v_e \sin i \, \sin \theta \sin \varphi$

Rotational broadening of spectral line

BASIC LINE PROFILE MODEL

Approximations

In the linear approximation (i.e. small amplitude of pulsation)

For a star rotating sufficiently slowly (i.e. neglecting effects of rotation on pulsation) $\left(1, K \frac{\partial}{\partial \theta}, \frac{K}{\sin \theta} \frac{\partial}{\partial \varphi}\right) Y_{\ell}^{m}(\theta, \varphi) \exp(i\omega t)$

$$\vec{v}_{\text{puls}} = (v_r, v_\theta, v_\varphi) = N_\ell^m v_p$$

BASIC LINE PROFILE MODEL

BASIC LINE PROFILE MODEL

* Adopted parameters: EW, *u*, *K* * Free parameters: (I,m), v_p, *vsini*, *i*, σ

BASIC LINE PROFILE MODEL

Spectroscopy allows determination of both I and m while m is not accessible from photometry

BASIC LINE PROFILE MODEL

Moving bumps in certain high degree mode Modes with high degree only visible in spectroscopy

BASIC LINE PROFILE MODEL

Different parameter sets can give the same time series of basic line profile

SOPHISTICATED LINE PROFILE MODEL

Distorted stellar surface divided into many surface elements

For each surface element, one computes: Intensity Rotation velocity Pulsation velocity

Project onto the line-of-sight

Sum up all the contributions of all the visible surface elements Computation of orientation and area of each surface element

SOPHISTICATED LINE PROFILE MODEL

Distorted stellar surface divided into many surface elements

For each surface element, one computes:

Intensity Rotation velocity Pulsation velocity

Project onto the line-of-sight

Sum up all the contributions of all the visible surface elements Pre-computed intensity spectra calculated for a given T_{eff} and log g and cos λ with a stellar atmosphere code

Local T_{eff} and log g vary in time

Intensity varies in time
Local line profile varies in time, i.e. both time varying width and EW

SOPHISTICATED LINE PROFILE MODEL

- Distorted stellar surface divided into many surface elements
- For each surface element, one computes: Intensity Rotation velocity Pulsation velocity
- **Project onto the line-of-sight**
- Sum up all the contributions of all the visible surface elements

Improved formalism that takes into account the influence of the rotation on pulsation

Inclusion of Coriolis correction terms

LINE PROFILE MODEL IN FAMIAS

Intensity

- Gaussian intrinsic line profile
- Quadratic limbdarkening law
- Brightness variations
- Parameterized variable equivalent width due to temperature variations

Rotation velocity

- Uniform and time-independent
- Slow

Pulsation velocity

- Linear pulsation
- Effects of the Coriolis force to the first order taken into account

Zima (2006)

OVERVIEW

* Observations required

* The methods

OBSERVATIONS REQUIRED

Ideally, use of isolated non-blended lines with - High S/N ratio (> 200) - High resolution (R > 40000)

Ideally, covering entire cycle of all modes # > several hundred (say 100 per mode)

Ideally, accompanied by photometry

OBSERVATIONS REQUIRED

To increase S/N ratio: Use of average of several lines formed in the same line-forming region

For too faint star with unavoidable low S/N ratio: Use of cross-correlation profile

Assumption: all used lines show the same temporal behavior

OBSERVATIONS REQUIRED

Silicon lines for pulsating B-type stars

- Sufficiently strong without being much affected by blending
- Dominated by thermal broadening → Gaussian profile
- LPVs little affected by temperature variations at the stellar surface

Si II lines for SPBs Si III lines for β Cephei stars

OBSERVATIONS REQUIRED

Pulsation frequencies unambiguously determined

THE METHODS

* Line-profile fitting technique

* The moment method

* The IPS and pixel-by-pixel method

THE METHODS - Line-profile fitting technique

Theoretically computed LPVs for different values of (I,m) and for the other parameters	Observed line profile variations Goodness of fit measure e.g. based on least squares
Set of "best fittin	g parameters"

Ledoux (1951), Osaki (1971), Smith (1977), etc.

THE METHODS - Line-profile fitting technique

- Not only (I,m) is determined but also the other parameters, such as the amplitude of the mode, the inclination angle and the rotational equatorial velocity

BUT

- Extremely CPU-time consuming
 - * If no thorough investigation of parameter space, not sure to find the best fitting models
 - * Simultaneous identification of multiple modes is unrealistic
- Depends much on the theoretical model

THE METHODS - Line-profile fitting technique

To decrease computational time:

Use of line profiles folded in only several bins for each detected frequency, such that the variations of other modes are assumed to cancel out

BUT

Phase binning is equivalent to extending the exposure times of the spectra

Phase smearing which can have an impact on the mode identification results

THE METHODS

First few moments of a line profile, which are integrated quantities over the profile

Intensity information of each wavelength bin across the line profile

THE METHODS

THE METHODS - The moment method

THE METHODS - The moment method

Less CPU-time consuming Thorough investigation of parameter space possible Simultaneous identification of multiple modes feasible for a few modes (without using phase binning)

- Less model dependent

* Not very sensitive to EW variations
* Only assumption on the local line profile: it is symmetric, e.g. local line profile approximated with a constant Voigt function

BUT

Use of integrated quantities $_$ only for low degree mode (I \le 4)

THE METHODS - IPS and pixel-by-pixel method

For every wavelength bin, for each detected pulsation frequency, computation of zero point, amplitude and phase using a multi-periodic least-squares fit with fitting formula as follows

$$p(v,t) = C(v) + A_0(v) \sin(\sigma t + \Psi_0(v)) \longleftrightarrow \ell$$
$$+ A_1(v) \sin(2\sigma t + \Psi_1(v)) \longleftrightarrow m$$
$$+ A_2(v) \sin(3\sigma t + \Psi_2(v))$$

Determining (I,m) from phase distributions across the line profile

THE METHODS - Intensity period search (IPS)

Extensive numerical simulations by Telting & Schrijvers (1997):

$$\ell \approx 0.10 + 1.09 |\Delta \Psi_0| / \pi,$$

 $|m| \approx -1.33 + 0.54 |\Delta \Psi_1| / \pi$

Where maximum red-toblue phase difference

of detected frequency f: $\Delta \Psi_0$

of first harmonic of f: $\Delta \Psi_1$

THE METHODS – Intensity period search (IPS)

- Phase diagrams contain mostly information about I and |m| direct identification without having to model the pulsation
- BUT
- Amplitude of the first harmonic of a frequency may be very low → need of very high S/N ratio (> 300)
- Method fails for stars with low vsini
- No information about the other parameters
- Uncertainty on I and m relatively large for low-degree modes Error for I: ± 1 Error for m: ± 2

THE METHODS - The pixel-by-pixel method

Mantegazza (2000)

For each detected pulsation frequency, use of the zero point, amplitude and phase to compute 10 profiles evenly distributed across one pulsation cycle

Direct line-profile fitting to this mono-mode profile

THE METHODS - The pixel-by-pixel method

Mantegazza (2000)

Allows identification of multiple modes without limits for (I,m) BUT

- Very small value of vsini can prevent mode identification
- Method fails for stars whose dominant mode has highamplitude relative to the projected rotational velocity

- No statistical significance limit of the derived identifications

Fourier Parameter Fit method by Zima (2006)

GENERALITIES

- Methods successfully applied to δ Scuti stars and β Cephei stars, applicable to all main-sequence pulsators hotter than the Sun
- The azimuthal order m and its sign can be determined by both the moment method and the pixel-by-pixel method
 - In FAMIAS, a positive value of m denotes a progrademode, i.e. propagating in the direction of the stellar rotation
- BUT
- The degree I is usually not determined unambiguously

GENERALITIES

- Apply both the pixel-by-pixel method (FPF method by Zima 2006) and the moment method (Briquet & Aerts 2003)

The moment method is better suited than the FPF method
 * when vsini has a very small value (vsini < 10 km/s)
 * when the pulsation velocity is large relative to the projected rotational velocity

- The FPF method is better suited than the moment method for high-degree modes (I > 4)

If both photometry and spectroscopy available:
 * search for frequencies in both of them
 * use photometric mode identification for I and fix this in spectroscopic mode identification

Hands-on-practice tutorial on SPECTROSCOPIC MODE IDENTIFICATION with the HELAS software package FAMIAS – June 4-6 2008

Mode identification from spectroscopy

Maryline Briquet

Institute of Astronomy, Leuven University, Belgium