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1 Introduction

Ductile fracture is a local phenomenon and the state of stress and strain
in potential fracture locations should be determined [Bai and Wierzbicki,
2008]. In particular, it is known that the stress state affects the growth
rate of cavities (See Lassance et al. [2007] for further references). When the
stress triaxiality is not enough to describe the stress state, we can use the
Lode parameter [Zhang et al., 2001]. Originally proposed by Lode [1926],
this parameter includes the second and third invariant of the deviatoric
stress tensor. In this report a state of the art is presented showing the
influence of this parameter into micro/macro mechanical models and damage
development. Different definitions of the Lode angle exists depending on the
author, and they are also presented.

2 Lode angle definition

As using a stress tensor to characterise a stress state could be cumbersome,
researchers usually use simpler dimensionless scalar metrics in order to rep-
resent a particular stress state. Between them we found the triaxiality and
the Lode [1926] parameter. In this section, we define the Lode angle both
in the stress invariants sense and as a vector in the stress space. Einstein
tensor notation is used hereafter.

2.1 Stress invariants

Given the characteristic polynomial of σij :

λ1,2,3
3 − I1λ1,2,3

2 + I2λ1,2,3 − I3 = 0 (1)

Where λ1,2,3 is a Lagrange multiplier (principal stresses) and I1,2,3 are the
invariants of the stress tensor, defined as:

I1 = trσij = σxx + σyy + σzz (2)

I2 =
1

2
σijσij = σxxσyy + σxxσzz + σyyσzz − σxy2 − σxz2 − σyz2 (3)

I3 = detσij (4)

In terms of the principal stresses:

I1 = σ1 + σ2 + σ3 (5)

I2 = σ1σ2 + σ2σ3 + σ1σ3 (6)

I3 = σ1σ2σ3 (7)
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The hydrostatic (aka mean) stress is defined by:

σh =
1

3
I1 (8)

So the deviatoric part of the stress tensor is:

σij = sij + σhδij (9)

The deviatoric stress invariants are:

J1 = trsij = 0 (10)

J2 =
1

2
sijsij = −sxxsyy − sxxszz − syyszz (11)

=
1

6
[(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2]+

+ σxy
2 + σyz

2 + σxz
2 =

1

3

(
I2

1 − 3I2

)
(12)

J3 = det sij =
1

27

(
2I3

1 − 9I1I2 + 27I3

)
(13)

The relation between the second deviatoric stress invariant and the von
Mises equivalent stress is:

J2 =
1

3
σ2
eq (14)

Triaxiality is defined as:

T =
σh
σeq

=
1

3
√

3

I1√
J2

(15)

2.2 In the stress space

Usually, a stress state in the π-plane is represented through the principal
stress σ1,2,3 (the Haigh-Westergaard space). But is also possible to represent
through the stress invariants. Equivalently, for a yield criterion initially
isotropic, the dependence of the yield function f is on the stress invariants
or the deviatoric stress invariants J2,3. Moreover, any stress state in the

Haigh-Westergaard space can be represented with a position vector
−−→
OP ,

which can be decomposed into:

−−→
OP =

−−→
ON︸︷︷︸

Hydrostatic

+
−−→
NP︸︷︷︸

Deviatoric

(16)
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Where
−−→
ON ⊥

−−→
NP and

−−→
NP lies on the π-plane. So, a curve in the π-plane

can also be represented through polar coordinates related to the vector
−−→
NP

for mean-stress independent yield functions, or in terms of the magnitude
and the orientation of this vector. It can be shown that the magnitude of
this vector is

√
2J2, and the orientation with respect to the deviatoric plane

is called Lode angle, ξLode. That is:

‖
−−→
NP‖2 = ‖S‖2 =

√
S : S =

√
2J2 (17)

As the Lode angle is defined between one axis and the
−−→
NP vector, it is

necessary to get the projection of this vector respect to a determined axis
of the principal stresses. For convenience, the following definition is taken
respect to the projection of the first principal stress (with σ1 > σ2 > σ3).
This leads to [Khan and Huang, 1995, Voyiadjis et al., 2012]:

cos 3ξLode =
3
√

3

2

J3

J
3
2
2

0◦ ≤ ξLode ≤ 60◦ (18)

Where ξLode is the Lode angle in degrees. So, any stress state could be
represented for the next equation [Khan and Huang, 1995]: σ1

σ2

σ3

 =
I1

3

 1
1
1

+
2√
3

√
J2

 cos ξLode
cos (120− ξLode)
cos (120 + ξLode)

 (19)

Eq. 19 can also be written in terms of the equivalent von Mises stress and
the triaxiality [Danas and Ponte Castañeda, 2012]1:

3

2σeq

 σ1

σ2

σ3

 =
3

2
T

 1
1
1

+
2√
3

√
J2

 − cos (ξLode + 60)
− cos (ξLode − 60)

cos ξLode

 (20)

The stress components of the left side of the equation are called normalized
principal stress components.

2.3 Stress states

It is easy to see from Eq. 19 and 20 that different stress states can be
obtained from different values of the Lode angle. For instance, for Eq. 19:

• ξLode = 0: uniaxial tension plus hydrostatic pressure (triaxial tension).

• ξLode = 30: pure shear plus hydrostatic pressure.

• ξLode = 60: uniaxial compression plus hydrostatic pressure.

1Note the slightly difference in the principal directions, using σ3 > σ1 > σ2 instead.
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2.4 Other definitions

In terms of the principal stresses space, the Lode’s parameter is defined as:

µσ =
2σ2 − σ1 − σ3

σ1 − σ3
− 1 ≤ µ ≤ 1 (21)

With σ1 > σ2 > σ3. This was the original proposal by Lode [1926], and is
usually used in Civil engineer [Zhang et al., 2001]. The relation between the
Lode parameter and the Lode angle of Eq.18 is given by:

µσ = −
√

3 tan ξLode (22)

Other authors [Wierzbicki et al., 2005, Coppola et al., 2009, Gao et al., 2009,
Danas and Ponte Castañeda, 2012] prefer to use the parameter:

X = cos 3ξLode = ±27

2

J3

σ3
eq

− 1 ≤ X ≤ 1 (23)

Which is the same as Eq.18 using Eq.14. The ± sign depends on the au-
thor. Dunand and Mohr [2011a] called parameter X as the normalized third
invariant. Danas and Ponte Castañeda [2012] also used Eq.23 but multiply
by −1. Li et al. [2011] in Eq. 4 wrongly define X using σh instead of σeq.
Other modification was introduced by Bai and Wierzbicki [2008] and used
by Bai and Wierzbicki [2009], Dunand and Mohr [2011a], Malcher et al.
[2012], Beese and Mohr [2012]:

θ = 1− 6ξLode
π

= 1− 2

π
arccosX − 1 ≤ θ ≤ 1 (24)

Which was called normalized Lode angle. Nahshon and Hutchinson [2008]
slightly modified the Eq.23 to be in the positive range, in order to include
it into their shear modified version of the GTN model:

ω = 1−X2 = 1−
(

27

2

J3

σeq

)2

0 ≤ ω ≤ 1 (25)

With ω = 0 for all axisymmetric stress states and ω = 1 for pure shear plus
a hydrostatic contribution. Voyiadjis et al. [2012] proposed:

θV = sin 3ξLode =

√
1− 27

4

J2
3

J3
2

0 ≤ θV ≤ 1 (26)

Which is obtained by applying a Pythagorean identity to Eq.18.
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A totally different approach, based on strain and not stress, is presented
by Morgeneyer and Besson [2011].

µṗ =
ṗ2

ṗ1 − ṗ3
(27)

Where ṗ1 are the principal values of the plastic strain tensor.
The Table 1 shows the different definitions presented here and their

references.

Table 1: Table resuming the Lode angle defintions found in the literature.

Definition Range Reference Name

µσ =
2σ2 − σ1 − σ3

σ1 − σ3
−1 ≤ µσ ≤ 1 Lode [1926] Lode parameter

cos 3ξLode =
3
√

3

2

J3

J
3
2
2

0◦ ≤ ξ ≤ 60◦ Lode angle

X =
27

2

J3
σ3
eq

−1 ≤ X ≤ 1 Wierzbicki et al.
[2005]

Normalized third
invariant

θ = 1− 2

π
arccosX −1 ≤ θ ≤ 1 Bai and

Wierzbicki [2008]
Normalized Lode
angle

ω = 1−X2 0 ≤ ω ≤ 1 Nahshon and
Hutchinson [2008]

θV =

√
1− 27

4

J2
3

J3
2

0 ≤ θV ≤ 1 Voyiadjis et al.
[2012]

µṗ =
ṗ2

ṗ1 − ṗ3
Morgeneyer and
Besson [2011]

Lode parameter
for strain rates

3 State of the art

3.1 Motivations

The effect of the stress invariants on mechanical behaviour of materials dates
back with the first J2-plasticity models developed in the early 20th century
to describe yielding of metals. The mean stress was later included to describe
porous media subjected to hydrostatic pressure [Drucker and Prager, 1952].
Nevertheless, the study of the third invariant of the deviatoric stress is quite
recent and it was mainly used in the frame of civil engineering. For instance,
Bardet [1990] studied the influence of the Lode angle over the yield surface
of pressure insensitive materials.
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The approach for ductile fracture has follow a different way. The effect of
the mean stress in damage development and fracture is very well established
and numerous studies exist. Nevertheless, the importance of this parame-
ter resurfaced when studying phenomenas involving low triaxialities levels2,
such as metal forming processes. Besides, some researchers have included
these invariants into more general modified plasticity models to predict lo-
calization [Brünig et al., 2000] and fracture [Bai and Wierzbicki, 2008]. The
inherent complexity of damage phenomena makes difficult, even for a simple
tensile test, to distinguish between the softening induced by suppression of
the dislocation motion and the softening due to porosity (Gurson type of
softening) [Bai and Wierzbicki, 2008]. In the following review, the effect
of the Lode angle on plastic yield is not reviewed, and damage and frac-
ture are considered to be mainly dependent on the nucleation, growth and
coalescence of voids.

Since his formulation, the Gurson [1977] model and the Tvergaard and
Needleman [1984] (GTN) extension assumes that the voids are spherical
during the deformation. Furthermore, the model only includes the triaxiality
as the parameter describing the stress state. As mentioned by Pardoen
[2006], this historical framework maybe came from the analysis of crack-tip
problems, which are characterized by large stress triaxiality, in which shape
effects are usually not important. Nevertheless, one of the limitations of
using only triaxiality and spherical voids became apparent when Gologanu
et al. [1996] observed that the void expansion can vary in different directions
under the same triaxiality. Following this point, Zhang et al. [2001] made
a 3D numerical analysis of a spherical void to look for the influence of the
Lode parameter into the directional expansion of the void. He considered
symmetry of a cubic cell, where the displacements at the boundaries were
calculated from a given value of triaxiality and the Lode parameter. It
was observed that both the deformation pattern of the void and the void
volume fraction are influenced by the Lode parameter. Another interesting
observation is that the influence of the Lode parameter seems to diminish
with increasing triaxiality.

3.2 Developments

Dealing with low values of triaxiality stress states could be problematic in
the Gurson model. In some cases, like in shear-dominated deformations,
triaxiality is near zero or even negative [Nahshon and Hutchinson, 2008]

2Usually, low triaxiality means values under
1

3
.
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predicting almost no increase of damage (voids do not grow under pure
shear). Pardoen [2006] study the effect of the void shape at low triaxiality,
mentioning that the void elongates in the direction of maximum strain.
By using a modified version of the Gurson model, which considers growth,
coalescence of spheroidal3 voids and aspect radio of voids4, it is confirmed
that shape effects and coalescence are significant, as in Fig. 2.

Barsoum and Faleskog [2007a,b] analized the rupture mechanism of a
mid and high strength steel in double notched axisymmetric specimens, sub-
jected to combined tension and torsion. They found that when triaxiality
is high, the specimens fail by internal necking, while for low triaxiality is
due to plastic shear localization (aka shear bands). These two coalescense
mechanisms were previously described by Pardoen and Brechet [2004] and
Bron and Besson [2006] and they are showed in Fig. 3. At medium levels of
triaxiality, this mechanisms may co-operte or even compete.

Barsoum and Faleskog [2007a] performed a micromechanical study of an
array of cells to investigate the transition between these two mechanisms.
By using this approach, the array of voids can be seen as an initial imperfec-
tion inducing internal necking, shear localization or both, as in Fig. 4. The
strain localization decreases when passing from tension to shear, and the
softening rates decreases when increasing the Lode parameter. Gao et al.
[2009] performed both experimental tests and micro-mechanics analyses in

3Obtained by rotating an ellipse about one of its principal axes.
4Defined as the ratio between the diameter in the longitudinal direction and the diam-

eter in the transverse direction.

Figure 1: Equivalent stress-strain curves for different values of the Lode parameter
[Zhang et al., 2001]. If the triaxiality is kept constant, the load carrying capacity
diminish proportional to the Lode parameter.
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Figure 2: Influence of the void aspect ratio in the ductility of an ideal material
[Pardoen, 2006].

Figure 3: Two coalescence mechanisms [Bron and Besson, 2006]. The internal
necking of voids is dominant at high values of triaxiality, while the second, char-
acterised as a second population of voids (dispersoids or secondary dimples) that
appeared between the primary voids, is dominant at low values.
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order to demonstrate that the Lode angle has an important effect on ductile
fracture. Considering a representative material volume (RMV) of a ficti-
cious material, using J2 plasticity within an updated lagrangian scheme in
ABAQUS. Prescribed boundary conditions are imposed to keep both the
triaxiality or the Lode angle constant (similar as in Zhang et al. [2001]).
Failure is assumed to happen when localization of plastic flow takes place
in the inter-void ligament [Koplik and Needleman, 1988] (uniaxial straining
mode). It is shown in Fig. 5 that the Lode has an important effect the
strain at coalescence. It is also shown in Fig. 6 that the effect of the Lode
angle is lower at high triaxialities, coinciding with the results from Zhang
et al. [2001]. Gao et al. [2009] also studied the effect of the secondary voids
nucleation (Fig. 5 and Fig. 6, which reduce notable the ductility of the
material.

[Nahshon and Hutchinson, 2008] extended the Gurson model to shear-
dominated deformations by using the Lode parameter (see Eq. 1), in order
to discriminate between axisymmetric and pure shear stress states. The in-
capability of the previous extended models (Leblond, Pardoen) are mainly
based on solutions for voids subject to axisymmetric stressing and do not
address the damage induced softening. The main idea was considered the
void distorsion and inter-void interaction in a different the main factor det-
onating the softening and localization.

(a) Internal necking (β = −0.85, T = 1.0).(b) Shear localization (β = −0.15, T =
0.5).

Figure 4: Void coalescence mechanisms under different values of triaxiality and
the Lode parameter [Barsoum and Faleskog, 2007a].
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Figure 5: Effect of secondary voids and the Lode angle [Gao et al., 2009]. Triaxi-
ality is kept constant at T = 2/3.

(a) Without secondary voids. (b) With secondary voids.

Figure 6: Strain at localization Ec as a function of the triaxiality T and the Lode
angle θ [Gao et al., 2009].
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4 Experimental characterization

As mentioned in section 3, the effect of the Lode parameter becames promi-
nent at low values of triaxiality. Hence, any experimental study about the
influence of this parameter on ductile fracture should be carry on at low val-
ues of triaxiality. Traditionally, notched specimens are used to get different
values of triaxiality and most of the advances in the area have been done us-
ing axisymmetric bar specimens. This was mainly motivated mainly due to
computational reasons, as the simulations are faster using this hypothesis.

The drawback of using this kind of specimens is that they cannot reach
values under T = 1/3 (limited by the theoretical value in a smooth tensile
test specimen), and they also are subjected to axisymmetric stresses. Up-
setting test could be use if bulk material is available, which is not possible
if sheet metal is available.

In this section, different specimens used in the study of low triaxiality
values are presented and described. This is by no means limited to the study
of the Lode parameter, but for low-triaxiality range as a general experimen-
tal framework. Only sheet metal specimens are presented.

Gao et al. [2009] campaign. Gao et al. [2009] studied the influence of
the Lode angle conducting test in several specimens, in order to ensure that
failure occurs at different stress states. The specimens included smooth and
round bars, plane strain specimens, plane stress specimens, Lindholm-type
torsion specimen [Lindholm et al., 1980] and modified plane stress/strain
specimens containing holes. Despite reaching a wide range of triaxialities
(as T varies with the notch radius), the specimens only allows to get discrete
values of the Lode parameter (X = 1 for andX = 0 for the torsion specimens
and the circular-notched plane strain specimens).

Tension-torsion specimen To objective Barsoum and Faleskog [2007b]
was gain understanding of the change of the ductile behaviour by analyzing
the stress triaxiality, the Lode parameter and the effective plastic strain. In
particular, the transition between low and high triaxiality rupture (coales-
cence) mechanism. To do this, a specially circumferentially double notched
tube specimen subjected to a combination of tensile and torsional loading,
was designed (Fig. 7). By changing the relation between the normal stress
and the stress stress over the cross section, the triaxiality can be controlled.

It is important to note the dimensions used by the authors in Fig. 7, with
a total height H of 120 mm, notch height h of only 1 mm and thickness 2t
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of 3.2 mm. Hence, this specimen should be carefully machined and aligned
into the setup hardware.

Modified shear specimen Driemeier et al. [2010] studied the combined
effect pf the stress intensity, triaxiality and lode parameter in the behavior
of Al alloys. An experimental campaign was designed specifically to study
the behavior of the material at low triaxialities. Flat tensile, notched and
shear specimens, with two different thickness (1.56 mm and 6.35 mm) were
tested. An Arcan [] of 6.35 mm specimen was also proposed to obtain infor-
mation for different triaxialities. This specimen cannot be thinner because
of instabilities due to torsional buckling. The shear specimens were slightly
modified in order to investigate the effect of low values of triaxiality, intro-
ducing outplane notches between the central holes (Fig. 8). As the test for
the thin sheets (1.56mm) do not show geometric effects, plane stress condi-

Figure 7: [Barsoum and Faleskog, 2007b].

Figure 8: Modified shear specimen with different lateral notches [Driemeier et al.,
2010].
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tions are assumed valid. Hence, the Lode angle cannot be studied because
under this stress state, the Lode parameter is dependent on the triaxiality
[Bai and Wierzbicki, 2008].

Butterfly specimen The butterfly specimen was initially planned to in-
vestigate the effect of different triaxiality levels on ductile fracture of thin
sheet metals. The main characteristic is that the crack initiate in the center
of the specimen, independently of the stress states being applied [Mohr and
Henn, 2007]. In this way, addressing the experimental difficulty that fracture
usually initializes in zones where the strain state is strongly heterogeneous.
Moreover, the specimen can be charged in two different axis, allowing the
onset of fracture to appear within different stress states, ranging from pure
shear to transverse plane strain tension. An improved version of the speci-
men (adding a second curvature) was later used by Bai and Wierzbicki [2008]
to calibrate a fracture locus sensible to the third invariant. Finally, Dunand
and Mohr [2011b] improved the specimen geometry of [Mohr and Henn,
2007] to cover a wider range of stress states and different loading paths to
fracture. Nevertheless, the complex geometry of the specimen is prone to
initial imperfections. For instance, the last improved version from Dunand
and Mohr [2011b] suffers from extreme sensibility to the cutting method
which can easily leads to different results. As mentioned by Dunand and
Mohr [2011b], local variations of the thickness should not be greater than
10 µm.

(a) Bai and Wierzbicki [2008]. (b) Dunand and Mohr [2011b].

Figure 9: Butterfly specimen evolution.
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A Trigonometric remarks

The inverse trigonometric functions are multivalued functions. That is, a so
called function that assume two or more distinct values in its range for at
least one point in its domain. For instance, multiple values of w such that
z = sinw so arccos z is not uniquely defined.

The problem with equation 18 is that the values of the right side of the
equation (RSE) are sometimes greater than 1, which is impossible since the
range of the cosine function is −1 ≤ cosx ≤ 1. This leads to imaginary
angles.
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