Modelling the lonosphere over Europe: Investigation of NeQuick Formulation

Benoît Bidaine¹ - F.R.S.-FNRS - B.Bidaine@ulg.ac.be Prof. René Warnant^{1,2} - R.Warnant@oma.be

¹University of Liège (Unit of Geomatics), Belgium - www.geo.ulg.ac.be ²Royal Meteorological Institute, Belgium - www.meteo.be

November 18th, 2008 5th European Space Weather Week (Brussels, Belgium)

Ionosphere

Total Electron Content

TECC

TEC has to be modelled for single frequency receivers.

- GALILEO algorithm using NeQuick model
- Validate and improve
 - → algorithm
 - \rightarrow NeQuick 1 \rightarrow 2

First step: let's investigate NeQuick profile formulation.

1. Tools and Method

Modelling and measuring the ionosphere

1. Tools and Method

Modelling and measuring the ionosphere

2. Yearly Statistics

Global scheme

1. Tools and Method

Modelling and measuring the ionosphere

2. Yearly Statistics

Global scheme

3. Influence of k Unification

Main modification in NeQuick 2

1. Tools and Method

Modelling and measuring the ionosphere

2. Yearly Statistics

Global scheme

3. Influence of k Unification

Main modification in NeQuick 2

4. TEC Splitting

Distinguishing bottomside and topside

2. Yearly Statistics

3. Influence of k Unification

4. TEC Splitting

NeQuick is an empirical « profiler ».

ICTP / U Graz / COST 296 and before

- Output = *Ne*
 - → TEC with integration
- Layer peaks= anchor points
 - → monthly median maps
- NeQuick 2 (Nava et al., 2008)
 - → topside modification

We investigate NeQuick formulation using collocated data.

- Actual measurements instead of monthly median maps
 - > constrain by means of ionosonde data
 - → manually validated digisonde data

- Modelled vertical TEC vs GPS TEC
 - → collocated ionosonde and GPS receiver
 - → GIM levelling (Orus et al., 2007)

 $1TECu \rightarrow 16 cm error for L_1$

We focus on mid-latitudes and high solar activity.

- Year 2002 (HSA)
- Three European locations with (nearly) collocated digisonde and IGS/EUREF station

2. Yearly Statistics

3. Influence of k Unification

4. TEC Splitting

2. Yearly Statistics

TEC modelling improves on a yearly basis.

Yearly TEC mean

- TEC underestimated on average
 (! potential bias in GPS TEC data !)
- Bigger (around 20%) underestimation with NeQuick 2

2. Yearly Statistics

TEC modelling improves on a yearly basis.

Yearly relative TEC standard deviation

• Lower (around 20%) standard deviation with NeQuick 2

2. Yearly Statistics

3. Influence of k Unification

4. TEC Splitting

3. Influence of k Unification

The topside shape parameter k was unified in NeQuick 2.

- k involved in height-dependent scale height
- NeQuick 1: 2 formulas for k (April to September and October to March)
 - → different statistics for each period
- NeQuick 2: 1 formula based on topside soundings

3. Influence of k Unification

The improvement comes mainly from the topside modification.

Evolution of TEC standard deviation from NeQuick 1 to 2

- October to March: lower (15%) standard deviation with NeQuick 2
- → More homogenous with other period

2. Yearly Statistics

3. Influence of k Unification

4. TEC Splitting

4. TEC Splitting

The topside plays a major role.

- Integrate bottomside Ne profile from digisonde
 - → bottomside TEC
- Subtract to GPS TEC → topside TEC
- Big proportion of TEC
 within topside (3/4, 1/4)

4. TEC Splitting

The improvement comes mainly from the topside modification.

Yearly topside TEC standard deviation

 Bias/standard deviation evolution for topside between NeQuick versions corresponding to global statistics

- Benefit from collocated data
- TEC statistics: standard deviation decrease by 20% to reach less than 20% with NeQuick 2 (mid-latitudes stations, high SA)
- Homogenisation thanks to topside modification
- Major role of topside

TEC has to be modelled for single frequency receivers.

- Comparison of different GPS TEC data sets
- Ingestion: use of effective parameters to adapt NeQuick TEC to GPS TEC
- GALILEO Single Frequency Ionospheric Correction Algorithm

Ionosphere

Modelling the lonosphere over Europe: Investigation of NeQuick Formulation

Benoît Bidaine¹ - F.R.S.-FNRS - B.Bidaine@ulg.ac.be Prof. René Warnant^{1,2} - R.Warnant@oma.be

¹University of Liège (Unit of Geomatics), Belgium - www.geo.ulg.ac.be ²Royal Meteorological Institute, Belgium - www.meteo.be

November 18th, 2008 5th European Space Weather Week (Brussels, Belgium)