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Abstract 

A model-based insulin sensitivity parameter (SI) is often used in glucose-insulin 

system models to define the glycaemic response to insulin. As a parameter 

identified from clinical data, insulin sensitivity can be affected by blood glucose 

(BG) sensor error and measurement timing error, which can subsequently 

impact analyses or glycaemic variability during control. This study assessed the 

impact of both measurement timing and BG sensor errors on identified values of 

SI and its hour-to-hour variability within a common type of glucose-insulin 

system model. 

Retrospective clinical data were used from 270 patients admitted to the 

Christchurch Hospital ICU between 2005 and 2007 to identify insulin sensitivity 

profiles. We developed error models for the Abbott Optium Xceed glucometer 

and measurment timing from clinical data. The effect of these errors on the re-

identified insulin sensitivity was investigated by Monte-Carlo analysis. 

The results of the study show that timing errors in isolation have little clinically 

significant impact on identified SI level or variability. The clinical impact of 

changes to SI level induced by combined sensor and timing errors is likely to be 

significant during glycaemic control. Identified values of SI were mostly (90th 

percentile) within 29% of the true value when influenced by both sources of 

error. However, these effects may be overshadowed by physiological factors 

arising from the critical condition of the patients or other under-modelled or un-

modelled dynamics. Thus, glycaemic control protocols that are designed to work 

with data from glucometers need to be robust to these errors and not be too 

aggressive in dosing insulin.  

 



1 Introduction 

Physiological glucose-insulin system models typically rely on some form of 

insulin sensitivity parameter to characterise the patient-specific glycaemic 

response to exogenous insulin [1, 2]. This model-based insulin sensitivity 

parameter (SI) is identified for some period of time using blood glucose (BG) 

concentration and insulin and nutrition administration data. Errors in blood 

glucose concentration and measurement timing can thus affect the identified 

values of SI. 

In the busy intensive care unit (ICU) environment, BG measurements are rarely 

taken and recorded at an exact, scheduled time. Sensor errors add uncertainty to 

the measured BG concentration. Both errors propagate through to SI during 

parameter identification, which in turn may impact subsequent analyses or 

glycaemic variability during control. 

Typical point-of-care glucometers claim to have measurement errors in the 

range 2-10% [3-7]. The uncertainty in BG concentration resulting from sensor 

error impacts the identified values of SI through altering the glucose flux that 

must be balanced by the insulin-mediated glucose disposal term in the glucose-

insulin system model. 

The objective of this investigation was to assess the impact of both measurement 

timing and sensor errors on identified values of SI and its hour-to-hour 

variability. Specifically, the SI parameter from a glucose-insulin system model 

similar to that described by Lin et al. [1] was investigated with patient data from 

the Christchurch Hospital ICU. 

 



2 Subjects and Methods 

2.1 Patients 

This study was conducted as retrospective analyses of data from 270 patients 

admitted to the Christchurch Hospital ICU between 2005 and 2007. All patients 

were on the SPRINT protocol for at least 24 hours [8]. Table 1 shows a summary 

of the cohort details. The Upper South Regional Ethics Committee, New Zealand 

granted approval for the audit, analysis and publication of this data. 

Table 1. Cohort details summary. Data are shown as median [interquartile range] where appropriate 

N 270 

Age (years) 65 [49-73] 

Gender (M/F) 165/105 

Operative/Non-Operative 104/166 

Hospital mortality (%) 27% 

APACHE II score 19 [16-25] 

APACHE II ROD (%) 30 [17-53] 

Diabetic status (T1DM/T2DM) 10/34 

ICU length of stay (hrs) 160 [77-346] 

 

2.2 Model-based insulin sensitivity 

The glucose-insulin system model used in this study was an enhanced version of 

the ICING model described by Lin et al. [1], with a new endogenous insulin 

secretion sub-model (7) derived from data not yet published. The model is 

defined below in Equations (1)-(7). Model parameters, rates and constants were 

generally as described in Lin et al. [1], except for nI, nC  and VI which have been 

adjusted to 0.006 min-1, 0.006 min-1 and 4.0 L, respectively. These changes were 

made based on an analysis of results from several microdialysis studies and the 

population parameters from Van Cauter et al. [9]. 

Endogenous insulin secretion was modelled as a function of BG. Sub-model 

parameters, umin and umax are 16.7 mU.min-1 and 266.7 mU.min-1, respectively. 



For non-diabetic patients, k1and k2 take the values 14.9 mU.L.mmol-1.min-1 and -

49.9 mU.min-1. 

The model was implemented in MATLAB (2012a, Natick, MA), and a value of SI 

identified each hour for every patient using clinical BG, insulin and nutrition 

records. The parameter identification was performed using an integral method 

that ensured the global optimum value was located [10].  
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The model-based insulin sensitivity parameter has been shown to correlate well 

with the insulin sensitivity index (ISI) determined by the gold-standard 

euglycaemic-hyperinsulinaemic clamp (r >0.90) [11]. Hour-to-hour SI variability 

is defined in (8). 

Δ%𝑆𝐼𝑘 = 100 ×
(𝑆𝐼𝑘+1 − 𝑆𝐼𝑘)

𝑆𝐼𝑘
 8 

 

2.3 Blood glucose sensor error 

This study uses preliminary information from an on-going investigation 

evaluating the performance of several different point-of-care glucometers in the 

Christchurch Hospital ICU. For the purposes of this study, an error model was 

derived for the Abbott Optium Xceed glucometer (Abbott Diabetes Care, 

Alameda, CA), a commonly available, inexpensive device that measures the 

glucose concentration in a whole blood sample, and reports a plasma equivalent 



glucose concentration. Test strips used in this study were validated for a 

haematocrit range of 20-70% [12]. 

The study in Christchurch used arterial blood samples, each drawn by an 

experience intensive care nurse. The glucose concentration of each sample was 

determined using a Radiometer ABL90 Flex blood gas analyser (BGA) 

(Copenhagen, Denmark) and simultaneously with up to 5 separate glucometers. 

However, due to device error, availability, or clinical reasons, some samples 

were tested on fewer than 5 glucometers. All measurements were completed 

within 5 minutes of the blood draw. Data from 242 samples (758 glucometer 

measurements) were available to derive the error model from 758 paired 

measurements.  

Whole blood glucose results from the BGA were adjusted with the measured 

haematocrit [13] to yield plasma glucose concentrations for direct comparison 

with the glucometers. Figure 1 shows scatter and Bland-Altman plots of the 

paired data and Figure 2 shows the kernel density model of the glucometer BG 

values given the BGA values.  

 

Figure 1. Scatter (left) and Bland-Altman (right) plots of Abbott Optium Xceed glucometer 

performance against reference Radiometer ABL90 Flex blood gas analyser measurements. 

 

 



 

Figure 2. Kernel density model of Abbott Optium Xceed glucometer performance based on 758 paired 

measurments with a blood gas analyser (BGA) 

 

Table 2 shows a simplified, binned error model derived from the paired data, for 

comparison with the published errors (from test-strip packet insert) presented 

in Table 3 [12]. An estimate of the sensor bias was derived from the correlation 

data. Precision was modelled using the reported standard deviations, linearly 

interpolated within the reported range and held constant outside.  

Table 2. Binned errors for the Abbott Optium Xceed glucometer based on paired measurements from 

Christchurch Hospital ICU. 

Reference BG 
(mmol/L) 

< 5.9 6.0 - 6.9 7.0 – 7.9 8.0 – 8.9 > 9.0 

Number of 
measurements 

88 180 261 156 73 

Error mean 
(mmol/L) 

0.28 0.19 -0.05 -0.56 -0.26 

Error std. dev. 
(mmol/L) 

0.55 0.84 0.83 0.63 0.91 

 

 

 

 

 

 



Table 3. Error model for the Abbott Optium Xceed glucometer based on data published by the 

manufacturer [12]. 

Reference BG 
(mmol/L) 

< 2.4 2.4 5.6 8.0 20 > 20 

Error mean 
(mmol/L) 

+0.25 +0.25 +0.19 +0.14 -0.10 -0.10 

Error std. dev. 
(mmol/L) 

0.13 0.13 0.22 0.30 0.94 0.94 

 

2.4 Timing error 

Measurements and interventions during the SPRINT protocol were 1 or 2-hourly 

and intended to be taken on the hour. These measurements were recorded by 

hand and attributed to the nearest hour on the standard paper 24-hour charts 

used in the Christchurch Hospital ICU. Hence, any discrepancies between the 

actual measurement time and the ‘nearest hour’ were lost. 

Recent pilot trials of the STAR (Stochastic TARgeted) protocol at Christchurch 

Hospital ICU [14] provide data to generate a timing error model (1651 

measurements on 20 patients). The STAR protocol is implemented on a tablet 

computer, thus the exact time when BG measurements were entered was 

recorded and can be compared to the written records. Using the discrepancies 

between scheduled and actual BG measurements, a model of timing error can be 

generated and applied to data from the SPRINT protocol. Although the STAR 

protocol differs from SPRINT, particularly with its computerised interface, it was 

used by the same clinical staff in the same unit. Hence, it may be assumed that 

timing errors in making measurements will be similar. 

Timing errors were limited to a maximum of 28 minutes for this analysis.  Errors 

of ±30 minutes or more are considered as missed or additional treatments as 

they are closer to the next hour than the previous. Both these cases relate to 

protocol compliance and are thus are not considered as timing errors for the 

purposes of this analysis. 92% of recorded timing errors fell within the range -28 

to 28 minutes. 



The empirical timing error distributions are shown in Figure 3. Errors from 

these distributions were applied additively to the SPRINT data by randomly 

sampling from the error vectors. The errors were applied to both the 

measurement and intervention timing. Thus, the measurements and 

interventions remained synchronised, as they would in the hospital.  

 

Figure 3. Timing error models based on data from the STAR pilot trials [14]. Errors from 1- and 2 hour 

measurements are shown on the left and right, respectively. 

 

2.5 Analysis 

To assess the effects of random timing and sensor errors on SI, Monte Carlo 

simulations were performed.  Due to the non-linearity of the model equations 

and the numerical identification of SI, an analytical derivation of these effects 

was not possible. 

For the Monte Carlo simulations, the SI profile of each patient in the cohort was 

refitted n = 50 times with randomly sampled errors from applied to the observed 

timing and BG concentrations. The SI profiles identified without additional 

random errors were considered the ‘true’ profiles, and the Monte Carlo profiles 

were compared to these to assess the impact each of the sources of error. 

Comparisons of both SI level and hour-to-hour variability were made. 



BG errors were sampled from the kernel density model, within the range 4.4-

11.9 mmol/L in which paired data existed. Outside this range, errors were 

assumed to be normally distributed with parameters shown in Table 3, from the 

published error model. 

To facilitate comparisons when timing errors were applied, SI was identified in 

60-minute intervals, rather than between BG measurements. This use of fixed, 

60-minute fitting intervals and linear interpolation between measurements is 

consistent with the methodology used for glycaemic control by the STAR 

protocol. 

To analyse the impact of errors on the identified SI level, the variation induced 

by the simulated errors at each hour was assessed across the Monte Carlo 

simulations. Figure 3 illustrates the methodology for SI level comparisons 

between the n Monte Carlo simulations and the true data. 

 

Figure 4. SI level comparison method for the Monte Carlo simulations with added sensor and timing 

error. The width of the interquartile range of differences was used to characterise the variability in level 

induced by the errors. 

This analysis method results in one interquartile range (IQR) width value per 

patient hour. For the 270 patient SPRINT cohort, there were approximately 

43,000 hours of data. These 43,000 IQR widths were presented as cumulative 

distributions to show the overall effect of the errors on the cohort. 

The hour-to-hour variability (%) of simulated data could not be compared to the 

true variability using ratios as the distribution of true variability was centred 

close to zero, causing ratios to take extreme values. Thus, the impact of errors on 
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hour-to-hour variability can be quantified by the width of the IQR across the 

simulations at each hour.



3 Results and Discussion 

3.1 Timing error 

Figure 5 shows the impact of timing errors on identified SI level (left panel) and 

variability (right panel). For 90% of hours, the IQR width of SI level was 10%. 

Thus, for those 38,700 hours, half the simulations resulted in SI values within 

±5% of the true value, in the case of a symmetrical distribution. Similarly, for 

variability, 90% of hours had an IQR width of hour-to-hour changes of less than 

14%, or ±7% about the simulation median.  

 

Figure 5. The impact of timing error on SI level (left panel) and hour-to-hour variability (right panel), 

determined by Monte Carlo simulation. 

These results show that typical timing errors in isolation have a relatively small 

impact on the level and variability of SI. With a median absolute difference 

between the simulated and actual measurement intervals of 9 minutes and using 

bolus insulin delivery, this result is not too surprising. Unlike infused insulin, 

bolus delivery ensures that the entire prescribed dose is always administered, 

regardless of the time between measurements. In addition, timing discrepancies 

only affect the later parts of the interstitial insulin profile, where concentrations 

are lowest and thus contribute least to the area under the curve used in fitting 

the SI parameter [10]. 



3.2 Blood glucose sensor error 

Figure 6 shows the impact of BG sensor errors on SI level (left panel) and 

variability (right panel). Results from both error models are presented, with the 

solid lines indicating the model derived from clinical paired measurements 

(Figure 2) and the dashed line indicating the model derived from published data 

(Table 3). For 90% of hours, the IQR widths of SI level were less than 65% and 

23% for the clinical and published models, respectively. Thus, for those 38,700 

hours, half the simulations resulted in SI values within approximately ±33% and 

±12% of the true value, in the case of a symmetrical distribution. Similarly, for 

variability, 90% of hours had IQR widths of hour-to-hour changes of less than 

112% and 38%, or ±56% and ±19% about the simulation median. 

The variability induced in both SI level and variability is significantly greater 

than that due to timing error in both cases. Additionally, the error model derived 

from clinical measurements causes greater variability than that from the 

published data.  

 

Figure 6. The impact of BG sensor error on SI level (left panel) and hour-to-hour variability (right panel), 

determined by Monte Carlo simulation.  

3.3 Combined measurement error 

Figure 7 shows the impact of the combined timing and BG sensor errors on SI 

level (left panel) and variability (right panel). The previous two sections have 

characterised the individual contributions of timing and sensor error. This 



analysis combines them, simulating errors seen in the real, clinical situation. The 

error model derived from paired clinical data was used as it represents the 

performance of the glucometer in an actual critical care environment. 

For 90% of hours, the IQR width of SI level was less than 58%. Thus, assuming a 

symmetrical distribution, half the simulations resulted in SI values within 

approximately ±29% of the true value for these 38,700 hours. Similarly for 

variability, the 90th percentile was 93%, indicating that for half the simulations 

the hour-to-hour variability of SI was within ±47%. 

 

Figure 7. The impact of combined timing and BG sensor error on SI level (left panel) and hour-to-hour 

variability (right panel), determined by Monte Carlo simulation. The results of Figure 5 (paired 

measurement model) are shown as grey lines for comparison. 

The results from Figure 6 are also shown on Figure 7 as grey lines. It is obvious 

that the two error sources are not additive and that the results are very similar. 

This similarity is possibly due to the effects of the two separate error sources 

cancelling each other out. 

3.4 Discussion 

The clinical impact during glycaemic control of changes to SI level induced by 

sensor and timing errors is potentially quite significant. Identified values of SI 

were mostly within 29% of the true value when influenced by both sources of 

error. However, changes in SI greater than 20% were seen with glucocorticoid 

treatment [15] and improving patient condition over the first 18 hours of ICU 



stay [16]. Thus, glycaemic control protocols that are designed to work with data 

from glucometers need to be robust to these errors and not be too aggressive in 

dosing insulin.  

A second, potentially clinically significant, impact is on analytical use of SI as a 

marker of injury or change in state. This analysis shows that identified short-

term changes in SI could be a result of measurement timing or sensor errors, 

rather than true physiological phenomena. Hence, using changes in SI level as a 

diagnostic must be done with caution, potentially looking at longer-term trends, 

where the effects of random errors may be cancelled by averaging over time. 

In the context of the STAR protocol, the additional hour-to-hour variability 

caused by sensor and timing errors may be clinically significant. STAR uses a 

stochastic model of expected SI hour-to-hour variability to forecast the results of 

potential interventions and avoid hypoglycaemia. The stochastic model is 

derived from historical data measured with glucometers (Arkray 

SuperGlucocard II, Arkray Inc. Japan) and whole blood, and therefore includes 

the effects of BG sensor error that are likely to be of a similar magnitude to those 

observed in this study [4]. Specifically, the relatively large, ±47%, range of hour-

to-hour variability about the median caused by errors, suggests that a significant 

proportion of the expected variability may be a result these errors, rather than 

explicit physiological variability.  

It is interesting to note that combining timing and sensor errors results in 

slightly less variability than the sensor error alone (Figure 7). This is likely a 

result of the effects of the two error sources cancelling each other out.   

3.5 Potential for reducing error and its impact on glycaemic control 

There is no effective way to remove these errors as they are random and apply 

equally to all patients. The only available option is to reduce the magnitude of 

the errors where possible and carefully manage their impact. The timing error 

distribution in Figure 3 shows that more than 85% of measurements are within 

10 minutes of the scheduled time, which is a very good result in a busy ICU 

environment.  



In contrast, BG sensor errors can be reduced with better, more accurate, but 

likely more expensive equipment (for example, Abbott i-STAT, Nova StatStrip 

Glucose or a blood gas analyser). The Christchurch ICU is currently investigating 

several point-of-care blood glucose measurement devices for future clinical use. 

However, all measurement devices have some degree of uncertainty. In addition, 

other factors such as interfering substances and sampling procedure can also 

have a large impact on the accuracy of a measurement [17, 18]. Thus, glucose 

control protocols must be robust to the impact of these errors. 

The STAR protocol manages the variability induced in SI by considering the 

extreme percentiles of the stochastic model. By selecting interventions so that 

the forecast probability of the next blood glucose measurement being above or 

below the target band is just 5% for each case, most of the induced variability is 

contained within the band, thus mitigating the clinical impact and potential risk 

of hypoglycaemia. 

It is interesting to note the differences in accuracy of the glucometer between the 

published data and that obtained in a real, clinical setting. This study used data 

obtained from arterial blood samples collected by trained clinical staff and 

measured within 5 minutes, minimising the potential for additional error 

through device misuse [17, 18]. However, there were still appreciable 

differences, and these may increase further in normal use, when clinical staff are 

not focused on a study protocol that is explicitly designed to reduce errors. 

 



4 Conclusions 

The objective of this study was to assess and quantify the impact of typical 

timing and BG sensor errors on the level and variability of model-based SI. 

Specifically, the variability of level and the variability of SI hour-to-hour 

variability were investigated under the influence of these sources of error, both 

separately and combined. Measurement timing errors were shown to have a 

significant influence on the identified value of the SI parameter. The BG 

concentration errors of the Abbott Optium Xceed glucometer had a larger effect 

on SI and dominated the combined analysis. 

The clinical impact of errors on SI level during glycaemic control is likely to be 

significant and possibly detrimental to control performance. However, these 

changes are of similar magnitude to changes from physiological or therapy 

factors arising from the critical condition of the patients, which are already dealt 

with by control protocols. Thus, glycaemic control protocols that are designed to 

work with data from glucometers need to be robust to these errors and not be 

too aggressive in dosing insulin. In contrast, the impact of errors on hour-to-hour 

SI variability is more pronounced and may impact the way the SI parameter is 

utilised for control and analysis. 

This analysis indicated that for a given SI level, variability induced by errors 

might dominate the IQR of the probability density function describing SI for the 

subsequent hour. In addition, using changes in SI level as a diagnostic must be 

done with caution, potentially looking at longer-term trends, where the effects of 

random errors may be cancelled by averaging over time. 

Given the random nature of these errors, the only feasible method of mitigation 

is to use more accurate BG sensors and glycaemic control protocols that are 

robust to the impact of the errors. Understanding the effect of sensor and timing 

errors on SI allows their impact to be taken into account when using the 

parameter for control and analysis. 
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