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ABSTRACT
The dynamics of elasto-inertial turbulence is investi-

gated numerically from the perspective of the coupling be-
tween polymer dynamics and flow structures. In particular,
direct numerical simulations of channel flow with Reynolds
numbers ranging from 1000 to 6000 are used to study the
formation and dynamics of elastic instabilities and their ef-
fects on the flow. Based on the splitting of the pressure
into inertial and polymeric contributions, it is shown that the
trains of cylindrical structures around sheets of high poly-
mer extension that are characteristics to elasto-inertial tur-
bulence are mostly driven by polymeric contributions.

INTRODUCTION
Polymer additives are known for producing upward

of 80% drag reduction in turbulent wall-bounded flows
through strong alteration and reduction of turbulent activity
(White & Mungal, 2008). The changes in flow dynamics
induced by polymers do not lead to flow relaminarization
but, at most, to a universal asymptotic state called maximum
drag reduction (MDR, Virk et al. 1970). At the same time,
polymer additives have also been shown to promote transi-
tion to turbulence (Hoyt, 1977), or even lead to a chaotic
flow at very low Reynolds number as in elastic turbulence
(Groisman & Steinberg, 2000).

These seemingly contradicting effects of polymer ad-
ditives can be explained by the interaction between elas-
tic instabilities and the flow’s inertia characterizing elasto-
inertial turbulence, hereafter referred to as EIT (Samanta
et al., 2012; Dubief et al., 2013). EIT is a state of small-
scale turbulence that exists by either creating its own ex-
tensional flow patterns or by exploiting extensional flow
topologies. EIT provides answers to phenomena that cur-
rent understanding of MDR cannot, such as the absence

of log-law in finite-Reynolds numbers MDR flows (White
et al., 2012), and the phenomenon of early turbulence.
Moreover, it supports De Gennes (1990)’s picture that drag
reduction derives from two-way energy transfers between
turbulent kinetic energy of the flow and elastic energy of
polymers at small scales, resulting in an overall modifica-
tion of the turbulence energy cascade at high Reynolds num-
bers.

As shown by the viscoelastic pipe experiment of
Samanta et al. (2012), an elastic instability can occur at a
Reynolds number smaller than the transition in Newtonian
pipe flow if the polymer concentration and Weissenberg
number are sufficiently large. Moreover, it was observed
that the measured friction factor then follows the character-
istic MDR friction law. These findings were also confirmed
by direct numerical simulations as shown in Figure 1 (Du-
bief et al., 2013). The analysis of these simulations showed
that thin sheets of locally high polymer stretch, tilted up-
wards and elongated in the flow direction, create trains of
spanwise cylindrical structures of alternating sign, as shown
in Figure 2. This feature of EIT disappears when the flow
is too turbulent or the polymer solution not elastic enough,
which led to the hypothesis that EIT is an asymptotic state
that should occur when the elasticity of the solution can ef-
ficiently control and contain the growth of turbulence.

Dubief et al. (2013) suggested that the formation of
sheets of polymer stretch results from the unstable nature of
the nonlinear advection of low-diffusivity polymers. These
sheets, hosting a significant increase in extensional viscos-
ity, create a strong local anisotropy, with a formation of
local low-speed jet-like flow. The response of the flow is
through pressure, whose role is to redistribute energy across
components of momentum, resulting in the formation of
waves, or trains of alternating rotational and straining mo-
tions. Once triggered, EIT is self-sustained since the elas-
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Figure 1. Friction factor as a function of the Reynolds
number for two Weissenberg numbers Wi = 100 (•), Wi =
700 (N). Lines indicate correlations for laminar ( ,
f = 12/Re) and turbulent ( , f = 0.073Re−1/4)
Newtonian channel flow and for MDR ( , f =

0.42Re−0.55); Newtonian solutions are also included ( ).

Figure 2. Instantaneous isosurface of the second invariant
Qa of the velocity gradient tensor in the lower half of the
channel for Re = 1000 and Wi = 8; Qa = 0.025 (red) and
Qa =−0.025 (cyan).

tic instability creates the very velocity fluctuations it feeds
upon.

The underlying mechanism driving EIT is here further
investigated through an analysis of the pressure, and its in-
teraction with topological structures of the flow and poly-
mer stress. The approach relies on the splitting of the pres-
sure into inertial and polymeric contributions following the
methodology of Mansour et al. (1988) and Kim (1989).

METHOD
Direct numerical simulations

Channel flow simulations are performed in a cartesian
domain, where x, y and z are the streamwise, wall-normal
and spanwise directions, respectively. For a polymer so-
lution, the flow transport equations are the conservation of
mass, ∇ · u = 0, where u = (u,v,w) is the velocity vector,
and transport of momentum:

∂tu+(u ·∇)u =−∇p+
β
Re

∇2u+
1−β

Re
∇ ·T . (1)

The Reynolds number is based on the bulk velocity Ub and
the full channel height H = 2h, Re =UbH/ν . The polymer

stress tensor T is computed using the FENE-P model:

T =
1

Wi

(
C

1− tr(C)/L2 − I
)

, (2)

where I is the unit tensor and C the polymer conformation
tensor, whose transport equation is

∂tC+(u ·∇)C = C(∇u)+(∇u)TC−T . (3)

The properties of the polymer solution are the ratio β of sol-
vent viscosity to the zero-shear viscosity of the solution, the
maximum polymer extension L, and the Weissenberg num-
ber Wi = λ γ̇ based on the solution relaxation time λ and
the wall shear-rate γ̇ of the initial laminar flow at each Re.
Eqs. (1-3) are solved using finite differences on a staggered
grid and a semi-implicit time advancement scheme (Dubief
et al., 2005). A thorough resolution study led us to choose
a domain size of 10H×H×5H with 256×151×256 com-
putational nodes. All results have been verified on domains
with a factor 2 in horizontal dimensions and resolution in
each directions. The CFL number was set to 0.15 to guar-
antee the boundedness of C.

Three different cases are considered here: Re = 1000
at Wi = 8 (Wi+ = 24), and Re = 6000 at Wi = 8 (Wi+ = 96)
and Wi = 60 (Wi+ = 720). The lower Reynolds num-
ber corresponds to a subcritical flow (Re < Rec, where
Rec = 1791 defines the intersection between the laminar and
MDR friction drag lines as shown in Figure 1), while the
larger Reynolds number corresponds to a value for which
the Newtonian flow is turbulent. The Weissenberg num-
bers at Re = 6000 are chosen to achieve high drag reduction
(HDR) and MDR, respectively. For all three cases L = 200
and β = 0.9 were used. The corresponding statistics can be
found in Dubief et al. (2013).

Inertial and polymeric contributions to pres-
sure

In order to investigate the role of pressure in the mech-
anism underlying EIT, a similar approach to Mansour et al.
(1988) and Kim (1989) is followed. Taking the divergence
of the momentum equation (1) leads to a Poisson equation
for the pressure:

∇2 p = 2Qa +
1−β

Re
∇ · (∇ ·T) , (4)

where Qa =−1/2∂iu j∂ jui =−1/2∂i∂ j(uiu j) is the second
invariant of the velocity gradient tensor. In contrast to a
Newtonian flow, a second term appears on the right-hand
side, which represents the contribution from the polymeric
stress. For a periodic channel flow, the pressure satisfies
equation (4) with the boundary condition

∂ p
∂y

∣∣∣∣
y=±h

=
β
Re

∂ 2v
∂y2

∣∣∣∣
y=±h

+
1−β

Re
∂ 2Tyy

∂y2

∣∣∣∣
y=±h

(5)

at the walls and periodicity in x and z.
By splitting the right-hand side of Eq. 4 into different

terms and separating the effect of the wall boundary condi-
tion, their respective contributions to the total pressure can
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be isolated. In particular, we consider here following split-
ting for the pressure fluctuations p′(x) = p(x)−P(x):

p′(x) = p′r(x)+ p′s(x)+ p′p(x)+ p′St(x) , (6)

where fluctuations are denoted by ·′ and mean quantities
by ·. The first three contributions on the right-hand side of
Eq. (6) are solutions of (Gerolymos et al., 2013):

∇2 p′r =−2
dU
dy

∂v′

∂x
, (7)

∇2 p′s =−
∂u′i
∂x j

∂u′j
∂xi

+
d2v′2

dy2 , (8)

∇2 p′p =
1−β

Re

∂ 2T ′i j

∂xi∂x j
, (9)

with the homogeneous wall boundary condition

∂ p′r
∂y

∣∣∣∣
y=±h

=
∂ p′s
∂y

∣∣∣∣
y=±h

=
∂ p′p
∂y

∣∣∣∣∣
y=±h

= 0 . (10)

The ‘rapid’ part, p′r, is linear in the velocity fluctuations and
represents the immediate response to a change imposed on
the mean field, while the ‘slow’ part, p′s, feels this change
through nonlinear interactions (Kim, 1989). In addition to
these two inertial terms, the pressure in a viscoelastic flow
also has an elastic contribution, p′p, originating in the poly-
meric stress. Finally, the effect of the wall boundary condi-
tion is represented by the Stokes pressure, p′St , which satis-
fies

∇2 p′St = 0 (11)

with the inhomogeneous boundary condition

∂ p′St
∂y

∣∣∣∣
y=±h

=
β
Re

∂ 2v′

∂y2

∣∣∣∣
y=±h

+
1−β

Re
∂ 2T ′yy

∂y2

∣∣∣∣∣
y=±h

. (12)

As the Stokes pressure is typically much smaller than the
other contributions, it is not considered here.

This pressure split is applied to the simulation results
for the three cases mentioned above and statistics are com-
puted in order to identify the relative contributions from in-
ertia and elasticity, as shown below.

RESULTS
Equations (7)-(9) have been solved with homogeneous

wall boundary condition to obtain the three contributions
p′r, p′s and p′p. About 500 fields have been collected for
each of the three cases considered, on which statistics have
been performed.

Statistics
The root-mean-square (r.m.s.) values of the different

pressure contributions and of their sum across the channel
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Figure 3. R.m.s. of the different pressure contributions
as a function of y+ for Re = 1000, Wi = 8. p′r: ;
p′s: ; p′p: ; p′rs = p′r + p′s: ; p′rsp =

p′r + p′s + p′p: .
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Figure 4. R.m.s. of the different pressure contributions
as a function of y+ for Re = 6000, Wi = 8 (HDR, ◦) and
Re = 6000, Wi = 60 (MDR, ). Line style same as Figure 3.

height are shown in Figures 3 and 41. It can be observed that
the dominating contribution comes from the rapid pressure.
In contrast to a Newtonian turbulent channel flow, where
the slow part dominates (Gerolymos et al., 2013), the slow
pressure is here much lower, illustrating the drag-reduced
state of the flow at Re = 6000; it is even almost negligi-
ble at Re = 1000. Moreover, both rapid and slow parts are
slightly larger for the second case (HDR) than for the third
case (MDR), as it could be expected. On the other hand, the
elastic pressure, absent in the Newtonian case, has a non-
negligible contribution in all cases. Figure 5 shows the ratio
of the r.m.s. of the elastic pressure p′p to the inertial pres-
sure, p′rs = p′r + p′s, indicating that the polymer contribution
is about 15% of p′rs at Wi= 8 and increases to about 35-40%
at the larger Weissenberg number. Generally, the polymer
pressure is larger than the slow part, except in the HDR case
(Re = 6000, Wi = 60). Finally, note that the splitting into
an inertial and elastic contribution is a simplified view as
the polymer stress in Eq. (1) can create velocity fluctuations
and, thus, indirectly contributes to the inertial pressure and
conversely, as it will be discussed below.

Dubief et al. (2013) suggested that the role of pressure
is to redistribute turbulent kinetic energy across components
of momentum, resulting in the formation of waves, or trains

1Note that p′2rsp = (p′r + p′s + p′p)2 6= p′2r + p′2s + p′2p .
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Figure 5. Ratio of the polymeric to the inertial pressure
r.m.s. as a function of y+. Re = 1000, Wi = 8: M; Re =

6000, Wi = 8: ◦; Re = 6000, Wi = 60: .
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Figure 6. Contributions to the pressure-strain component
φ+

xx as a function of y+. Re = 1000, Wi = 8: M; Re = 6000,
Wi = 8: ◦; Re = 6000, Wi = 60: . p′p: ; p′rs =

p′r + p′s: ; p′rsp = p′r + p′s + p′p: .

of alternating rotational and straining motions. To illustrate
this, the terms containing pressure in the Reynolds stress
transport equations are further analyzed. The velocity-
pressure gradient correlation

Πi j =−u′i
∂ p′

∂x j
−u′j

∂ p′

∂xi
(13)

can be separated into two contributions, Πi j = φi j + d(p)
i j ,

representing the pressure-strain and the pressure-diffusion,
respectively (Gerolymos et al., 2013). They are defined as

φi j = p′
(

∂u′i
∂x j

+
∂u′j
∂xi

)
, (14)

d(p)
i j =

∂ p′u′i
∂x j

+
∂ p′u′j

∂xi
. (15)

The contributions to the pressure-strain components
φxx, φyy and φzz are shown in Figures 6-8. Their qualita-
tive behavior is very similar to a Newtonian flow at a sim-
ilar Reynolds number (Gerolymos et al., 2013), but with
lower levels owing to the turbulence reduction. Addition-
ally, the contributions from p′p and p′rs are qualitatively sim-
ilar, with a lower level for the polymeric part. However,
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Figure 7. Contributions to the pressure-strain component
φ+

yy as a function of y+. Same line style and symbols as
Figure 6.

y+

+ zz

100 101 102
-0.002

0

0.002

0.004

0.006

0.008

0.01

Figure 8. Contributions to the pressure-strain component
φ+

zz as a function of y+. Same line style and symbols as
Figure 6.

the polymeric contribution is comparatively larger for φyy,
while lower for φzz, which would tend to indicate that the
elastic contribution slightly favors a two-dimensional flow,
the three-dimensionality being mostly driven by the iner-
tial part. As the pressure-strain tensor is by definition de-
viatoric, it does not make any contribution to the turbulent
kinetic energy, but rather redistributes energy between its
different components. In all cases, a clear transfer of turbu-
lent kinetic energy from the streamwise component (neg-
ative φxx) to both the wall-normal and spanwise compo-
nents (positive φyy and φzz) can be observed for y+ & 10,
highlighting the role of pressure in redistributing the en-
ergy. Note however that φxx is negative and φyy positive
very close to the wall. Similar conclusions can be drawn
from Πi j and d(p)

i j (not shown here). Finally, unlike New-
tonian flows, the larger contribution to the pressure-strain
comes from the rapid part, except for the HDR case, where
both rapid and slow contributions are of similar magnitude.
This seems to indicate that MDR flows are characterized
by a dominating contribution of the rapid pressure, or more
exactly by a stronger attenuation of the slow part.

A major qualitative difference from a Newtonian turbu-
lent flow is observed for the x− y component. In particular,
Πxy (see Figure 9) is negative (i.e., production of Reynolds
stress) around y+ ≈ 10. This behavior is directly caused by
the polymer pressure and could partly explain the small but
non-vanishing Reynolds stress seen in such flows.
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Figure 9. Contributions to the velocity-pressure gradient
correlation component Π+

xy as a function of y+. Same line
style and symbols as Figure 6.

Figure 10. Instantaneous contour of the polymer stress
component Txx and isolines of Qa (dash lines represent neg-
ative values) in a x−y plane for Re = 1000 and Wi = 8. The
flow is from left to right and the dashed box represents the
region plotted in the next two figures.

Figure 11. Instantaneous contour of the pressure contri-
bution pp and isolines of Qa (dash lines represent negative
values) in a x− y plane for Re = 1000 and Wi = 8. The
region plotted corresponds to the dashed box in Figure 10.

Instantaneous fields
As shown in Figure 2, the flow is characterized by

trains of cylindrical Qa structures of alternating sign around
thin sheets of large polymer extension. This is further illus-
trated in Figure 10, which shows the contour of the polymer
stress component Txx and isolines of Qa in a x− y plane
for the lower Reynolds number case. The long thin sheets
of large polymer extension and cylindrical structures are
clearly visible.

A small region of the x− y plane around one of these
sheets is shown in Figures 11 and 12. The first figure illus-
trates the link between the polymer pressure pp and the Qa
structures. The largest fluctuations of pp are of alternating
sign and located on each side of the sheet, mostly between
the cylindrical Qa structures. The wavelength of these struc-

Figure 12. Instantaneous contour of the pressure contri-
bution prs and isolines of Qa (dash lines represent negative
values) in a x− y plane for Re = 1000 and Wi = 8. The
region plotted corresponds to the dashed box in Figure 10.
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Figure 13. Schematics of the typical structures observed
around thin sheets of large polymer extension (black line)
in the near-wall region: second invariant of the velocity gra-
dient tensor Qa (blue), pressure p (red) and polymer body
force fp = ∇ ·T (green). Dotted lines indicate a negative
value.

tures is the same as the wavelength of the Qa structures. On
the other hand, the inertial pressure, prs does not show such
a clear correlation. Large fluctuations of prs are rather cor-
related with the center of strong Qa structures, as shown in
Figure 12. In particular, as in inertial turbulence, positive
values of Qa correspond to low pressure regions, and thus,
to vortical regions (Dubief & Delcayre, 2000). The analy-
sis of the polymer body force fp = ∇ ·T (not shown here)
indicates that the polymer body force is mostly parallel to
the sheet with opposite sign on each side. Additionally, fp
also alternates direction along the sheet with the same wave-
length as the Qa structures and opposite sign, indicating that
the polymers are most likely the driving force that creates
these structures.

The overall picture gained from this analysis is
schematically summarized in Figure 13. The combined ef-
fect of advection at low diffusivity and existing flow per-
turbations leads to the formation of sheets of high polymer
extension and, in turn, to a large increase in the extensional
viscosity, and thus in the polymer stress. Small perturba-
tions of the sheets cause the polymer body force to alternate
direction, and thereby, create these cylindrical Qa struc-
tures. The pressure adapts to ensure zero divergence of the
velocity and redistribute part of the turbulent kinetic energy
from the streamwise to the other components. Once trig-
gered, this process appears to be self-sustained, at least over
the hundreds of flow through-time simulated here. There-
fore, it can be conjectured that these characteristic trains
of cylindrical structures are mostly driven by the polymers.
Nonetheless, an indirect effect from inertia most probably
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also contributes to the dynamics. Further analysis is still
required to ascertain this.

CONCLUSION AND FUTURE WORK
An analysis of the role of pressure in the dynamics of

EIT has been presented. The splitting of the pressure into
different components, in particular into an elastic and an
inertial part, has provided a tool to assess the relative con-
tributions of both components to the overall dynamics. It
was shown that the elastic, or polymer, pressure is a non-
negligible component of the total pressure fluctuations, al-
though the rapid part dominates. Unlike Newtonian flows,
the slow part is much lower in elasto-inertial turbulence.
Statistics have also demonstrated the redistributive role of
pressure. Finally, a schematic description of the typical
structures encountered in EIT was proposed. It is postu-
lated that those small-scales structures, associated with thin
sheets of large polymer extension, are directly driven by the
polymers. Nonetheless, an indirect inertial contribution is
still possible, and most likely required for a self-sustaining
dynamics.

In a broader context, elasto-inertial turbulence offers
a new perspective on polymer drag reduction. First it pro-
vides support to De Gennes (1990)’s theory of energy trans-
fers between polymers and flow. Second, EIT allows to
consider the possible structure of MDR for very large elas-
ticity (Wi→ ∞): the sheer magnitude of extensional vis-
cosity is likely to prevent the emergence of any vortical
structures, thus leaving MDR to be sustained by near-wall
spanwise structures similar to the ones observed at low-
Reynolds numbers (Figure 2 and 11). As discussed by Du-
bief et al. (2012), the flow is therefore stuck in a transitional
state, specifically the stage of breakdown of nonlinear flow
instabilities, which does not support a logarithmic mean ve-
locity profile (Klewicki et al., 2011).

Many questions remain unanswered, such as the mech-
anism by which small perturbations of the sheet lead to a
body force of alternating sign, the role of those elastic in-
stabilities and the validity of the above conclusions at larger
Reynolds number, the possible existence of these instabili-
ties in two-dimensions, ... Further analysis is thus required
to obtain a definite description of the physical mechanisms
underlying EIT, which will be part of future work.
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