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Abstract. The construction of training images (TIs) depicting the 

geological prior is one of the most critical step in multiple-point 

statistics. Geophysical techniques may be used to reduce the 

uncertainty in the understanding of prior geological scenarios. We 

developed a methodology to verify the consistency of geophysical data 

with independently-built TIs. Synthetic geophysical models built from 

TI scenarios are compared, using multidimensional scaling, with 

inverted models from field surveys to check if TIs are consistent with 

geophysical models. Then, the probability of each TI scenario is 

computed. A cluster analysis enables to determine which parameters 

used in building the TIs are most impacting the geophysical response. 

The methodology is tested using ERT to analyze TI scenarios in the 

Meuse River alluvial aquifer (Belgium). 
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1 Introduction 

A training image (TI) depicts the conceptual geological patterns and should be 

representative of the spatial heterogeneity. The construction of TIs is one of the most 

critical and important step of multiple-point statistics. If the geological context is 

generally known (e.g. alluvial aquifer), there remains in most cases considerable 

uncertainty on the characteristics of facies elements and on their relationships.  

Geophysical methods may provide spatially distributed information on subsurface 

petrophysical properties, but due to their larger resolution, provide only indirect 

information on smaller scale features present in these TIs. In this work, we develop a 

methodology to verify the consistency of potential TIs with geophysical data. We 

demonstrate our proposed method in a case of electrical resistivity tomography 

(ERT) data within the context of the alluvial aquifer of the Meuse River in the area of 

Liege, Belgium. 

2 Training Images as Geological Scenarios 

Based on prior knowledge of the alluvial system, we describe geological 

heterogeneity using three facies (gravel, gravel in a sandy matrix, and clay/silt). We 

assume that gravel is present in the form of channels whereas clay is present in the 

form of lobes or lenses. Borehole analyses provide a prior proportion for each facies. 

From prior geological understanding on alluvial systems [e.g. 1], we generate 

training images with three different sizes for channels and two different sizes for 

lobes (six different geological scenarios or training images) (Fig. 1). 

  

 

 
Fig. 1. Two examples of the 6 training image-based geological scenarios. (a) Alluvial aquifer 

with big gravel channels and big clay lobes. (b) Alluvial aquifer with small gravel channels 

and small clay lobes. 



3 Evaluating Consistency with Geophysical Data 

In each TI, we select randomly 12 sections (2D) and transform them into electrical 

resistivity models. Each facies is given a constant but uncertain electrical resistivity. 

Three different scenarios of resistivity distribution are offered to model this 

uncertainty. From these models, synthetic geophysical data sets (resistance data) are 

simulated. Next, these data sets are inverted with a least-square smoothness 

constraint algorithm to obtain TI-based inverted models. The inversion process 

causes loss of information inherent to geophysical methods. However, even if the 

models are smoothed, their specificity should still be apparent after inversion.  

To verify the consistency of the TI-based inverted models, we compare them with 

two ERT inverted field datasets representative of the Meuse River alluvial aquifer. 

We calculate the Euclidean distance between any two inverted models (both TI-based 

and field-based) and visualize the results in a 2D space using multidimensional 

scaling (MDS) [2]. This represents about 60% of the total variance. The field data 

models fall among the distribution of the synthetic models on the MDS-map (Fig. 

2A), hence the presented TIs provide geophysical models close to observed field 

models. TIs are thus consistent with the available geophysical data.  

In a second step, we perform a cluster analysis on the MDS-map to highlight 

which parameters are most impacting the geophysical response. In cluster 1 and 3, 

where field models are located, small channels are more abundant, suggesting that 

this kind of training image is more consistent with field data (Fig. 2B). In contrast, 

the size of clay lobes (Fig. 2C) is not a sensitive parameter since the proportions of 

models with big lobes and small lobes are close to 0.5 in clusters 1 and 3. 

 

 



Fig. 2. (a) Multidimensional scaling map of TI-based and field models zoned in six clusters. 

(b) Proportion of models with big, medium and small gravel channels in each cluster. (c) 

Proportion of models with big and small clay lobes in each cluster. 

4 Assessing Probability of Scenarios 

Based on this analysis, the probability of each geological scenario in the case of field 

data response is computed through kernel smoothing of the densities of models in the 
2D MDS-map [3]. The aim is to calculate, through Bayes’ rule, the probability P(Θ 

= ϴi|D = d) of a TI-based scenario ϴi given specific geophysical data d, i.e. a model 

of electrical resistivity in this example. 

The likelihood of observing a specific geophysical data response d given a TI-
based scenario ϴi, needed to apply Bayes’ formula, is computed through kernel 

smoothing, where the kernel density estimation functions are approximated by a 

bivariate normal distribution using the coordinates of models of the 2D MDS-map. 

The probability of each TI-based scenario is computed for the two selected ERT 

field models and shown in Table 1. The prior probability of each TI-based scenario is 

equal to 1/6, i.e. 0.1667. Scenarios with probabilities inferior to this value, e.g. 

scenarios with big channels, are less likely to occur. Geophysical data enable us to 

derive the most probable TI-based scenario for each particular field case: small 

channels and small lobes for the first; medium channels and big lobes for the second. 

Table 1. Conditional probabilities for the 6 TI-based scenarios according to two different true 

field models based on the 2D-MDS map (BC=big channels, MC=medium channels, SC=small 

channels/ BL=big lobes, SL=small lobes).  

Field data BC/BL BC/SL MC/BL MC/SL SC/BL SC/SL 

Field model 1 0.0472 0.1061 0.1618 0.0613 0.1951 0.4285 

Field model 2 0.0157 0.1497 0.4259 0.0252 0.1624 0.2211 

5 Conclusion and Perspectives 

We developed a methodology to verify the consistency of TI-based geological 

scenarios with geophysical models. This requires the specification of realistic values 

for the considered geophysical parameters and the choice of an adapted distance 

calculation to compare models using multidimensional scaling. In this case, we chose 

the Euclidean distance between models, but any measure, or combination of 

measures, or other geophysical attributes could be used. 

For a single geological scenario, if a field model falls in the distribution of 

synthetic models, we state that this scenario is consistent with geophysical 

information. If it is not the case, one should try different scenarios to obtain a 

consistent training image. For multiple scenarios, a sensitivity analysis can be carried 



out through clustering to derive the most sensitive parameters. The probability of 

each geological scenario can be computed, giving some highlights for the selection of 

the best TI(s) to use for further simulations. 

The methodology could be easily extended to 3D models, enabling to evaluate the 

consistency of more complex scenario. For example, it may be used to distinguish 

scenarios with channels from scenarios with elongated bars. However, it would 

require 3D field models which are more time consuming and more expensive to 

acquire. 

If the consistency between TI and geophysics is confirmed, geophysical data may 

be further used as soft conditioning data in multiple-point statistics simulations or, 

the given training images and their posterior probabilities can be used on a Markov 

chain type inversion. 
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