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In this paper, we offer a short overview of a number of methods that have been reported in the computational-mechanics

literature for quantifying uncertainties in engineering applications. Within a probabilistic framework, we describe the

characterization of uncertainties using mathematical statistics methods, the propagation of uncertainties through com-

putational models using either Monte Carlo sampling or stochastic expansion methods, and the sensitivity analysis of

uncertainties using variance- and differentiation-based methods. We restrict our attention to nonintrusive methods

that can be implemented as wrappers around existing computer programs, thus requiring no modification of the source

code. We include some recent advances in the propagation and sensitivity analysis of uncertainties that are character-

ized by arbitrary probability distributions that may exhibit statistical dependence. Finally, we demonstrate the methods

integrated in the proposed overview through a nonlinear engineering application relevant to metal forming.
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1. INTRODUCTION2

Advances in sensing technologies, physical modeling, and high-performance computing are profoundly changing3

the synergistic integration of experiments, physical understanding, and computation into predictive simulations that4

support scientific discovery and engineering. Chief among these changes is the increasingly central role attributed to5

the acknowledgement and examination of experimental, modeling, and computational limitations that are inevitably6

present in attempts to simulate complex natural and engineered systems. The field of uncertainty quantification seeks7

to establish theory, methods, and computer programs for the characterization, propagation, and management of the8
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ensuing parametric uncertainties, modeling errors, and computational errors in predictive simulations.1

A number of frameworks are available for uncertainty quantification, such as those based on fuzzy-set theory,2

interval theory, evidence theory, and probability theory. Here, we adopt a framework based on probability theory,3

which facilitates a unified treatment of parametric uncertainties and modeling errors.4

The first step in a probabilistic uncertainty quantification most often involves the use of mathematical statistics5

methods to characterize the uncertain features associated with the model under study as one or more random vari-6

ables, random fields, random matrices, or random operators. The second step is to use the model to propagate this7

characterization of inputs into a characterization of predictions. This can be achieved in several ways, for example,8

using either Monte Carlo sampling or stochastic expansion methods. The latter methods most often involve character-9

izing the predictions as a polynomial chaos expansion. Several approaches are available to calculate the coefficients10

in this expansion, for example, embedded projection, nonintrusive projection, and interpolatory collocation. Lastly,11

the third step involves making the probabilistic model useful in the analysis and design of the natural or engineered12

system under study, for example, by carrying out sensitivity analyses to enable the reduction of uncertainties, by using13

decision-theoretic methods to validate the analysis [1], or by using optimization methods to improve the design [2].14

In this paper, we draw together a number of methods reported in the computational-mechanics literature for the15

characterization, propagation, and sensitivity analysis of uncertainties. We restrict our attention to methods that afford16

a nonintrusive implementation, that is, they can be applied as wrappers around existing computer programs without17

requiring modification of the source code. We include recent advances in the propagation and sensitivity analysis18

of uncertainties characterized by arbitrary probability distributions that may exhibit statistical dependence. We show19

that these recent advances afford significant simplification of the construction of polynomial chaos expansions by20

bypassing the need to revert to underlying statistically independent Gaussian or other “labeled" random variables.21

This paper is self-contained in that we define most quantities and concepts when they first appear and we provide22

enough details relevant to the implementation of the framework.23

We do not intend this paper to be an exhaustive account of all the methods available for quantifying uncertainty.24

Rather, we describe in detail a limited set of representative methods to illuminate key features and discern links25

between the characterization, propagation, and sensitivity analysis steps in a probabilistic uncertainty quantitication.26

The remainder of this paper is organized as follows. In Sec. 2, we briefly discuss our system of notation. Next,27

in Sec. 3, we outline a model problem, and in Secs. 4, 5, and 6, we present the proposed overview of methods for28

the characterization, propagation, and sensitivity analysis of uncertainties, respectively. Subsequently, in Sec. 7, we29

provide implementation details, and finally, in Secs. 8 and 9, we provide an illustration with numerical results.30
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Characterization, propagation, and sensitivity analysis of uncertainties 3

2. NOTATION1

In this paper, we use the following system of notation:2

– A lowercase letter, for example, x, is a real deterministic variable.3

– A boldface lowercase letter, for example, x = (x1, . . . , xm), is a real deterministic vector.4

– An uppercase letter, for example, X , is a real random variable.5

– A boldface uppercase letter, for example, X = (X1, . . . , Xm), is a real random vector.6

– An uppercase letter enclosed between square brackets, for example, [A], is a real deterministic matrix.7

– A boldface uppercase letter enclosed between square brackets, for example, [A], is a real random matrix.8

3. MODEL PROBLEM9

In applications in computational mechanics, models are built to understand and predict the behavior and evolution of10

complex natural and engineered systems. These models are implemented in more and more sophisticated computer11

programs. Often, an implementation of a model in a computer program—which we term, hereafter, a computational12

model—exhibits certain features that may be considered uncertain. The objective of uncertainty quantification lies13

in the characterization, propagation, and sensitivity analysis of these uncertainties, ultimately allowing quantitative14

statements about, and some insight into, the impact that these uncertainties have on predictions. This uncertainty15

quantification may serve to guide the allocation of resources aimed at reducing uncertainties or constitute an essential16

prerequisite to model validation or design optimization in the presence of uncertainties, among other purposes.17

In this paper, we think of a computational model as a (possibly nonlinear) mapping of a set of input variables into18

a quantity of interest. Correspondingly, we consider the nonlinear mapping19

y = g(x1, . . . , xm), g : Rm → R, (1)

where g is the computational model, x = (x1, . . . , xm) the input variables, and y the quantity of interest.20

In this paper, without loss of generality, we assume the quantity of interest to be scalar. We note that although21

easily obtained, we do not consider the extension to a vector-valued quantity of interest for the sake of simplicity22

of notation and interpretation. Please note that when a vector-valued quantity of interest is considered, an analysis23
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that treats all its components simultaneously can often provide a more informative uncertainty quantification than an1

analysis that treats these components separately and thus misses information about their mutual dependence [3].2

For example, if the computational model were a finite element model for the mechanical deformation of a structure,3

the input variables could be parameters involved in the description of the geometry, the boundary conditions, and the4

material properties, and the quantity of interest could concern a displacement component at a prescribed location.5

We assume that the uncertainties that affect the computational model can be associated with uncertainties in the6

input variables or a subset of these input variables, which we term, hereafter, the uncertain input variables. We7

will comment on the generality of this assumption in Sec. 4.1. Then, the objective lies in the characterization of the8

uncertainties in the uncertain input variables, the propagation of these uncertainties through the computational model,9

and the sensitivity analysis of these uncertainties to allow some insight into their impact on the quantity of interest.10

4. CHARACTERIZATION OF UNCERTAINTIES11

4.1 Types of probabilistic approach12

Within the probabilistic framework, several approaches are available for introducing uncertainties into computational13

models. Common approaches include the following ones:14

(i) Parametric approaches (refer, for example, to [4–8]) are adequate when the uncertain features of the compu-15

tational model can be associated with uncertainties in some or all of its parameters. Parametric approaches16

consider parameters to be geometrical characteristics, boundary conditions, loadings, physical or mechanical17

properties, or any combination of these. Parametric approaches involve the characterization of some or all18

parameters as random variables, stochastic processes, or both.19

(ii) By contrast, nonparametric approaches are adequate when the uncertain features of the computational model20

cannot be associated with uncertainties in some or all of the parameters. Such can be the case, for example,21

when the uncertainties consist of modeling errors, that is, when the uncertainties stem from various modeling22

assumptions and simplifications whose impact on the quantity of interest is incompletely known. A nonpara-23

metric approach is an approach that involves the direct characterization of the computational model as a random24

model without recourse to a characterization of its parameters as random variables, stochastic processes, or both.25

For example, in structural dynamics, a class of nonparametric models was obtained in [9] by characterizing the26

reduced matrices of (a sequence of) reduced-order models as random matrices.27

(iii) Output-prediction-error approaches involve adding a random noise term to the quantity of interest [10–12].28
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(iv) Generalized approaches are hybrid approaches that couple parametric and nonparametric approaches. For1

example, in structural dynamics, a class of generalized models was obtained in [13, 14] by taking into account2

parametric uncertainties using the parametric approach and modeling errors using the nonparametric approach.3

Throughout this paper, the reader may find it easiest to interpret the model problem in the context of a parametric4

approach, that is, to think of the uncertain input variables x = (x1, . . . , xm) as geometrical characteristics, boundary5

conditions, loadings, physical or mechanical properties, or any combination of these and of the computational model g6

as providing a mapping from these uncertain input variables to the quantity of interest y. Nevertheless, we note that the7

model problem affords a level of abstraction that also allows these uncertain input variables to be the entries of reduced8

matrices and values taken by noise terms. Owing to this level of abstraction, the discussion of the characterization,9

propagation, and sensitivity analysis steps to follow is very general, and it indeed applies to parametric, nonparametric,10

output-prediction-error, and generalized approaches alike.11

4.2 Types of probabilistic characterization12

The characterization of the uncertain input variables as a random variable X = (X1, . . . , Xm) with values in Rm
13

requires the characterization of the probability distribution of this random variable:14

PX = P(X1,...,Xm). (2)

By the probability distribution PX of a random variable X with values in Rm, probability theory understands a15

function that assigns, to any meaningful subset B of Rm, the probability PX(B) that the value taken by X is in B.16

We recall that the characterization of the uncertain input variables as a random variable with a certain probability17

distribution is very general and allows this random variable to be discrete, continuous, or a combination of these. By18

a discrete random variable X with values in Rm, probability theory understands a random variable X that can take19

only specific values from a finite or listable subset of Rm. By a continuous random variable X with values in Rm,20

probability theory understands a random variable X that may take any value in a subset (or set of subsets) of Rm
21

and whose probability distribution PX admits a probability density function ρX , that is, a function ρX from Rm
22

into R+ = [0,+∞[ such that PX(B) =
∫
B ρX(x)dx for any meaningful subset B of Rm.23

Further, we recall that probability theory provides various statistical descriptors—such as moments, cumulants,24

and quantiles—that can be deduced from a given probability distribution. The best-known statistical descriptors25

are the mean vector mX and the covariance matrix [CX ] given by mX =
∫
Rm xdPX and [CX ] =

∫
Rm(x −26
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mX)(x −mX)TdPX assuming these integrals are bounded; otherwise, the mean vector and the covariance matrix1

do not exist. When the random variable X is continuous, the expressions for mX and [CX ] (if they exist) read2

as mX =
∫
Rm xρX(x)dx and [CX ] =

∫
Rm(x−mX)(x−mX)TρX(x)dx.3

Two characterizations of the required probability distribution PX are most often encountered:4

(i) The first type involves the direct characterization of PX . Specifically, a characterization of this type is most5

often obtained by selecting a probability distribution that depends on a finite number of parameters and then6

assigning adequate values to these parameters. For example, if a Gaussian probability distribution was selected7

and adequate values assigned to its mean and variance, a characterization of this first type would be obtained.8

On the one hand, the parameter-dependent probability distribution can be selected as a “labeled" probability9

distribution that depends on only a small number of parameters, for example, by selecting it as a Gaussian or10

uniform probability distribution. On the other hand, it can be obtained by expressing the required probability11

distribution in a versatile manner as a function of a very large number of parameters, for example, by selecting it12

as a mixture model [15]. We note that catalogs of available “labeled" probability distributions can be found, for13

example, in [16]; if an adequate “labeled" probability distribution is not available, the possibility of constructing14

a new, adequate probability distribution can be considered using, for example, the maximum entropy principle,15

limit theorems, or coarse-graining or other approaches.16

(ii) The second type involves an indirect characterization of the required probability distribution PX . This type17

relies on the fact that the probability distribution of a random variable changes when this random variable is18

transformed under a (possibly nonlinear) mapping. A characterization of the second type is most often obtained19

by fixing the probability distribution PΞ of a random variable Ξ = (Ξ1, . . . ,Ξd) with values in Rd and then20

characterizing the uncertain input variables as a transformation X = f(Ξ) of Ξ under a (possibly nonlinear)21

mapping f from Rd to Rm, thus implying the probability distribution PX as the image of PΞ under f . By the22

image PX of PΞ under f , probability theory understands the probability distribution PX that assigns, to any23

meaningful subset B of Rm, the probability PX(B) = PΞ({ξ ∈ Rd : f(ξ) ∈ B}).24

The probability distribution PΞ of the random variable Ξ with values in Rd is most often fixed as a uniform,25

Gaussian, or other “labeled" probability distribution. The mapping f is most often obtained by selecting a26

mapping that depends on a finite number of parameters and then assigning adequate values to these parameters.27

As in the first approach, a parameter-dependent mapping can be obtained either by selecting a “labeled" mapping28

that depends on only a small number of parameters [6, 17] or by expressing the required mapping in a versatile29
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manner as a function of a very large number of parameters, for example, by expressing the required mapping1

as a high-order polynomial [18–22]. We note that Ξ need not have as many components as X , that is, d2

may be smaller than m, thus indicating the usefulness of this second type of characterization in obtaining a3

reduced-dimensional characterization of the uncertain input variables [6, 17].4

These two types of characterization are strongly interrelated. From a theoretical point of view, under certain con-5

ditions, either one can be converted into the other using, for example, the Rosenblatt transformation [23]. From a6

computational point of view, the literature on random number generation provides generators for many (possibly mul-7

tivariate) probability distributions (refer, for example, to [24]). A generator is a method for computing an ensemble8

of samples from a given probability distribution starting from an ensemble of samples from a (possibly multivari-9

ate) uniform, Gaussian, or other “labeled" probability distribution. A generator most often computes each sample10

for the given probability distribution by transforming each corresponding sample for the uniform, Gaussian, or other11

“labeled" probability distribution through an appropriate mapping. Thus, by identifying the given probability distri-12

bution with PX , the uniform, Gaussian, or other “labeled" probability distribution with PΞ, and the mapping with f ,13

a generator provides, for a characterization of the first type, an equivalent characterization of the second type.14

4.3 Types of interpretation of probability15

The following two types of interpretation of probability are most often encountered:16

(i) The first type involves the well-known interpretation of probability as describing variability or, equivalently, as17

referring to a frequency of occurrence.18

(ii) The second type involves the interpretation of probability as describing a state of (possibly incomplete) knowl-19

edge, construing high probabilities as descriptors of possibilities that are most strongly indicated by this state20

of knowledge and lower probabilities as descriptors of less plausible alternatives. The interpretation of proba-21

bility as describing a state of knowledge allows probability theory to be developed as a logical framework for22

inference and decision making in the presence of incomplete knowledge and missing information.23

4.4 Types of available information24

In applications in computational mechanics, the available information—from which the characterization of the uncer-25

tain input variables must be inferred—most often consists of the following sources of information:26
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(i) First, data are most often available either in the form of results obtained from newly conducted real experiments1

or in the form of higher fidelity computational models.2

(ii) Next, in most applications in computational mechanics, there are mechanical and physical laws that apply to3

the natural or engineered system under consideration. Most often, the applicable laws impose mechanical4

and physical constraints that restrict the values that the uncertain input variables may take. Examples include5

positiveness and symmetry constraints imposed on mechanical properties involved in the description of the con-6

stitutive behavior of materials [17, 25] and positiveness, symmetry, stability, and causality constraints imposed7

on reduced matrices and other features of reduced-order models for the dynamical behavior of structures and8

other systems [8, 9, 26–31]. These constraints act as sources of information when a characterization of the9

uncertain input variables of a computational model is being inferred because in order to be consistent with the10

applicable mechanical and physical laws, this characterization of these uncertain input variables must assign a11

vanishing probability to those values of these uncertain input variables that do not satisfy these constraints.12

A frequently encountered example is that mechanics and physics require Young’s modulus—a mechanical prop-13

erty involved in the description of linearly elastic isotropic constitutive behavior of materials—to be positive;14

thus, in order for a characterization of an uncertain Young modulus to be consistent with mechanics and physics,15

it must assign a vanishing probability to negative values of this Young modulus.16

(iii) Various other sources of information can also contribute to the available information, for example, previous17

studies of the computional-mechanics application under consideration. The combined information provided by18

the mechanical and physical constraints and these other sources of information is often referred to as the prior19

information [19, 20, 22, 32–38].20

Even though they are of a different nature than the sources of information mentioned previously, the following21

considerations may also play a role in obtaining the characterization of the uncertain input variables:22

(iv) It is desirable that the characterization of the uncertain input variables provides a context that allows the subse-23

quent propagation and sensitivity analysis steps to be implemented efficiently and in a manner wherein compu-24

tational errors are amenable to analysis and can be decreased by expending a higher computational effort.25

(v) It is desirable that the characterization of the uncertain input variables is parameterized so as to allow those of26

its features to be varied with respect to which informative sensitivity analyses can be conducted.27
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Characterization, propagation, and sensitivity analysis of uncertainties 9

4.5 Characterization using mathematical statistics methods1

The previous sections indicate that probability theory provides significant freedom as to the type of input variables in2

which uncertainties can be introduced (Sec. 4.1), the type of characterization that can be adopted for the uncertain input3

variables (Sec. 4.2), and the type of interpretation that can be conferred on probabilities (Sec. 4.3). Correspondingly,4

research in computational mechanics has yielded many methods for the characterization of uncertainties, each one5

conforming to some interpretation and allowing some characterization of uncertain input variables to be deduced6

from available information. Providing an exhaustive account of all available methods and listing yet-unfinished ones7

is beyond the scope of this paper; instead, we confine ourselves to a succinct presentation of some of the fundamental8

methods involving an interplay between modeling considerations and mathematical statistics methods:9

(i) In an application wherein probabilities are held to refer to variability, so called “frequentist" mathematical10

statistics methods (refer, for example, to [39, 40]) can be applied as follows:11

(i.1) When a very large amount of data is available, in addition to physical and mechanical constraints, one of12

the previously mentioned versatile characterizations involving a very large number of parameters can be13

selected. Adequate values for this very large number of parameters can then be inferred from the very large14

amount of data using, for example, the kernel density estimation method [39], which can use coordinate15

transformations or local bandwidth adaptations to account for mechanical and physical constraints.16

(i.2) When only a small amount of data is available, in addition to physical and mechanical constraints, the17

information contained in the data may be too vague to allow a very large number of parameters to be18

accurately inferred. Then, a “labeled" characterization involving only a small number of parameters can19

be selected, for example, from one of the available catalogs [16], and adequate values for these parameters20

can be inferred from the data using, for example, the method of maximum likelihood [40], which is an21

often used parameter-estimation method from “frequentist" mathematical statistics.22

Care should be taken to select a “labeled" characterization that is consistent with the mechanical and phys-23

ical constraints; for example, the Gaussian probability distribution should not be selected to characterize24

an uncertain Young modulus because its support is the whole real line and its selection would thus lead to25

the assignment of a nonvanishing probability to negative values of this Young modulus. If no adequate “la-26

beled" characterization is available, the possibility of constructing a new, adequate one can be considered27

using, for example, the maximum entropy principle, which allows mechanical and physical constraints to28

be explicitly taken into account, or limit theorems, coarse graining, or other approaches.29
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(ii) By contrast, in an application wherein probabilities are held to describe a state of knowledge, Bayesian math-1

ematical statistics methods (refer, for example, to [19, 20, 22, 32–38]) can be applied. These involve an initial2

encoding of all the available information except for newly available data—that is, the mechanical and physical3

constraints in addition to the other sources of information mentioned previously—into a prior probability distri-4

bution. This prior probability distribution is then updated by accounting for newly available data in accordance5

with Bayes’s rule to obtain a posterior probability distribution.6

4.6 Characterization of uncertainties in high-dimensional problems7

The characterization of uncertainties is especially challenging in high-dimensional problems, that is, when the number8

of uncertain input variables is large. In fact, when a probabilistic characterization must be inferred for a large number9

of uncertain input variables, one of the most significant challenges is in constructing this probabilistic characterization10

in a manner that is consistent with the applicable mechanical and physical constraints. Thus, in recent years, the focus11

of much research has been on investigating how this characterization can be effected—using mathematical statistics12

methods such as those that rely on the maximum entropy principle—in a manner that allows mechanical and physical13

constraints to be explicitly taken into account. Please refer to [17, 25] for examples of positiveness and symmetry14

constraints imposed on mechanical properties involved in the description of the constitutive behavior of materials15

and to [8, 9, 26–31] for examples of positiveness, symmetry, stability, and causality constraints imposed on reduced16

matrices and other features of reduced-order models for the dynamical behavior of structures and other systems.17

In addition, recent research has also investigated dimension reduction methods [6, 41] and scalable algorithms [21,18

22, 36, 42] as viable strategies for addressing challenges in characterizing uncertainties in high-dimensional problems.19

5. PROPAGATION OF UNCERTAINTIES20

The next step is to propagate the uncertainties introduced in the input variables through the computational model to21

the quantity of interest. Probability theory effects this propagation as follows. Once the uncertain input variables are22

characterized as a random variable X with values in Rm, the transformation of X through the computational model g23

provides the characterization of the quantity of interest as the random variable Y with values in R such that24

Y = g(X1, . . . , Xm); (3)
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Characterization, propagation, and sensitivity analysis of uncertainties 11

this definition of Y as the transformation of X through g implies that the probability distribution PY of Y is the image1

of the probability distribution PX of X under g, that is, formally, for any meaningful subset B of R,2

PY (B) = PX({x ∈ Rm : g(x) ∈ B}). (4)

In other words, to obtain the characterization of the quantity of interest, probability theory equates the probabil-3

ity PY (B) that its value is contained in any meaningful subset B of R with the probability PX({x ∈ Rm : g(x) ∈ B})4

that the value taken by the uncertain input variables is contained in the corresponding subset {x ∈ Rm : g(x) ∈ B}5

of Rm, which collects those values in Rm that the computational model maps into values in B.6

By deducing various statistical descriptors from it, we can study the probability distribution PY . The best known7

statistical descriptors are the mean mY and the variance σ2
Y , which are defined as follows:8

mY =

∫
R
ydPY , σ2

Y =

∫
R
(y −mY )2dPY , (5)

assuming these integrals are bounded; otherwise, they do not exist. Because integrals with respect to a probability9

distribution and an image of it are related by the “change of variables" theorem [43, 44], the mean and variance (if10

they exist) are also obtained as mY =
∫
Rm g(x)dPX and σ2

Y =
∫
Rm

(
g(x)−mY

)2
dPX .11

The propagation of uncertainties is most often implemented using either the Monte Carlo sampling method or12

stochastic expansion methods, as described next.13

5.1 Monte Carlo sampling method14

The Monte Carlo sampling method begins by generating an ensemble of ν independent and identically distributed15

(i.i.d.) samples from the probability distribution PX , written as follows:16

{x`, 1 ≤ ` ≤ ν}. (6)

The computational model is then used to map each sample from PX into the corresponding sample from PY , that is,17

y` = g(x`), 1 ≤ ` ≤ ν, (7)
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to obtain the corresponding ensemble of i.i.d. samples from PY , written as follows:1

{y`, 1 ≤ ` ≤ ν}. (8)

Once these i.i.d. samples from PY are available, various statistical descriptors can be approximated using methods2

from mathematical statistics. For example, the mean mY and the variance σ2
Y (if they exist) can be approximated as3

mY ≈ mν
Y =

1

ν

ν∑
`=1

y`, σ2
Y ≈ (σνY )2 =

1

ν

ν∑
`=1

(y` −mν
Y )2. (9)

This implementation is nonintrusive because it requires only the repeated solution—sequentially or in parallel—of4

the computational model for different values assigned to its uncertain input variables; the computational model itself5

need not be modified. Because the computational model must be solved for each of the i.i.d. samples from PX , the6

computational cost of the Monte Carlo sampling method scales with the number of samples in the ensemble.7

For many probability distributions, the literature on random number generation (refer, for example, to [24]) pro-8

vides generators that can be used to obtain the required ensemble of i.i.d. samples from PX . In addition, the literature9

provides principles of construction, such as those based on the Rosenblatt transformation mentioned previously, for10

use to obtain a generator if one should not be already available.11

From a theoretical point of view, the law of large numbers and the central limit theorem (refer, for example,12

to [24, 43, 44]) can be used to analyze the convergence of approximations of statistical descriptors of the quantity of13

interest such as those in (9) with respect to the number of samples. Under certain conditions, the central limit theorem14

ensures that accuracy improves with the square root of the number of samples. For example, if mY exists, the law15

of large numbers ensures that the approximation mν
Y of the mean converges to the exact value mY as the number of16

samples ν increases, and if σ2
Y exists, the central limit theorem ensures that the accuracy of mν

Y improves with the17

square root of ν. From a computational point of view, numerical convergence studies can be conducted.18

Regarding desideratum (iv) in Sec. 4.4, we note that the availability of a generator and the fulfillment of conditions19

that imply convergence properties can play a role in obtaining the characterization of the uncertain input variables.20

5.2 Advanced Monte Carlo sampling methods21

Much recent research has investigated how the computational cost of the Monte Carlo sampling method (Sec. 5.1) can22

be reduced. Advanced Monte Carlo sampling methods have been proposed, which can reduce the number of samples23

that must be used to achieve a target accuracy; please refer, for example, to [24] and [45] for details about methods24
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involving antithetic variables, control variates, importance sampling, stratified sampling, Latin hypercube sampling,1

and quasi-Monte Carlo sampling. In addition, recent research has investigated the use of these advanced Monte Carlo2

sampling methods in concert with reduced-order models; please refer, for example, to [46] and [47] for details about3

the multilevel Monte Carlo method and the reduced-basis control-variate Monte Carlo method.4

5.3 Stochastic expansion methods5

Stochastic expansion methods most often involve two steps. First, a surrogate model is fitted to the computational6

model; then, the characterization of the uncertain input variables is mapped through this surrogate model—instead7

of through the computational model—into the characterization of the quantity of interest. A surrogate model is any8

model that mimics the relationship that the computational model establishes between the uncertain input variables and9

the quantity of interest and yet is computationally less expensive. Thus, the attraction of using a surrogate model in10

the propagation of uncertainties is most often in gaining a computational speedup. Although many types of surrogate11

model have been proposed, polynomial surrogate models are most often encountered.12

5.3.1 Surrogate model13

A succinct definition of a polynomial surrogate model is as follows. Let elements α = (α1, . . . ,αm) of Nm be14

referred to as multi-indices and let a (multivariate) monomial xα associated with a multi-index α be a function15

from Rm into R defined by xα = xα1
1 × . . .×xαm

m . Let the number |α| = α1 + . . .+αm be referred to as the modulus16

of α and also as the order of xα. Let a (multivariate) polynomial be a function from Rm into R that maps any x to a17

finite sum
∑

α dαx
α with real coefficients dα. Then, a polynomial surrogate model gp of order p—hereafter, termed18

a surrogate model, unless the nature and the order of the polynomial require emphasis—is an m-variate polynomial19

that approximates the computational model as precisely as possible in the PX -weighted least-squares sense,20

g ≈ gp =

p∑
|α|=0

cαx
α, where c = solution of min

d∈Rµ

1

2

∫
Rm

∣∣∣∣g(x)−
p∑

|α|=0

dαx
α

∣∣∣∣2dPX , (10)

where c = {cα, 0 ≤ |α| ≤ p} collects the coefficients and µ is the number of monomials in {xα, 0 ≤ |α| ≤ p}.21

Because the objective function of the optimization problem in (10) gauges the precision of the approximation in22

the PX -weighted least-squares sense, the precision of the approximation can be expected to be higher over subsets of23

values of the uncertain input variables to which PX assigns a higher probability.24

It follows from standard optimization theory results—specifically, from the results that underpin the projection25
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theorem [48]—that the optimization problem in (10) has at least one solution if the computational model, as well as1

all polynomials of order at most p, are PX -square-integrable, that is,2

∫
Rm

g(x)2dPX < +∞, (11)

3 ∫
Rm

(xα)2dPX < +∞, 0 ≤ |α| ≤ p, (12)

and that the solution is unique if the following additional condition is also fulfilled:4

∫
Rm

( p∑
|α|=0

dαx
α

)2

dPX > 0, ∀d ∈ Rµ, d 6= 0. (13)

In fact, the conditions in (11) and (12) ensure that the objective function in (10) is continuous and that given any coeffi-5

cients d̃, the optimization problem in (10) can be formulated equivalently as the optimization of this objective function6

over the set of all coefficients d that satisfy
∫
Rm |g(x)−

∑p
|α|=0 dαx

α|2dPX ≤
∫
Rm |g(x)−

∑p
|α|=0 d̃αx

α|2dPX .7

This equivalent formulation converts the optimization problem in (10) into the optimization of a continuous objective8

function over a closed and bounded set and therefore guarantees the existence of a solution. The condition in (13)9

ensures that the objective function in (10) is strictly convex, thus guaranteeing uniqueness.10

We note that the condition in (12) amounts to requiring PX to have bounded moments of any order up to 2p.11

Further, it can be shown that the condition in (13) is fulfilled for any order p if PX is a continuous probability12

distribution; however, it is not necessarily fulfilled when PX is a discrete probability distribution [49].13

From a theoretical point of view, results from approximation theory (refer, for example, to [49, 50]) can be used14

to analyze the convergence of the surrogate model with respect to its order. If the conditions in (11)–(13) are fulfilled15

for any order, it is desirable that the precision with which the surrogate model approximates the computational model16

can be improved systematically and made arbitrarily high by increasing the order p, that is,17

lim
p→+∞

∫
Rm

|g(x)− gp(x)|2dPX = 0. (14)

Unfortunately, this convergence property does not always hold, its presence being dependent on the probability distri-18

bution PX . In this regard, the following two results are available. First, it follows immediately from the Weierstrass19

theorem that this convergence property holds if PX has a closed and bounded support. Second, and more generally,20

the holomorphicity properties of integral transformations can be used to show that this convergence property holds if21
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there exists a constant β > 0 such that
∫
Rm exp(β‖x‖)dPX < +∞ [49, 50]; here, ‖ · ‖ is the Euclidean norm. For1

example, if PX were a (possibly multivariate) uniform probability distribution, this convergence property would hold2

because of the first result, and if PX were a (possibly multivariate) Gaussian probability distribution, it would hold3

because of the second result. The surrogate model usually converges to the computational model rapidly if the latter4

is sufficiently smooth. From a computational point of view, numerical convergence studies can be conducted.5

Regarding desideratum (iv) in Sec. 4.4, we note that the fulfillment of conditions that imply convergence with6

respect to the order can play a role in obtaining the characterization of the uncertain input variables.7

5.3.2 Propagation of uncertainties8

Once a surrogate model is available, stochastic expansion methods most often map the characterization of the un-9

certain input variables through this surrogate model—instead of through the computational model—to obtain the10

characterization of the quantity of interest. Unfortunately, unless the surrogate model perfectly mimics the computa-11

tional model, the use of the surrogate model introduces an approximation error in the characterization of the quantity12

of interest: the transformation of X through the surrogate model gp provides, as an approximation of the random13

variable Y , the characterization of the quantity of interest as the random variable Y p with values in R such that14

Y ≈ Y p = gp(X), (15)

thus implying, as an approximation of the probability distribution PY of Y , the probability distribution P p
Y of Y p as15

the image of the probability distribution PX of X by gp, that is, for any meaningful subset B of R,16

PY (B) ≈ P p
Y (B) = PX({x ∈ Rm : gp(x) ∈ B}). (16)

The desirability of the convergence property in (14) is further emphasized by the fact that owing to the relationships17

that probability theory establishes between probabilistic modes of convergence [43, 44], the convergence of the sur-18

rogate model gp to the computational model g in the PX -weighted least-squares sense implies the convergence of the19

probability distribution P p
Y of Y p = gp(X) to the probability distribution PY of Y = g(X).20
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5.3.3 Polynomial chaos expansion1

Let {ψα, 0 ≤ |α| ≤ p} be a set of polynomials ψα that span the set of all polynomials of order at most p and2

are PX -orthonormal, that is,3

∫
Rm

ψα(x)ψβ(x)dPX = δαβ, 0 ≤ |α|, |β| ≤ p, (17)

where δαβ = 1 if α = β and δαβ = 0 otherwise. Such a set is guaranteed to exist if the conditions in (12) and (13)4

are fulfilled, but if it exists, it is not unique. Because {ψα, 0 ≤ |α| ≤ p} spans the set of all polynomials of order at5

most p, the optimization problem in (10) is equivalent to6

g ≈ gp =

p∑
|α|=0

gαψα, where g = solution of min
h∈Rµ

1

2

∫
Rm

∣∣∣g(x)−
p∑

|α|=0

hαψα(x)
∣∣∣2dPX , (18)

where g = {gα, 0 ≤ |α| ≤ p} and µ is the number of PX -orthonormal polynomials in {ψα, 0 ≤ |α| ≤ p}. The7

attraction of this reformulation is that upon expressing the stationarity of the objective function in (18), the following8

constructive representation of the surrogate model is obtained:9

g ≈ gp =

p∑
|α|=0

gαψα, where gα =

∫
Rm

g(x)ψα(x)dPX , 0 ≤ |α| ≤ p. (19)

By constructive, we mean that this representation can facilitate the implementation of the construction of the surrogate10

model. Further, this representation allows the random variable Y p defined previously to be written as follows:11

Y ≈ Y p = gp(X) =

p∑
|α|=0

gαψα(X). (20)

Stochastic expansion methods refer to this characterization of the quantity of interest, Y p =
∑p
|α|=0 gαψα(X),12

as a polynomial chaos expansion. Further, the coefficients gα are referred to as polynomial chaos coefficients and13

the PX -orthonormal polynomials ψα as polynomial chaos.14

5.3.4 Implementation using nonintrusive projection methods15

Several types of implementation are available for obtaining the surrogate model. Embedded projection methods [6,16

51–55], nonintrusive projection methods [51, 53–56], and interpolatory collocation methods [53–55, 57–62] are most17
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often encountered. Embedded projection methods numerically determine the surrogate model through a Galerkin1

projection of the computational model onto a prescribed basis of orthonormal polynomials; this Galerkin projection2

results in a so-called spectral problem whose assembly and solution most often requires modification of the source3

code of the computational model. Nonintrusive projection methods rely on (multivariate) integration theory: they4

numerically determine the surrogate model through an orthogonal projection that involves the use of a quadrature rule5

to approximate integrals with respect to the probability distribution of the uncertain input variables. Interpolatory6

collocation methods rely on (multivariate) interpolation theory: they numerically determine the surrogate model by7

interpolating between a set of solutions to the computational model. Whereas embedded projection methods require8

modification of the computational model, nonintrusive projection and interpolatory collocation methods can be applied9

as wrappers around an existing computational model without requiring modification of the source code.10

We note that the literature sometimes refers to nonintrusive projection methods also as pseudospectral collocation11

methods [54, 56]; further, the literature sometimes refers to nonintrusive projection and interpolatory collocation12

methods collectively as collocation methods [54, 56].13

In this paper, we describe only nonintrusive projection methods; we refer the reader to the references mentioned14

previously for details about embedded projection, interpolatory collocation, and other methods.15

Nonintrusive projection methods approximate integrals with respect to the probability distribution PX using a16

quadrature rule. A quadrature rule for integration with respect to PX is a set {(xλ
` , w

λ
` ), 1 ≤ ` ≤ λ} of nodes xλ

` and17

associated weights wλ
` that allow the integral of any continuous, integrable function f from Rm into R with respect18

to PX to be approximated by a weighted sum of integrand evaluations as
∫
Rm f(x)dPX ≈

∑λ
`=1 w

λ
` f(xλ

` ).19

A first nonintrusive projection method exploits the fact that for certain “labeled" probability distributions PX ,20

recurrence relations that can be used to produce sets {ψα, 0 ≤ |α| ≤ p} of PX -orthonormal polynomials ψα21

are explicitly known and can be read from tables in the literature [6, 51, 53, 54]. For example, the tabulated (ten-22

sorized) normalized Hermite and Legendre polynomials constitute sequences of (multivariate) polynomials that are23

of increasing order and orthonormal with respect to the (multivariate product of) univariate standard Gaussian and24

uniform probability distributions, respectively. When such a set of PX -orthonormal polynomials is explicitly known25

in advance, this first nonintrusive projection method provides the surrogate model as follows:26

g ≈ gp,λ =

p∑
|α|=0

gλαψα, where gλα =

λ∑
`=1

wλ
` g(xλ

` )ψα(xλ
` ), 0 ≤ |α| ≤ p, (21)

that is, it provides the surrogate model by approximating the integral with respect to PX involved in the definition of27
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the coefficients in (20) using the quadrature rule for integration with respect to PX .1

A second nonintrusive projection method, which does not require a set of PX -orthonormal polynomials to be2

explicitly known in advance, is obtained by approximating the integral with respect to PX involved in the definition3

of the objective function in (10) using the quadrature rule for integration with respect to PX . This second nonintrusive4

projection method provides the surrogate model as a solution of the following weighted least-squares problem:5

g ≈ g̃p,λ =

p∑
|α|=0

cλαx
α, where cλ = solution of min

d∈Rµ

1

2
(y − [M ]d)T[W ](y − [M ]d), (22)

where y is the λ-dimensional vector with y` = g(xλ
` ), [M ] the (λ × µ)-dimensional matrix with M`α = (xλ

` )α,6

and [W ] the λ-dimensional diagonal matrix with W`` = wλ
` . We recall that µ is the number of monomials in {xα, 0 ≤7

|α| ≤ p} and λ the number of nodes in the quadrature for integration with respect to PX . The tilde serves in (22) to8

distinguish between surrogate models provided by the first and second nonintrusive projection methods.9

Many methods can be used to solve the optimization problem in (22). Some initially form the normal equations10

and then solve them using a Cholesky factorization. Others avoid forming the normal equations and instead rely on a11

QR factorization, a singular value decomposition, or other linear algebra method. There are also methods that cast the12

optimization problem in (22) as a generalized least-squares problem, which is then solved using either linear algebra13

or quadratic programming. These methods differ in their ability to handle problems that may have multiple solutions14

and in their numerical stability: if [M ] or [W ] is rank-deficient or ill-conditioned, the use of an inadequate method15

may cause a disastrous loss of numerical accuracy. Thus far, it appears that only little theoretical and computational16

work in the area of uncertainty quantification has examined this issue. Nevertheless, theoretical and computational17

studies are available in the field of linear algebra, and we refer the reader to [63–65] for guidance.18

We note that if the weighted least-squares problem in (22) is ill-conditioned, it can be helpful to normalize the19

uncertain input variables prior to the construction of the surrogate model. One way of doing this involves sub-20

tracting the mean vector mX and multiplying by the inverse [RX ]−T of the Cholesky factor of the covariance21

matrix [CX ] = [RT
XRX ]; in fact, the random variable [RX ]−T(X − mX) is normalized in the sense that its22

mean vector vanishes and its covariance matrix is equal to the identity matrix. The surrogate model then takes the23

form g̃p,λ =
∑p
|α|=0 c

λ
α([RX ]−T(x −mX))α, wherein the coefficients, although still denoted by cλα, are obtained,24

this time, by solving the weighted least-squares problem cλ = solution of mind∈Rµ
1
2 (y − [M ]d)T[W ](y − [M ]d),25

where y and [W ] are as in (22) but [M ] is the (λ× µ)-dimensional matrix with M`α = ([RX ]−T(xλ
` −mX))α.26

Many methods can be used to obtain the required quadrature rule for integration with respect to PX . There27
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are probabilistic and number-theoretic integration methods as well as nonprobabilistic integration methods, such as1

Gaussian, polynomial-based, and other integration methods, sparse-grid and other tensorization methods, and adaptive2

integration methods (refer, for details, to [24, 45, 49, 66–70]). Probabilistic integration methods produce quadrature3

rules whose nodes are distributed randomly in the domain of integration. By contrast, nonprobabilistic integration4

methods produce quadrature rules whose nodes are organized in a systematic way in the domain of integration. When5

the dimension of the domain of integration is small or moderate and when the integrand is sufficiently smooth, this6

systematic organization of the nodes allows nonprobabilistic methods to produce very efficient quadrature rules that7

achieve a high level of accuracy with only a small number of nodes. However, as the dimension of the domain of8

integration increases, nonprobabilistic methods lose their ability to form accurate quadrature rules with only a small9

number of nodes and ultimately become less efficient than probabilistic methods.10

Both of the nonintrusive projection methods mentioned previously are nonintrusive because they require only11

the repeated solution—sequentially or in parallel—of the computational model for different values assigned to its12

uncertain input variables; the computational model itself need not be modified. The manner in which the coefficients13

are computed in (21) and the residual is computed in (22) indicates that the computational model must be solved for14

each node in the quadrature rule for integration with respect to PX . Thus, the computational cost of constructing the15

surrogate model essentially scales with the number of nodes within this quadrature rule.16

From a theoretical point of view, results from approximation theory (refer, for example, to [24, 45, 49, 66, 68–70])17

can be used to analyze the convergence of quadrature-based approximations of integrals with respect to the number18

of nodes. From a computational point of view, numerical convergence studies can be conducted.19

Regarding desideratum (iv) in Sec. 4.4, we note that owing to these considerations, the availability of an efficient20

quadrature rule can play a role in constructing the characterization of the uncertain input variables.21

5.3.5 Curse-of-dimensionality22

Especially when the computational model is expensive to solve, it is essentially the quadrature rule that determines23

the computational cost of a nonintrusive-projection-based implementation. Indeed, as we have already mentioned, a24

nonintrusive-projection-based implementation requires that the computational model be solved for each node in the25

quadrature; thus, the smaller the number of nodes, the lower this computational cost.26

It follows that from among the aforementioned methods available for obtaining the quadrature rule, nonproba-27

bilistic integration methods are a natural choice because as we have already mentioned, they can be expected to be28

able to form an accurate quadrature rule with only a small number of nodes, especially when the number of un-29
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certain input variables is small or moderate and when the computational model is sufficiently smooth. However,1

nonintrusive-projection-based implementations that use nonprobabilistic integration methods suffer from a so-called2

“curse-of-dimensionality” because as the number of uncertain input variables increases, nonprobabilistic integration3

methods lose their ability to form accurate quadrature rules with only a small number of nodes [24, 45, 49, 66–70].4

5.3.6 Approximation of statistical descriptors5

Once a surrogate model is available, it can be used as a substitute for the computational model in the approximation6

of statistical descriptors of the quantity of interest. First, an ensemble of i.i.d. samples {x`, 1 ≤ ` ≤ ν} is7

generated from PX . The surrogate model is then used to map each sample x` into the corresponding sample of8

the quantity of interest, that is, either yp,λ` = gp,λ(x`) or yp,λ` = g̃p,λ(x`), depending on whether the first or second9

nonintrusive projection method is used. Finally, mathematical statistics methods are applied to the ensemble of i.i.d.10

samples {yp,λ` , 1 ≤ ` ≤ ν}. For example, the mean mY and the variance σ2
Y (if they exist) can be approximated as11

mY ≈ mp,λ,ν
Y =

1

ν

ν∑
`=1

yp,λ` , σ2
Y ≈ (σp,λ,νY )2 =

1

ν

ν∑
`=1

(yp,λ` −mp,λ,ν
Y )2. (23)

Under certain conditions, statistical descriptors of the quantity of interest can be directly approximated starting12

from either the coefficients gλα in the representation of the surrogate model in (21) or the coefficients cλα in the13

representation of the surrogate model in (22). For example, if the set {ψα, 0 ≤ |α| ≤ p} of PX -orthonormal14

polynomials is such that ψ0 = 1, it follows from (17) that the mean mY and the variance σ2
Y can be approximated as15

If ψ0 = 1, then mY ≈ mλ
Y = gλ0 and σ2

Y ≈ (σp,λY )2 =

p∑
|α|=1

(gλα)2. (24)

As in the Monte Carlo sampling method, the law of large numbers and the central limit theorem can be used to16

analyze the convergence of approximations such as those in (23) with respect to the number of samples. If convergence17

is guaranteed, it suffices to employ a sufficiently large number of samples to ensure that the error from using only a18

finite number of samples is much smaller than the error introduced by the use of the surrogate model.19

Thus, the implementation of a stochastic expansion method most often consists of approximating the computa-20

tional model by a sufficiently accurate surrogate model, followed by the use of this surrogate model as a substitute for21

the computational model in the approximation of statistical descriptors of the quantity of interest. This approximation22

entails virtually no overhead because the computational cost of evaluating polynomials is very low.23
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5.3.7 Reduced-dimensional surrogate model1

We have seen that the uncertain input variables can be characterized as a transformation X = f(Ξ) of a given random2

variable Ξ with values in Rd and probability distribution PΞ under a mapping f from Rd into Rm. This presents the3

possibility that the composition of the mapping f with the computational model g can be approximated by a surrogate4

model, thus facilitating, if d is smaller than m, the construction of a reduced-dimensional surrogate model [6, 41].5

5.4 Advanced stochastic expansion methods and related methods6

Much recent research has investigated how the computational cost of stochastic expansion methods (Sec. 5.3) can be7

reduced, as well as how their range of applicability can be extended to problems of higher and higher dimension and8

to computational models that lack smoothness. In particular, alternative (not necessarily polynomial) basis functions9

and alternative formulations of the construction of the surrogate model are being investigated; please refer, for ex-10

ample, to [71–77] for details about the use of alternative basis functions including Haar bases, multiwavelet bases,11

Padé approximants, multi-element polynomial chaos, enrichment functions, preconditioned bases, and separated rep-12

resentations; and please refer, for example, to [78–83] for details about alternative formulations including Bayesian13

formulations and Gaussian processes, sensing and other machine-learning formulations, adaptive formulations, as14

well as formulations that seek to exploit dimension reduction or sparsity, and various combinations of these.15

5.5 Effectiveness of Monte Carlo sampling and stochastic expansion methods16

In summary, when the Monte Carlo sampling method is used, accuracy usually improves with the square root of the17

number of solutions of the computational model; although this convergence rate is rather slow, it is independent of the18

number of uncertain input variables. When a stochastic expansion method is used, an accurate surrogate model can19

usually be obtained in a computationally efficient manner if the computational model has only a small or moderate20

number of uncertain input variables and is sufficiently smooth; once available, the propagation of uncertainties through21

this surrogate model usually entails virtually no overhead beyond the computational cost of its construction.22

Thus, within the current state of the art, the Monte Carlo sampling method is most computationally efficient for23

problems of “very high dimension," that is, for computational models with a very large number of uncertain input24

variables. Stochastic expansion methods are indicated most for problems “of low or moderate dimension," that is, for25

computational models with a small or moderate number of uncertain input variables, as well as for problems that admit26

reduction relative to dimensionality. We emphasize that the relative merits and limitations of these methods depend27
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on the problem and implementation specificities; further, we emphasize that much ongoing research is involved with1

extending the computational efficiency of stochastic expansion methods to problems of higher and higher dimension.2

5.6 Reduced-order models3

As an alternative to the use of a surrogate model, the computational cost of the uncertainty propagation can also be4

reduced through the use of a reduced-order model as a substitute for the computational model. In addition to multiscale5

and coarse-graining approaches, there exist various projection-based methods for obtaining reduced-order models,6

such as those based on eigendecomposition, proper orthogonal decomposition, Krylov subspaces, and reduced bases.7

Two significant challenges are in dealing with nonlinearities and in constructing a (family of) reduced-order model(s)8

that maintains accuracy over a range of values of the uncertain input variables of the computational model [84, 85].9

6. SENSITIVITY ANALYSIS OF UNCERTAINTIES10

Once the characterization and propagation steps are complete, the objective of the sensitivity analysis of uncertainties11

is to gain some insight into the manner in which uncertainties introduced in the input variables induce uncertainties12

in the quantity of interest. Such insight can be very useful for identifying where to direct efforts aimed at reducing13

uncertainties, and it can constitute a crucial prerequisite to the optimization of designs in the presence of uncertainties14

and the validation of models, among other purposes.15

Several types of sensitivity analysis of uncertainties can be used and have been proposed in the literature, such16

as methods involving scatter plots and regression, correlation, and elementary effects [86–88], methods involving17

variance analysis [87, 89–91], and methods involving differentiation [92–95]. Variance- and differentiation-based18

methods are described below; please refer to the references given above for details on the other methods.19

6.1 Variance-based methods20

Variance-based methods begin by partitioning the uncertain input variables into subsets. These subsets of uncertain21

input variables are then arranged in an order that reflects their significance in inducing uncertainties in the quantity of22

interest, thus permitting dominant subsets of uncertain input variables to be distinguished from insignificant ones.23

In their traditional realm [87, 89, 90], variance-based methods require the uncertain input variables to be parti-24

tioned into subsets that are statistically independent. Statistically independent subsets of uncertain input variables25

are those between which no physical, causal relationship exists (if uncertainties are held to refer to variability) or26

no logical relationship is indicated by the available information (if uncertainties are held to refer to a state of possi-27
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bly incomplete knowledge). More recent studies [90, 91] have extended the range of applicability of variance-based1

methods to statistically dependent subsets of uncertain input variables. However, for brevity, this section is confined2

to variance-based methods appropriate for statistically independent subsets; nevertheless, we will apply one of the3

available extensions to statistically dependent subsets in the illustrative problem of Secs. 8 and 9.4

For example, if the computational model were a finite element model for the mechanical deformation of a structure,5

one subset of uncertain input variables could be involved in the characterization of uncertain material properties6

and another could be involved in the characterization of an uncertain applied external loading. The variance-based7

sensitivity analysis may then involve determining whether either the uncertainties in the material properties or those8

in the applied loading are most significant in inducing uncertainties in the deformed shape of the structure.9

Without loss of generality, let the uncertain input variables be partitioned into n subsets in such a way that the first10

subset contains the first m1 uncertain input variables, the second subset contains the next m2 uncertain input variables,11

and so forth, until the final subset contains the last mn uncertain input variables. Correspondingly, let the random12

variable X = (X1, . . . , Xm) be partitioned into n random variables in such a way that X1 = (X1, . . . , Xm1
),13

X2 = (Xm1+1, . . . , Xm1+m2
), and so forth, until Xn = (Xm1+...+mn−1+1, . . . , Xm1+...+mn

), that is,14

X = (X1, . . . , Xm1︸ ︷︷ ︸
X1

, Xm1+1, . . . , Xm1+m2︸ ︷︷ ︸
X2

, . . . , Xm1+...+mn−1+1, . . . , Xm1+...+mn︸ ︷︷ ︸
Xn

). (25)

Let the random variables X1,X2, . . . ,Xn be statistically independent; then, by the rules of probability theory, the15

probability distribution of X = (X1,X2, . . . ,Xn) is the product of the probability distributions of X1,X2, . . . ,Xn:16

PX = PX1 × PX2 × . . .× PXn . (26)

As the main tool for gauging the significance of a subset of uncertain input variables in inducing uncertainties in the17

quantity of interest, say, of the j-th subset, variance-based methods provide the following significance descriptor:18

sXj =

∫
Rm∼j

(∫
Rmj

(
g(xj ,x∼j)−mY (x∼j)

)2

dPXj

)
dPX∼j , where mY (x∼j) =

∫
Rmj

g(xj ,x∼j)dPXj , (27)

where X∼j denotes the random variable that collects all those components of the random variable X that are not19

components of the random variable Xj , for example, X∼1 = (X2, . . . ,Xn). Although sXj can also be insightfully20

interpreted in the context of regression analysis [87, 89, 90], an intuitive interpretation is obtained by recognizing21 ∫
Rmj (g(xj ,x∼j) − mY (x∼j))2dPXj as the variance of g(Xj ,x∼j), that is, as the variance that the quantity of22
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interest would exhibit owing to the uncertainties in the uncertain input variables contained in the j-th subset if the1

value taken by the uncertain input variables contained in all the other subsets was equal to the specific value x∼j .2

Thus, variance-based methods provide the PX∼j -weighted average of the variance of g(Xj ,x∼j) as a significance3

descriptor that reflects the significance of the j-th subset of uncertain input variables in inducing uncertainties in the4

quantity of interest. Once the n significance descriptors are available,5

sX1 , sX2 , . . . , sXn , (28)

the corresponding subsets of uncertain input variables can be arranged in order of significance—the higher sXj , the6

more significant the j-th subset of uncertain input variables in inducing uncertainties in the quantity of interest—thus7

permitting dominant subsets of uncertain input variables to be identified.8

We note that variance-based methods provide several other significance descriptors that allow a fuller understand-9

ing to be gained of how subsets of uncertain input variables influence the quantity of interest. Nevertheless, it appears10

that the significance descriptor sXj is the backbone of variance-based methods because many of these other sig-11

nificance descriptors can be deduced therefrom; for example, the total-effect index given in [87, 89, 90] is obtained12

as sXj/σ2
Y , the main-effect index as (σ2

Y −sX∼j )/σ2
Y , and the interaction-effect index can be deduced from s(Xi,Xj).13

The computation of sXj is a problem of numerical integration. As in the previous section, either probabilis-14

tic and number-theoretic integration methods or nonprobabilistic integration methods can be used. Especially when15

a probabilistic integration method is used, the computational cost of a straightforward approximation can be pro-16

hibitive because of the nested structure of the integrals in (27). Variance-based methods circumvent this issue by17

using the law of total variance [43] to express sXj equivalently as sXj =
∫
Rm∼j

∫
Rmj g(xj ,x∼j)2dPXjdPX∼j18

−
∫
Rm∼j (

∫
Rmj g(xj ,x∼j)dPXj )(

∫
Rmj g(xj ,x∼j)dPXj )dPX∼j , thus allowing sXj to be approximated by using19

two independent ensembles {xj
` , 1 ≤ ` ≤ ν} and {x̃j

` , 1 ≤ ` ≤ ν} of i.i.d. samples from PXj and one en-20

semble {x∼j` , 1 ≤ ` ≤ ν} of i.i.d. samples from PX∼j as follows:21

sXj ≈ sνXj =
1

2ν

ν∑
`=1

(
g(xj

` ,x
∼j
` )− g(x̃j

` ,x
∼j
` )
)2

. (29)

Alternatively, if efficient quadrature rules {(xj,κ
k , wj,κ

k ), 1 ≤ k ≤ κ} and {(x∼j,λ` , w∼j,λ` ), 1 ≤ ` ≤ λ} for22
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integration with respect to PXj and PX∼j , respectively, are available, sXj can be straightforwardly approximated as1

sXj ≈ sκ,λXj =

κ∑
k=1

λ∑
`=1

wj,κ
k w∼j,λ`

(
g(xj,κ

k ,x∼j,λ` )−mκ
Y,`

)2

, where mκ
Y,` =

κ∑
k=1

wj,κ
k g(xj,κ

k ,x∼j,λ` ). (30)

We note that the computational cost of computing the significance descriptor sXj can be lowered by using a2

surrogate model (if available) as a substitute for the computational model in either (29) or (30). Finally, we note3

that under certain conditions, certain surrogate models allow sXj to be directly approximated from the coefficients4

involved in the representation of the surrogate model; please refer to [96, 97] for details.5

6.2 Differentiation-based methods6

Insight into how uncertainties induced in the quantity of interest depend on those introduced in the input variables7

can often also be gained by exploring the sensitivity of statistical descriptors of the quantity of interest with respect to8

changes in parameters involved in the characterization of the uncertain input variables. Differentiation-based meth-9

ods [92, 93, 95] lead to such insight by differentiating statistical descriptors of the quantity of interest with respect to10

parameters involved in the characterization of the uncertain input variables.11

For example, if the computational model were a finite element model for the mechanical deformation of a structure,12

an uncertain material property could be characterized as a random field parameterized by a nominal value, a dispersion13

level, and a spatial correlation length. The differentiation-based sensitivity analysis could then involve determining14

the sensitivity of the variance of a displacement component at a prescribed location with respect to changes in this15

nominal value, this dispersion level, and this spatial correlation length.16

Let the characterization of the uncertain input variables have been obtained by selecting a characterization PX(p)17

that depends on a finite number of parameters collected in a vector p = (p1, . . . , pq) and then assigning an adequate18

value p̂ = (p̂1, . . . , p̂q) to these parameters (refer to Secs. 4.2 and 4.5), that is,19

PX ≡ PX(p̂), where p̂ = (p̂1, . . . , p̂q). (31)

Let us consider a statistical descriptor of the quantity of interest that admits a representation as
∫
Rm h

(
g(x)

)
dPX(p̂),20

where h is a function from R into R. This representation is quite general and encompasses cases wherein interest might21

be in the mean mY (p̂) and variance σ2
Y (p̂) of the quantity of interest by setting h(y) = y and h(y) = (y−mY (p̂))2,22

respectively. Differentiation-based methods determine the sensitivity of this statistical descriptor with respect to23

changes in a parameter involved in the characterization of the uncertain input variables, say, in the j-th parameter,24
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using the partial derivative of
∫
Rm h

(
g(x)

)
dPX(p) with respect to pj evaluated at p̂:1

spj
=

∂
∫
Rm h

(
g(x)

)
dPX(p)

∂pj

∣∣∣∣
p=p̂

; (32)

the higher the magnitude of the sensitivity descriptor spj , the more sensitive the statistical descriptor with respect to2

changes in the j-th parameter. The simplest computation of spj
involves finite-difference approximation.3

The problem of numerically approximating the sensitivity descriptor spj can also be reformulated as a problem4

of numerical integration. In fact, if the probability distribution PX(p) admits a PDF ρX(p), if the differentiation5

and integration in (32) are interchangeable, and if ρX(p) is sufficiently differentiable, then spj can be expressed6

equivalently as spj
=
∫
Rmh(g(x))∂ρX(x,p)

∂pj

∣∣
p=p̂

dx=
∫
Rmh(g(x))∂ lnρX(x;p)

∂pj

∣∣
p=p̂

ρX(x; p̂)dx, thus allowing spj
to7

be approximated using an ensemble {x`, 1 ≤ ` ≤ ν} of i.i.d. samples from PX(p̂) as8

spj
≈ sνpj

=
1

ν

ν∑
`=1

h
(
g(x`)

)∂ ln ρX(x`;p)

∂pj

∣∣∣∣
p=p̂

(33)

and using a nonprobabilistic quadrature rule {(xλ
` , w

λ
` ), 1 ≤ ` ≤ λ} for integration with respect to PX(p̂) as9

spj
≈ sλpj

=

λ∑
`=1

wλ
` h
(
g(xλ

` )
)∂ ln ρX(xλ

` ;p)

∂pj

∣∣∣∣
p=p̂

. (34)

If the characterization of the uncertain input variables as a random variable X with probability distribution PX(p)10

corresponds to a characterization as a transformation X = f(Ξ;p) (refer to Sec. 4.2), then, assuming again that11

the differentiation and integration in (32) are interchangeable and that f(·;p), g, and h are sufficiently differentiable,12

the sensitivity descriptor spj can be expressed as spj =
∫
Rd

∂h(y)
∂y

∣∣
y=g(f(ξ,p̂))

(
∇xg(x)

∣∣
x=f(ξ,p̂)

)T ∂f(ξ,p)
∂pj

∣∣
p=p̂

dPΞ,13

thus allowing spj
to be approximated using an ensemble {ξ`, 1 ≤ ` ≤ ν} of i.i.d. samples from PΞ as14

spj ≈ s̃νpj
=

1

ν

ν∑
`=1

∂h(y)

∂y

∣∣∣∣
y=g(f(ξ`,p̂))

(
∇xg(x)

∣∣∣∣
x=f(ξ`,p̂)

)T
∂f(ξ`,p)

∂pj

∣∣∣∣
p=p̂

(35)

and using a nonprobabilistic quadrature rule {(ξλ
` , w

λ
` ), 1 ≤ ` ≤ λ} for integration with respect to PΞ as15

spj
≈ s̃λpj

=

λ∑
`=1

wλ
`

∂h(y)

∂y

∣∣∣∣
y=g(f(ξλ

` ,p̂))

(
∇xg(x)

∣∣∣∣
x=f(ξλ

` ,p̂)

)T
∂f(ξλ

` ,p)

∂pj

∣∣∣∣
p=p̂

. (36)

We note that fulfillment of the interchangeability assumption mentioned previously can be verified by invoking,16
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for example, the monotone or dominated convergence theorems; for details, please refer to [43, 44, 92]. Further, we1

note that the computational cost of computing spj can be lowered through the use of a surrogate model (if available).2

Finally, regarding desideratum (v) in Sec. 4.4, we note that the variety of differentiation-based sensitivity analyses3

that are enabled by the parameterization of the characterization of the uncertain input variables and their relevance to4

the scientific or engineering questions being asked can play a role in obtaining this characterization.5

7. IMPLEMENTATION DETAILS6

The methods described previously lend themselves well to implementations in computational linear algebra packages.7

In addition, implementations of some of the methods described previously are available in open-source software8

packages, such as Dakota [98], GPMSA [3], Queso [99], Trilinos::Stokhos [100], and UQTk [101]:9

– Dakota provides nonintrusive algorithms for uncertainty propagation (Monte Carlo sampling, stochastic expan-10

sion), sensitivity analysis, design optimization, model calibration, verification, and parameter studies.11

– GPMSA provides nonintrusive algorithms for uncertainty propagation (Gaussian processes), sensitivity analy-12

sis, model calibration, and parameter estimation.13

– Queso provides nonintrusive algorithms for uncertainty characterization (Bayesian), decision making under14

uncertainty, model calibration, and validation.15

– Trilinos::Stokhos provides intrusive algorithms for uncertainty propagation (stochastic expansion), including16

algorithms for forming and efficiently solving spectral problems arising in embedded projection methods.17

– UQTk provides intrusive and nonintrusive algorithms for uncertainty propagation (stochastic expansion), in-18

cluding algorithms suitable for rapid application prototyping, algorithm research, and community outreach.19

8. REALIZATION FOR AN ENGINEERING PROBLEM20

8.1 Context21

Much of the steel that is produced by steel plants is shaped by forming processes in preparation for its use in as-22

sembling cars, ships, appliances, and various other products. A forming process typically forms pieces of steel, for23

example, steel sheets, also called steel blanks, by deforming them using classical forming processes such as bending,24

deep drawing, cold roll forming, or combinations thereof. After leaving the tooling, which corresponds to being re-25

leased of the forming forces, the material has a tendency to partially return to its original shape because of its elastic26
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recovery. This phenomenon, referred to as the springback, is quite complex (refer, for details, to [102] and the ref-1

erences therein) and depends not only on material properties such as Young’s modulus and yield stress but also on2

many process parameters such as sheet thickness and bending angles. The springback is difficult to predict and is a3

major quality concern in forming processes because when the springback is smaller or larger than expected, it can4

cause serious problems to subsequent assembly processes because of geometry mismatches.5

Often, the same forming process must be applied repeatedly, each time to a nominally identical piece of steel and6

under nominally identical process conditions. However, even though they are nominally identical, the pieces of steel7

and the process conditions may exhibit (possibly small) variability; hence, the forming process may persist in yielding8

a different springback and therefore a permanently deformed piece of steel of a different shape each time that it is9

repeated. Thus, especially when it must be applied repeatedly, the design of a robust forming process can require an10

assessment of the impact that variability in the pieces of steel and the process conditions has on the springback.11

8.2 Problem setting12

We consider a forming process wherein a steel sheet is bent along a straight line: a portion of the steel sheet is clamped13

(Fig. 1(1)) and the complementary portion is bent downwards by a punch that descends until a rectangular angle is14

imposed (Fig. 1(2)), after which the punch ascends until it is ultimately removed (Fig. 1(3)). In such a forming15

process, the steel sheet does not keep its deformed shape after bending; instead, it springs back slightly upwards when16

the punch is removed. We refer to the angle with which the steel sheet bends upwards again as the springback angle.17

We consider a finite element model implemented in our in-house software METAFOR [102]. This finite element18

model is based on the geometry depicted in Fig. 1(1); further, it is based on a model of the mechanical behavior19

of the steel according to an elastoplastic constitutive model with linear isotropic hardening and on the modeling of20

the contact surfaces between the die, the sheet, and the punch as frictionless contact surfaces. Once the geometrical21

characteristics in Fig. 1(1) are fixed and values assigned to the parameters involved in the elastoplastic constitutive22

model with linear isotropic hardening, this finite element model allows the springback angle to be predicted.23

To examine the impact that variability in the mechanical behavior of the steel has on the springback angle, we24

consider two of the parameters involved in the elastoplastic constitutive model with linear isotropic hardening, namely,25

the hardening modulus and the yield stress, to be uncertain. We assume that the available information—from which we26

must infer the characterization of the hardening modulus and yield stress—consists of data collected from experiments,27

in addition to mechanical and physical constraints. Specifically, we assume that a small or moderate number of28
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samples, say n, of the hardening modulus and yield stress are available, written as1

{(hobs
` , sobs

` ), 1 ≤ ` ≤ n}. (37)

These samples may have been obtained by simple tensile testing of n steel sheets and characterizing the mechanical2

behavior of each one in terms of a hardening modulus hobs
` and yield stress sobs

` . We assume that the mechanical and3

physical constraints require that the hardening modulus and yield stress be positive, for example, as a reflection of the4

fact that it may be known that the steel hardens—and does not soften—as it deforms.5

Next, we will demonstrate some of the methods described previously by applying them to the characterization6

of the uncertainties in the hardening modulus and yield stress (the uncertain input variables), the propagation of7

these uncertainties through the finite element model (the computational model), and the sensitivity analysis of these8

uncertainties to allow some insight into their impact on the springback angle (the quantity of interest).9

8.3 Characterization of uncertainties10

Because only a small or moderate amount of data is assumed to be available, we proceed by selecting a “labeled"11

probability distribution that depends on only a small or moderate number of parameters and then inferring adequate12

values for these parameters from the data using the method of maximum likelihood; refer to Sec. 4.5.13

For reasons that we will discuss throughout and summarize at the end of this section, we select the bivariate gamma14

probability distribution, which was introduced in [103], as the “labeled" probability distribution. This distribution15

admits a probability density function that, when characterizing the hardening modulus and yield stress as random16

variables H and S, reads as follows:17

ρ(H,S)(h, s;mH ,σ2
H ,mS ,σ

2
S , ρ) = ρΓ(h;mH ,σ2

H) ρΓ(s;mS ,σ
2
S)σ

(
cΓ(h;mH ,σ2

H), cΓ(s;mS ,σ
2
S); ρ

)
. (38)

Here, ρΓ(·;mΓ,σ
2
Γ) is the univariate gamma probability density function with mean mΓ > 0 and variance σ2

Γ > 0:18

ρΓ(γ;mΓ,σ
2
Γ) = cγ

m2
Γ

σ2
Γ
−1

exp
(
− mΓ

σ2
Γ

γ
)

if γ ≥ 0 and ρΓ(γ;mΓ,σ
2
Γ) = 0 otherwise, (39)

where c is the normalization constant, σ(·, ·; ρ) with −1 ≤ ρ ≤ 1 is the function such that19

σ(u, v; ρ) =
1√

1− ρ2
exp

(
−
(
ρc−1

Ξ (u)
)2 − 2ρc−1

Ξ (u)c−1
Ξ (v) +

(
ρc−1

Ξ (v)
)2

2(1− ρ2)

)
, (40)

Volume 1, Number 1, 2013



30

and cΓ(·;mΓ,σ
2
Γ) and cΞ are the cumulative distribution functions associated with the univariate gamma probability1

distribution function with mean mΓ and variance σ2
Γ and the Gaussian probability distribution with zero mean and2

unit variance: cΓ(ζ;mΓ,σ
2
Γ) =

∫ ζ

0
cγm

2
Γ/σ

2
Γ−1 exp(−(mΓ/σ

2
Γ)γ)dγ and cΞ(η) =

∫ η

−∞ exp(−ξ2/2)/
√

2πdξ.3

As we mentioned in Sec. 4.2, for many random variables with “labeled" probability distributions, the litera-4

ture provides an equivalent characterization as a transformation of a random variable with a uniform, Gaussian, or5

other “labeled" probability distribution. Here, reference [103] provides an equivalent characterization for the ran-6

dom variables H and S with probability density function ρ(H,S)(·, ·;mH ,σ2
H ,mS ,σ

2
S , ρ) as a transformation of two7

statistically independent Gaussian random variables Ξ1 and Ξ2 with zero mean and unit variance,8

ρ(Ξ1,Ξ2)(ξ1, ξ2) = ρΞ(ξ1)× ρΞ(ξ2), where ρΞ(ξ) =
1√
2π

exp

(
− ξ

2

2

)
, (41)

through a mapping f(·, ·;mH ,σ2
H ,mS ,σ

2
S , ρ) from R× R into R+ × R+ such that9

(H,S) = f(Ξ1,Ξ2;mH ,σ2
H ,mS ,σ

2
S , ρ) =

(
c−1
Γ

(
cΞ(Ξ1);mH ,σ2

H

)
, c−1

Γ

(
cΞ(ρΞ1+

√
1− ρ2Ξ2);mS ,σ

2
S

))
; (42)

in fact, using the rule that probability theory provides for determining the image of a probability density function under10

a differentiable, bijective mapping [43], it can be shown that the image of ρ(Ξ1,Ξ2) under f(·, ·;mH ,σ2
H ,mS ,σ

2
S , ρ)11

is indeed ρ(H,S)(·, ·;mH ,σ2
H ,mS ,σ

2
S , ρ).12

The parameters mH and mS (σ2
H and σ2

S) involved in the expression of ρ(H,S)(·;mH ,σ2
H ,mS ,σ

2
S , ρ) are the13

mean values (respectively, the variances) of H and S; further, the parameter ρ controls the statistical dependence14

of H and S. We infer adequate values m̂H , σ̂2
H , m̂S , σ̂2

S , and ρ̂ using the method of maximum likelihood, that is, by15

maximizing the product of the values taken at the sample values in (37) by the probability density function in (38):16

(m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂) = solution of max

mH ,σ2
H ,mS ,σ2

S>0
−1≤ρ≤1

n∏
`=1

ρ(H,S)

(
hobs
` , sobs

` ;mH ,σ2
H ,mS ,σ

2
S , ρ
)
. (43)

The optimization problem in (43) is a general nonlinear programming problem. It need not have a solution and17

if a solution exists, it need not be unique. We use a gradient-based nonlinear programming method to solve the18

optimization problem in (43); for details about this method, refer to [103].19

We emphasize that because the support of the univariate gamma probability density function in (39) is the positive20

real line, the support of ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂) is the first quadrant and thus consistent with the mechanical21

and physical constraints that require that the hardening modulus and yield stress be positive.22
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Hereafter, we will denote the probability density function ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂) and the mapping f(·, ·;1

m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂) by ρ(H,S) and f unless their dependence on the parameters requires emphasis.2

We note that uncertainties that may result from the availability of only a small or moderate number of samples can3

be analyzed using sampling distributions and Bayesian approaches [19, 20, 104], but we do not carry out this analysis.4

8.4 Propagation of uncertainties5

Because the hardening modulus and yield stress are the only uncertain input variables of the finite element model and6

the problem is thus “of low dimension," we use a stochastic expansion method. We proceed by approximating the7

finite element model by a surrogate model and then using this surrogate model as a substitute for the finite element8

model in the approximation of statistical descriptors of the springback angle; please refer to Sec. 5.3.9

8.4.1 Surrogate model10

We think of the finite element model as a mapping g of any value of the hardening modulus and yield stress into a value11

of the springback angle. Assuming that g is ρ(H,S)-square-integrable, that is,
∫
R+

∫
R+ g(h, s)2ρ(H,S)(h, s)dhds <12

+∞, we then obtain the polynomial surrogate model of order p—which we will call, hereafter, the surrogate model—13

as a bivariate polynomial gp that approximates g as precisely as possible in the ρ(H,S)-weighted least-squares sense,14

g ≈ gp =

p∑
α+β=0

c(α,β)h
αsβ, where c = solution of min

d∈Rµ

1

2

∫
R+

∫
R+

∣∣∣∣g(h, s)− p∑
α+β=0

d(α,β)h
αsβ

∣∣∣∣2ρ(H,S)(h, s)dhds, (44)

where c = {c(α,β), 0 ≤ α+ β ≤ p} and µ is the number of monomials in {hαsβ, 1 ≤ α+ β ≤ p}.15

It can be shown that the characterization of the hardening modulus and yield stress is such that the precision of the16

surrogate model can be improved systematically and made arbitrarily high by increasing p:17

lim
p→+∞

∫
R+

∫
R+

|g(h, s)− gp(h, s)|2ρ(H,S)(h, s)dhds = 0. (45)

Proof. As we mentioned in Sec. 5.3, to show the fulfillment of this convergence property, it suffices to show18

that there exists a constant β > 0 such that
∫
R+

∫
R+ exp(β‖(h, s)‖)ρ(H,S)(h, s)dhds < +∞, which we show19

as follows. We carry out the change of variables (h, s) = (c−1
Γ (cΞ(w); m̂H , σ̂2

H), c−1
Γ (cΞ(z); m̂S , σ̂

2
S)) to obtain20 ∫

R
∫
R exp(c‖(c−1

Γ (cΞ(w); m̂H , σ̂2
H), c−1

Γ (cΞ(z); m̂S , σ̂
2
S))‖) exp(−w2/2)/

√
2π exp(−z2/2)/

√
2π exp(−((ρ̂w)2 −21

2ρ̂wz + (ρ̂z)2)/2/(1 − ρ̂2))dwdz < +∞. Because exp(−((ρ̂w)2 − 2ρ̂wz + (ρ̂z)2)/2/(1 − ρ̂2)) exp(−(1 −22

δ)w2/2) exp(−(1 − δ)z2/2) ≤ 1 with δ = 1 − (|ρ̂| − ρ̂2)/(1 − ρ̂2), we obtain
∫
R exp(c c−1

Γ (cΞ(w); m̂H , σ̂2
H))23
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exp(−δw2/2)/
√

2πdw < +∞ and
∫
R exp(c c−1

Γ (cΞ(z); m̂S , σ̂
2
S)) exp(−δz2/2)/

√
2πdz < +∞. We then cast the1

first of the previous inequalities equivalently as
∫
R exp(c c−1

Γ (cΞ(w); m̂H , σ̂2
H) − δw2/4) exp(−δw2/4)/

√
2πdw <2

+∞ and subsequently apply Hölder’s inequality to obtain (
∫
R exp((2c/δ)c−1

Γ (cΞ(w); m̂H , σ̂2
H)−w2/2)/

√
2πdw)δ/2

3

(
∫
R exp(−δw2/4)2/(2−δ)/

√
2πdw)(2−δ)/2 < +∞. Finally, we use the change of variables to obtain

∫
R exp((2c/δ)4

c−1
Γ (cΞ(w); m̂H , σ̂2

H)−w2/2)/
√

2πdw =
∫
R+ exp((2c/δ)h)ρΓ(h; m̂H , σ̂2

H)dh, thus indicating that the previous in-5

equality holds if 0≤ c< δ/(2σ̂2
H). Treating the remaining integral similarly, we conclude that

∫
R+

∫
R+exp(c‖(h, s)‖)6

ρ(H,S)(h, s)dhds < +∞ if 0 ≤ c < δ/(2 max(σ̂2
H , σ̂2

S)) and thus that the convergence property in (45) is fulfilled.7

8.4.2 Implementation by using a nonintrusive projection method8

We use a nonintrusive projection method. Because recurrence relations for producing orthonormal polynomials are9

not explicitly known or tabulated in the literature, we cannot use the first nonintrusive projection method mentioned10

in Sec. 5.3. Instead, we use the one based on the approximation of the integral with respect to ρ(H,S) involved in the11

objective function in (44) using a quadrature rule for integration with respect to ρ(H,S).12

Because the probability density function ρ(H,S) is the image of the probability density function ρΞ×ρΞ under the

mapping f (refer to (41) and (42)) we can use the “change of variables" theorem [43, 44] to obtain

∫
R+

∫
R+

∣∣∣∣g(h, s)−
p∑

α+β=0

d(α,β)h
αsβ

∣∣∣∣2ρ(H,S)(h, s)dhds

=

∫
R

∫
R

∣∣∣∣g(f1(ξ1, ξ2), f2(ξ1, ξ2)
)
−

p∑
α+β=0

d(α,β)

(
f1(ξ1, ξ2)

)α(
f2(ξ1, ξ2)

)β∣∣∣∣2ρΞ(ξ1)ρΞ(ξ2)dξ1dξ2, (46)

thus allowing us to approximate the integral with respect to the probability density function ρ(H,S) involved in the

objective function in (44) using a quadrature rule {(ξλ` , wλ
` ), 1 ≤ ` ≤ λ} for integration with respect to ρΞ as

∫
R+

∫
R+

∣∣∣∣g(h, s)−
p∑

α+β=0

d(α,β)h
αsβ

∣∣∣∣2ρ(H,S)(h, s)dhds

≈
λ∑

k=0

λ∑
`=0

wλ
kw

λ
`

∣∣∣∣g(f1(ξλk , ξ
λ
` ), f2(ξλk , ξ

λ
` )
)
−

p∑
α+β=0

d(α,β)

(
f1(ξλk , ξ

λ
` )
)α(

f2(ξλk , ξ
λ
` )
)β∣∣∣∣2. (47)

We use the Gauss-Hermite quadrature rule with λ nodes for integration with respect to the zero-mean, unit-variance13

Gaussian probability density function ρΞ, that is, the quadrature rule with λ nodes that has only positive weights and14

is exact for all polynomials up to order 2λ − 1. The nodes and weights of the Gauss-Hermite quadrature rule can be15

read from tables in the literature for a range of values of λ or computed using standard methods [66, 69, 70].16
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This approximation amounts to the use of the quadrature rule {((hλ
(k,`), s

λ
(k,`)), w

λ
(k,`)), 1 ≤ k ≤ λ, 1 ≤ ` ≤ λ}1

with (hλ
(k,`), s

λ
(k,`)) = f(ξλk , ξ

λ
` ) and wλ

(k,`) = wλ
kw

λ
` as the quadrature rule for integration with respect to ρ(H,S).2

Thus, we obtain the surrogate model as a solution of a weighted least-squares problem of the form (22).3

To improve numerical accuracy in the solution of this weighted least-squares problem, we normalize the harden-4

ing modulus and yield stress in preparation for the construction of the surrogate model. Specifically, we normalize5

the hardening modulus and yield stress by subtracting the mean values m̂H and m̂S and dividing by the standard6

deviations σ̂H and σ̂S . We then obtain the surrogate model as a solution of the weighted least-squares problem7

g ≈ gp,λ =

p∑
α+β=0

cλ(α,β)

(h− m̂H

σ̂H

)α(s− m̂S

σ̂S

)β
, where cλ= solution of min

d∈Rµ

1

2
(y− [M ]d)T[W ](y− [M ]d), (48)

where y is the λ2-dimensional vector with y(k,l) = g(hλ
(k,`), s

λ
(k,`)), [M ] is the (λ2 × µ)-dimensional matrix with8

M(k,`)(α,β) = ((hλ
(k,`)−m̂H)/σ̂H)α((sλ(k,`)−m̂S)/σ̂S)β, and [W ] the λ2-dimensional diagonal matrix with W(k,`)(k,`)9

= wλ
(k,`). To solve the weighted least-squares problem in (48), we select from among the methods in Sec. 5.3 the one10

that involves forming the normal equations and solving by Cholesky factorization:11

form the normal equations [MTWM ]cλ = [MTW ]y;

compute the Cholesky factorization [MTWM ] = [RTR];

first solve [R]Tgλ = [MTW ]y and then solve [R]cλ = gλ.

(49)

We note that it suffices to assign a sufficiently high value to the number of nodes λ to ensure that [MTWM ] is12

positive definite and therefore that the Cholesky factorization [MTWM ] = [RTR] exists and is unique.13

Further, we note that it is worthwhile inspecting this solution method more closely. By setting ψλ
(α,β) =14 ∑

(α̃,β̃)≤(α,β) A(α̃,β̃)(α,β)((h−m̂H)/σ̂H)α̃((s−m̂S)/σ̂S)β̃, where [A] = [R]−1, we obtain polynomialsψλ
(α,β) that15

have the orthonormality property that
∑λ

k=0

∑λ
`=0 w

λ
(k,`)ψ

λ
(α,β)(h

λ
(k,`), s

λ
(k,`))ψ

λ
(α̃,β̃)

(hλ
(k,`), s

λ
(k,`)) = δ(α,β)(α̃,β̃);16

in fact, by defining the (λ2 × µ)-dimensional matrix [Ψ] such that Ψ(k,`)(α,β) = ψλ
(α,β)(h

λ
(k,`), s

λ
(k,`)), that is,17

[Ψ] = [MA], we obtain [ΨTWΨ] = [ATMTWMA] = [I], where [I] is the identity matrix. Then, as in (18)18

and (19), we obtain the representation gp,λ =
∑p

α+β=0 g
λ
(α,β)ψ

λ
(α,β), where gλ(α,β) =

∑λ
k=1 w

λ
(k,`)g

(
hλ

(k,`), s
λ
(k,`)

)
19

ψλ
(α,β)

(
hλ

(k,`), s
λ
(k,`)

)
. Thus, the computation of [MTWM ] = [RTR], the solution of [R]Tgλ = [MTW ]y, and the20

solution of [R]cλ = gλ can be interpreted as the computational construction of orthonormal polynomials, the com-21

putation of the coefficients in the representation of the surrogate model in terms of these orthonormal polynomials,22

and the rearrangement of this representation to obtain gp,λ =
∑p
|α|=0 c

λ
(α,β)((h − m̂H)/σ̂H)α((s − m̂S)/σ̂S)β,23
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respectively; for details about the computational construction of orthonormal polynomials using computational linear1

algebra in the area of uncertainty quantification, please refer to [105–109].2

Finally, we note that this construction of the surrogate model is nonintrusive in that it requires only the repeated3

solution of the finite element model for different values assigned to the hardening modulus and yield stress. The finite4

element model must be solved for each node within the quadrature for integration with respect to ρ(H,S).5

8.4.3 Approximation of statistical descriptors6

Let {ξ`, 1 ≤ ` ≤ ν} and {ξ̃`, 1 ≤ ` ≤ ν} be two independent ensembles of i.i.d. samples from the zero-7

mean, unit-variance Gaussian probability density function ρΞ; these ensembles can be easily generated using standard8

methods [24]. Then, because the probability density function ρ(H,S) is the image of ρΞ × ρΞ under the mapping f ,9

we can use (h`, s`) = f(ξ`, ξ̃`) to obtain an ensemble {(h`, s`), 1 ≤ ` ≤ ν} of i.i.d. samples from ρ(H,S).10

Once the ensemble {(h`, s`), 1 ≤ ` ≤ ν} is available, we use the surrogate model as a substitute for the finite11

element model in the approximation of statistical descriptors of the springback angle. Specifically, we first use the12

surrogate model to map each sample into the corresponding sample yp,λ` = gp,λ(h`, s`) and then apply mathematical13

statistics methods to the ensemble {yp,λ` , 1 ≤ ` ≤ ν} of i.i.d. samples obtained for the springback angle; for example,14

we can approximate the mean and the variance as follows:15

mY ≈ mp,λ,ν
Y =

1

ν

ν∑
`=0

yp,λ` and σ2
Y ≈ (σp,λ,νY )2 =

1

ν

ν∑
`=0

(
yp,λ` −mp,λ,ν

Y

)2

. (50)

We note that if ψλ
(0,0) = 1, we also obtain mY ≈ mλ

Y = gλ(0,0) and σ2
Y ≈ (σp,λY )2 =

∑p
α+β=1(gλ(α,β))

2.16

8.5 Sensitivity analysis of uncertainties17

8.5.1 Variance-based method18

We consider a variance-based sensitivity analysis that aims to gauge the significance of the uncertainties in the hard-19

ening modulus and those in the yield stress in inducing uncertainties in the springback angle. For this purpose, we20

cannot immediately use the variance-based method given in Sec. 6.1 because whereas we characterized the hardening21

modulus and the yield stress as two statistically dependent random variables, the variance-based method given in22

Sec. 6.1 can only be used to gauge the significance of (subsets of) uncertain input variables that are characterized as23

statistically independent (subsets of) random variables. Instead, we use an extension of the variance-based method24

given in Sec. 6.1, an extension which was described in [90, 91] and which relies on conditional probabilities to allow25
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the significance of (subsets of) uncertain input variables to be gauged, even when they are characterized as statistically1

dependent (subsets of) random variables. Based on this extension, we define the following significance descriptors:2

sH =

∫
R+

(∫
R+

(
g(h, s)−mY (s)

)2

ρH|S(h|s)dh
)
ρS(s)ds, mY (s) =

∫
R+

g(h, s)ρH|S(h|s)dh,

sS =

∫
R+

(∫
R+

(
g(h, s)−mY (h)

)2

ρS|H(s|h)ds

)
ρH(h)dh, mY (h) =

∫
R+

g(h, s)ρS|H(s|h)ds,

(51)

where ρH and ρS are the marginal probability density functions such that ρH(h) =
∫
R+ ρ(H,S)(h, s)ds and ρS(s) =3 ∫

R+ ρ(H,S)(h, s)dh, and ρH|S(·|s) and ρS|H(·|h) are the conditional probability density functions such that ρH|S(h|s)4

= ρ(H,S)(h, s)/ρS(s) and ρS|H(s|h) = ρ(H,S)(h, s)/ρH(h). As in Sec. 6.1, we can interpret sH as the ρS-weighted5

average of the variance
∫
R+(g(h, s)−mY (s))2ρH|S(h|s)dh that the springback angle would exhibit owing to the6

uncertainties in the hardening modulus if the yield stress were set equal to the specific value s, and we can interpret sS7

similarly. Thus, the higher sH and sS , the more significant the uncertainties in the hardening modulus and the yield8

stress, respectively, are in inducing uncertainties in the springback angle.9

We note that if the hardening modulus and yield stress were characterized as statistically independent random10

variables, that is, if ρ(H,S) = ρH ×ρS and thus ρH|S(·|s) = ρH and ρS|H(·|h) = ρS , the significance descriptors sH11

and sS would coincide with those of the variance-based method given in Sec. 6.1.12

The computation of the significance descriptors sH and sS is a problem of numerical integration. We carry out13

this numerical integration using quadrature rules that are similar to those that we used in the previous section for the14

propagation of uncertainties. We provide details about the computation of sS ; the significance descriptor sH can be15

computed analogously. We use the “change of variables" theorem to obtain16

sS =

∫
R

∫
R

(
g
(
f1(ξ1, ξ2), f2(ξ1, ξ2)

)
−mY (ξ1)

)2

ρΞ(ξ1)ρΞ(ξ2)dξ1dξ2, (52)

where17

mY (ξ1)) =

∫
R
g
(
f1(ξ1, ξ2), f2(ξ1, ξ2)

)
ρΞ(ξ2)dξ2 (53)

and f is still defined as in (42), thus allowing us to approximate sS as follows:18

sS ≈ sp,λS =

λ∑
k=0

λ∑
`=0

wλ
kw

λ
`

(
gp,λ

(
f1(ξλk , ξ

λ
` ), f2(ξλk , ξ

λ
` )
)
−mp,λ

Y (ξλk)
)2

, (54)
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where1

mp,λ
Y (ξλk) =

λ∑
`=0

wλ
` g

p,λ
(
f1(ξλk , ξ

λ
` ), f2(ξλk , ξ

λ
` )
)
, (55)

in which we substituted the surrogate model for the finite element model to lower the computational cost.2

8.5.2 Differentiation-based method3

We consider a differentiation-based sensitivity analysis that aims to determine the sensitivity of the variance of the4

springback angle with respect to changes in parameters involved in the characterization of the hardening modulus and5

yield stress. Collecting the parameters of the characterization of the hardening modulus and yield stress in a vector6

p = (mH ,σ2
H ,mS ,σ

2
S , ρ) (56)

and denoting the mean and variance of the springback angle by7

mY (p) =

∫
R+

∫
R+

g(h, s)ρ(H,S)(h, s;p)dhds,

σ2
Y (p) =

∫
R+

∫
R+

(
g(h, s)−mY (p)

)2

ρ(H,S)(h, s;p)dhds,

(57)

we give special interest to the partial derivatives of the variance σ2
Y of the springback angle with respect to the8

variances σ2
H , and σ2

S of the hardening modulus and yield stress evaluated at the values obtained in (43), that is,9

sσ2
H

=
∂σ2

Y (p)

∂σ2
H

∣∣∣∣
p=p̂

and sσ2
S

=
∂σ2

Y (p)

∂σ2
S

∣∣∣∣
p=p̂

. (58)

Our special interest in sensitivity descriptors such as those in (58) follows from the fact that in a probabilistic investi-10

gation of manufacturing variability, changes in variance can sometimes be usefully interpreted in terms of changes in11

manufacturing tolerances; then, determining sensitivity descriptors such as those in (58) can provide valuable insight12

towards designing, controlling, and optimizing tolerances associated with the manufacturing process.13

To facilitate the computation of sσ2
H

and sσ2
S

, we interchange the derivatives and the integrals involved in their14

expressions in (58). In this way, their computation becomes a problem of numerical integration, which we carry out15

using quadrature rules similar to those that we used previously. We provide details about the computation of sσ2
H

; the16
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sensitivity descriptor sσ2
S

can be computed analogously. We use the “change of variables" theorem to obtain1

sσ2
H

=
∂σ2

Y (p)

∂pj

∣∣∣∣
p=p̂

=
∂
∫
R
∫
R

(
g
(
f(ξ1, ξ2;p)

)
−mY (p)

)2

ρΞ(ξ1)ρΞ(ξ2)dξ1dξ2

∂σ2
H

∣∣∣∣
p=p̂

, (59)

thus, after interchanging the differentiation and integration operations, we obtain the following approximation:2

sσ2
H
≈sp,λ

σ2
H
=

λ∑
k=0

λ∑
`=0

wλ
kw

λ
`

(
2gp,λ

(
f(ξλk, ξ

λ
` ; p̂)

)
−2mλ

Y (p̂)
)(

∇(h,s)g
p,λ(h, s)

∣∣∣∣
(h,s)=f(ξλ

k ,ξλ
` ;p̂)

)T
∂f(ξλk, ξ

λ
` ;p)

∂σ2
H

∣∣∣∣
p=p̂

, (60)

where we again substituted the surrogate model for the finite element model to lower the computational cost. We3

obtain the needed partial derivatives of f(ξλk , ξ
λ
` ;mH ,σ2

H ,mS ,σ
2
S , ρ) using the chain rule and the algorithm in [110].4

It can be shown that the characterization of the hardening modulus and yield stress is such that the interchange of5

the differentiation and integration operations is permitted.6

Proof. We will show that ∂
∫
R(c̃−1

Γ (cΞ(ξ); â, b))αρΞ(ξ)dξ/∂b|b=b̂ =
∫
R ∂(c̃−1

Γ (cΞ(ξ); â, b))α/∂b|b=b̂ρΞ(ξ)dξ,7

where c̃−1
Γ (ζ; a, b) =

∫ ζ

0
ρ̃Γ(γ; a, b)dγ, in which ρ̃Γ(γ; a, b) = cγa−1 exp(−γ/b) if γ ≥ 0 and ρ̃Γ(γ; a, b) = 0 other-8

wise. First, we use the chain rule to obtain ∂(c̃−1
Γ (cΞ(ξ); â, b̂))α/∂b|b=b̂ = (α/b̂)(c̃−1

Γ (cΞ(ξ); â, b̂))α. Then, because9

the function that maps b onto c̃−1
Γ (cΞ(ξ); â, b) is continuous and monotonically increasing, we use the mean-value the-10

orem to obtain |(c̃−1
Γ (cΞ(ξ); â, b̂+δb))α− (c̃−1

Γ (cΞ(ξ); â, b̂))α| ≤ (α/(b̂−|δb|))(c̃−1
Γ (cΞ(ξ); â, b̂+ |δb|))α|δb| if |δb|11

is sufficiently small. Because the univariate gamma probability distribution has finite moments of any order, the func-12

tion that maps ξ onto (α/(b̂ − |δb|))(c̃−1
Γ (cΞ(ξ); â, b̂ + |δb|))α is ρΞ-integrable. Thus, because the magnitude of the13

finite difference can be bounded from above by a ρΞ-integrable function, the dominated convergence theorem implies14

that limδb→0

∫
R(((c̃−1

Γ (cΞ(ξ); â, b̂ + δb))α − (c̃−1
Γ (cΞ(ξ); â, b̂))α)/δb)ρΞ(ξ)dξ =

∫
R limδb→0(((c̃−1

Γ (cΞ(ξ); â, b̂ +15

δb))α − (c̃−1
Γ (cΞ(ξ); â, b̂))α)/δb)ρΞ(ξ)dξ, which concludes the proof. In a similar manner, it can be shown that16

∂
∫
R(c̃−1

Γ (cΞ(ξ); a, b̂))αρΞ(ξ)dξ/∂a|a=â =
∫
R ∂(c̃−1

Γ (cΞ(ξ); a, b̂))α/∂a|a=âρΞ(ξ)dξ, that the validity of these in-17

terchanges extends to the bivariate gamma probability distribution, that the chain rule applies, and therefore, at least18

after substituting the surrogate model for the finite element model, that the differentiation and integration operations19

may be interchanged in (59) to obtain (60), but we omit the details for the sake of brevity.20

8.6 Key role played by the characterization of uncertainties21

To further emphasize the key role played by a judicious characterization of uncertainties, we reiterate that our char-22

acterization of the hardening modulus and yield stress is consistent with the applicable mechanical and physical23
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constraints (Sec. 8.3), facilitates the propagation of uncertainties by allowing convergence properties to be demon-1

strated and various algorithmic ingredients, such as quadrature rules, to be efficiently obtained (Sec. 8.4), and permits2

the sensitivity to uncertainties to be explored by allowing insightful analyses to be carried out (Sec. 8.5).3

9. NUMERICAL RESULTS4

We obtained numerical results by assigning the values l = 20 mm, r = 3 mm, s = 1 mm, u = 6 mm, v = 1 mm,5

and w = 5 mm to the geometrical characteristics depicted in Fig. 1(1) and values of 210 GPa and 0.3 to the Young’s6

modulus and Poisson coefficient involved in the elastoplastic constitutive equation with isotropic hardening.7

We assumed that the data—from which we had to infer adequate values for the parameters involved in the charac-8

terization of the hardening modulus and yield stress—consist of the n = 25 samples listed in Table 1.9

We emphasize that the samples in Table 1 have been numerically generated and are not representative of the10

variability that may be present in actual mechanical behavior of real steel sheets. Thus, the results to follow cannot be11

used to draw conclusions on forming processes but serve only to illustrate some of the methods that we described.12

9.1 Characterization of uncertainties13

First, we solved the optimization problem in (43) to obtain adequate values for the parameters involved in the charac-

terization of the hardening modulus and yield stress:

m̂H = 1495 MPa, σ̂2
H = 1390 MPa2, m̂S = 396 MPa, σ̂2

S = 660 MPa2, ρ̂ = −0.223.

The mean values m̂H and m̂S and the variances σ̂2
H and σ̂2

S correspond to the coefficients of variation

σ̂H

m̂H
= 2.49% and

σ̂S

m̂S
= 6.49%,

thus indicating that the characterization of the hardening modulus and yield stress as random variables H and S with14

probability density function ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂) introduces relatively less uncertainties in the hardening15

modulus than in the yield stress. Further, because ρ̂ = −0.223 is negative, the statistical dependence between H16

and S is such that if H takes a higher value, the probability that S takes a lower value increases. Figure 2 shows a few17

contours of the probability density function ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂).18
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9.2 Propagation of uncertainties1

9.2.1 Surrogate model and implementation using a nonintrusive projection method2

Next, we approximated the finite element model by a surrogate model. We obtained results using a range of values for3

the order p of the surrogate model and the parameter λ that controls the number of nodes in the quadrature for inte-4

gration with respect to the probability density function ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂). We discuss the convergence5

with respect to p and λ later; for now, we present detailed results that we obtained with p = 4 and λ = 5.6

We constructed the Gauss-Hermite quadrature rule, which provided the basis for the quadrature rule for integration7

with respect to ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂) (Fig. 3(1)), whereupon we solved the finite element model for each8

node of this quadrature for integration with respect to ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂) (Fig. 3(2)) and we solved the9

optimization problem in (48) to obtain the surrogate model (Fig. 3(3)).10

The computational cost of constructing the surrogate model was dominated by the repeated solution of the finite11

element model for each node in the quadrature for integration with respect to ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂); for p =12

4 and λ = 5, the construction of the surrogate model required λ2 = 25 finite element model solutions.13

9.2.2 Approximation of statistical descriptors14

Subsequently, we used the surrogate model as a substitute for the finite element model in approximating statistical15

descriptors for the springback angle. We generated two independent ensembles of (a sufficiently large number ν =16

1, 000, 000 of) i.i.d. samples from the zero-mean, unit-variance Gaussian probability density function. On the basis of17

these, we generated an ensemble of i.i.d. samples from ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂) (Fig. 4(1)), and we used the18

surrogate model to map each of these samples into the corresponding sample of the springback angle and then applied19

mathematical statistics methods to the ensemble of i.i.d. samples of the springback angle thus obtained (Fig. 4(2)).20

Figure 4(2) shows the approximate probability density function of the springback angle obtained for p = 4

and λ = 5 by applying the kernel density estimation method [39] to the ensemble of i.i.d. samples of the springback

angle. Further, for p = 4 and λ = 5, we obtained the following approximations of the mean and variance:

mp,λ
Y = 0.0528 rad, (σp,λY )2 = 5.34× 10−6 rad2,

σp,λY

mp,λ
Y

= 4.38%.
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9.3 Sensitivity analysis of uncertainties1

Finally, we carried out a sensitivity analysis of uncertainties to gain insight into the manner in which uncertainties

in the hardening modulus and yield stress induce uncertainties in the springback angle. Using the variance-based

method, we obtained the following approximations of the significance descriptors for p = 4 and λ = 5:

sp,λH = 0.102× 10−6 rad2 and sp,λS = 5.30× 10−6 rad2,

that is, sp,λH /(σp,λY )2 = 0.0192 and sp,λS /(σp,λY )2 = 0.99; thus, the uncertainties in the yield stress are more significant

than those in the hardening modulus in inducing uncertainties in the springback angle. Using the differentiation-based

method, we obtained the following approximations of the sensitivity descriptors for p = 4 and λ = 5:

sp,λ
σ2

H
= −0.0395× 10−9 rad2/MPa2 and sp,λ

σ2
S

= 8.31× 10−9 rad2/MPa2,

that is, (σ̂2
H/(σp,λY )2)sp,λ

σ2
H

= −0.0103 and (σ̂2
S/(σp,λY )2)sp,λ

σ2
S

= 1.02; thus, the variance of the springback angle is2

more sensitive to changes in the variance of the yield stress than to changes in the variance of the hardening modulus.3

9.4 Numerical convergence study4

We conducted a numerical convergence study to examine the impact that the values assigned to p and λ have on5

the results. Specifically, we repeated the construction of the surrogate model and the approximation of statistical,6

significance, and sensitivity descriptors of the springback angle for several values of p, setting λ = p + 1. Figure 57

illustrates the convergence of these approximations. We can observe that the results presented previously for p = 48

and λ = 5 have converged reasonably with respect to the order p of the surrogate model and the parameter λ that9

controls the number of nodes in the quadrature for integration with respect to ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂).10

10. CONCLUSION11

We offered a short overview of a number of methods reported in the computational-mechanics literature for quantify-12

ing uncertainties in engineering applications. We covered the characterization, propagation, and sensitivity analysis13

of uncertainties as they apply to parametric, nonparametric, output-prediction-error, and generalized approaches and14

to problems of low, moderate, and high dimension. We included recent advances in the propagation and sensitivity15

analysis of uncertainties characterized by arbitrary probability distributions that may exhibit statistical dependence.16
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Tables1

` [-] (hobs
` [MPa], sobs

` [MPa]) ` [-] (hobs
` [MPa], sobs

` [MPa]) ` [-] (hobs
` [MPa], sobs

` [MPa])
1 (1488, 375) 10 (1541, 340) 19 (1523, 402)
2 (1485, 403) 11 (1501, 366) 20 (1459, 402)
3 (1514, 407) 12 (1531, 403) 21 (1498, 388)
4 (1500, 377) 13 (1572, 393) 22 (1498, 435)
5 (1569, 348) 14 (1518, 388) 23 (1448, 418)
6 (1452, 384) 15 (1497, 416) 24 (1506, 394)
7 (1439, 393) 16 (1506, 421) 25 (1455, 393)
8 (1475, 399) 17 (1427, 381)
9 (1530, 452) 18 (1456, 444)

TABLE 1: Characterization of uncertainties: data.
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FIG. 1: Schematic representation of the problem. The left portion of the steel sheet is clamped.
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FIG. 3: Propagation of uncertainties: (1) quadrature rule for integration with respect
to ρ(H,S)(·, ·; m̂H , σ̂2

H , m̂S , σ̂
2
S , ρ̂), (2) permanently deformed shapes obtained by solving the finite element

model for each node that this quadrature rule has, and (3) surrogate model for p = 4 and λ = 5.
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FIG. 4: Propagation of uncertainties: (1) ensemble of i.i.d. samples from ρ(H,S)(·, ·; m̂H , σ̂2
H , m̂S , σ̂

2
S , ρ̂) and (2)

corresponding ensemble of i.i.d. samples and probability density function of the springback angle for p = 4 and λ = 5.
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FIG. 5: Convergence analysis: convergence of statistical, significance, and sensitivity descriptors of the springback
angle with respect to the order of the surrogate model and the number of nodes that the quadrature rule for integration
with respect to ρ(H,S)(·, ·; m̂H , σ̂2

H , m̂S , σ̂
2
S , ρ̂) has.
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