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Abstract 17 

Concentrations of several persistent organic pollutants (POPs: PCBs, PBDEs, OCPs) in 18 

aquatic species from the Scheldt estuary were related with factors (body size, lipids, trophic 19 

position) possibly influencing their bioaccumulation. Stable nitrogen isotope ratios (δ
15

N) 20 

were used as a measure for trophic position. A decreasing trend in POP levels towards the sea 21 

was observed. For POP concentrations in sediments, this trend could be attributed to a 22 

dilution effect from mixing with seawater. However, concentrations in biota more 23 

downstream were higher than expected after taking into account the dilution effect, possibly 24 

due to differences in bioavailability. Tissue concentrations were correlated with the lipid 25 

content in biota, but not with body size. Biomagnification was only significant for some PCB 26 

congeners and p,p’-DDE at the most marine sampling location (Terneuzen, L1) and for p,p’-27 

DDD and BDE 100 at the second sampling location (Bath, L2). A significant decreasing 28 

relationship was found for ɣ-HCH concentrations with increasing δ
15

N at Terneuzen. For 29 

Antwerpen (L3), no significant relationships were detected. TMFs ranged from 0.64 for ɣ-30 

HCH up to 1.60 for PCB 194. These results suggest that biomagnification was more important 31 

in the marine part of the estuary, although the presence of multiple carbon sources at the 32 

freshwater side might have led to an underestimation of the influence of trophic position.  33 

 34 

Keywords 35 

Persistent organic pollutants; Polychlorinated biphenyls (PCBs); Polybrominated diphenyl 36 

ethers (PBDEs); Stable carbon and nitrogen isotopes; Biomagnification; Scheldt estuary37 
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Introduction 38 

Intensive industrial and agricultural activities have caused the worldwide introduction 39 

of organic chemicals in the aquatic environment. Man-made chemicals, such as 40 

polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and 41 

organochlorine pesticides (OCPs), can persist for many years in these environments, hence 42 

forming a possible health threat for wildlife and humans through bioaccumulation
1-3

. The 43 

bioaccumulation of persistent organic pollutants (POPs), which mostly have a lipophilic 44 

character, into aquatic biota is believed to be mainly driven by two processes. The first 45 

process is the direct partitioning of chemicals between the organism’s body and the abiotic 46 

environment, also called bioconcentration. The second process is dietary uptake
4
. However, 47 

for lipophilic POPs (log Kow > 5) bioconcentration is considered to be of less importance for 48 

most fish when compared to dietary uptake
5
. If the chemical concentration in a consumer 49 

exceeds the concentration in his diet, and if the absorption rate exceeds the elimination from 50 

the body through biotransformation, growth and reproductive loss, biomagnification occurs. 51 

In this case, the POP level in an aquatic species will be influenced by its trophic position in 52 

the local food web. Consequently, top predators tend to contain the highest body burdens of 53 

pollutants and may also suffer the highest risk for adverse health effects
6
.  54 

To understand the importance of trophic transfer in relation to the fate of pollutants in 55 

the food web and quantify the extent of biomagnification, the first step is to determine the 56 

trophic positions of the species in the food web. A frequently used method for this is the 57 

analysis of stable isotope ratios, as the isotopic signature of an animal reflects its assimilated 58 

diet
7, 8

. By measuring stable isotope ratios as well as the pollution levels in several species, it 59 

is possible to identify and quantify biomagnification within a food web
9
.  60 

The present study was conducted in the Scheldt estuary (the Netherlands – Belgium). 61 

The river Scheldt is a lowland-river which has its source in St. Quentin (France), flows 62 
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through Belgium and flows into the North Sea in Vlissingen (the Netherlands). The river has a 63 

total length of 355 km and the tidal effects reach 160 km upstream, until Ghent
10

. With a total 64 

catchment area of 22000 km², the river receives water from dense populated and 65 

industrialized areas, enriching the estuary with nutrients and pollutants, including trace 66 

metals
11

 and POPs
3, 12

, making the Scheldt one of the most polluted estuaries in Europe. 67 

Nonetheless, the estuary is of great ecological value, for example because of its function as 68 

nursery room for demersal fish species, as breeding area of the harbor seal (Phoca vitulina)
13

, 69 

and because of the international importance for seabird conservation
14

. For this reason it is 70 

essential to establish the fate of man-made chemicals in the estuary and their possible effects 71 

in the food webs. 72 

In this paper, concentrations of POPs in different aquatic species from the Scheldt 73 

estuary were measured and related with their stable isotope ratios, as a measure for trophic 74 

position, to see whether POPs are biomagnified through the food web in this estuary. The 75 

study was conducted at three different locations along the salinity gradient to compare the fate 76 

of POPs in freshwater versus saltwater conditions. Tissue POP concentrations were also 77 

linked with other factors (body size, lipid content), possibly influencing the bioaccumulation 78 

of POPs. 79 

80 
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Material and Methods 81 

2.1 Sample collection 82 

In June 2011, samples were collected at three locations along the Scheldt Estuary (Fig. 83 

1): Terneuzen (51°35’N 3°88’E), Bath (the Netherlands, 51°40’N 4°21’E) and Antwerpen 84 

(Belgium, 51°23’N 4°39’E). Fish, crab and shrimp species were collected by means of fyke 85 

fishing (INBO, Research Institute for Nature and Forest) and trawl fishing with the vessel 86 

Zeeleeuw (VLIZ, Flanders Marine Institute). Other invertebrates were sampled on the shore 87 

by hand at low tide. Filamentous algae were collected from rocks. An overview of the 88 

collected species is given in Table 1. More detailed data on the lipid content, length and 89 

weight of the collected samples is provided in Table SI-1 of the Supporting Information (SI). 90 

Suspended particulate matter (SPM) was collected by filtration of surface water with a 91 

vacuum pump over glass fiber filters (VWR International, pore size 0.7 µm). Because of 92 

limited sample size, no POP analyses could be performed on SPM samples. The top layer (10 93 

cm) of the surface sediment was sampled manually from the shores at low tide. At each 94 

location, three replicates were taken. TOC (total organic carbon) was determined through 95 

Loss on Ignition (LOI). To this, the sediment subsamples were incinerated at 550 °C for 4 h 96 

and weight loss was determined
15

. 97 

Before freezing and dissection, the organisms were kept for depuration in filtered 98 

locally collected river water (0.2 µm) for 24h. A part of the caudal musculature of the fish 99 

was sampled to perform stable isotopes and POP analyses. For smaller fishes, crabs and 100 

shrimps, the whole musculature was homogenized for analysis. Soft tissues of other 101 

invertebrates were analyzed as a whole. For POP analysis, tissues from shrimps, mollusks and 102 

bristle worms were pooled to get an adequate sample size. Stable isotopes in shrimps, 103 

mollusks and bristle worms were determined in individual samples from the same area, which 104 
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were not analyzed for POPs. Filamentous algae were rinsed to remove sand and organisms. 105 

All samples were frozen (-20°C) until analysis. 106 

 107 

2.2 POP analysis 108 

The following POPs were targeted for analysis in all samples: 33 PCB congeners 109 

(IUPAC numbers: CB 18, 28, 44, 49, 52, 87, 95, 99, 101, 105, 110, 118, 128, 138, 146, 149, 110 

151, 153, 156, 170, 171, 172, 174, 177, 180, 183, 187, 194,  195, 199, 205, 206, 209), 7 111 

PBDEs (IUPAC numbers: BDE 28, 47, 99, 100, 153, 154, 183), DDXs (o,p’-DDD, p,p’-112 

DDD, o,p’-DDE, p,p’-DDE, o,p’-DDT, p,p’-DDT), chlordanes (TC, CC, TN, OxC), HCHs 113 

(α-, β-, γ-hexachlorocyclohexane) and HCB (hexachlorobenzene). PBDE 209 was measured 114 

only in the sediment samples due to low expected concentrations in biota relative to the rather 115 

high method LOQ
3, 16

. A detailed description of the methods used for POP analysis and 116 

quality control is described in Van Ael et al.
3
 and is provided as SI. 117 

 118 

2.3 Stable isotope analysis 119 

To indicate the trophic position of the collected species, carbon and nitrogen stable 120 

isotope ratios (δ
13

C and δ
15

N) were measured. For this, muscle tissues (fish, crabs, shrimps) or 121 

whole soft body (mollusks, bristle worms, Chaetogammarus marinus) tissues were freeze 122 

dried and ground to a powder with mortar and pestle. From fish tissues with a high lipid 123 

content, lipids were extracted by rinsing the samples with chloroform:methanol (2:1, v/v). 124 

SPM samples, that potentially contained carbonates, were acidified by placing them during 125 

24h under a glass jar with fuming HCl (37%), to remove calcareous material
8
. Samples were 126 

measured before and after acidification or removal of lipids. Stable isotope ratios were 127 

determined using a mass spectrometer (VG Optima, Isoprime, UK) equipped with an 128 

elemental analyzer (Carlo Erba, Italy) for combustion and automated analysis. Carbon and 129 
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nitrogen isotope ratios were expressed as δ values (‰) relative to the Vienna PeeDee 130 

Belemnite (vPDB) standard and to atmospheric N2 respectively. IAEA-N1 (δ
15

N = 0.4 ± 131 

0.2‰) and IAEA C-6 (δ
13

C = -10.8 ± 0.2‰) were used as reference materials. Standard 132 

deviations for multi-batch replicated measurements (N = 22) of one fish muscle sample were 133 

±0.19 and ±0.25 ‰ for δ
15

N and δ
13

C, respectively. 134 

 135 

2.4 Statistical analysis 136 

POP concentrations below the LOQ were substituted by a value of LOQ*f (detection 137 

frequency). After testing the normality and homogeneity of variances, concentrations were 138 

log-transformed where necessary. Differences between locations were detected by using One-139 

way ANOVA with Tukey test or Student’s t-test. The level of statistical significance was set 140 

at p < 0.05. Pearson correlation was applied to determine the influence of lipid content and 141 

body size (length and weight) on the bioaccumulation of POPs. 142 

The dilution effect of mixing with seawater, which may cause lower sediment and 143 

biota POP concentrations more downstream in the estuary, was tested by normalizing the POP 144 

concentrations for salinity. Therefore, the POP concentrations were multiplied by the ratio of 145 

salinity at (Site X/Anwerpen). Salinity values used: Terneuzen, 27.3; Bath, 15.6; Antwerpen, 146 

3.4. Ratios used: (Terneuzen/Antwerpen) = 8.1; (Bath/Antwerpen) = 4.7; 147 

(Antwerpen/Antwerpen) = 1. Salinity values are year averages from a monitoring database 148 

from Rijkswaterstaat, a part of the Dutch Ministry of Infrastructure and the Environment, and 149 

from the Flemish Environment Agency (VMM). 150 

Differences between locations in δ
13

C values in the same species were detected by 151 

using Student’s t-test. 152 

Regression analyses was used to study the relationship between POP concentrations 153 

and stable isotope values (individual data), as a tracer for the trophic position. The calculation 154 
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of trophic levels (TLs) has been used in several studies to indicate trophic magnification. To 155 

derive the TL from δ
15

N values the following equation is often used
17

: 156 

TL(consumer) = 2 + (δ
15

Nconsumer - δ
15

Nprimary consumer)/ ∆δ
15

N 157 

where ∆δ
15

N is the trophic enrichment factor or the shift in δ
15

N between consecutive TLs
17

. 158 

Trophic magnification factors (TMFs) are than calculated from the slope of the regression 159 

between log-transformed concentrations of pollutants and the trophic levels
18

. However, the 160 

trophic enrichment factor ranges between 3‰ and 5‰ and can be variable, depending on 161 

species, diet, tissue and physiology
19, 20

, making it questionable to apply a fixed value for 162 

∆δ
15

N. For this reason TLs were not calculated in this study
21

. TMFs are calculated as the 163 

antilog with base 10 of the slope from the regression between log-transformed concentrations 164 

of pollutants and δ
15

N values
22

. 165 

Multiple regressions models were constructed to analyse the combined effect of lipid 166 

content and δ
15

N. 167 

Statistical analyses were performed using GraphPad Prism 6.00 (GraphPad Software, 168 

Inc). 169 

170 
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Results and discussion 171 

3.1 POP concentrations 172 

Median (+ range) POP concentrations and lipid content in biota and sediment samples 173 

are reported in Table 1. Average TOC content (± SD) in the sediment measured 2.7 ± 1.5%, 174 

2.5 ± 1.1% and 4.7 ± 2.5% for Terneuzen, Bath and Antwerpen respectively. Sediment PCB 175 

concentrations were low, ranging from 1.8 up to 58.7 ng/g dw. PCB levels in biota samples 176 

were highest in European eel (Anguilla anguilla), ranging from 846 up to 2190 ng/g ww. 177 

Lowest PCB concentrations were found in common periwinkle (Littorina littorea) (from 17.6 178 

up to 28.0 ng/g ww). Median PCB concentrations in Baltic tellin (Macoma balthica), 179 

European sprat (Sprattus sprattus) and European eel exceeded the maximum limit for the sum 180 

of the 6 indicator PCBs (75 ng/g ww; indicated in bold), as set by European legislation
23

. 181 

Concentrations in European eel also exceeded the consumption limit of 300 ng/g for muscle 182 

meat of wild caught eel
24

. PCB 153 was the most dominant congener in all species (12 – 28% 183 

of ∑PCBs), followed by PCB 138 and 149. Only in filamentous algae, PCB 149 was most 184 

abundant (11%). PCB 18, 205, 206 and 209 were not frequently detected in all samples. 185 

From the PBDE congeners, PBDE 209 was dominant in the sediment (99.7%), while 186 

in the tissues, BDE 47 was most abundant (32-69%, with PBDE 209 not measured in tissues). 187 

Total PBDE concentrations in the sediment ranged from 1.70 up to 575 ng/g dw. Median 188 

tissue PBDE concentrations were lowest in brown shrimp (Crangon crangon) and common 189 

periwinkle (0.01 ng/g ww) and highest in European eel (8.76 ng/g ww). 190 

Chlordanes were not detected in the sediment and only in low concentrations in biota 191 

samples: medians from below detection limit up to 5.67 ng/g ww in European eel (Table 1). 192 

Trans-chlordane was the most detected chlordane, although in European eel, oxychlordane 193 

reached the highest concentrations. p,p’-DDE was the most detectable  DDT congener. ∑DDT 194 

ranged from 0.56 ng/g ww in brown shrimp up to 49.3 ng/g ww in European eel. 195 
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The contaminant levels measured in the present study were relatively high compared 196 

to studies from other regions. PCB concentrations in European eel were higher than 197 

concentrations detected in eels from the Garigliano river in Italy (119.7-2156 ng 7 ICES 198 

PCB/g lw; present study: 3851-5670 ng 7 ICES PCB/g lw))
25

 and from five Irish rivers (13.7-199 

197 ng 7 ICES PCB/g lw)
26

. Detected PCB levels in European eel were within the ranges 200 

previously measured in Flanders (Belgium) by Belpaire et al.
27

 (11.4-7753 ng 7 ICES PCB/ng 201 

ww). In the present study however, higher average concentrations were measured in eels from 202 

Antwerpen (Belpaire et al., 2011: 513.4 ng 7 ICES PCB/g ww; present study: average 814.5 203 

ng 7 ICES PCB/g ww). A French study from Bragigand et al.
28

 showed lower PBDE levels in 204 

European eels from the Loire estuary (0.13-0.57 ng BDE 47/g ww; present study: 4.40-11.0 205 

ng BDE 47/g ww) and comparable levels in eels from the Seine estuary (2.67-7.84 ng BDE 206 

47/g ww).  207 

PCB concentrations in European sprat from the Polish Baltic Sea were five times 208 

lower (average 20.8 ng 6 ICES PCBs/g ww; present study: average 102 ng 6 ICES PCBs/g 209 

ww)
29

. PBDE concentrations in pike-perch (Sander lucioperca) from the present study were 210 

higher than in pike-perch from the Baltic Sea (average 0.57 ng/g ww for 15 PBDE congeners; 211 

present study: average 1.88 ng/g ww for 7 PBDE congeners)
30

. Ragworm (Nereis 212 

diversicolor) contained higher PBDE concentrations than ragworms from the Loire and the 213 

Seine estuary (0.03-0.12 ng BDE47/g ww; present study 0.15-0.62 ng BDE 47/g ww)
28

; and 214 

Nereis virens from the St. Lawrence estuary, Canada (average 0.18 ng BDE 47/g ww)
31

. 215 

PBDE levels detected in brown shrimp were lower than previously reported for the North Sea 216 

by Boon et al.
32

 (average of 37 ng BDE 47/g lw) and for the Scheldt by Voorspoels et al.
16

 217 

(0.2-8.3 ng ∑6 PBDE/g ww). Van Leeuwen and de Boer measured comparable levels of 218 

PBDEs in sole, brown shrimp, blue mussels and pike-perch in Dutch rivers and lakes. 219 

However, concentrations in European eel (0.4-81 ng BDE47/g ww; present study: 4.4-11 ng 220 
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BDE47/g ww) and European flounder (4.4-11 ng BDE47/g ww; present study: 0.09-2.17 ng 221 

BDE47/g ww) were higher
33

. 222 

Similar concentrations were measured in a previous study in organisms from the same 223 

system (European flounder: median 46.1 ng 6 ICES PCBs/g ww; present study: 42.5 ng 6 224 

ICES PCBs/g ww; Common sole: median 17.2 ng 6 ICES PCBs/g ww; present study: 22.2 ng 225 

6 ICES PCBs/g ww).
3
  226 

The concentration of each individual contaminant was highest in European eel. Eel 227 

species are known for their ability to accumulate lipophilic substances
2
. They are carnivorous 228 

predators and compared to other fish species, they show very high lipid values (average of 229 

18.6 % in the present study).  230 

The tissue concentrations (ww) of several POPs in the aquatic biota were significantly 231 

correlated with their lipid content. Correlations were very strong for biota collected in 232 

Antwerpen (p<0.0008). From the 55 analyzed POPs, 50 compounds showed a correlation 233 

with the lipid content (with r²>0.2). This data set included the European eel, which is known 234 

for its high lipid content. When eels were excluded from the data set, POP concentrations and 235 

lipid content were less correlated (p<0.0391, 14 significant correlations). In samples from 236 

Bath, tissue concentrations of 22 POPs were significantly correlated with the lipid content 237 

(p<0.0006). In Terneuzen, 29 POP congeners showed significant correlations between tissue 238 

concentrations and lipid content (p<0.0045). Table SI-2 lists all significant correlations (p and 239 

r²). 240 

The individual length and weight of fish and crabs have been plotted against tissue 241 

concentrations of POPs. Positive significant relationships were found for most compounds 242 

(ww) in European flounder near Antwerpen (0.002<p<0.033) and for some PCB congeners 243 

(ww) in smelt (Osmerus eperlanus) from Bath (0.014<p<0.033). For the other species no 244 

significant correlations were detected. Increasing POP concentrations with increasing body 245 
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size were found for PCBs and PBDEs in salmon (Oncorhynchus sp.)
34

 and for PBDEs in 246 

striped bass (Morone saxstilis) and catfish (Pilodictus olivaris and Ictalurus punctatus)
35

. As 247 

body size increases, the elimination rates for lipophilic compounds via direct partitioning 248 

through the water decreases because of a reduced exchange surface
5, 36

. However, in the 249 

present study, few correlations were significant. The body size has influence on the 250 

bioaccumulation process, but the effect appears to be overwhelmed by other factors, like 251 

trophic position and lipid content.  252 

Higher POP concentrations were generally found more upstream from the estuary. 253 

Although this trend was not statistically significant in sediment samples, a significant 254 

difference was found in the tissues of European flounder (Platichthys flesus) (0.007 ≤ p ≤ 255 

0.353), shore crab (Carcinus maenas) (for PCBs, 0.002 ≤ p ≤ 0.017) and bristle worm 256 

(Polychaeta; Terneuzen: Arenicola marina; Bath and Antwerpen: Nereis diversicolor) (0.035 257 

≤ p ≤ 0.047) (Fig. 2). This indicates that the POP levels are higher more upstream of the 258 

estuary, probably caused by the vicinity of the city of Antwerpen, which is highly 259 

industrialized and urbanized. Furthermore, the Scheldt receives waste waters from other large 260 

cities like Brussels. This observation has been described before in other studies
3, 16, 37

. More 261 

downstream in the estuary, lower environmental pollution levels could be attributed to a 262 

dilution effect, because of a wider riverbed and the increasing mixing with seawater. Since the 263 

salinity can be used as a measure for the dilution with seawater, it can be tested if the dilution 264 

effect is responsible for the decreasing trend in POP levels. If POP concentrations in 265 

sediments are normalized for salinity, the decreasing trend towards the North Sea gets 266 

minimalized and the normalized concentrations get more or less constant (Fig. 2). This means 267 

that the dilution of the river water explains lower POP concentrations in the sediments 268 

towards the sea. However, normalizing the POP concentrations in bristle worm and European 269 

flounder for salinity (Fig. 2) does not have the same effect. Biota from Terneuzen (L1) and 270 
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Bath (L2) contain higher POP levels than expected from the dilution gradient, in contrast to 271 

concentrations in the sediment. When performing the same normalization on lipid weight POP 272 

concentrations, the same results were obtained. Possible POP sources more downstream in the 273 

estuary such as industrial factories in Terneuzen or the Ghent-Terneuzen canal, could cause 274 

local higher POP concentrations. However, these are not reflected in the sediment POP 275 

concentrations. For European flounder, possible migration from one location in the estuary to 276 

another must be taken into account. Nevertheless, a significant difference in tissue 277 

concentrations of POPs from the different locations was observed. The differences in 278 

bioaccumulation along the salinity gradient may be caused by variation in the bioavailability. 279 

Moreover, this also implies that sediment concentrations are poor predictors of 280 

bioaccumulation, because pollutant levels were much higher in the downstream parts of the 281 

estuary than expected on the basis of the sediment concentrations.  282 

 283 

3.2 Isotopic compositions 284 

The isotopic compositions of the samples collected at the three sampling locations are 285 

reported in Figure 3. With an average value of -26.4‰, δ
13

C values for SPM samples were 286 

comparable with previously reported values for the Scheldt estuary
38, 39

. SPM from the 287 

riverine part of the Scheldt is more 
13

C depleted (-27.7‰) than SPM from the marine side (-288 

25.3‰), indicating the input of riverine and terrestrial organic matter in the upper estuary
39

. 289 

Consumers δ
13

C values ranged from -27.6‰ for pike-perch in Antwerpen up to -17.3‰ for 290 

common periwinkle in Terneuzen. Freshwater species, such as pike-perch, had slightly more 291 

13
C-depleted values when compared to marine species. Species at the bottom of the food web, 292 

such as Oligochaeta and Baltic tellin (p = 0.0002) had less depleted δ
13

C values when 293 

sampled in Terneuzen (L1) compared with two other locations (Bath, L2 and Antwerpen, L3). 294 

The available carbon sources in Terneuzen were probably mainly marine sources, which are 295 
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typically less δ
13

C depleted than those of freshwater
8, 40

, while the two other locations receive 296 

more terrestrial and riverine input. 297 

The large variation in δ
13

C values in the present study indicates consumers are feeding 298 

on different carbon sources and may also be part of different food webs. For this reason, δ
15

N 299 

values are site-specific and were used as an overall indication of site-specific trophic position. 300 

Mean consumer δ
15

N values ranged from 13.7‰ for mud shrimp (Corophium 301 

volutator) in Terneuzen (L1) to 21.6‰ for ragworm in Antwerpen (L3), although these values 302 

for ragworm were exceptionally high. In general, invertebrates such as the bivalves blue 303 

mussel (Mytilus edulis) and Baltic tellin showed the lowest δ
15

N values. Highest δ
15

N values 304 

were detected in carnivorous fish. Filamentous algae showed relatively high δ
15

N values, 305 

especially the samples collected at Terneuzen (L1). 306 

 307 

3.3 Influence of trophic position on bioaccumulation 308 

Several PCB congeners and p,p’-DDE showed a significant increase in log-309 

transformed lipid weight concentrations with increasing δ
15

N values (Table 2, Figure 4) for 310 

the samples collected at Terneuzen (L1), indicating a positive relationship between pollution 311 

level and trophic level. A significant decreasing trend was found for ɣ-HCH concentrations 312 

with increasing δ
15

N. In Bath (L2), significant relationships were only found for p,p’-DDD 313 

and BDE 100. For Antwerpen (L3), no significant relationships were detected. TMFs were 314 

higher than 1, except for the TMF for ɣ-HCH, indicating biomagnification in the Scheldt 315 

estuary. TMFs ranged from 0.64 for ɣ-HCH up to 1.60 for PCB 194 (Table 2). 316 

As mentioned above, the large variation in δ
13

C values in the present study indicates 317 

consumers are feeding on different carbon sources and may be part of different food webs. 318 

However, the significant relationship observed still suggest biomagnification of the selected 319 
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compounds. This could mean that the δ
15

N values of the baseline are similar between sources 320 

at one site, making the delta 15N values an overall indication of site-specific trophic position. 321 

The biomagnification of PCBs has been described before in food webs at various 322 

locations, such as a marine food web in Norway
41

, in fish of the sub-alpine Como Lake in 323 

Italy
42

, in arctic food webs
41, 43

 and in a freshwater food web from China
44

. The TMFs found 324 

in the present study for PCBs are lower than TMFs found in the Iroise Sea (Western Brittany) 325 

and the Seine Bay (1.9-17.3)
45

, Congo River Basin (1.72-2.93)
9
, the Northwater Polynya 326 

marine food web (1.7-10.7)
46

, lakes in Canada and the north eastern US (1.3-8.0)
47

 and from a 327 

freshwater food web from South China (0.75-5.10)
44

.  328 

In the present study, biomagnification of PCBs was linked with the degree of 329 

chlorination of the PCB congeners. Regressions were only significant for hexa- to octa-PCBs, 330 

which also possess higher log Kow than lower chlorinated congeners. However, this statement 331 

probably holds only for non-metabolizable PCB congeners. The same trend was also reported 332 

by Skarphedinsdottir et al.
48

 in a food web near the coast of Iceland. Yu et al.
49

 described a 333 

parabolic relationship between the TMFs of PCBs for freshwater fish and the log Kow, with 334 

largest TMFs at log Kow of 6.89. In the present study however, the greatest TMF was found 335 

for PCB 194, which has a log Kow greater than 6.89 (log Kow = 7.8). PCBs were clearly more 336 

biomagnified than PBDEs, which only showed a significant relationship with δ
15

N in case of 337 

PBDE 100, with a TMF of 1.17. The lower biomagnification potential of PBDEs was 338 

previously reported
50, 51

. Although Kelly et al.
51

 demonstrated the biomagnification of BDE 339 

47 in a marine food web, they found that the TMF for BDE 47 was much lower than the 340 

TMFs of comparable PCBs. 341 

No biomagnification was found for HCHs. For ɣ-HCH, a significant decreasing 342 

relationship of concentration with increasing δ
15

N values was observed (Table 2). When 343 

compared to PCBs or DDTs, HCHs have a lower log Kow, indicating that they may have a 344 
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lower bioaccumulation potential. This limited bioaccumulation of HCHs has been 345 

documented in several studies
21, 41

. Other authors have stated before that species ecology has a 346 

minor influence on the bioaccumulation of substances with log Kow< 5
4, 52

. Moreover, some 347 

fish species, such as shorthorn sculpin (Myoxocephalus scorpius), have the ability to rapidly 348 

eliminate ɣ-HCH after oral exposure
53

, which can result in lower concentrations in their 349 

predators.  350 

Significant multiple regressions models were constructed for the combined effect of 351 

lipid content and δ
15

N. For PCB 153 and p,p’-DDE at Terneuzen, the regression resulted in 352 

the following equations: [PCB153]=2.91 x δ
15

N + 11.5 x Lipid with p<0.0001 and R²=0.55; 353 

[p,p’-DDE]=0.55 x δ
15

N + 1.99 x Lipid with p<0.0001 and R²=0.58. For ɣ-HCH at 354 

Terneuzen, no significant model was found. For p,p’-DDD and BDE100 at Bath, the 355 

following equations were obtained: [p,p’-DDD]=0.063 x δ
15

N + 1.16 x Lipid with p<0.0001 356 

and R²=0.75; [BDE100]=0.013 x δ
15

N + 0.11 x Lipid with p<0.0001 and R²=0.42. 357 

The results of this study indicate that biomagnification is more pronounced in the 358 

marine part of the estuary, as stronger relationships between POP level and δ
15

N values were 359 

found closest to the sea. At the most downstream sampling location (L1, Terneuzen), the 360 

available food sources will be mainly from marine origin, in contrast with the other locations, 361 

where the input from riverine and terrestrial carbon sources is larger. The input from riverine 362 

and terrestrial sources is indicated by more depleted δ
13

C values for SPM. Therefore, the 363 

carbon sources available for the food web of Terneuzen will be more restricted. At the two 364 

upstream locations, consumers might be feeding on more different carbon and nitrogen 365 

sources. In this case, the stable isotope values may not be perfectly comparable with each 366 

other among species, because of a difference in carbon and nitrogen sources and so, 367 

biomagnification might also be more difficult to detect. For this reason, the influence of 368 

trophic position on the bioaccumulation might be underestimated. This may explain why more 369 
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significant relationships are found at the most downstream sampling location, Terneuzen, 370 

where there are fewer carbon and nitrogen sources. 371 

 372 

In conclusion, the contamination levels of POPs detected in the tissues of aquatic 373 

species from the Scheldt estuary were relatively high compared to concentrations found in 374 

other studies, making the Scheldt one of the most polluted estuaries in Europe. A decreasing 375 

trend in POP levels towards the sea was observed. For POP concentrations in sediments, this 376 

trend could be attributed to a dilution effect from mixing with seawater. However, 377 

concentrations in biota more downstream were higher than expected after taking into account 378 

the dilution effect, possibly due to differences in bioavailability. Regression of δ
15

N results 379 

with logged, lipid normalized concentration data showed more pronounced biomagnification 380 

at the marine site, although the presence of multiple carbon sources at the freshwater side may 381 

have led to an underestimation of the influence of the trophic level.  382 

383 
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Table 1. Median and range of POP concentrations in sediment (ng/g dw) and biota (ng/g ww; filamentous green algae expressed in 571 

ng/g dw) from the Scheldt estuary, together with lipid content (%), number of measurements (N: individual measurements or pools for 572 

POP analysis per sampling site, Terneuzen/Bath/Antwerpen) and the tissue analyzed. ICES PCBs are the 6 indicator PCBs: 28, 52, 573 

101, 138, 153, 180. n.d. = not detected. 574 

Sample   
N 

(T/B/A) 
Tissue Lipid (%) ∑PCB ∑ICES PCB PCB 153 ∑PBDE BDE47 ∑DDT p,p'-DDE HCB ∑HCH ∑chlordanes 

Sediment 2/2/2  -  4,28 1,58 0,49 56,8 0,02 0,21 0,08 0,02 0,35 n.d. 

(1,75  -  58,7) (0,43  -  21,5) (0,08  -  4,62) (1,70  -  575) (0,02  -  0,28) (0,15  -  4,45) (0,05  -  0,96) (0,02  -  0,19) (0,10  -  0,74) 

Filamentous algae 1/1/1  -  32,7 9,60 2,30 0,96 0,47 2,51 1,22 0,13 1,05 0,13 

(2,52  -  32,7) (0,47  -  10,8) (0,07  -  2,75) (0,41  -  1,52) (0,19  -  0,59) (0,30  -  2,83) (0,17  -  1,53) (0,07  -  0,22) (0,83  -  1,64) (0,07  -  0,15) 

Mollusks 

Mytilus edulis Blue mussel 4/0/0 whole 2,51 94,9 41,1 18,1 0,59 0,21 3,75 2,40 0,03 0,22 0,23 

(2,20  -  2,97) (79,5  -  111) (34,5  -  48,2) (15,2  -  21,3) (0,49  -  1,06) (0,17  -  0,29) (3,02  -  4,81) (1,90  -  3,04) (0,03  -  0,13) (0,17  -  0,24) (0,19  -  0,27) 

Macoma balthica Baltic tellin 0/2/0 whole 2,80 249 103 37,2 1,71 0,60 11,2 7,03 0,24 0,38 0,87 

(2,73  -  2,86) (245  -  253) (101  -  105) (36,5  -  37,8) (1,62  -  1,80) (0,55  -  0,65) (10,8  -  11,7) (6,72  -  7,35) (0,24  -  0,24) (0,33  -  0,44) (0,84  -  0,90) 

Littorina littorea 

Common 

periwinkle 4/0/0 whole 0,82 22,8 10,4 3,97 0,01 n.d. 0,70 0,59 0,03 0,16 n.d. 

Polychaeta (0,69  -  1,06) (17,6  -  28,0) (7,84  -  12,5) (3,19  -  4,87) (0,01  -  0,05) (0,60  -  0,82) (0,49  -  0,67) (0,03  -  0,10) (0,10  -  0,19) 

Nereis diversicolor Ragworm 0/2/3 whole 1,34 93,8 42,7 18,2 0,86 0,31 4,74 2,78 0,17 0,40 0,54 

(1,05  -  1,65) (50,6  -  142) (22,9  -  65,7) (9,34  -  30,4) (0,46  -  1,71) (0,15  -  0,62) (2,59  -  9,37) (1,50  -  5,13) (0,10  -  0,34) (0,10  -  0,90) (0,21  -  1,14) 

Arenicola marina Lugworm 3/0/0 whole 1,00 22,4 9,60 4,02 0,24 0,04 0,85 0,58 n.d. 0,10 n.d. 

(0,99  -  1,02) (18,1  -  30,3) (7,99  -  13,3) (3,17  -  5,38) (0,20  -  0,35) (0,04  -  0,07) (0,80  -  0,90) (0,55  -  0,62) (0,10  -  0,36) 

Crustacea 

Chaetogammarus 

marinus 1/1/0 whole 1,29 33,6 15,2 5,20 0,26 0,15 0,69 0,40 n.d. 2,02 n.d. 

(1,10  -  1,47) (33,5  -  33,7) (14,4  -  16,0) (5,17  -  5,24) (0,13  -  0,39) (0,10  -  0,20) (0,39  -  0,98) (0,29  -  0,50) (0,75  -  3,28) 

Crangon crangon Brown shrimp 2/4/0 muscle 0,84 25,3 10,7 3,95 0,01 0,01 0,56 0,56 n.d. 0,03 n.d. 
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Sample   
N 

(T/B/A) 
Tissue Lipid (%) ∑PCB ∑ICES PCB PCB 153 ∑PBDE BDE47 ∑DDT p,p'-DDE HCB ∑HCH ∑chlordanes 

(0,77  -  1,08) (17,8  -  61,9) (7,68  -  28,4) (2,78  -  11,3) (0,01  -  0,06) (0,01  -  0,06) (0,40  -  0,86) (0,40  -  0,86) (0,03  -  0,25) 

Carcinus maenas Shore crab 2/11/0 muscle 0,63 84,1 41,5 20,3 0,22 0,15 1,50 1,46 0,06 0,06 n.d. 

(0,51  -  0,88) (30,4  -  125) (16,8  -  63,4) (8,43  -  28,9) (0,11  -  0,51) (0,05  -  0,35) (0,51  -  2,29) (0,47  -  2,01) (0,06  -  0,26) (0,06  -  0,45) 

Eriocheir sinensis 

Chinese    

mitten crab 0/3/4 muscle 0,61 80,5 43,2 18,6 1,22 0,84 2,39 2,35 0,19 0,06 1,23 

(0,39  -  0,97) (40,5  -  336) (22,0  -  187) (8,18  -  69,6) (0,82  -  4,55) (0,51  -  3,64) (1,52  -  7,07) (1,48  -  7,03) (0,06  -  0,73) (0,06  -  0,34) (0,27  -  2,47) 

Fish 

Platichthys flesus 

European 

flounder 5/5/6 muscle 0,72 90,4 42,5 16,2 0,60 0,40 2,23 1,72 0,10 0,05 0,08 

(0,44  -  1,89) (34,0  -  344) (15,7  -  155) (6,29  -  65,8) (0,19  -  3,32) (0,09  -  2,17) (1,14  -  11,9) (0,81  -  8,43) (0,06  -  0,49) (0,05  -  0,39) (0,08  -  0,60) 

Solea solea Common sole 1/4/6 muscle 0,60 47,7 22,2 8,07 0,18 0,06 1,26 0,90 n.d. 0,05 n.d. 

(0,45  -  1,02) (29,3  -  107) (13,7  -  51,8) (4,79  -  20,2) (0,13  -  0,51) (0,04  -  0,18) (0,58  -  3,66) (0,38  -  2,65) (0,05  -  0,13) 

Osmerus eperlanus Smelt 2/7/0 muscle 1,19 76,1 37,1 14,1 0,67 0,45 3,05 2,16 0,21 0,05 0,08 

(0,92  -  1,74) (41,9  -  235) (18,6  -  105) (7,44  -  44,3) (0,31  -  1,64) (0,19  -  1,05) (1,84  -  11,4) (1,27  -  7,77) (0,13  -  0,44) (0,05  -  0,12) (0,08  -  0,41) 

Sprattus sprattus 

European 

sprat 0/1/0 muscle 0,96 210 102 48,0 1,00 0,55 8,47 7,34 0,12 0,17 n.d. 

Sander lucioperca Pike-perch 0/2/3 0,53 140 65,4 25,8 1,32 0,76 5,02 3,86 0,15 0,15 0,08 

(0,49  -  1,00) (96,2  -  290) (45,6  -  137) (18,2  -  55,4) (0,64  -  4,69) (0,35  -  1,96) (3,19  -  8,62) (2,51  -  7,06) (0,06  -  0,21) (0,05  -  0,74) (0,08  -  0,16) 

Trisopterus luscus Pouting 3/4/0 muscle 0,66 24,5 11,3 4,46 0,14 0,05 0,84 0,64 0,06 0,05 0,08 

(0,28  -  0,76) (9,5  -  48,9) (3,88  -  22,2) (1,71  -  9,03) (0,13  -  0,17) (0,04  -  0,08) (0,55  -  1,15) (0,38  -  0,88) (0,06  -  0,18) (0,05  -  0,13) (0,08  -  0,17) 

Myoxocephalus 

scorpius 

Shorthorn 

sculpin 2/6/0 muscle 0,83 30,1 18,8 8,68 0,22 0,13 0,95 0,79 0,06 0,05 n.d. 

(0,63  -  1,14) (12,1  -  43,4) (6,59  -  25,9) (3,02  -  12,3) (0,13  -  0,31) (0,04  -  0,22) (0,57  -  1,58) (0,41  -  1,42) (0,06  -  0,15) (0,05  -  0,14) 

Anguilla anguilla European eel 0/0/6 muscle 18,6 1290 645 285 8,76 5,85 49,3 32,3 3,92 2,24 5,67 

            (9,16  -  23,2) (846  -  2193) (433  -  1102) (191  -  512) (7,52  -  18,1) (4,40  -  11,0) (36,8  -  89,3) (28,2  -  60,4) (2,10  -  5,67) (1,06  -  3,74) (3,29  -  7,14) 

 575 
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Table 2. Statistics for the significant linear regression between log-transformed POP 576 

concentrations and δ
15

N values, together with the corresponding TMFs. 577 

Location Compound   p  r² Slope  TMF     

Terneuzen, L1 PCB 118  0.016 0.190 0.061  1.15     

N=30 PCB 153  0.018 0.184 0.065  1.16     

 PCB 138  0.042 0.139 0.057  1.14     

 PCB 128  0.049 0.131 0.056  1.14     

 PCB 156  0.004 0.259 0.081  1.21     

 PCB 183  0.043 0.138 0.058  1.14     

 PCB 180  < 0.001 0.423 0.110  1.29     

 PCB 170  < 0.001 0.450 0.126  1.34     

 PCB 199  0.034 0.205 0.120  1.32     

 PCB 194  0.001 0.416 0.203  1.60     

 p,p'-DDE  0.023 0.171 0.068  1.17     

 ɣ-HCH  0.001 0.371 -0.191  0.64     

Bath, L2 p,p'-DDD  0.016 0.110 0.105  1.27     

 N=52 PBDE 100   0.013 0.129 0.068  1.17     

Only results with r² > 0.1 are shown. 578 

  579 

Page 27 of 32

ACS Paragon Plus Environment

Environmental Science & Technology



28 

 

 580 

Fig. 1. Sampling locations along the Scheldt estuary: 1-Terneuzen; 2-Bath (the 581 

Netherlands); 3-Antwerpen (Belgium) 582 
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583 
 Fig. 2. Boxplots of CB153 concentrations in sediment (TOC normalized), bristle worm 584 

and European flounder, A) before and B) after normalization for the ratio of salinity at 585 

(Site X/Antwerpen). Salinity values used: Terneuzen, 27.3; Bath, 15.6; Antwerpen, 3.4. 586 

Ratios used: (Terneuzen/Antwerpen) = 8.1; (Bath/Antwerpen) = 4.7; 587 

(Antwerpen/Antwerpen) = 1. Salinity values are year averages from a monitoring 588 

database from Rijkswaterstaat, a part of the Dutch Ministry of Infrastructure and the 589 

Environment, and from the Flemish Environment Agency (VMM). The relations between 590 

POP concentrations in sediment and biota from the same locations, with taking into 591 

account sediment characterstics (TOC and grain size) were studied in Van Ael et al., 592 

2012
3
. 593 

 594 
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595 
Fig. 3. Stable isotope signature (mean ± SD) for all samples at the three sampling 596 

locations, with δ
15

N indicating the trophic level of the organisms. Symbols: ● fish, ○ 597 

invertebrates, ▲ filamentous algae, ■ SPM. 598 
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 599 

15N (‰)
 600 

Fig. 4. Linear regression between log-transformed POP concentrations (ng/g lw) and δ
15

N 601 

values from biota samples from Terneuzen (N = 30) and Bath (PBDE 100; N = 52). 602 

 603 

 604 
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