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Introduction

Introduction

Uncertainty in the return process is a common feature of closed
loop supply chains.
The uncertain quantity of returned items affects the production
process.

Aim
Develop a mathematical model and an efficient algorithm to solve a
general lotsizing and scheduling problem with uncertain returns.
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Introduction

Definition: Markov decision process

A Markov decision process is a 4-uple (S,A,P(., .),V (., .)) where:
S is a finite set of states.
A is a finite set of actions.
Pa(s, s′) is the probability that action a in state s will lead to state
s′ in the next period.
V (s, s′) is the immediate reward received after transition from
state s to state s′.
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Introduction

General features

There is a single production line without work-in-process
inventories.
This line produces several products in lots. The size of each lot
may vary and each product has a given production rate.
The production planning is realized for several periods.
The production capacity is limited but may vary between periods.
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Introduction

The demand for each product is considered as deterministic over
the planning horizon.
Backorders are not allowed.
Building up an inventory is possible for the returned products and
for the finished products.
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Introduction

Setup features

There are setup costs and times incurred whenever the production
is switched from one product to another. The setup time
consumes the capacity of the production line.
Setup costs and times are sequence dependent, i.e they are
determined based on the product produced before the
changeover and the product produced after the changeover.
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Introduction

Inputs features

Production uses either returned items or new items.
The quantity of returned items that will be available in each period
is not know with certainty.
The amount of available new items is considered unlimited.
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Introduction

Costs features

Both returned items and end-products incur inventory costs.
There is a cost per new item used. On the other hand, using
returned items is free.
Sequence dependant setup costs are considered.
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Introduction

Problem
Find a production schedule that minimizes the expected cost over the
planning horizon, respects the production capacity, and satisfies
demand at each period.
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Deterministic Model

Deterministic Model

One way to deal with the scheduling aspect is to divide each
period into sub-periods.
Only one type of item can be produced during a sub-period.
This is the most common approach used in the litterature
(Mohammadi et al. (2010), Clark and Clark (2000), Fleischmann
and Meyer (1997), Araujo et al. (2007)).
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Deterministic Model

Variables

x r
pt quantity of p produced during period t using returned

raw materials
xm

pt quantity of p produced during period t using new raw materials
zpt inventory level of returned raw material p at the end of period t
wpt inventory level of end-product p at the end of period t
yopn binary variable equal to one if there is a sproduction switch

from product o to product p at the start of sub-period n
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Deterministic Model

Min
N∑

n=1

P∑
o=1

P∑
p=1

CSop.yopn

+
T∑

t=1

P∑
p=1

CJp.wpt + CBp.xm
pt + CIp.zpt

s.t x r
pt + xm

pt ≤
P∑

o=1

Lt∑
n=Ft

yopn ∗ Ct ∀p, t

zpt = zp,t−1 + Rpt − x r
pt ∀p, t

wpt = wp,t−1 + x r
pt + xm

pt − Dpt ∀p, t
P∑

p=1

Lp.(x r
pt + xm

pt ) +

Lt∑
n=Ft

P∑
o=1

P∑
p=1

Sop.yopn ≤ Ct ∀t
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Deterministic Model

P∑
p=1

yO0p1 = 1

P∑
p=1

yop1 = 0 ∀o 6= O0

N∑
o=1

yopn =
N∑

q=1

ypq,n+1 ∀p,n 6= N

yopn ∈ {0;1} ∀o,p,n

x r
pt , xm

pt , zpt , wpt , bpt ≥ 0 ∀p, t
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Stochastic Model

Stochastic Model

During a period, the following sequence of events occurs:
1 Decisions are made about production and inventories.
2 Returns become available.
3 Production starts and demand is satisfied.
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Stochastic Model

Min CJ.w1 + CS.y1 + ER1 [f1(S1,R1)]

s.t x1 ≤ C1.y1
w1 = w0 + x1 − D1
x1,w1 ≥ 0
y1 ∈ {0,1}
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Stochastic Model

where ft(St ,Rt) is equal to:

Min CI.zt + CB.xn
t + CJ.wt+1

+ CS.yt+1 + ERt+1 [ft+1(Xt+1,Rt+1)]

s.t xm
t + x r

t = xt
zt = zt−1 + Rt − x r

t
xt+1 ≤ Ct+1.yt+1
wt+1 = wt + xt+1 − Dt+1
xm

t , x
r
t , xt+1,wt+1 ≥ 0

yt+1 ∈ {0,1}
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Stochastic Model

Markov decision process representation

The state at the end of period t is the couple (zt−1,wt).
yt and xt define the set of actions.
the transition function is defined by the constraints.
the reward perceived after a transition is given by the objective
function.
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Approximate dynamic programming

Approximate Dynamic Programming

This technique is described in Powell (2011) and has been used in
various production problems (Qiu and Loulou (1995), Erdelyi and
Topaloglu (2011)) .

Idea
Iteratively solve an approximation of the deterministic problem. After
each iteration, use the preceding results to affine the approximation.
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Approximate dynamic programming

At each iteration of the algorithm, the following sequence of operations
are:

1 Select a scenario (R1, ...,RT ).
2 Solve the sub-problem ft(Xt ,Rt) for each period where the

expectation is replaced by an approximation.
3 Update the approximation using the obtained results.

23 / 33



Approximate dynamic programming

The current characteristics of the algorithm are:

The algorithm stops after a certain number of iterations.
The scenario selection is totally random.
The transition function is represented as a table.
Update of the transition cost table uses a k-nearest neighbour
procedure.
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Approximate dynamic programming

Results

Datas were generated following the method described in Teunter et al.
(2006).

T 5 10 15

µ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7
FSD
500 11% 15% 24% 16% 19% 22% 19% 18% 20%
1000 11% 14% 13% 21% 24% 14% 15% 24% 21%
2500 3% 5% 7% 14% 10% 7% 14% 21% 15%
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Future work

Future work

Test the rolling orizon case
Other types of procedures for the algorithm
Multi-product problem
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Future work

Thank you for your attention!
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