Development of advanced hypersonic models for transition to turbulence

Uncertainty Quantification for Transition prediction

Supervisor : T. Magin & P.Rambaud (VKI) Promoter : V.Terrapon (Ulg) Advisor : O. Marxen (VKI)

PhD Candidate : Gennaro Serino

Introduction

Why Transition is crucial in Hypersonic?

Planetary reentry/entry vehicles need safely designed heat shield (Fig. 1); - Turbulent heat transfer up to five time higher than the laminar heating rates (Fig. 2);

Figure 1 : Schematic representation of the physics of reentry

What is the current approach in design?

Preliminary Results

Transition prediction for the oblique breakdown mechanism in supersonic boundary layers

1. Linear Stability Theory code (VESTA by Pinna F. [4]) to compute the N factor for different Frequency (F) and direction (ψ) of the oblique waves

- Transfer function : $N=N(F,\psi)$ (Fig. 4)

Uncertainty Quantification 1. Definition of the input uncertainties – Frequency (F)

- Safety factors to take into account "limited knowledge" on transition;
- Success of the mission guaranteed at the expense of the mass/payload;

State of the art

How Transition is now studied and predicted?

- **Experiments : correlation and empirical transition criteria successfully used** in design *but* expensive, limited operating times and conditions are not those of real flight;
- **CFD** : simulations of real operating conditions *but* lack of reliable transitional models for high Mach number (*M*>5), *DNS* expensive for design;
- Flight tests : very expensive, unfeasible for design;

Objectives

What is our goal?

- Uncertainty Quantification (UQ) to characterize the impact of "limited knowledge" and to establish "error bars" on quantity of interest, such as the heat flux;
- define margins for more confidence and less conservative design;
- determine uncertainties on free stream conditions (Mach number, Pressure, **Temperature)** or related to the geometry (surface irregularities, leading edge shape);

- Figure 4 : Transfer function on a Mach 6 flat plate (Re = 4MiL)
- **2.** Definition of the input uncertainties :
- Frequency and propagation angle spectra : *pdf* with normal distribution (Fig. 5)

Uncertainty Quantification

2. Sampling procedure- Monte Carlo Sampling on stochastic collocatior

Figure 6 : Sampling procedure on the physical space according to input *pdf*

4. Evaluation of the QI :

- the *pdf* of the output quantity of interest (N factor) is computed at each station of the domain (Fig. 7)

Uncertainty Quantification

3. Monte Carlo sampling :

- each sample on the stochastic collocation space is related to the N factor according to the transfer function $N=N(F,\psi)$ (Fig. 6)

Uncertainty Quantification

Figure 7 : *pdf* of the QI (N factor) at Re_x = 4 MiL

5. Transition Prediction:

Strategy & Methods

What is Uncertainty Quantification?

- a probabilistic approach to simulate a system by taking into account all uncertainties on boundary, initial conditions and model parameters;
- uncertainties modeled with probabilistic distributions according to the expected values or experimentally based;
- propagation of the uncertainties to study the impact on the *Quantity of Interest (QI)* of the simulation (heat flux, skin friction distribution);

Figure 3 : Flow chart of the strategy proposed for the transition prediction

Figure 8 : Application of the trasition criteria on the N factor) at Re_x = 4 MiL

- 6. Evaluation of probability of transition at each station and comparison with experimental results (heat flux distribution) (Fig. 9)
- possible interpretation of the probability as the intermittency factor (\mathbf{x})

- the cdf defines the probability of exceeding the threshold value for experimental transition (3.8 for the test case in [3]) at each station (Fig. 8)

Figure 8 : Comparison between experimental data (red dots), RANS solver (Black line) and computed probability of transition (blue dots) for the Mach 6 flat plate test case [3]

Planning

- 1st year : Application of the methodology to experimental test cases (Flat Plate, Cone) with LST and RANS deterministic simulations;
- 1st & 2nd year : Inverse methodology to determine input uncertainties (probabilistic distributions) from experimental results;
- 3rd year : Improvement of understanding of transition mechanisms (DNS);
- 4th year : Calibration & Validation of the approach with experiments and flight

What is the Strategy?

- **1.** Deterministic Simulations (LST/RANS) : case dependent random parameters (Frequency, propagation angle, leading edge radius) representing the input uncertainties;
- 2. Evaluation of the QI : i.e. rising of heat flux/skin friction distribution for the transition onset;
- 3. Relation QI = QI (Input Parameters) : Transfer Function (TF) to relate Input/Output;
- 4. UQ analysis : Monte Carlo, Polynomial Chaos samplings on the physical space to obtain the related QI via the TF;
- 5. Definition of *"error bars"* and uncertainty on the QI;
- 6. Investigation through DNS of relevant cases;
- 7. Calibration & Validation : experiments and flight data;

References

- [1] Marxen O., laccarino G., Shaqfeh S.G., Boundary-layer transition via spatially growing oblique waves, Center for Turbulence Research, Stanford University, Under consideration for publication in Journal of Fluid Mechanics, 2009.
- [2] Iaccarino G., Magin T., Prudhomme S., Abgrall R., Bijl H., RTO-AVT-VKI Short Course on Uncertainty Quantification, Bruges BE, May 13-14, 2011.
- [3] Dilley A.D., Evaluation of CFD turbulent heating prediction techniques and comparison wit hypersonic experimental data, NASA/CR-2001-210837.
- [4] Pinna F., Numerical study of stability and transition of flows from low to high Mach number, von Karman Institute for Fluid Dynamics, Universita' "La Sapienza" di Roma, PhD thesis, 2012.
- [5] Arnal D., Special Course on Progress in Transition Modeling, AGARD report 793, 1993.
- [6] Tirtey S., Characterization of hypersonic roughness-induced boundary layer transition, PhD Thesis, von Karman Institute for Fluid Dynamics, 2010

