

Context

- Walloon dairy cattle:
 - > Small scale population
 - > Foreign AI sires of:
 - * 87% of cows in 1st to 3rd lactation in 2012, of which:
 - √ 25% sired by 371 bulls born in USA
 - ✓ 16% sired by 298 bulls born in NLD
 - √ 16% sired by 110 bulls born in FRA
 - ✓ 15% sired by 240 bulls born in DEU
 - √ 12% sired by 177 bulls born in CAN
 - √ 16% sired by bulls born in other countries
- ☐ Most reliable GEBV if estimated from all available sources

30th Annual Meeting of INTERBULL, Nantes, France, August 23rd - 25th 201

Aim

- ☐ To develop a genomic evaluation adapted to Walloon dairy cattle
 - → Needs to combine simultaneously:
 - Genotypes
 - > Pedigree
 - > Local information
 - > Foreign information
- □ Local and foreign information:
- > Considered as a priori known external information
- > Incorporated using a Bayesian approach
- > Correct propagation of all this information without multiple considerations of contributions due to relationships and due to records
- ☐ Miming hypothetical mixed model equations and replacing pedigree information by combined pedigree and genomic information → Bayesian single step Genomic Evaluation: ssGBayes

30th Annual Meeting of INTERBULL, Nantes, France, August 23rd – 25th 2013

Methods

□ Combination of genotype, pedigree, local and foreign information
→ ssGBaves

$$(H^{-1} + \Lambda_{W} + \Lambda_{M} - \Lambda_{Wc})\hat{a} = D_{W}^{-1} \hat{u}_{W} + D_{M}^{-1} \hat{u}_{M} - D_{Wc}^{-1} \hat{u}_{Wc}$$

- H: Combined genomic (α) and pedigree (1 α) based relationships into a merged (co)variance structure (α = 0.95)
- > â: GEBV_{W+M-Wc}
- \hat{u}_{w}, \hat{u}_{M} and \hat{u}_{wc} : Available and predicted EBV_w, EBV_M and EBV_{wc}
- \rightarrow $D_w D_M$ and D_{wc} : Prediction error (co)variance matrix of \hat{u}_w , \hat{u}_M and \hat{u}_{wc}

30th Annual Meeting of INTERBULL, Nantes, France, August 23rd – 25th 2013

Data

- □ 1,903 genotyped animals
 - > 1,378 bulls and 525 cows
 - > 38,604 SNP after editing
- □ 6-generations extracted pedigree: 16,234 animals
- ☐ Traits: milk, fat and protein yields, SCS, longevity, stature and udder support
- Walloon EBV (EBV_w)
- MACE EBV (EBV_M)
- Bulls with Walloon EBV contributing to MACE (EBV_{Wc})

30th Annual Meeting of INTERBULL, Nantes, France, August 23rd - 25th 2013

Data

- □ 1,903 genotyped animals
 - > 1,378 bulls and 525 cows
 - > 38,604 SNP after editing
- □ 6-generations extracted pedigree: 16,234 animals
- □ Traits: milk, fat and protein yields, SCS, longevity, stature and udder support *e.g.*: MILK
- □ Walloon EBV (EBV_w) 12,046
- □ MACE EBV (EBV_M) 1,981
- □ Bulls with Walloon EBV contributing to MACE (EBV_{Wc}) 60
- Reliabilities (REL) for all GEBV obtained through inversion of left-hand side

30th Annual Meeting of INTERBULL, Nantes, France, August 23rd – 25th 2013

