

Development of a genomic evaluation for milk production for a local bovine breed

F.G. Colinet¹, J. Vandenplas^{1,2}, P. Faux¹, S. Vanderick¹, C. Bertozzi³, X. Hubin³, & N. Gengler¹

¹ University of Liège, Gembloux Agro-Bio Tech, Animal Science Unit, B-5030 Gembloux, Belgium ² National Fund for Scientific Research, B-1000 Brussels, Belgium

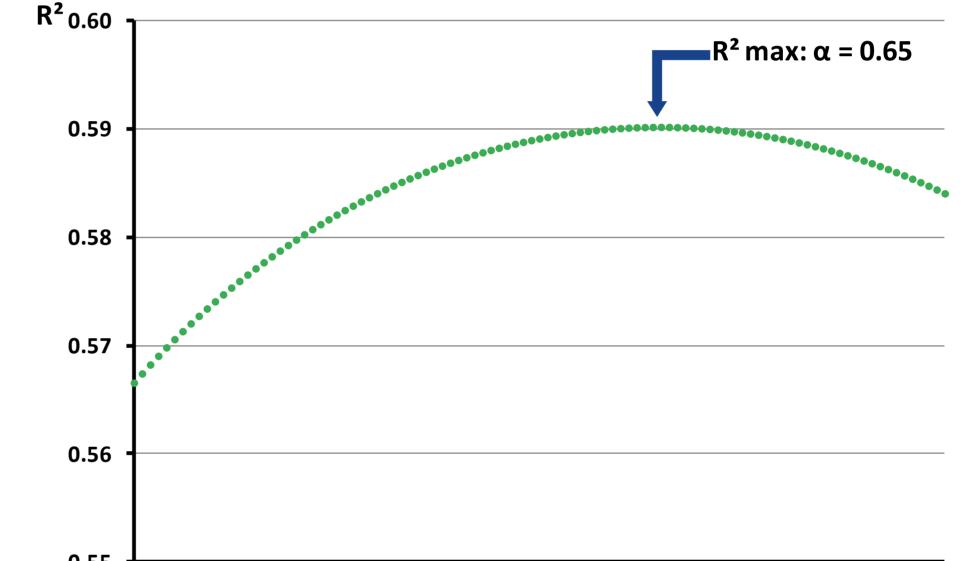
³ Walloon Breeding Association, Research and Development Department, B-5590 Ciney, Belgium

The dual purpose Belgian Blue breed (DP-BB) is a vulnerable breed rooted in the tradition of the Walloon Region of Belgium. Those animals have interesting feature (*e.g.*, robustness, good longevity, and ease of calving) and the average milk yield is 4,000 kg/lactation (it can reach up to 7,000 kg/lactation). Due to its dual purpose type, income generated by both milk and meat is more stable and more flexible in responding to market fluctuations.

Aims

Conclusions

- To develop a single step genomic evaluation (ssGBLUP) for milk production
 - Use of a Bayesian procedure to integrate the Walloon estimated breeding values (EBV) and associated reliability (REL) as *a priori* known external information
- To choose the best combination of genomic (α) and additive (1 α) relationships into a merged (co)variance structure


Methodology

- ***** Model : Single-Step Bayesian genomic evaluation $(H^{-1} + \Lambda) \hat{a} = D^{-1} \hat{u}$
- \succ H
- : Combined genomic-pedigree based (co)variances matrix (using α)
- RE : Diagonal matrix with number of records

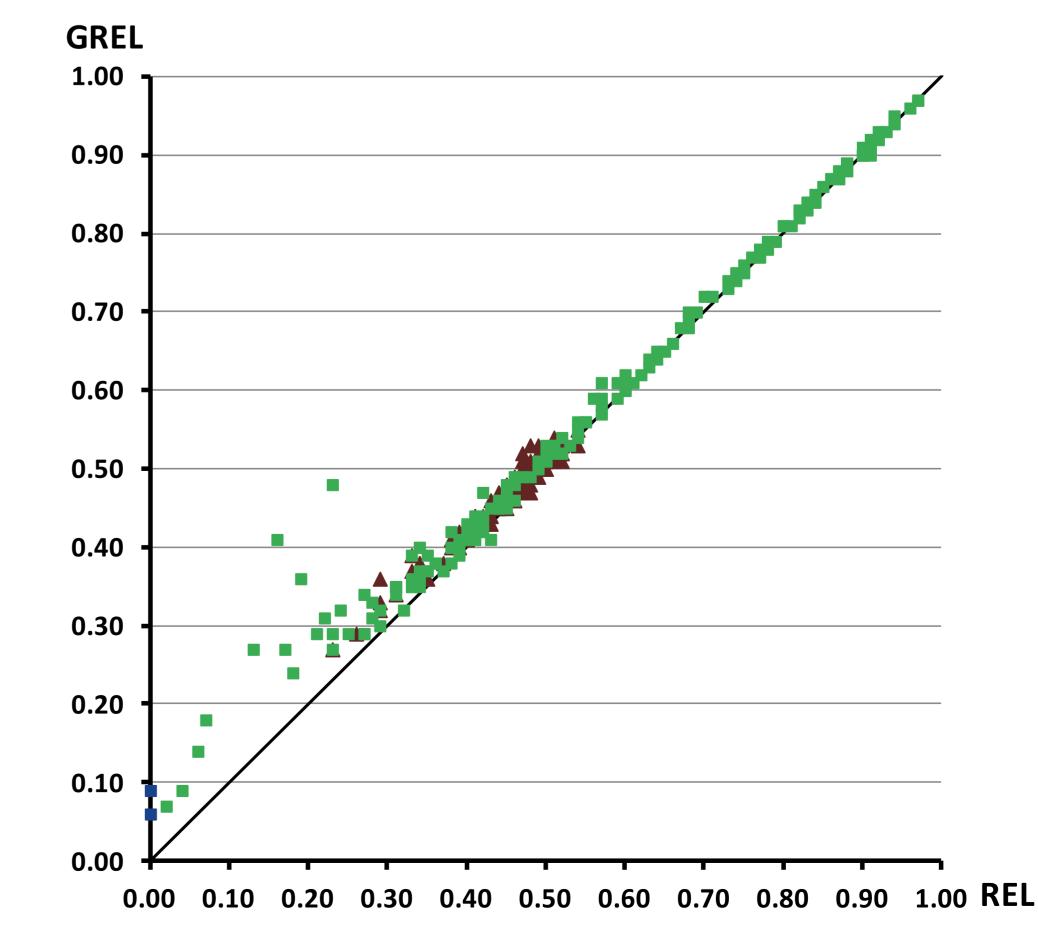
- **\Rightarrow** Best combination genomic-pedigree with $\alpha = 0.65$
- Feasibility of modified ssGBLUP for a small breed
 - Reliability increases for genotyped animals with small REL in polygenic evalution when using modified ssGBLUP

Results

Determination coeffficients (R²) of the regression of DRP on GEBV₋₄ for the 100 possible α

- > â
 : Walloon GEBV
- > $D^{-1} = G^{-1} + \Lambda$: Inverse of prediction error (co)variances matrix of \hat{u}
- G : Pedigree based (co)variances matrix
 - : Available and predicted EBV
- REL for GEBV (GREL) obtained through inversion of left-hand side

Data


▶ û

- 3,799 DP-BB animals
- Milk yield EBVs and associated REL from evaluation
 - Based on data recorded until 31/01/2013 Begin EBV and REL
 - **Based on data recorded until 31/01/2009** \rightarrow EBV₋₄ and REL₋₄
- 363 genotyped animals
 - 209 bulls and 154 cows
 - > 39,157 SNP after editing

- Average reliability (SD) associated to EBV and GEBV REL and GREL, respectively) for genotyped bulls by class of REL

Class of REL	Ν	REL	GREL (α = 0.65)
< 0.25	17	0.14 (0.09)	0.24 (0.12)
0.25 – 0.49	69	0.38 (0.06)	0.40 (0.06)
0.50 – 0.74	53	0.60 (0.07)	0.61 (0.07)
≥ 0.75	70	0.87 (0.06)	0.87 (0.06)

Increase of REL for genotyped animals (▲= cows,
 = bulls, = bulls not yet included in polygenic evaluation) sired by genotyped bulls when α = 0.65

Parametrization

200 computations : α from 0.01 to 1.00 by 0.01

GEBV and GREL from evaluation using EBV and REL

GEBV₋₄ and GREL₋₄ from evaluation using EBV₋₄ and REL₋₄

- Deregressed proof (DRP) computed from EBV and REL
- Second Second State For each of 100 possible α , regression of DRP on GEBV₋₄ with REL as a weight

The authors acknowledge the financial support of the Walloon Region of Belgium (SPW-DGO3 Agriculture, Natural resources and Environment) and the National Fund for Scientific Research.

Contact: Frederic.Colinet@ulg.ac.be

