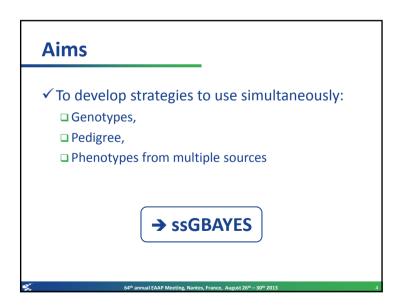


Aims ✓ To develop strategies to use simultaneously: Genotypes, Pedigree, Local phenotypes and, Foreign phenotypes ✓ By combining and adapting: Single-step genomic evaluations (ssGBLUP) and, Bayesian procedure to integrate external information* *Vandenplas, J., & Gengler, N. (2012). J. Dairy Sci. 95: 1513-1526

Introduction ✓ For genomic prediction □ To get reliable GEBV use of multiple sources needed ✓ Traditional traits (i.e., in dairy cattle) □ Local genomic evaluations ← MACE ✓ Novel traits (e.g., milk quality, feed efficiency, methane) □ Combining different sources of often locally sparse phenotypic data even more needed → Adapting strategies to use multiple sources



J Vandenplas et al 1

ssGBLUP

- ✓ Single-step genomic evaluation (ssGBLUP)
 - □ Allows direct combination of genomic, pedigree and phenotypic information
- √ However: current limitation
 - □ Only available local phenotypic records can be used

64th annual EAAP Meeting, Nantes, France, August 26th – 30th 20:

ssGBLUP

- ✓ Single-step genomic evaluation (ssGBLUP)
 - □ Allows direct combination of genomic, pedigree and phenotypic information
- √ However: current limitation
 - $\hfill \Box$ Only available local phenotypic records can be used
- ✓ Reason for this limitation
 - □ Local ssGBLUP based on modified system of mixed model equations (MME)

64th annual EAAP Meeting, Nantes, France, August 26th - 30th 2013

ssGBLUP

- ✓ Single-step genomic evaluation (ssGBLUP)
 - □ Allows direct combination of genomic, pedigree and phenotypic information
- √ However: current limitation
 - □ Only available local phenotypic records can be used

→ In opposition to multi-step methods (e.g., use of local-EBV and MACE-EBV in prediction equation step)

64th annual EAAP Meeting, Nantes, France, August 26th - 30th 20

Modified MME

√ ssGBLUP

$$\begin{bmatrix} \boldsymbol{X}'\boldsymbol{R}^{-1}\boldsymbol{X} & \boldsymbol{X}'\boldsymbol{R}^{-1}\boldsymbol{Z} \\ \boldsymbol{z}'\boldsymbol{R}^{-1}\boldsymbol{X} & \boldsymbol{Z}'\boldsymbol{R}^{-1}\boldsymbol{Z} + \boldsymbol{G}^{*-1} \end{bmatrix} \!\! \begin{bmatrix} \hat{\boldsymbol{\beta}}_{L}^{*} \\ \hat{\boldsymbol{u}}_{L}^{*} \end{bmatrix} \!\! = \!\! \begin{bmatrix} \boldsymbol{X}'\boldsymbol{R}^{-1}\boldsymbol{y}_{L} \\ \boldsymbol{z}'\boldsymbol{R}^{-1}\boldsymbol{y}_{L} \end{bmatrix}$$

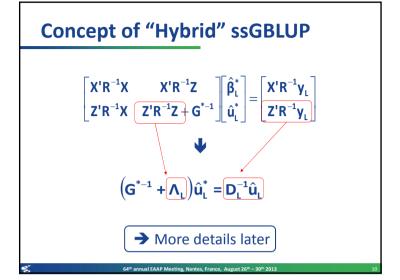
- □ $\mathbf{G}^{*-1} = \mathbf{H}^{-1} \otimes \mathbf{G}_0^{-1}$: inverse of combined genomicpedigree based (co)variances matrix
- \Box $\hat{\beta}_{i}^{*}$: vector of estimated local fixed effects
- $\hfill \hfill \hat{\textbf{u}}_{\text{\tiny L}}^*$: vector of estimated local GEBV

64th annual EAAP Meeting, Nantes, France, August 26th - 30th 2013

Alternative

- ✓ As alternative to introduce phenotypes
 - □ Also allowing for foreign information
- ✓ However avoiding double counting
 - ☐ E.g. MACE-EBV contain our phenotypes
- √ Also avoiding deregression
 - □ Potential source of trouble
- ✓ Be simple and flexible
 - □ Allowing to extend to multiple sources

64th annual EAAP Meeting, Nantes, France, August 26th – 30th 2013



Bayesian priors

✓ Assumption: *a priori* known information on $\hat{\mathbf{u}}_{\mathsf{L}}^*$

 \rightarrow y_L replaced by $\hat{\mathbf{u}}_{l}$ and \mathbf{D}_{l}

□ Source of phenotypic information

> Vector of local EBV: $\hat{\mathbf{u}}_{\mathbf{L}}$ *external"* information

> Prediction error (co)variances matrix: **D**,

√ Allows use of simplified models

□ *E.g.,* Test-day model → lactation EBV

* "external" = outside of original system of MME

64th annual EAAP Meeting, Nantes, France, August 26th - 30th 2013

"Hybrid" ssGBLUP ⇒ ssGBAYES

✓ Using only local information as source

BLUP generating local information

$$\begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z} + \mathbf{G}^{*-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}}_L^* \\ \hat{\boldsymbol{u}}_L^* \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{y}_L \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{y}_L \end{bmatrix}$$

$$\mathbf{\Psi}$$

$$(\mathbf{G}^{*-1} + \mathbf{\Lambda}_L) \hat{\mathbf{u}}_L^* = \mathbf{D}_L^{-1} \hat{\mathbf{u}}_L$$
Least square part of LHS of hypothetical RHS of hypothetical BLUP

generating local information

J Vandenplas et al

Bayesian priors

- ✓ Assumption: *a priori* known information on $\hat{\mathbf{u}}_{1}^{*}$
 - Extended to 2 sources of phenotypic information

 - > Prediction error (co)variances matrices: **D**₁, **D**₂
 - □ Issue: only available for some animals
 - $\rightarrow \hat{\mathbf{u}}_{l}$, $\hat{\mathbf{u}}_{r}$, \mathbf{D}_{l} and \mathbf{D}_{r} : (partially) unknown

* "external" = outside of original system of MME

64th annual EAAP Meeting, Nantes, France, August 26th - 30th 2013

Methods

 \checkmark For both sources: estimation of \mathbf{D}_{i} (i=L,F)

$$\boldsymbol{D}_{i} = \boldsymbol{G}^{-1} + \boldsymbol{\Lambda}_{i}$$

 $\Lambda_i = block diag(\Delta_j R_0^{-1} \Delta_j); j = 1,...,n$ animals

For external animals: $\Delta_{j} = diag(\sqrt{RE_{k}}); k = 1,...,t$ traits

For internal animals: $\Delta_i = 0$

→ All matrices Λ_i depend only on contributions due to own records

64th annual EAAP Meeting, Nantes, France, August 26th - 30th 2013

Methods

- ✓ For both sources: estimation of $\hat{\mathbf{u}}_{i}$ (i=L,F)
 - □ Available
 - \gt EBV of some animals (so-called "external" $\hat{\mathbf{u}}_{i}$)
 - \Box "Internal" animals: prediction of EBV ($\hat{\mathbf{u}}_{\mathbf{i}}$)

$$p\!\!\left(\!\!\!\left(\hat{\mathbf{u}}_{i_{l}}^{}\right|\!\!\!\left(\hat{\mathbf{u}}_{i_{E}}^{}\right)\!\!=\!MVN\!\!\left(\!\!\!\left(\mathbf{G}_{i_{lE}}^{}\mathbf{G}_{i_{EE}}^{-1}\hat{\mathbf{u}}_{i_{E}}^{},\!\left(\mathbf{G}_{i_{II}}^{i_{II}}\right)^{-1}\right)\!\!\!$$

 $G = A \otimes G_n$: genetic (co)variances matrix

$$\square \ \hat{\mathbf{u}}_{i} = \begin{bmatrix} \hat{\mathbf{u}}_{i_{E}}^{'} & \hat{\mathbf{u}}_{i_{I}}^{'} \end{bmatrix}^{'}$$

→ Correct propagation of information

64th annual EAAP Meeting, Nantes, France, August 26th - 30th 2013

Issue

✓ Non-Independence of information sources
□ E.g., Local information included in MACE-EBV

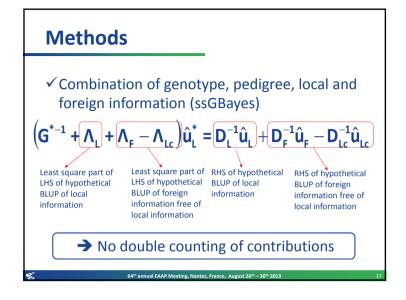
 $D_{F}^{-1}\hat{U}_{FF} = D_{F}^{-1}\hat{U}_{F} + D_{Lc}^{-1}\hat{U}_{Lc}$

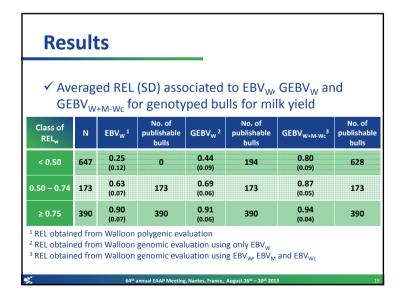
Vector of foreign EBV free of local Vector of foreign EBV

Vector of local EBV contributing to foreign information

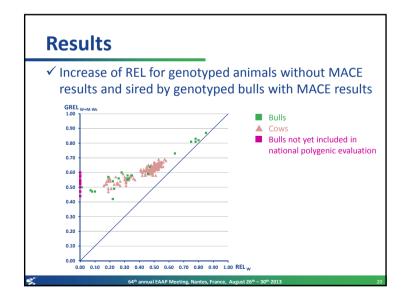
→ Estimation of external information free from local information

64th annual EAAP Meeting, Nantes, France, August 26th – 30th 2013





Example: Walloon genomic evaluation ✓ ssGBAYES results for milk yield □ But already used for all INTERBULL traits ✓ 1,909 genotyped Holstein bulls and cows ✓ 16,234 animals (genotyped and ancestors) □ 12,046 animals with Walloon EBV (EBV_W) □ 1,981 bulls with MACE EBV (EBV_M) □ 601 bulls with Walloon EBV contributing to MACE (EBV_{Wc}) ✓ Reliabilities (REL) for GEBV obtained through inversion of left-hand side



Conclusions

- ✓ Applied to Walloon dairy genomic evaluations
 - Bayesian approach integrates well MACE results into ssGBLUP
 - → Recovers large amount of phenotypic information
 - ☐ More accurate predictions for genotyped animals and their progeny
 - → Correct propagation of all available information

Further implications ssGBayes

- ✓ No deregression
 - □ Direct use of EBV from multiple sources
- ✓ Applicable to multi-trait models
 - □ *E.g.*, external information for correlated and/or predictor traits
- ✓ Open general framework, can be modified to accomodate latest genomic models, e.g.:
 - □ GWAS models based on ssGBLUP
 - □ SNP based single-step models

General notation

√ Combining "s" sources of information

$$\left(G^{*-1} + \sum_{i=1,s} \Lambda_{i}\right) \hat{u}_{c}^{*} = \sum_{i=1,s} D_{i}^{-1} \hat{u}_{i}$$

Least square part of LHS of hypothetical BLUP for information source i

RHS of hypothetical BLUP for information source i

→ Potential to improve current genomic prediction strategies

Thank you for your attention

✓ Acknowledgments for financial support

☐ Service Public of Wallonia SPW - DGO3 through project D31-1274 DairySNP

□ National Fund for Scientific Research and Wallonie Brussels International for scientific stays

- Animal Breeding Association for providing data
- □ CECI for computational resources
- ☐ Animal and Dairy Science Department, University of Georgia, Athens, USA
- Animal Science Department, University of Ljubljana, Slovenia

J Vandenplas et al