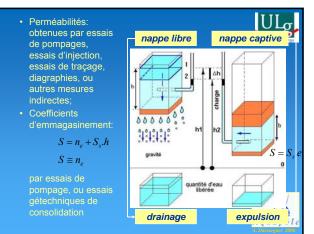


Données nécessaires pour modélisation des écoulements souterrains • géométrie, géologie des différentes formations géologiques pour discrétisation spatiale adéquate du modèle; • paramètres de l'écoulement en milieu souterrain saturé: conductivités hydrauliques et coefficients d'emmagasinement (à ajuster durant calibration ou résolution modèle inverse); • valeurs de toutes les « sollicitations » appliquées au système et de leurs variations temporelles: les débits ou flux pompés ou drainés, et les flux entrants (recharge, réinjections, etc.) éventuellement à ajuster par calibration; • valeurs « historiques » des hauteurs piézométriques et leurs variations dans le temps en un maximum de points : données indispensables pour calibrer et valider le modèle.



Propriétés/paramètres: Perméabilité et coefficient d'emmagasinement

- 2 propriétés fondamentales pour écoulement:
 - perméabilité = aptitude à conduire l'eau
 - coefficient d'emmagasinement: décrivant la variation de quantité d'eau stockée dans le milieu souterrain
- comment quantifier ces propriétés ?
- à quelle échelle ?

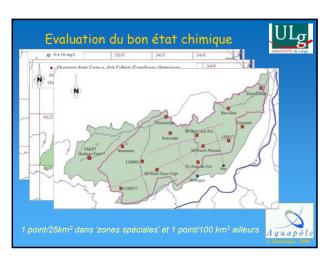
 pas trop petite:
 plus de signification
 pas trop grande:
 on lisse tout
- l' EVR (REV) est le volume considéré de milieu souterrain pour lequel les propriétés vont être quantifiées (par des valeurs moyennes, équivalentes)
- assez grand ... mais aussi assez petit pour éviter des lissages nuisibles à la représentation du processus
- l' EVR dépend du problème étudié et des objectifs de l'étude

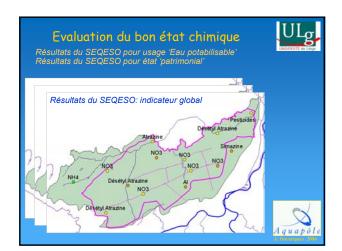
Caractérisation de la qualité des eaux souterraines

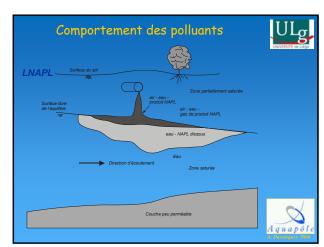
Plusieurs aspects importants peuvent être abordés:

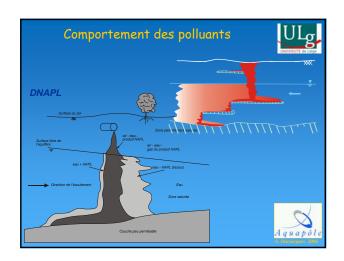
- la caractérisation des eaux souterraines par rapport à un « bon » état chimique;
- la caractérisation des valeurs locales des paramètres hydrodynamiques et hydrodispersifs du milieu souterrain pour permettre des calculs et modélisations du transport de solutés;
- la détermination de façon rigoureuse et physiquement 'significative de zones de préventions et la cartographie de la vulnérabilité des eaux souterraines.

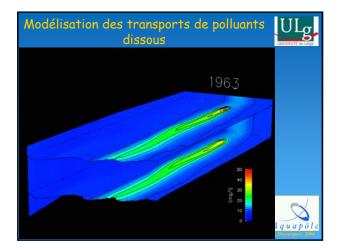
Evaluation du bon état chimique




Tout système d'évaluation de la qualité des eaux souterraines utilisé doit permettre de :


- verifier le respect des normes europeennes existantes (nitrates et pesticides);
- vérifier le respect des normes de potabilité sans traitement excessif de la ressource :
- verifier les objectifs de qualité des écosystèmes de surface dépendants;
- mesurer les déviations par rapport à l'état naturel ou au bruit de fond ambiant.





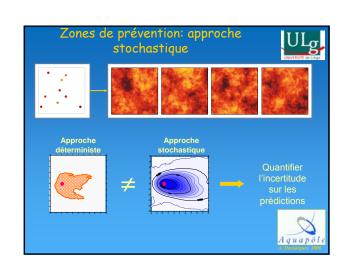
Zones de prévention: critère de base et utilité?

- basées sur un critère de temps de transfert d'un polluant au sein de la zone saturée:
- vision à relativement « court terme », s'intéressant uniquement à la protection des points de prélèvement (captages);
- par rapport à pollutions ponctuelles accidentelles;
 pas de protection de la ressource dans son ensemble;
- pas du tout adaptées au cas des pollutions diffuses pour lesquelles la notion de temps de transfert n'est pas clairement définie;
- on néglige l'impact possible de la zone partiellement saturée (loin d'être négligeable!).

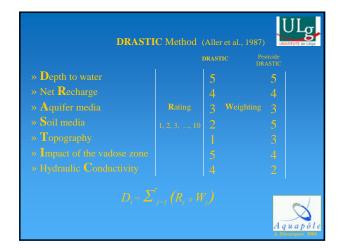
Zones de prévention: méthodologie

- Méthodologie remarquablement rigoureuse par rapport à ce qui est pratiqué dans les pays voisins:
- géologie, géomorphologie, hydrologie de base :
- prospection géophysique pour détecter/cartographier l'hétérogénéité ;
- pompages d'essai et suivi piézométrique dans tous les autres puits ;
 essais de traçage multi-traceur en conditions de pompage ;

- construction d'un modèle écoulement-transport le modèle considérant l'hétérogénéité investigée ;
- piézométriques mesurés) ; alibration du modèle de transport de soluté (sur les courbes de
- imulations et calculs des temps de transfert (dispersion comprise) pour différentes injections autour du point de



Zones de prévention: challenges


- propriétés des traceurs dans les différents milieux géologiques (adsorption, effets d'eau immobile, ...);
- contrôle de l'injection et de la fonction d'entrée dans l'aquifère;
- aspects 2D et 3D de l'essai de traçage et de la modélisation;
- conditions aux frontières des modèles d'écoulement et de transport;
- 'upscaling' et extrapolations spatiales des valeurs des parametres;

