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Myzus persicae aphid is a very polyphagous pest found on hundreds of host 

plants including several vegetable crops. Its role as virus potential vector was 

cited for many viruses found including vegetable crops. Transmission efficiency 

of virus，such as Cucumber mosaic virus, transmitted by M. persicae to vegetable 

crops is the most common model used in many researches. In a non-persistent 

manner, virus particles bind on the top of aphid stylet and transmitted in a few 

minutes, and transmission efficiency is affected by a number of factors, like virus 

strains, aphid species, source and recipient plant species, and plant species on 

which the aphid is maintained 

Management of vector-borne plant diseases has presented a challenge because of 

complex dynamics and interactions of host plants, vectors and viruses within 

natural environment. Lectins as defense proteins in plants are present in large 

quantities in storage organs and seeds that are especially vulnerable to pathogens 

or pest insects(Peumans and Van Damme, 1995). Numerous reports in recent 

years have shown that lectins are toxic to various pest insects belonging to 

economically important insects such as Lepidoptera, Coleoptera, Diptera or 

Hemiptera in genetic engineered plants or artificial diets with lectins, which is 

negatively affect the performance of pest insects. In the last decades, some plant 

lectins were shown to be toxic to several aphids. 

Plant-aphid-virus interactions have been researched for several decades, and there 

are some important questions studied, and still being in process. Although there 
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are reports on virus transmission, we focus on transmission efficiency affected by 

geographic aphid species, virus strains and plant lectins, and finally we hope to 

get a better understanding of the virus-aphid interactions and to propose new 

insight of lectins in non-persistent virus transmission control in crop protection.  
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Plant -aphid -Cucumber mosaic virus interactions focusing on 

aphids in a non-persistent manner 
(1, 2) (1)Rongling Yin , Frédéric Francis , Claude Bragard(2) (3), Yong Liu , Julian 

Chen(4)
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biologique, agronomique et environnementale UCL, Croix du Sud 2, Bte 3, B-1348, 
Louvain-la-Neuve, Belgium. 
(3)Plant protection, Shandong agricultural university, No. 61, Daizong Road, Taian, 
271018, Shandong, China.  
(4)Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West 
Yuan Ming Yuan Road, Beijing 100193, China. 

Summary 

Plant-aphid-virus interactions have been researched for several decades, 

including aphids transmit viruses to plant and plant defense to viruses and aphids, 

and there are some important questions studied, and still being in process. Some 

researches have been studied on interactions of virus-aphid, interactions of 

plant-virus and interactions of plant-aphid. Here we present researches of process 

of Cucumber mosaic virus (CMV) transmission and transmission efficiency in 

order to more understanding on interactions of plant-aphid-virus. 

Keywords: interaction, transmission, non-persistent, bottleneck, Cucumber mosaic 

virus. 
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Introduction 

Efficient virus transmission from host plant to another plant by vectors is very 

important. Arthropods could transmit most of plant viruses, especially aphids in 

Hemiptera. Actually, aphids could transmit over 200 plant viruses in a 

non-persistent manner(Nault, 1997), such as Myzus persicae and Cucumber 

mosaic virus (CMV) which is the most common model used in many researches. 

In a non-persistent manner, virus particles bind on the top of aphid stylet and 

transmitted in a few minutes, and transmission efficiency is affected by a number 

of factors, like virus strains, aphid species, source and recipient plant species, and 

plant species on which the aphid is maintained (Simons, 1957), some of them 

have been discussed (Perry Keith L. et al., 1998; Betancourt et al., 2008; Canto et 

al., 2009; Mello et al., 2011). 

The control of virus diseases transmitted in a non-persistent manner by aphids 

should be one task to avoid prophylactic pesticide treatments to prevent virus 

spread, importantly continuous threat. And there are some reports on vector 

transmission associated bottlenecks showed it’s very important among the 

interactions of virus-aphid-plant (Ali et al., 2006; Moury et al., 2007; Betancourt 

et al., 2008; Desbiez et al., 2011).  

This review will focus on the process of virus transmission in a non-persistent 

manner especially model of CMV and M. persicae in order to get a better 

understanding of interactions of virus-aphid-plant. 
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Relationship of plant, vector and virus 

Because viruses cannot penetrate the intact plant cuticle and the cellulose cell 

wall, plants have a barrier to infection. This problem is overcome either by 

avoiding the need to penetrate the intact outer surface (e.g., in seed transmission 

or by vegetative propagation) or by some method involving penetration through a 

wound in the surface layers, such as in mechanical inoculation and transmission 

by insects. There is considerable specificity in the mechanism by which any one 

virus is naturally transmitted. And about transmission via plant material, they are 

mechanical transmission, seed transmission, pollen transmission, vegetative 

propagation and grafting. 

But many plant viruses, over 400 plant viruses in addition to 697 virus species 

that have been reported but are not yet officially recognized by the ICTV, are 

transmitted from plant to plant in nature by invertebrate vectors, members of the 

Insecta and Arachnida classes of the Arthropada, and the Dorylaimida order of 

the Nematoda (Roger, 2009). And particularly important vectors are Hemipteran 

insects transmitting the majority of the vectored viruses (55%) (Nault, 1997; Van 

Emden et al., 2007; Hogenhout et al., 2008). The most important family among 

these vectors is the aphids (Aphididae), which transmit many more viruses than 

whiteflies (Aleyrodidae) or leafhoppers (Cicadellidae) (Nault, 1997). 

Virus transmission by aphids (or other vector) involves the transfer of virions 

from infected to healthy plants. It shows interest from two points of view. One of 
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them is that aphids or other vectors spread many viruses in the field causing 

biological economic loss, in Europe, it has been suggested that losses due to 

viruses in field crops are 10-15%, and even higher in vegetables and fruits(Carr 

and Loebenstein, 2010). Also it would be even worse if the control methods were 

not already in place, using pesticide, which would double world losses to 70% of 

total production (Oerke et al., 1994). The other view is the interest of relationship 

between vectors and viruses, especially as some viruses have been shown to 

multiply in the vector. Also viruses can be regarded as both plant and animal 

viruses. Transmission by vectors is usually a complex phenomenon involving 

interactions within the virus, the vector, and the host plant, combined with the 

effects of environmental conditions (Hogenhout, 2008 ). 

Aphids are the main vector in most of the detailed studies on virus transmission 

and virus-vector relationships. And according to passing to the vector’s interior, 

the type of transmission divided into two parts, non-persistent transmission, 

including stylet-borne and foregut-borne, and persistent which contains 

circulative and propagative (Nault, 1997; Matthews and Hull, 2002). Of the over 

300 known aphid-borne viruses, most are non-persistent, and M. persicae is 

known to be able to transmit a large number of non-persistent viruses, whereas 

other aphids transmit only one virus. 

There are many generations per year in the lifecycle of aphids. And a sexual 

phase happen from autumn with males and females produced, then males and 

females will mate and produce some special eggs which are able to survive after 
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a freezing winter. About the asexual phase, eggs will hatch in spring, producing 

wingless aphids that soon begin parthenogenetically producing new wingless 

females. Then generation and generation will be produced in hot weather, and 

they can produce up to 12offspring a day which are called nymphs, 

approximately 4 times before becoming adult aphids. Obviously, the summer 

cycle is the active phase in the aphid lifecycle. Also viruses are transmitted by 

wingless and winged aphids in this phase more effective, and there is no 

significant difference of relative transmission rates for both morphological states 

in the same species (Verbeek, 2009; Boukhris-Bouhachem, 2011). 

Behavior of aphids on virus plants 

Host plant selection by aphids occurs as a series of steps to search and find their 

host plants and identify feeding sites. It has been defined for aphids in the 

following way (Powell et al., 2006; Fereres and Moreno, 2009): 

 Pre-alighting behavior (before landing) 

 Plant contact and assessment of surface cues after landing 

 Probing on superficial tissues 

 Location and insertion of stylets at the appropriate feeding site 

 Salivation followed by committed sap ingestion 

Pre-alighting behavior  

And also plant selection maybe extended to other homopterans and sap-sucking 
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insects. It is known that insects have ocular photoreceptors responding in a 

bandwidth of ultraviolet (200-400nm), visible or photosynthetically active 

radiation (PAR) (400-700nm) and the far red (700-800nm) (Fereres and Moreno, 

2009), and for example, M. persicae have three types of photoreceptors that were 

sensitive to the green region (c. 530nm), the blue-green region (490nm) and near 

UV (330-340nm) (Kirchner et al., 2005). During flight, aphids respond to visual 

factor stronger than others, like sound, odor and learning, and locate host plants 

from the contrast between soil background and green yellow colour of plant 

(Kring, 1972; Döring, 2004).  

Also different volatile compounds released from plants will be responsed by 

aphids to recognize their host plants, which have been widely accepted that 

olfaction plays a role in many aphid species (Jones, 1944; Van Emden and 

Harrington, 2007). However the presence of host plant odours did not affect the 

targeted flight in flight chamber bioassays (Nottingham, 1993), expect for the 

carrot aphid, Cavariella aegopodii, which was caught in water traps with carvone 

compound (Chapman, 1981). It appears that the difference maybe found in plant 

contact after landing. 

Plant contact and selection 

When aphids land on a plant, they walk and move their antennal sensilla to detect 

olfactory cues which released by host plant. A study showed that odour 

volatilized by host and non-host plants influenced the behavior of M. persicae, 
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which was that odour of the host plant sweet pepper Capsicum annuum L. 

(Solanaceae) was significantly attractive, while odour of non-host plants was 

significantly repellent(Amarawardana et al., 2007). And it’s certain that volatiles 

from host plant may act a negative role on aphids. 

Also trichiomes as a feature of plant surfaces, in some cases, provide resistance 

to aphids, not only mechanical means, for example, deterring aphids to move and 

probe, but also chemicals released by “heads” of glandular trichomes is sticky 

and/or toxic to aphids. There are some reports that tomato species with different 

density trichomes have effects on population of the green peach aphid (M. 

persicae) (Simmons, 2003), and high density of glandular trichomes and 

chemicals secreted by Cucumis melo L. deter A. gossypii settling on 

(Bukovinszky, 2005). 

Probing behavior of aphids 

When viruses are transmitted by aphids, there are three phases in transmission 

cycle for non-persistent viruses, including acquisition, retention and inoculation. 

When probing and feeding behavior occurring after very brief probes, it is 

detailed by DC-EPG signals which were distinguished into three specific and 

distinct sub phases: II-1, II-2, II-3(Fig.2, Martín et al., 1997). Acquisition of 

stylet-borne viruses is associated to the third subphase (II-3) of the potential drop 

(pd) (Powell et al., 1995; Martín et al., 1997). During this period, acquisition is 

not only restricted to typical non-persistent viruses like CMV, which retained on 
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the stylet tips, but also affect acquisition efficiency. It means if sub phase II-3 is 

not long enough, virus acquisition will be reduced and it will influence virus 

transmission (Collar and Fereres, 1998). 

It also reported that the sub phase II-1 was related to the inoculation of CMV and 

PVY by their vectors A. gossypii and M. persicae, respectively. And the 

ingestion-salivation hypothesis was proposed which suggested that watery 

salivation was the mechanism mediating the release of virions from the stylet tips 

(Martín et al., 1997). It’s also one reason to influence virus transmission (see 

section 4). Retention sites of non-persistant viruses are within the common 

food/salivary canal located at the tip of the aphid maxillary stylets. Two 

molecular strategies have been reported: the capsid strategy, which is the way 

virions directly bind the receptor via a domain of their capsid protein (for 

example, the genus of Cudumoviurs), and the helper strategy, which is the way 

virion-receptor binding is mediated by viral protein “helper components” as a 

bridge, the genera Potyvirus and Caulimovirus are the best konwed. 

Feeding behavior of virus transmission by aphids  

About examples of pathogen-induced effects on host odor cues are the induction 

of characteristic volatile emissions by Potato leaf roll virus (PLRV) and Barley 

yellow dwarf virus (BYDV) are more attractive to aphid vectors than emissions 

from healthy plants (Eigenbrode et al., 2002; Jiménez-Martínez et al., 2004; 

Srinivasan et al., 2006; Ngumbi et al., 2007). But in contrast, study on 
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CMV-infected squash plants shows that virus plants are poor hosts for two 

species of aphid vectors, M. persicae and Aphis gossypii, and population growth 

of aphid vectors reduced when forced to feed on infected plants and have a higher 

rates to emigrate when given the opportunity(Mauck et al., 2010). So volatiles 

emitted from infected plants with different viruses may affect different behaviors 

of aphids on virus plants which depend on different mode of virus transmission.  

There is one study (Fereres and Moreno, 2009) mentioned that positive effects 

often occur when Homopteran insects feed on plants infected with 

non-circulative viruses. In interactions of aphid-virus-plant, complex connections 

exist. From viruses point, for non-persistent viruses, because aphids will lose 

transmission ability in few minutes to hours, residence time will be reduced in 

order to spread virus. But from aphids point, they like stay for long time in order 

to develop and reproduce. And for plants, there could be a conflict of interest 

between the virus and the aphid. 

Vector transmission associated bottlenecks during horizontal 

transmission  

When aphids transmit viruses from one infected plant to healthy plant in 

horizontal transmission mode (virus are transmitted from one plant to another 

plant), there are two steps between infected plant and healthy plant: from infected 

plant to vector and from viruliferous vector to healthy plant. Virus transmission 

rate can be influenced during these two steps. For non-persistent viruses, 
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acquisition and inoculation access periods are brief, usually just a few minutes. 

Non-persistent viruses are not transmitted by aphid simply, like CMV as a 

“generalist” plant virus can infect more than 1000 species, but in generalists, 

some strain have a high degree of specificity usually observed (Ng and Falk, 

2006; Blanc et al., 2011). 

The molecular determinants for retained and inoculated by vectors have been 

well studied (Ng and Falk, 2006; Hogenhout et al., 2008). There are two 

strategies for non-persistent viruses, capsid protein and helper proteins (see 

section 5). Few viral particles are retained and inoculated by vectors in the case 

of non-circulating viruses, and population bottlenecks during horizontal 

transmission of plant viruses by aphids have been postulated to occur for a long 

time, indicating that the virus has to develop trade-offs between vector 

transmissibility and other fitness traits. But positive selection was detected at 

amino-acid positions involved in aphid transmission of CMV (Moury, 2004). 

Reports on non-persistent viruses have showed that as low as 1–2 infectious virus 

particles are transmitted on average by a single aphid (Moury et al., 2007; 

Betancourt et al., 2008; Desbiez et al., 2011). Results from Ali et al showed that 

the 12 CMV mutants were readily acquired from the source plants by both aphid 

species, M. persicae and A. gossypii, but the number of mutants decreased 

significantly when the aphids transmitted the population to test plants, indicting 

that the bottleneck event occurred during the inoculation period (or infection 

event) rather than the acquisition access period (Ali et al., 2006). So more 
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importance of transmission will depend on the number of transmission events 

related to the aphid population density for aphid-transmitted viruses, and the 

results that Betancourt et al present strongly suggest that during horizontal 

transmission, the occurrence of severe bottlenecks is general for viruses 

non-persistently transmitted by aphids (Betancourt et al., 2008) which are the 

largest group of plant viruses (Ng and Perry, 2004; Ng and Falk, 2006). 

Vector transmission 

In a non-persistent manner, plant virus particles attach directly to aphid receptors 

on the maxillary stylet cuticle within the common food/salivary canal, where 

viruses directly bind the receptors via a domain of their capsid protein, that is CP 

strategy used by Cucumoviruses, typically CMV. And helper strategy is that via 

an additional viral compound referred to as helper component (HC). What 

influence transmission efficiency of virus are amino acid determinants of CP. 

Five amino acid changes in the coat protein (positions 25, 129, 162, 168, and 214) 

of CMV were required to restore efficient transmission by M. persicae and a 

construct with modified amino acids 129, 162 and 168 was efficiently transmitted 

by A. gossypii, but poorly for M. persicae (Perry Keith L. et al., 1998), and amino 

acid determinants for virus transmission have been mapped (Liu et al., 2002). 

Transmission efficiency is not only affected by virus strains, but also aphid 

species, source and recipient plant species, and plant species on which the aphid 

is maintained(Simons, 1957), Different species of aphids, also different 
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biological of same aphid species, transmit CMV with varying efficiencies 

(Simons, 1959; Normand and Pirone, 1968; Basky and Nasser, 1989). M. 

persicae and A.gosspii are two important vectors to transmit plant viruses in a 

non-persistent manner, also used most commonly in studies of non-persistently 

transmitted viruses. It’s a polyphagous nature for two aphid species that allows 

them to feed on a wide range of plant hosts. So it’s one important property for 

viruses like CMV that infect a large number of plant species. In laboratory assays, 

reports showed that A. gossypii appeared to be the more efficient one in two 

vectors transmitting CMV (Perry Keith L. et al., 1998; Pinto et al., 2008). But 

few reports showed effects of geographic differences of same aphid species on 

transmission efficiency of CMV.  

Also climate changes such as increased CO2 and/or temperature might affect the 

spread of plant viruses via changing geographical distribution range, their 

densities, migration potential and phenology of plants and vectors (Canto et al., 

2009). Understanding factors of virus transmission mechanism is very important 

to develop effective strategies to block interactions between viruses and aphids in 

aphid-virus-plant interaction. 

Conclusion 

Plant-aphid-virus interactions have been researched for several decades, and there 

are some important questions studied, and still being in process (Figure 3). 

Although there are reports on virus transmission, here we focus on transmission 
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efficiency affected by geographic aphid species, virus strains, and finally we hope 

to get a better understanding of the virus-aphid interactions and to propose new 

insight in non-persistent virus transmission control in crop protection.  
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Figuers and tables 

Table 1 Manner of virus transmission transmitted by different aphids 
Plant virus Manner of 

transmissi
on* 

Main aphids of 
vector Family, Genus Type 

Species 
Number 
of 
species

Myzus persicae NP Betaflexiviridae 
Carlavirus 

CLV 43 

Myzus persicae NP Bromoviridae 
Alfamovirus 

AMV 1 

Myzus persicae  NP Bromoviridae 
Cucumovirus 

CMV  4 
Aphis gossypii 

NP Potyviridae Potyvirus PVY 146 Myzus persicae 
Aphis gossypii 
Myzus persicae NP Potyviridae 

Macluravirus 
MacMV 6 

NP Rhabdoviridae 
Nucleorhabdovirus  

SYNV, 
SYVV 

10 Aphis coreopsidis 
Hyperomyzus 
lactucae 
or leafhhopper 
 Myzus persicae BNP Secoviridae/Comovirin

ae Fabavirus 
BBWV-
1 

4 

Acyrthosiphon pisum SP Caulimoviridae 
Caulimovirus 

CaMV  9 

Amphorophora 
agathonica 

SP Caulimoviridae 
Badnavirus 

RYNV 25 

Myzus persicae  SP Closteroviridae 
Closterovirus 

BYV  11 
Aphis fabae 

SP Secoviridae Sequivirus PYFV 3 Cavariella 
aegopodii 
Cavariella 
pastinacae 
Sitobion avenae P Luteoviridae 

Luteovirus 
BYDV 6 

Schizaphis 
graminum 

SbDV 
BLRV 

Acyrthosiphon pisum 
Myzu persicae 

P Luteoviridae 
Polerovirus 

PLRV 
BWYV 

13 Myzus persicae 
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Acyrthosiphon pisum P Luteoviridae 
Enamovirus 

PEMV 1 
Myzus persicae 

P Nanoviridae Nanovirus SCSV 5 Myzus persicae 
Aphis craccivora 
Aphis gossypii 
Cavariella 
aegopodii 

P No family Umbravirus CMoV 7 

Aphis craccivora 
Hyperomyzus 
lactucae 

P Rhabdoviridae  
Cytorhabdovirus 

LNYV, 
SCV, 
BNYV 

9 

Hyperomyzus 
carduellinus 

Not sure A Alphaflexiviridae 
Lolavirus 

LLV 1 Aphid 

Not sure A Nanoviridae Babuvirus BBTV 3 Aphid  
Not sure A Secoviridae Waikavirus RTSV 3 Aphid or leafhopper 
Not sure A Secoviridae 

Sadwavirus 
SDV 1 Nematode or aphid, 

seed 
Not sure Pospiviroidae 

Pospiviroid 
PSTVd 10 Aphid, hopper, 

beetle AB

Data from International Committee on Taxonomy of Viruses (ICTV)-report of 2011, Descriptions of Plant 
viruses (DPV) and Desbiez et al., 2011 
* Manner of aphid transmission: non-persistent (NP), semi-persistent (SP), persistent (P) 
A mentioned in Desbiez et al., 2011 
B mentioned in DPV  

Viruses mentioned in this table (from top) are Carnation latent virus, Alfalfa mosaic virus, Cucumber mosaic 
virus, Potato virus Y, Maclura mosaic virus, Sonchus yellow net virus, Sowthistle yellow vein virus, Broad 
bean wilt virus 1, Cauliflower mosaic virus, Rubus yellow net virus, Beet yellows virus, Parsnip yellow 
fleck virus, Barley yellow dwarf virus, Soybean dwarf virus, Bean leafroll virus, Potato leafroll virus, Beet 
western yellows virus, Pea enation mosaic virus, Subterranean clover stunt virus, Carrot mottle virus, 
Lettuce necrotic yellows virus, Strawberry crinkle virus, Broccoli necrotic yellows virus, Lolium latent virus, 
Banana bunchy top virus, Rice tungro spherical virus, Satsuma dwarf virus, Potato spindle tuber viroid. 
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Fig.1 Life cycle of Myzus persicae 

 

Fig.2 Host plant selection and virus transmission with aphids. Aphids respond visual and odor 
cues from different sources to find their host plants and identify sites. In order to settle on, 
probing behavior by aphids will be processed. And according to response from host plants and 
population, aphids will decide to move on new plants. I: From viruliferous vector to healthy 
plant, II: From infected plant to vector. 
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Fig.3 Interactions of plant virus transmitted by aphids. This figure presents some aspects of 
plant-virus-aphid interactions. The mechanisms of virus transmission by aphids, acquisition, 
inoculation and role of saliva, are being studied (red). The aspect of aphid feeding behaviors is 
discussed in this review (green).  
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General introduction 

Many plant viruses, over 400 plant viruses in addition to 697 virus species that 

have been reported but are not yet officially recognized by the ICTV, are 

transmitted from plant to plant in nature by invertebrate vectors, members of the 

Insecta and Arachnida classes of the Arthropada, and the Dorylaimida order of 

the Nematoda. Virus transmission by aphids (or other vector) involves the 

transfer of virions from infected to healthy plants. It shows interest from two 

points of view. One of them is that aphids or other vectors spread many viruses in 

the field causing biological economic loss, in Europe, it has been suggested that 

losses due to viruses in field crops are 10-15%, and even higher in vegetables and 

fruits. Also it would be even worse if the control methods were not already in 

place. The other view is the interest of relationship between vectors and viruses, 

especially as some viruses have been shown to multiply in the vector. Also 

viruses can be regarded as both plant and animal viruses. 

China as a very large country has a wide diversity of crops, vegetables, wheat and 

so on, also viruses damage plants severely. So more and more studies on plant 

viruses have been published on international journals, but some researches on 

plant viruses are not always readily available in the literature written in English. 

We present on plant viruses infecting Solanaceae, Cruciferae, Cucurbitaceae, 

Leguminosae sp. and wheat in China in order to provide more information about 

viruses in China 
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Chapter Ⅱ: Bibliographic review on vegetable 

and wheat virus in China 
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Summary 

China is very large country with a wide diversity of crops. The data on plant 

viruses is not always readily available in the literature written in English. This 

review presents on plant viruses infecting Solanaceae, Cruciferae, Cucurbitaceae, 

Leguminosae sp. and wheat in China. Additional information, yet unpublished, is 

also proposed to the reader. Common viruses and references about viruses in 

China have been gathered to provide information for researchers. 

Keyword: vector, species, aphid, coat protein. 
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Introduction  

Shandong is the largest province to produce vegetables in China. Output of 

vegetables and wheat is very important, but plant viruses damage vegetables and 

wheat, including mosaic, ring spot, necrosis, shrinking and dwarf. It makes 

production of vegetables and wheat reduced. For plant viruses, in 1991, the 5th 

ICTV report acknowledged less than 380 virus species, whereas in the 8th report 

in 2004, more than 900 species were defined. In China, many viruses have been 

reported, including major viruses infecting vegetables and wheat. Here, we 

present informations on virus infecting Solanaceae, Cruciferae, Cucurbitaceae, 

Leguminosae sp. and wheat in China to provide basic information for researchers 

and further perspectives on aphid-virus investigations. 

Associated vegetable and virus species  

Solanaceae virus 

Many researches were performed on TuMV in China. Chen et al (2002) [1] 

researched the 3 'end partial sequence variation of 10 TuMV isolates in different 

host plants from Zhejiang province, China. According to gene phylogenetic tree 

of coat protein (CP), most of TuMV isolates could be assigned to two 

evolutionary distant affinity groups. The isolate RS exist in the CP genes from the 

reorganization of group 1. Song et al (2005) [2] analyzed CP gene sequence of 6 

isolates of TuMV from Shandong province, which belong to the same world-B 
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group. Shi et al (2002, 2005 and 2007) [3-5] analyzed variation of CP and HC-Pro 

gene of TuMV isolates from vegetables, such as Brassica narinosa, Brassica 

chinensis, potherb mustard and so on. All of TuMV isolates in China belong to 

the Asian-BR group and world-B group.  

Tian et al (2007)[6] found that Chinese TuMV isolates could be divided into three 

subgroups, and named Asian-BR group, world-B group and basal- BR group 

which appeared in 2005. Isolates within Chinese basal- BR group were firstly 

found in 2007, Wang et al (2009) [7] got the entire sequence TuMV Chinese 

isolate of basal- BR group for the first time.  

[8]In group, Li et al  researched molecular population genetics of Chinese TuMV. 

Phylogenetic analysis results of these 180 isolates of Chinese TuMV were 

statistically found a basal- BR composition of a sudden outbreak of sub-state, the 

maximum haplotype diversity value of 1.000, which also showed that diffusion 

was evident. Isolates of basal-BR subgroup were only found in Taian, Shandong 

Province. And basal-BR from radish in Taian was in a state of sudden expansion 

[9]. 

Turnip mosaic virus resistance is also been studied. There are studies of SSR 

marker, gene expression analysis of systemic acquired resistance response on 

TuMV resistance to Chinese cabbage, analysis of AFLP molecular markers of 

TuMV resistance of Chinese cabbage and inheritance of disease resistance 

mechanisms [10-12]. 
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Plant induced resistance is an active defense responses of plant. Under action of 

inducing factor, resisting pathogen infection by activating plant's own resistance 

mechanisms. It is an important form of plant disease resistance. Now in the 

process of crop production, characteristics of plants and environment control 

factors are more and more used for controlling plant pests and diseases. Plants 

can produce disease resistance after being stimulated by a number of external 

factors; the resistance is named plant induced resistance. It opens a new way to 

control of plant diseases, thus becoming hot spot in the field of plant pathology 

and plant physiology research. 

Proteins such as activator are a class one which selected, isolated and purified 

from a variety of fungi. It improved that immune system of plants by mains of 

activation of the molecules immune system in plants, and promote the growth of 

plant roots and increase chlorophyll content of leaf by mains of inspired a series 

of metabolic regulation in plants. In this way, they can achieve the objective of 

improving crop yields [13]. Dewen Qiu et al (2005) [14] studied plant activator 

protein of tobacco mosaic virus induced resistance pot and field effect and on the 

growth and quality of tobacco. Results showed that plants activation can 

significantly affect incidence and development of tobacco mosaic virus. Plants 

activation has a suppression effect to RNA and TMV CP [15].  

Fusion protein is one of artificial proteins structured by using genetic engineering 

techniques to put two or more to gene segment encoding protein connected 

together destination and express them. Fusion protein is used widely, include in 

 43



 

plant diseases. Here is a report, which used a synthetic method for synthesis of 

the full-length harpin gene, and expressed Harpin protein in E. coli [16]. The 

results showed that Harpin protein can induced allergic reactions of tobacco and 

pepper, and induced activity of plant resistance to TMV. 

 

The incidence of CMV is common in China, scholars have isolated CMV from 

38 families in 120 kinds of plants, such as Cruciferae, Solanaceae, Leguminosae 

sp. and Cucurbitaceae. Xu et al [17] divided other existing CMV strains or isolates 

into two sub-groups, CMV subgroup I and Ⅱ, according to host reactions, 

serological relationships, virus coat protein peptide mapping analysis, dsRNA 

analysis, nucleic acid hybridization, RT-PCR products of enzymatic analysis and 

DNA sequencing analysis and other methods. This distinction reflects 

evolutionary relationship between them. Determination of similarity rate of 

partial sequences from more than 50 strains of CMV CP gene nucleotide 

sequence, similarity rates of different isolates in same subgroup is more than 90%, 

while isolates in different subgroups only 70% -80% [18]. 

 

Professor Cao and Qin from Department of Plant Protection, Nanjing 

Agricultural University got a TNV which isolated from soybean and did some 

preliminary works on biology, morphology and serological of this isolate [19, 20]. 

The isolate has wide host range, can infect 34 species plants in 9 families. 

Symptoms are usually localized dry spots, after this isolate system infecting 
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soybean, necrosis spot will appear in upper leaves. 

 

The challenge of transgenic plants with potato virus X Potexvirus (PVX) revealed 

that expression products of PVY-C HC-Pro mutants in transgenic plants grestly 

abolished functions of HC-Pro in enhancing accumulation and pathogenicity of 

PVX, indicating that CCCT and PTK motifs of HC-Pro were required for PVX/ 

PVY synergism. Meanwhile, results demonstrated that PVY-C HC-Pro had a 

function in accelerating long-distance movement of PVX in these transgenic 

plants for the first time [21]. And some studies on sequence analysis of CP and 

HC-pro gene of Potato Virus Y O, C, N strain [22].  

 

Occurrence and distribution, detection and prokaryotic expression of Tomato 

spotted wilt virus have been studied in several reports [23, 24, 25, 26]. 

 

Studies on detection of Tobacco rattle virus (TRV) and Tobacco ringspot virus 

(TRSV) [27, 28] [29], identification of Tobacco necrosis virus , clone of TEV CP, 

HC-Pro and cross protection between Tobacco etch virus and Sugarcane mosaic 

virus [30] [31]  have been showed. And also characterization of Tomato mosaic virus

and Tobacco leafcurl yunnan virus[32-34] of Chinese isolate and its nucleotide 

sequence, isolation and identification of Alfalfa mosaic virus strains and disease 

resistance of transgenic plants [35, 36] have been studied. 

In China, Xiang benchun first reported Pepper mild mottle virus which was 
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founded in Xinjiang chili pepper in 1994 [37]. Later in Qingdao, Baoding, 

Huinong and other areas, there are reports of this virus occurred. In recent years, 

with introduction varieties of foreign sweet pepper, pepper mild mottle disease 

also appears in greenhouse in vicinity of Beijing [38-40]. In 2006, this virus had 

been isolated, and genome sequence has been analyzed, named PMMoV isolates 

in China (PMMoV-CN) [41].  

Cruciferae virus 

The expression profile of CaMV 35s promoter was clearly described using the 

GUS as a reporter gene in transgenic cotton from results of GUS gene expression 

in cotton callus, somatic embryogenesis, cotton root, stem, leaf, flower organs 

and developing embryo [42]. 

 

It is also clear that small differences in sequence must account for the observed 

differences in host range and symptoms. It seems like that distinction between 

RMV and YoMV will be difficult to maintain, but further sequences of 

biologically-characterized isolates are needed before drawing a firm conclusion 

on their nomenclature and taxonomy [43]. Sequence analysis shows that Ribgrass 

mosaic virus Shanghai isolate (RMV-Sh) is closely related to Youcai mosaic 

virus. 

 

In China, viruses of sugar beet were noticed by some researchers, and BtMV was 
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considered the causal agent, and some viruses infecting sugar beet also were 

studied including Beet western yellows virus [44], Beet necrotic yellow vein 

virus[45],Beet black scorch virus[46],Beet soilborne virus[47], Beet western 

yellows virus[48], and also some results of detection of Broad bean wilt virus 

(BBWV) [49] and identification and characterization of Oilseed rape mosaic virus 

(ORMV) [50]. For RaMV, there is no report only mentioned in book [51]. 

Cucurbitaceae virus 

A seed- borne virus of Cucurbitaceae was discovered recently in main land of 

China, which is dangerous disease potentially [52]. In 1987, Xu et al isolated and 

identified the virus from watermelon, melon and cucumber in Taiwan [53]. There 

are reports about identification and detection of Cucumber green mottle mosaic 

virus, cloning and sequence analysis of the CP gene [54]. 

 

Watermelon mosaic virus (WMV) widespread occurrence in China, researchers 

have obtained different isolates from Shanxi, Shandong, Yunnan, Liaoning, 

Shanxi, Xinjiang, Henan and Heilongjiang province and so on[55-58]. Wu et al 

reported genome sequence of Chinese WMV, differences between France and 

China WMV strains in 2006, indicating that the WMV genome has diversity 

around the world [59]. Others reports also showed isolation and identification 

receptor of WMV in aphids [60].  

Here reported identification of Watermelon mosaic virus 2 isolate (WMV-2) and 

its coat protein gene sequence [61]. In the survey of virus diseases of 
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Cucurbitaceae during the 1955-1965 years in China, researchers reported that the 

Melon mosaic virus (MMV) is the main drug of its. But now researches prove 

that the MMV is WMV-2 [62].  

 

Studies on Chinese squash leaf curl virus: biological and serological properties 

and molecular hybridization [63]. Now, scholars have do some researches on 

construction of Papaya ringspot virus Hunan isolate [64], cloning expression of its 

HC-pro gene [65] [66], and transgenic papayas in China  . 

Some works about identification, sequence analysis of ZYMV’s coat protein and 

Chinese strain for resisting to ZYMV in watermelon [67-69] have been studied, also 

genomic sequence of a Chinese isolate of SqMV[70].  

Fabaceae virus 

Researchers have reported partition of Soybean mosaic virus (SMV) strains in 

China, but classification conclusions are not unified. Considering the 

geographical distribution and genetic mutations and other factors, researchers 

unified partition the national SMV strains, in order to facilitate further research in 

United States, Japan and other countries. There is not having uniform standard to 

demarcation SMV strains in China, which will create difficulties for future 

in-depth study and molecular detection and genomic of SMV [71, 72]. 

 

As fellows, Nucleotide Sequence Analyses of RNA3 of Peanut stunt virus [73], 
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Cloning and sequencing of peanut stripe virus Coat Protein gene [74,75], sequence 

determination of small coat protein gene of Broad bean stain virus and the 

development of RT-PCR detection method [76,77]. And researchers identified and 

studied broad bean true mosaic virus (BBTMV), from the biological, physical 

and chemical characteristics and serological characteristics and others sides [78,79]. 

Coat Protein of Bean yellow mosaic virus isolates from Faba bean in Yunnan, 

Chinahave been analyzed [80]. And some works have done about the serology 

prime identification of pea mosaic virus [81], SRNA sequences in Tospovirus[82], 

first Report of Broad bean wilt virus 2 in Echinacea purpurea in China[83]. 

Poaceae virus 

In China, Zhou et al isolate barley yellow dwarf virus into GAV, GPV, PAGV and 

RMV [84]. Because of the different geography sources, the variability of BYDVs 

may exist. The main objective of the experiments was to identify the molecular 

variability, strains type and phylogenetic relationship of different BYDVs Cp 

genes using the materials of Chinese wheat isolates which were infected by virus 

[85]. 

 

It have wide distribution in China, the disease appeared in Rongcheng in 

Shandong in 1958, Sichuan Yaan in the sixty years, and gradually spread to many 

other regions. The Yangtze River and Huaihe River in the provinces and other 

regions in Henan, Shaanxi, Shandong and other provinces have also occurred on 
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and it is serious harm to growth and yield of wheat [86-88].An experimental system 

using cDNA clones suitable for Production of infectious RNA transcripts in 

vitro， and to inoculate these to cultured wheat cell lines and tobacco protoplasts. 

Primary research on the function of the PI Protein encoded by WYMV RNA2 

was carried out in this infectious system [89].  

 

A single open reading frame of 891 nucleotides and a no translated region of 258 

nucleotides at the 3’-end excluding the poly (A)-tail. The nucleotide sequence 

shares homology of 67.6%and 69.9% with barley yellow mosaic virus (BaYMV) 

RNA 1 and wheat spindle streak mosaic virus RNA1 reported in France 

(WSSMV-F) with in the same length of the 3’-terminals [90]. 

 

The result s indicated that none of all thirteen isolates was identical each other at 

the molecular level. Differences in RNA2 were greater than those in RNA1. The 

variations were very complicated so that none of modern molecular techniques 

could simply correlate the variations at nucleotide level with pathogenicity or 

strain differentiation [91]. Molecular cloning, sequencing and expression of CP 

gene of Barley stripe mosaic virus China strain (BSMV-CH) in E.coli and its 

antiserum preparation [92].  

 

Coat Protein gene of the virus was amplified by RT-PCR, cloned into PUC19 
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vector and sequenced. It was identical in length (753 nucleotide; 251 amino acids) 

to those of isolate from Japan, Korea, Germany, France and the UK. The Results 

confirmed that the virus detected in China was indeed BaMMV and suggested 

that Chinese strain of BaMMV has also long established [93].  

Other viruses 

[94]Transformation of Soil-Borne Mosaic Virus , and molecular detection and 

identification of wheat rosette stunt disease have been studied[95]. 
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Tables  

Table 1 Viruses infecting Solanaceae plants 

Species, Acronym Family, Genus Vectors or 

mode of 

transmission 

Related 

referenc

es 

Turnip mosaic virus, TuMV Potyviridae Potyvirus Aphid 1-12 

Tobacco mosaic virus, TMV Virgaviridae Mechanical, 

seed 

13-16 

Tobamovirus 

Cucumber mosaic virus, CMV Bromoviridae 

Cucumovirus 

Aphid, seed 17-18 

Tobacco necrosis virus, TNV Tombusviridae Fungus  19 

Necrovirus

Potato virus X/Y, PVX/Y Potyviridae Potyvirus Aphid 20, 21 

Tomato spotted wilt virus, 

TSWV 

Bunyaviridae 

Tospovirus 

Thrip 22, 23 

Watermelon silvery mottle 

virus, WSMoV 

Bunyaviridae 

Tospovirus 

Thrip 24 

Peanut yellow spot virus, PYSV Bunyaviridae 

Tospovirus 

Thrip 25 

Peanut chlorotic fan -spot virus, 

PCFV 

Bunyaviridae 

Tospovirus 

Thrip 26 

Tobacco rattle virus, TRV Virgaviridae 

Tobravirus 

Nematode 27 

Tobacco ringspot virus, TRSV Secoviridae Nepovirus Nematode, 

seed 

28 

Tobacco etch virus, TEV Potyviridae Potyvirus Aphid  30 

Tomato mosaic virus, ToMV Virgaviridae Mechanical, 

seed 

31 

Tobamovirus 

Tobacco leafcurl yunnan virus, Geminiviridae Whitefly 32-34 
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Begomovirus TbLCYNV 

Alfalfa mosaic virus, AMV Bromoviridae 

Alfamovirus 

Aphid 35, 36 

Pepper mild mottle virus, 

PMMoV 

Virgaviridae Mechanical, 

seed 

37-40 

Tobamovirus 

Tomato ringsopt virus, ToRSV Secoviridae Nepovirus Nematode, 

seed 

41 

N: Mentioned but there is no paper about it. 
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Table 2 Viruses infecting Cruciferae plants 

Vector or 
mode of 
transmission 

Species, Acronym Family, Genus Related 

references 

Turnip mosaic virus, TuMV Potyviridae Potyvirus Aphid * 

Cucumber mosaic virus, CMV Bromoviridae 

Cucumovirus 

Aphid, seed * 

Tobacco mosaic virus, TMV Virgaviridae 

Tobamovirus 

Mechanical, 

seed 

* 

Tobacco ringspot virus, TRSV Secoviridae Nepovirus Nematode, 

seed 

* 

Alfalfa mosaic virus, AMV Bromoviridae 

Alfamovirus 

Aphid * 

Cauliflower mosaic virus, 

CaMV 

Caulimoviridae 

Caulimovirus 

Aphid 42 

Ribgrass mosaic virus, RMV Virgaviridae 

Tobamovirus 

Not sure 43 

Beet mosaic virus, BtMV Closteroviridae 

Closterovirus 

Aphid 44 

Beet necrotic yellow vein virus, 

BNYVV 

Benyvirus Fungus 45 

Beet black scorch virus, BBSV Necrovirus Fungus 46 

Beet soilborne virus, BSBV Pomovirus Fungus 47 

Beet western yellows virus, 

BWYV 

Polerovirus Aphid 48 

Broad bean wilt virus, BBWV Secoviridae Fabavirus Aphid  49 

Youcai mosaic virus, YMoV Virgaviridae 

Tobamovirus 

Mechanical, 

seed 

50 

Radish mosaic virus, RaMV Secoviridae Comovirus Beetle 51 

* Mentioned above in this paper 

N: Mentioned but there is no paper about it. 
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Table 3 Viruses infected Cucurbitaceae plants 

Species, Acronym Family, Genus Vector or 

mode of 

transmission 

Related 

references 

Cucumber mosaic virus, CMV Bromoviridae 

Cucumovirus 

Aphid * 

Tobacco mosaic virus, TMV Virgaviridae 

Tobamovirus 

Mechanical, 

seed 

* 

Turnip mosaic virus, TuMV Potyviridae Potyvirus Aphid * 

Cucumber green mottle mosaic 

virus, CGMMV 

Virgaviridae 

Tobamovirus 

Mechanical, 

seed 

52-54 

Watermelon mosaic virus, 

WMV 

Potyviridae Potyvirus Aphid 55-62 

Squash leaf curl virus, SLCuV Geminiviridae 

Begomovirus 

Whitefly 63 

Papaya ringspot virus, PRSV Potyviridae Potyvirus Aphid 64-66 

Zucchini yellow mosaic virus, 

ZYMV 

Potyviridae Potyvirus Aphid  67-69 

Squash mosaic virus, SqMV Secoviridae 

Comovirus 

Beetle, seed 70 

* Mentioned above in this paper 

N: Mentioned but there is no paper about it. 

 

Table 4 Viruses infected Leguminosae sp. plants 

Species, Acronym Family, Genus Vector Related 

references

Cucumber mosaic virus, CMV Bromoviridae 

Cucumovirus 

Aphid  * 
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Turnip mosaic virus,TuMV Potyviridae Potyvirus Aphid  * 

Alfalfa mosaic virus, AMV Bromoviridae 

Alfamovirus 

Aphid * 

Soybean mosaic virus, SMV Potyviridae Potyvirus Aphid  71,72 

Peanut stunt virus, PSV Bromoviridae 

Cucumovirus 

Aphid 73 

Peanut stripe virus Potyviridae Potyvirus Aphid  74,75 

Broad bean stain virus, BBSV Secoviridae Comovirus Seed 76,77 

Broad bean true mosaic virus, 

BBTMV 

Secoviridae Comovirus Seed 78,79 

Bean yellow mosaic virus, 

BYMV 

Potyviridae Potyvirus Aphid 80 

Pea mosaic Virus Potyviridae Potyvirus Aphid  81 

Tomato spotted wilt virus, 

TSWV 

Bunaviridae Tospovirus Thrip  82 

Broad bean wilt virus, BBWV Secoviridae Fabavirus Aphid  83 

* Mentioned above in this paper 

N: Mentioned but there is no paper about it. 

 69



 

Table 5 Viruses infected wheat plants 

Species, Acronym Family, Genus Vector Related 

references 

Barley yellow dwarf virus, BYDV Luteoviridae Luteovirus Aphid 84,85 

Wheat yellow mosaic virus, 

WYMV 

Potyviridae Bymovirus Fungus 86-89 

Wheat spindle streak mosaic 

virus, WSSMV 

Potyviridae Bymovirus Soil 90 

Barley stripe mosaic virus, BSMV Virgaviridae Hordeivirus Seed 91, 92 

Barley mild mosaic virus, 

BaMMV 

Potyviridae Bymovirus Fungus 93 

Wheat soil-borne mosaic virus, 

WSBMV 

Virgaviridae Furovirus Soil, fungus 94 

Northern cereal mosaic virus, 

NCMV 

Rhabdoviridae 

Cytorhabdovirus 

Planthopper 95 

N: Mentioned but there is no paper about it. 
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Chapter Ⅲ: Objectives 

This thesis focussed on the process of virus transmission in a non-persistent 

manner especially the CMV and M. persicae model.    

The first part was the analysis of molecular characterization of coat protein of 

CMV. Virus strain with high transmission efficiency by M. persicae was selected.   

The second part was the investigation of the transmission efficiency of different 

virus strains by green peach aphid collected from different plants and places in 

China.    

The third part was the evaluation of the effects of plant lectins when ingested 

before transmission assays on virus transmission by aphids.    

All of these parts provided more information’s to better understand the 

virus-aphid interactions and to propose new insight in non persistent virus 

transmission control in crop protection.  

In the fourth chapter, coat protein of CMV from different places and plants in 

China, and molecular characterization of coat protein have been analyzed and 

discussed.  

Virus strains from China and Belgium have been tested to determine transmission 

efficiency by M. persicae. Discussion including transmission efficiency related to 

CMV coat protein characters in order to understand relation between aphids and 
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virus was performed. 

In  the  fifth  chapter,  aphids  from  different  places  in  China  and  

plant  was  used  to  determine CMV transmission efficiency according to 

aphid clone diversity.    

In the last chapter, plant lectins (Galanthus Nivallis Agglutinin, Wheat Germ 

Agglutinin, Pisum Sativum Lectin) have been tested to evaluate competition 

effects on virus transmission, and to improve the role of plant lectins in 

virus-aphid interaction process.  

In conclusions, CMV transmission efficiency according to virus strains and aphid 

clones diversity from different places in China were investigated. Lectins in 

CMV - plant - aphid interactions focusing on M. persicae in vegetable crops was 

studied and finally got a better understanding of the virus-aphid interactions and 

to propose new insight in non-persistent virus transmission control in crop 

protection.   
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Chapter Ⅳ: Effects of virus strains on 

transmission efficiency of CMV transmitted by 

Myzus persicae 
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Ⅳ.1 Molecular characterization of coat protein of Cucumber 
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Abstract  

Many new vegetable varieties are introduced from abroad in China, and as the 

type species in the genus Cucumovirus of family Bromoviridae, Cucumber 

mosaic virus (CMV) is infecting large number of plant species using vector 

transmission by aphids in a non-persistent manner with capsid strategy. In this 

study, total RNA was extracted from leaves of infected plants collected from 

Beijing, Shandong Province in China and amplified in reverse transcriptase 

polymerase chain reaction with primer set designed in the coat protein region of 

CMV. Bands of expected size (~657bp) were visualized in agarose gel. The 

results of comparison and phylogenetic tree revealed that 5 CMV isolates belong 

to subgroup IB, not subgroup II for low identity. And the comparison of amino 

acid sequences showed different at some positions (25, 31, 33, 65, 71, and 207). 

Also coat protein amino acid changes may show effects on transmission by 

aphids. 

Key words: subgroup, identity, transmission, isolates 
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Introduction  

Cucumber mosaic virus (CMV) is the type species in the genus Cucumovirus, 

family Bromoviridae. CMV has one of the largest host ranges of any virus. 

Numerous reports show that the number of plant species identified as hosts for 

CMV has increased steadily as new host surveys are conducted. The host range 

of CMV today exceeds 800 species, more than 85 families. CMV hosts include 

solanaceous crops, such as tobacco, tomato, and pepper, along with 

cucurbitaceous crops and many ornamentals (Palukaitis et al., 1992). In China, 

there are lots of vegetables bases in Shandong province and in northern of 

Beijing there are also many bases providing green vegetables especially during 

the Olympic Games in 2008.  

The genome of CMV consists of three positive sense, single-stranded RNAs 

(RNA 1, RNA 2 and RNA 3) and a subgenomic RNA (RNA 4) encoded by RNA3 

that is involved in encapsidation(Suzuki et al., 1991, Palukaitis et al., 1992). 

Several CMV isolates reported from all over the world have been placed into two 

subgroups I and II, CMV subgroup I has been recently divided into IA and IB on 

the basis of gene sequences available for CMV strains and phylogenetic analysis 

(Palukaitis and Zaitlin, 1997, Roossinck et al., 1999, Roossinck, 2002). Recent 

phylogenetic analysis of CMV by use of CP ORF and 5’non-translated region 

(NTR) sequences confirmed the grouping and also led to further subdivision of 

subgroup I into IA and IB(Roossinck et al., 1999), and recombination between 
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subgroups IA and IB was reported(Chen et al., 2007).  

The Cucumovirus use vector transmission by aphids (such as Myzus. persicae, 

Aphis. gossypii) in a non-persistent manner with capsid strategy (Brault et al., 

2010, Foster et al., 2008). Coat protein determined virus transmission efficiency 

that was demonstrated by two independent research groups using different 

Cucumoviurs species (Chen and Francki, 1990, Gera et al., 1979). In addition to 

affecting transmission, the known roles of the CMV coat proteins have been 

shown to play important roles in encapsidation, systemic movement (Suzuki et al., 

1991), host range (Shintaku and Palukaitis, 1990), and aphid transmission (Gera 

et al., 1979, Chen and Francki, 1990, Perry et al., 1994). Small changes of coat 

protein in the virus can dramatically influence transmission and some changes in 

the transmission phenotype can differ radically depending on the species of 

aphid-vector. Amino acid of coat protein changes may condition a differential 

interaction with some specific factors of vector, host, or viral origin, and only one 

(limiting) part of the transmission process may be differentially affected(Perry et 

al., 1998). 

With the development of economy, the quality and demand of varieties is higher 

and higher, farmers has introduced many new vegetable varieties from abroad, 

especially after 2008. So in this study, molecular characterization of the coat 

protein of these isolates from Shandong and Beijing and their exact identification 

were reported. The aim is to find if there is some differences among isolates and 

also if some changes happened in some isolates. We also studied phylogenetic 
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relationship of CP with other CMV isolates, and changes in virus coat protein that 

may influence aphid transmission. 

Materials and methods 

Materials 

Infected plants leaves (Brassicaceae, Cucurbitaceae and Solanaceae 

families) collected in the field from two different districts, Shandong province 

and Beijing in China, divided each of them into two pieces then inoculating with 

tobacco（Nicotiana tabacum）and putting them into low temperature freezer (-70

℃) after taking back to laboratory. 

RNA extraction and RT-PCR 

TRIZOL Reagent (Invitrogen) was used for RNA extraction. We used 

two-step RT-PCR. The genome sense primer 5’-ATGGACAAATCTGAAT 

CAAC-3’ derived from the beginning of the first 20bases of the coding region 

and the antisense primer 5’-TCAAACTGGGAGCACCC-3’ representing last 17 

bases of the coding region of the CP gene were used to prime the reaction for 

CMV detection (Siju et al., 2007). DNA Synthesis Supermix (TransGen Biotech, 

Beijing, China) was used for first strand cDNA synthesis. The program of RT 

step consisted of 50℃ (30min), followed 85℃ (5min). Per eppendorf tube 

contained 2.5µl RT product and 22.5 µl mix PCR (PCR reaction buffer 

(Biomed-tech Beijing China), primers, ddH2O). Samples were amplified in a 

thermocycler and the program followed 40 cycle reaction profile involving 
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denaturation at 94℃(30 s), primer annealing at 50℃ (30s), extension at 72℃ 

(1min) with a final extension of 72℃(10min).The amplified products were 

analyzed on 1.2% agarose gel electrophoresis in TAE buffer, stained with 

ethidium bromide. The product of PCR fragment was cut from gel and eluted in 

order to clone.  

Cloning and analysis of CP 

The purified product was cloned in pEasy-T3 vector (TransGen Biotech, 

Beijing, China), then the ligated vector was transformed into E.coli (Trans-T1) 

provided by the cloning kit. Positive colonies were selected to do PCR and were 

subjected to sequencing (Beijing Sunbiotech Co., Ltd.), using primer M13. 

Sequences data were fed for BLAST analysis, which also were analyzed using 

MEGA v4.1（http://www.megasoftware.net/）and DNAstar program to structuring 

phylogenetic tree with other sequences that had been present already in the NCBI 

database worldwide and from the same vicinity by accounting standard reference 

of CMV from each subgroup. 

Results and analysis  

RT-PCR and cloning 

Total RNA was extracted from infected leaves of plants. cDNA was made 

from total RNA by downstream primer application. RT-PCR on isolates of 

cucumber, tobacco in Taian(TA),  cucumber in Shouguang,(SG) and tomato in 

Beijing(BJ) amplified successfully the coat protein gene of virus and a product of 
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expected size (~650bp) was observed (Fig. 1). The product of PCR-amplified 

fragment was cut from gel and eluted in order to clone. The transformed cells 

were plated on selection media containing ampicillin, X-gal and IPTG. Positive 

colonies were selected to do PCR and then were subjected to sequencing. 

Phylogenetic analysis of 5 CMV isolates with others based on nucleotide 

sequence 

Phylogenetic relationship of 5 CMV isolates with the strains of Cucumber 

mosaic virus coat protein (657bp) subgroupsⅠ (A and B), II present in GenBank 

(Table. 1), including parts of CMV isolates from Shandong and Beijing in China, 

based on the nucleotide alignment using MEGA v4.1.  

The alignment files created by MEGA v4.1 were bootstrapped 1000 times 

for generating neighbor-joining phylogenetic tree using Tree Explorer (Fig. 2). 

Tobacco mosaic virus (TMV) CP gene (accession No. AY313136) was used as 

outsource. Sequence analysis of CP of CMV isolates revealed that 5 CMV 

isolates belong to subgroup I, and all of them (BJ-tomato, TA-tobacco, SG, 

TA-cucumber, TA) belong to subgroup IB. The sequences were compared to 

equivalent sequences from a range of other cucumber mosaic virus coat protein 

gene present in GenBank. Only one of them (SD｜EF159146) from Shandong 

and Beijing belongs to subgroup IA, the rest of them belong to subgroup IB. 

Multiple alignments based on complete coat protein gene 

Manual multiple sequence alignment is performed at deduced amino acid 
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levels by taking into account a standard reference from each subgroup IB 

(D42079, Y16926), IA(D10538, D00462, D28487) and subgroup II (AF063610, 

L15336, M21464). 

The results of coat protein amino acid changes revealed that at position 12, 

Serine(S) is observed in TA-tobacco. At position 26 (25, exactly the 25 amino 

acid) and 66（65）, TA-CP shows proline (P) and arginine (R) is different with 

other 4 CMV isolates (S). At position 32（31）, 34（33）, 208（207）, TA-cucumber 

CP shows lysine (K), threonine (T) and leucine (L), which is the same (valine, V) 

to subgroup II but is different from D28487 (FT, IA). At position 72（71）, Serine 

(S) was observed in SG-CP, TA-tobacco-CP, also in D42079 (C7-2, IB). 

Comparison of percent nucleotide sequence and the deduced amino acid 

identities  

A comparison was made of percent nucleotide sequence and the deduced 

amino acid sequence of the coat protein gene of 5 CMV isolates with other CMV 

coat protein gene sequences reported from the same geographical region with 

standard sequence of subgroup IB(Y16926, Tfn), as well as sequences from 

subgroup IA and II. Sequence comparisons were made with the DNAstar 

program. The result showed that the standard CMV strain (Y16926, Tfn) showed 

high sequence identity (97%) with 5 CMV isolates at the nucleotide level, also at 

the amino acid level (Maximum 99.5). On the other hand, CMV from subgroup 

IA (D10538, Fny) showed also high sequence identity (nucleotide level 

maximum 95%, amino acid level higher than96%). But subgroup II stains 
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showed maximum 83% sequence identity indicting that the sequences do not 

belong to subgroup II. 

Discussion  

Molecular characterization is considered to aid in better understanding of the 

genetic composition, variation caused by mutation and recombination, and 

taxology of the virus that helps in finding out how the strain under study relates 

to other strains of CMV reported from all over the world, including those 

reported from the same local geographical region. There also is knowledge of 

how new strains evolve or adapt to new hosts and geographic conditions provided 

by molecular characterization.  

RT-PCR can be used to rapidly and sensitively detect plant viruses. Actually, 

RT-PCR method has proven to be more sensitive than enzyme linked 

immunosorbent assay and dot-blot hybridization (Hu et al., 1995). Various 

methods have been used to analyze the diversities among different CMV isolates. 

Most of these studies were phylogenetically oriented and allowed the subdivision 

of CMV isolates from all over the world into three subgroups: IA, IB and II 

(Palukaitis et al., 1992, Roossinck et al., 1999, Roossinck, 2002). 

Phylogenetic and diversity studies have shown that there are three subgroups 

of CMV (Palukaitis et al., 1992, Palukaitis and Zaitlin, 1997, Roossinck et al., 

1999). Subgroups I and II are quite distantly related, and their genomes have 

approximately 75% nucleotide identity. Subgroup I can be further divided into 
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subgroups IA and IB that are more closely related (92–95% nucleotide identity) 

(Roossinck, 2002). The overall pairwise sequence identity of 5 isolates with 

members of subgroup II is lower at both nucleotide and amino acid sequence 

levels than subgroup I, as well as their position generated in the phylogenetic 

trees, revealed that the 5 isolates belongs to subgroup I (Fig.2 and Table 2). The 

overall higher degree of homology exhibited at the amino acid level between all 

the strains might indicate the constraints imposed on the virus: variation in the 

coat protein to maintain the structural and functional role presumably for virion 

stability, transmission by aphids and the movement within the host plants 

(Wikoff et al., 1997, Perry et al., 1998, James et al., 2000). 

Strains of cucumber mosaic virus vary with respect to the efficiency by 

which they can be transmitted by different species of aphids and there is 

specificity in that not all aphid species can function as vectors (Bhargava, 1951, 

Kennedy et al., 1962). Genetic analyses of CMV have provided important 

information relevant to transmission. The primary determinant for the aphid 

transmissibility of CMV has been shown to be the coat protein (Gera et al., 1979, 

Chen and Francki, 1990). 

Alteration in single amino acid position induces altered symptom expression 

in host plants (Suzuki et al., 1991, Shintaku et al., 1992, Suzuki et al., 1995). 

Aphid transmissibility is affected by amino acid changes in the coat protein 

(positions 25, 129, 162, 168, and 214) (Perry et al., 1994, Perry et al., 1998). 

Sequence analysis of CP at the amino acid level reveal that there are many 
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positions where amino acid shows diverse effect compared to others isolates used 

in the study, especially amino acid 25（Pro to Ser）may make different from 

strains in aphid transmission. The other positions are N32(31)T, R34(34)K, 

I206(205)V, H208(207)L of TA-cucumber, N12S, T72(71)S of TA-tobacco and 

T72(71)S of SG (Fig.3). These positions may have some impact on the coat 

protein orientation, symptom expression, transmission etc. which need to be 

further studied. 

The virus was able to be transferred mechanically injured tissues from 

infected plants to non-infected plant and produced the systemic and local 

symptoms characteristic of CMV. Plant-feeding arthropods, especially the aphid 

species (A. gossypii and M. persicae) transmitted in non-persistent manner that 

have been described as efficient vectors in plant-to-plant transmission of viruses. 

Studies on genetic structure and diversity would be important to help in better 

understanding the evolutionary mechanisms that generate and/or maintain 

variation in viral populations and their evolution, and also can be used to develop 

transgenic geraniums that will be useful for the growers. Thus, such studies may 

help in the development of strategies for the control of viral diseases. 
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Figures and tables 

Table 1 Coat protein gene sequences of various CMV strains used for comparison 

Accession no.

（abbreviations） 

Geographic 

origin 

Group Accession no.

（abbreviations）

Geographic 

origin 

Group 

DQ916111 Shandong

（SD） 

 Japan IA AB004780（KM）

EF122499  SD  USA (NY) IA D10538（Fny） 

EF159146 SD  USA (NY) IA D00462（C） 

EF409974 SD  Korea IA L36251（Kor） 

EU429567  SD  Israel IA U66094（Sny） 

FJ403473 SD  Australia IA U22821（Ny） 

FJ403474 SD  Japan IA D28487（FT） 

DQ302714  Beijing

（BJ） 

 USA IA D10544（FC） 

DQ302715  BJ  India IA AJ890464（OL）

DQ302716  BJ  India IA AJ831578（L1）

DQ302717  BJ  India IA AJ890465（Lt） 

Hungary II Japan IB L15336（Trk7） D42079（C7-2）

Australia II AJ271416

（2A1-A） 

USA IB M21464（Q） 

USA II Korea IB AF063610（S） AF013291（As）

USA II Italy IB AF127976（LS） Y16926（Tfn） 

USA II AB042294

（IA-3a） 

Japan IB U10923（SP103） 

Japan II Taiwan IB AB006813（m2） D28780（NT9） 

Australia II USA IB U22822（Sn） U31220（Oahu）

Unknown II India IB L40953（Wem） X89652（Phym）

India II India IB AJ585086（AL） AF281864（D） 

India IB    AF350450（H） 
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Fig. 1 RT-PCR amplification of CMV coat protein gene 

TA: cucumber leaves, SG: cucumber leaves, TA-cucumber: cucumber leaves 

(different plant from TA), BJ- tomato: tomato leaves, TA-tobacco: tobacco leaves. 
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Fig. 2 Phylogenetic relationship of 5 CMV isolates with the strains of CMV subgroups I (A 

and B), II based on the nucleotide alignment using MEGA v4.1. Tobacco mosaic virus 

(TMV) (Acc. No. AY313136) was used as an outgroup. The bootstrapping and branch 

length values are above and below the joining lines. 

Ⅱ 

ⅠA 

BⅠ  

Out-group 
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                 1                               13                                      28                                                          50 

A  
                51                                                                                                                                   100 

B  
                 101                                                                                                                                  150 

C  
                151                                                                                                                                 200 

D  
201                                              219 

E  

Fig.3 Amino acid sequence alignment(A, B, C, D, E block) of coat protein of 5 CMV isolates with 

that of CMV strains of subgroups I (A and B), II using MEGA v4.1. 
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Table 2 Comparison of percent nucleotide sequence(below diagonal),the deduced amino acid 

identities(above diagonal) and sequence identities of the coat protein gene of CMV with sequences 

of other CMV(sequence comparisons were performed with DNAstar program) 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 97.2 98.2 96.8 95.4 96.3D00462 * 98.6 96.3 96.8 97.7 93.1 81.2 81.7 79.4 17.6

2 98.6 99.5 98.2 96.8 97.7D10538 98.7 * 97.7 98.2 99.1 94.5 82.6 83 80.7 17.6

3 97.2 97.2 96.8 96.3 96.3D28487 96.3 96.7 * 96.8 97.7 93.1 82.6 83 80.7 17.6

4 94.4 94.8 94.1 98.6 99.5 95.9BJ tomato * 99.1 99.5 98.2 99.1 82.6 83 80.7 17.6

5 94.5 95 92.4 98.6 99.5 95.0TA 93.6 * 98.6 97.3 98.2 82.1 82.6 80.3 17.6

6 94.1 94.5 93.8 99.1 99.1 95.4SG 98 93.6 * 97.7 99.5 82.1 82.6 80.3 17.6

TA 

cucumber 7 93.8 94.2 93.2 96.8 97.7 94.094.2 94.5 94.2 * 97.3 82.1 82.6 80.3 17.6

8 93.9 94.4 93.6 98.6 98.6 95.0TA tobacco 97.4 93.8 97.6 93.8 * 82.1 82.6 80.3 17.6

9 94.8 93.9 95.1 94.2 95 D42079 92.2 92.5 92.6 * 99.1 94.5 81.7 82.1 79.8 17.6

10 95 96.3 95 97.1 94.8Y16926 91.7 92.8 92.2 92.4 * 95.4 82.6 83 80.7 17.6

11 94.4 91.9 94.1 90.9 94.4D49496 90.2 91.4 91.0 90.9 92.2 * 80.7 81.2 78.9 15.1

12 AB006813 73.5 75.3 74.9 78.2 77 77.8 77.5 77.5 75.3 75.7 74.4 * 99.5 97.7 15.7

13 M21464 73.5 75.3 74.6 78.5 77.2 78.1 77.6 77.8 74.6 74.9 73.7 98.6 * 97.2 15.7

14 L15336 72.9 74.6 74 77.5 76.1 77 76.6 76.7 74.1 75 74.3 98.7 98.4 * 13.8

4 15 AY313136 46.2 47 46.2 39.6 41.8 40.4 1.6 43.8 47.5 46.8 43.5 42.4 45.6 43.4 * 
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Summary 

Cucumber mosaic virus is one of the most important viruses infected vegetables 

in the field, and is transmitted by aphids in a non-persistent manner in nature. 

Myzus persicae, as the main aphid, can transmit CMV effectively, but 

transmission efficiency is not only affected by aphid, but also virus strains. Here 

we found transmission efficiency is different, although virus strains are not 

affecting on transmission efficiency. 

Keyword: aphid; vegetable; non-persisitent; effective; strain; vector 
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Introduction  

Efficient virus transmission from host plant to another plant by vectors is very 

important. Arthropods could transmit most of plant viruses, especially aphids in 

Hemiptera. Actually, aphids could transmit over 200 plant viruses in a 

non-persistent manner(Nault, 1997), such as Myzus persicae and Cucumber 

mosaic virus (CMV) which is the most common model used in many 

researches(Ali et al., 2006, Akhtar et al., 2010). In a non-persistent manner, plant 

virus particles attach directly to aphid receptors on the maxillary stylet cuticle 

within the common food/salivary canal, where viruses directly bind the receptors 

via a domain of their capsid protein, that is CP strategy used by Cucumoviruses, 

typically CMV(Blanc et al., 2011). 

What influence transmission efficiency of virus are amino acid determinants of 

CP. Five amino acid changes in the coat protein (positions 25, 129, 162, 168, and 

214) of CMV were required to restore efficient transmission by M. persicae and a 

construct with modified amino acids 129, 162 and 168 was efficiently transmitted 

by A. gossypii, but poorly for M. persicae (Perry Keith L. et al., 1998), and amino 

acid determinants for virus transmission have been mapped (Liu et al., 2002). 

Transmission efficiency is not only affected by virus strains, but also aphid 

species, source and recipient plant species, and plant species on which the aphid 

is maintained(Simons, 1957), Different species of aphids transmit CMV with 
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varying efficiencies (Simons, 1959, Normand and Pirone, 1968, Basky and 

Nasser, 1989). But few reports showed effects of geographic differences of same 

aphid species on transmission efficiency of CMV. 

Although there are reports on virus transmission, here we focus on transmission 

efficiency affected by geographic aphid species, virus strains, and finally we hope 

to get a better understanding of the virus-aphid interactions and to propose new 

insight in non-persistent virus transmission control in crop protection. 

Material and methods 

Material  

Virus isolates are from Applied microbiology – Phytopathology, Earth & Life 

Institute, provided by Professor Claude BRAGARD (Table 1). Infected plants, 

Nicotiana tabacum, will be virus source for experiment. 

Myzus persicae are collected from different places in China (Table 1), and raised 

in illuminating incubator (Pisum sativum L ， 22 ℃ ±1 ℃ ， L:D=16:8), 

Agro-Bio-Tech, Universite de Liege. 

Virus Abbreviation  Region 

2012.2 European  

1022 European 

1024 European 

BJ-P Beijing China 
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D1766 Shouguang China 

D1769 Taian China 

D1770 Taian China 

D1772 Shouguang China 

Method  

Gene clone 

Samples were processed with RNA extraction (Invitrogen, RNA extraction kit), 

then with two-step RT-PCR program. The genome sense primer 

5’-YASYTTTDRGGTTCAATTCC-3’ and the antisense primer 

5’-GACTGACCATTTTAGCCG-3’ were used to prime the reaction for CMV 

detection(Choi et al., 1999). DNA Synthesis Supermix (TransGen Biotech, 

Beijing, China) was used for first strand cDNA synthesis. The program of RT 

step consisted of 50℃ (30min), followed 85℃ (5min). Per eppendorf tube 

contained 2.5µl RT product and 22.5 µl mix PCR (PCR reaction buffer 

(Biomed-tech Beijing China), primers, ddH2O). Samples were amplified in a 

thermocycler and the program followed 40 cycle reaction profile involving 

denaturation at 94℃(30 s), primer annealing at 52℃ (30s), extension at 72℃ 

(1min) with a final extension of 72℃(10min).The amplified products were 

analyzed on 1.2% agarose gel electrophoresis in TAE buffer, stained with 

ethidium bromide. The product of PCR fragment was cut from gel and eluted in 

order to clone and gel extraction, then the purified product was subjected to 
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sequencing (Beijing Sunbiotech Co., Ltd.). Sequences data were fed for BLAST 

analysis, which also were analyzed using MEGA v4.1

（ http://www.megasoftware.net/ ） and DNAstar program to structuring 

phylogenetic tree with other sequences that had been present already in the NCBI 

database worldwide and from the same vicinity by accounting standard reference 

of CMV from each subgroup. 

Virus transmission efficiency 

To initiate virus acquisition, aphids are removed from their normal host plant 

species and starved for 2-3 h. Third or fourth-instar nymphs or adults are given a 

5-6 hours - acquisition access period on virus suspension (virus solution + 15% 

sucrose) through a stretched parafilm membrane. After acquisition access period 

(AAP), aphids will be transferred onto virus-free plant seedlings to assess their 

capacity to transmit the virus for overnight. (For each treatment, 10 seedlings are 

infested for a total of 50 seedlings over five replicated experiments.) After 

inoculation, the seedlings will be sprayed with pesticide, placed in a greenhouse, 

and observed for CMV symptoms. The plants are then tested for CMV infection 3 

weeks later using ELISA. The data is analyzed by One-Way ANOVA / Duncan's 

multiple range tests with SPSS.  

Results 

Transmission efficiency of different viruses 

The result (Fig 1) showed that D1772 was transmitted by aphids (M. persicae) 
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better than other viruses, so D1772 is chosen to do next part that is to choose 

good and bad vector from 7 aphids from different places. 

Analysis and discussion  

Transmission efficiency of virus strains 

The sequences of Coat Protein show no special positions (Fig 2), and CMV 

isolates based on the nucleotide alignment using MEGA v5.1 phylogenetic 

analysis (Neighboring Joining Analysis) show that they belong to subgroup IB 

(Fig 3). Although some reports about transmission efficiency of different CMV 

strains transmitted by aphids showed that CMV strains had an effect on aphid 

transmissibility (Ali et al., 2006, Ng et al., 2005, Gildow et al., 2008), it shows 

there are no significant differences among virus strains from Fig. 1. Transmission 

efficiency is different, but there are no significant differences among them. 

And for CMV, D1772 is collected from Shouguang Shandong. And also ST 

clones collected in Taian Shandong near Shouguang have higher transmission 

efficiency than BJ clones collected in Beijing far away from middle of Shandong 

area. It indicates that there are geographic differences between Shandong clones 

and Beijing clones. 

To sum up, we will see that in this study, virus strains have less effects on virus 

transmission. Even transmission efficiency is affected by a number of factors, 

like virus strains, aphid species, source and recipient plant species, and plant 

species on which the aphid is maintained (Simons, 1957), but virus strains in 
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virus transmission are very important, which combined with aphid receptors, 

especially in natural environment for non-persistent virus and the contact 

between them could be the most important part for virus transmission. 
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Figures and tables 
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Fig 1 Transmission efficiency of different virus isolates 
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Fig 2 Alignment of 8 CMV capsid protein gene 
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Fig 3 Phylogenetic analysis of CMV and other CMV isolates based on the nucleotide alignment using MEGA v4.1. 

The bootstrapping and branch length values are above and below the joining lines. 
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General introduction to chapter V 

Aphids are the main vector in most of the detailed studies on virus transmission 

and virus-vector relationships. And according to passing to the vector’s interior, 

the type of transmission divided into two parts, non-persistent transmission, 

including stylet-borne and foregut-borne, and persitant which contains circulative 

and propagetive. Of the over 300 known aphid-borne viruses, most are 

non-persistent, and M. persicae is known to be able to transmit a large number of 

non-persistent viruses, whereas other aphids transmit only one virus. 

Transmission by vectors is usually a complex phenomenon involving interactions 

within the virus, the vector, and the host plant, combined with the effects of 

environmental conditions. In a non-persistent manner, virus particles bind on the 

top of aphid stylet and transmitted in a few minutes, and transmission efficiency 

is affected by a number of factors, like virus strains, aphid species, source and 

recipient plant species, and plant species on which the aphid is maintained 
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Summary 

Cucumber mosaic virus is one of the most important viruses infected vegetables 

in the field, and is transmitted by aphids in a non-persistent manner in nature. 

Myzus persicae, as the main aphid, can transmit CMV effectively, but 

transmission efficiency is not only affected by aphid, but also virus strains. Here 

we found transmission efficiency is different. Different aphids have an effect on it. 

Aphid from peper, Taian Shandong, shows significant difference with other 

aphids (F=5.915, df=8, P < 0.05). 

Keyword: aphid; vegetable; noncirculative; effective; strain; vector 
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Introduction  

Efficient virus transmission from host plant to another plant by vectors is very 

important. Arthropods could transmit most of plant viruses, especially aphids in 

Hemiptera. Actually, aphids could transmit over 200 plant viruses in a 

noncirculative (nonpersistent) manner(Nault, 1997, Bragard et al., 2013), such as 

Myzus persicae and Cucumber mosaic virus (CMV) which is the most common 

model used in many researches(Ali et al., 2006, Akhtar et al., 2010). In a 

noncirculative manner, plant virus particles attach directly to aphid receptors on 

the maxillary stylet cuticle within the common food/salivary canal, where viruses 

directly bind the receptors via a domain of their capsid protein, that is CP strategy 

used by Cucumoviruses, typically CMV(Blanc et al., 2011), and make a loss of 

vegetable crops production. 

Transmission efficiency is not only affected by virus strains, but also aphid 

species, source and recipient plant species, and plant species on which the aphid 

is maintained(Simons, 1957), Different species of aphids transmit CMV with 

varying efficiencies (Simons, 1959, Normand and Pirone, 1968, Basky and 

Nasser, 1989). But few reports showed effects of geographic differences of same 

aphid species on transmission efficiency of CMV. 

Here we focus on transmission efficiency affected by geographic aphid species, 

virus strains, and finally we hope to get a better understanding of the virus-aphid 

interactions and to propose new insight in non-persistent virus transmission 
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control in crop protection. 

Material and methods 

Material  

Virus isolates are from Applied microbiology – Phytopathology, Earth & Life 

Institute, provided by Professor Claude BRAGARD (Below). Infected plants, 

Nicotiana tabacum, will be virus source for experiment. D1772 is collected from 

Shouguang, Shandong, China. 

Myzus persicae are collected from different places in China, and raised in 

illuminating incubator (Pisum sativum L，22℃±1℃，L:D=16:8), Agro-Bio-Tech, 

Universite de Liege. 

Aphid Abbreviations Sources Region 

BJp turnip Beijing 

BJe cabbage Beijing 

STo tobacco Shandong Taian 

BJo tobacco Beijing 

SJp turnip Shandong Jinan 

STp turnip Shandong Taian 

STe cabbage Shandong Taian 

Method  

Virus transmission efficiency 
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To initiate virus acquisition, aphids are removed from their normal host plant 

species and starved for 2-3 h. Third or fourth-instar nymphs or adults are given a 

5-6 hours - acquisition access period on virus suspension (virus solution + 15% 

sucrose) through a stretched parafilm membrane. After acquisition access period 

(AAP), aphids will be transferred onto virus-free plant seedlings to assess their 

capacity to transmit the virus for overnight. (For each treatment, 10 seedlings are 

infested for a total of 50 seedlings over five replicated experiments.) After 

inoculation, the seedlings will be sprayed with pesticide, placed in a greenhouse, 

and observed for CMV symptoms. The plants are then tested for CMV infection 3 

weeks later using ELISA. The data is analyzed by One-Way ANOVA / Duncan's 

multiple range tests with SPSS.  

Detection of endosymbiotic bacteria in Myzus persicae. 

DNA will be extracted from M. persicae with kits (Promega DNA extract kit), 

and then will be amplified with PCR program (Tsuchida et al). Finally, we will 

see clear bands on gel. 

Results 

ST turnip (STp) is higher than other clones of aphids (Fig 1), and also it showed 

significant differences between STp and other clones of aphids expect ST 

cabbage (STe) from results of statistical analysis (F=5.915, df=8, P < 0.05). No 

significant differences were detected among other clones (F=3.226, df=5, P > 

0.05). Base on the same host plant from different geographic areas, the result 
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shows that STp is the highest aphid from turnip to transmit CMV, and other two 

aphids, BJp and SJp, have lower transmission efficiency. And for cabbage and 

tobacco, although Ste has higher transmission efficiency than BJe, there are no 

significant differences (BJe and Ste, BJo and STo). Base on the same geographic 

area, aphid from turnip transmit virus more effective than other vegetables. 

The essential intracellular symbiotic bacterium Buchnera was detected in all the 

strains examined, also Rickettsia (16SrDNA), while others bacteria were not 

detected at all. Spiroplasma is not found only in BJ-tobacco. PAUS in ST-turnip, 

JN-turnip, BJ-turnip, BJ-cabbage and PASS (16SrDNA) ST-turnip, BJ-tobacco, 

JN-turnip, ST-tobacco are not found. Rickettsia (Citrate) just exists in BJ-turnip. 

There is no connection between virus transmission with endosymbionts. 

Discussion and conclusions  

Even reports have proved that M. persicae is one of the best vector to transmit 

CMV (Perry Keith L. et al., 1998), but few study is on transmission efficiency of 

geographical population of aphid. Here we found transmission efficiency is 

different. Aphids from different places have an effect on it. Aphid from peper, 

Taian Shandong, shows significant difference with other aphids (F=5.915, df=8, 

P < 0.05) 

For transmission efficiency of different aphids, it was divided into two parts 

because it is hard to manage numbers of plants. BJp, BJe and STo are in first part, 

and others are in next part. All parts had been done in one week. From the results, 
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it showed that aphids from Shandong area had high efficient transmission than 

others, expect STo. But this clone of aphid was raised in Beijing collected from 

tobacco in Shandong in 2010. Maybe it changed in two years and just was similar 

with BJo. 

And for CMV, D1772 is collected from Shouguang Shandong. And also ST 

clones collected in Taian Shandong near Shouguang have higher transmission 

efficiency than BJ clones collected in Beijing far away from middle of Shandong 

area. It indicates that there are geographic differences between Shandong clones 

and Beijing clones. 

To sum up, we will see that in this study, aphids have more effects on virus 

transmission than virus strains. Even transmission efficiency is affected by a 

number of factors, like virus strains, aphid species, source and recipient plant 

species, and plant species on which the aphid is maintained (Simons, 1957), but 

vectors in virus transmission are very important, which can transmit virus 

helpfully, especially in natural environment for non-persistent virus and the 

contact between them could be the most important part for virus transmission. 
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Fig 1 Transmission efficiency of aphid clones. The data in the table are mean ± SE. 

Different letters in the same measuring parameters mean significant difference at 0.05 

leve1 detected by One-Way ANOVA / Duncan's multiple range test. 

 
Table 3 detection of symbiotic bacteria 

Myzus persicae from different places Target 
symbionts 

Target 
gene ST-turnip BJ-tobacco JN-turnip BJ-turnip BJ-cabbage ST-cabbage ST-tobacco

Buchnera  16SrDNA 1 1 1 1 1 1 1 
PASS  16SrDNA - - - 1 1 1 - 

groEL  - - - - - - - 
PAUS  16SrDNA - 1 - - - 1 1 
PABS 16SrDNA - - - - - - - 
Rickettsia 16SrDNA 1 1 1 1 1 1 1 

Citrate - - - 1 - - - 
Spiroplasma 16SrDNA 1 - 1 1 1 1 1 

dnaA - - - - - - - 
Wolbachia sp. wsp - - - - - - - 
Arsenophonus 
sp. 

16SrDNA - - - - - - - 
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General introduction to chapter VI 

Management of vector-borne plant diseases has presented a challenge because of 

complex dynamics and interactions of host plants, vectors and viruses within 

natural environment. As we know, viruses are transmitted by invertebrate vectors 

especially by kinds of aphids in nature more than other ways and as generally 

with insecticides used to control pest population, greater knowledge of the modes 

of action and activity profiles of insecticides will improve opportunities for 

controlling vector populations and mitigating virus transmission from one plant 

to another. In recent years, selecting a particular insecticide treatment has 

expanded considerably which as more selective modes of action have been 

developed. Plant lectins have been known for a longer time. Lectins as defense 

proteins in plants are present in large quantities in storage organs and seeds that 

are especially vulnerable to pathogens or pest insects. Numerous reports in recent 

years have shown that lectins are toxic to various pest insects belonging to 

economically important insects such as Lepidoptera, Coleoptera, Diptera or 

Hemiptera in genetic engineered plants or artificial diets with lectins, which is 

negatively affect the performance of pest insects. 
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Abstract 

Plant lectins have been known to be defense proteins in plants to pest insects. 

Artificial diet of virus solution with lectins has been provide to Myzus persicae in 

order to test virus transmission, which shows that lectins have an effect on virus 

transmission by aphids, lower than control. And the inhibition rates are all above 

50%, which means it is negative for virus transmission. 

Keyword: lectin; negative; virus transmission; aphid 
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Introduction  

Management of vector-borne plant diseases has presented a challenge because of 

complex dynamics and interactions of host plants, vectors and viruses within 

natural environment. As we know viruses are transmitted by invertebrate vectors 

especially by kinds of aphids in nature more than other ways and as generally 

with insecticides used to control pest population, greater knowledge of the modes 

of action and activity profiles of insecticides will improve opportunities for 

controlling vector populations and mitigating virus transmission from one plant 

to another. In recent years, selecting a particular insecticide treatment has 

expanded considerably which as more selective modes of action have been 

developed.  

Plant lectins have been known for a longer time. Lectins as defense proteins in 

plants are present in large quantities in storage organs and seeds that are 

especially vulnerable to pathogens or pest insects (Peumans and Van Damme, 

1995). Numerous reports in recent years have shown that lectins are toxic to 

various pest insects belonging to economically important insects such as 

Lepidoptera, Coleoptera, Diptera or Hemiptera in genetic engineered plants or 

artificial diets with lectins, which are negatively affect the performance of pest 

insects. In the last decades, some plant lectins were shown to be toxic to several 

aphids. There are several lectin families, as follows. 

GNA-related lectins 
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Galanthus Nivalis Agglutinin (GNA) purified from snowdrop bulbs is probably 

the best studied plant lectin that specifically binds to terminal mannose residues 

from highmannose N-glycans which were shown to occur very frequently on 

insect glycoproteins (Schachter, 2009). It has shown to be toxic to pest insects in 

Hemiptera, and has been successfully engineered into a variety of crops including 

sugarcane, rice, wheat, potatoes and tobacco to make them have higher resistance 

against pest insects. Report showed that transgenic wheat plants were shown to 

be severe entomotoxic on development and survival of the grain aphid (Sitobion 

avenae) (Stoger et al., 1999). Also, a phloem-specific GNA expression enhanced 

resistance to corn leaf aphid under greenhouse conditions and in field evaluation 

(Wang et al., 2005).  

Legume lectins 

The legume lectins are a large family of homologous carbohydrate binding 

proteins that are found in the seeds of most legume plants (Sharon and Lis, 1990, 

Loris et al., 1998). The mannose-binding legume lectin from jackbean 

concanavalin A (ConA) was shown to be toxic to M. persicae (Gatehouse et al., 

1999), and also A. pisum (Sauvion et al., 2004). And when ConA and Pisum 

sativum agglutinin (PSA) were studied towards the Hemipteran planthopper, 

ConA showed significant antimetabolic effects towards nymphs of taro 

planthopper (Tarophagous proserpina Kirkaldy) whilst PSA showed no 

significant effects toward the insect (Powell, 2001), although lectins have a 

similar binding specificity. It shows that a specific plant lectin maybe not active 
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against a given pest insect or a non-target insect (Vandenborre et al., 2011). 

Although PSA has been reported to be toxic to A. pisum(Rahbé et al., 1995), there 

are no reports that PSA is not toxic to other aphids, so maybe it also works on 

other aphids or not. 

Hevein-like lectins 

Hevein-like plant lectins have been studied for their entomotoxic properties. 

Wheat germ agglutinin (WGA) is an N-acetyl glucosamine-specific lectin known 

to have insecticidal activity in this family. Although WGA was shown to be very 

active against insects of Lepidopteran and Coleoptera, there are few reports about 

hevein-like proteins towards Hemipteran insects. There is Hessian fly responsive 

3 (HFR-3) which has sequence similarity and similar chitin-binding activity to 

WGA, and it showed to be toxic to Sitobion avenae, but WGA almost not (Pyati 

et al., 2012). 

To sum up, there are few reports on effects of GNA, PLA and WGA on virus 

transmission by aphid. So we put three lectins into Cucumber mosaic virus - M. 

persicae - plant model, to show effects of these three lectins on transmission. 

Material and methods 

Virus isolates are from Applied microbiology – Phytopathology, Earth & Life 

Institute, provided by Professor Claude BRAGARD (Table 1). Infected plants, 

Nicotiana tabacum, will be virus source for experiment. 
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Myzus persicae are collected from different places in China (Table 1), and raised 

in illuminating incubator (Pisum sativum L ， 22℃±1℃ ， L:D=16:8), 

Agro-Bio-Tech, Universite de Liege. And also lectins are provided, Galanthus 

Nivalis Agglutinin (GNA), Pisum sativum agglutinin (PSA), Wheat germ 

agglutinin (WGA). 

Aphid Virus 

Abbreviations Sources Region Abbreviation Region 

BJo tobacco Beijing D1772    Shouguang 

China 

STp turnip Shandong 

Taian 

 

Method  

Virus transmission efficiency 

To initiate virus acquisition, aphids are removed from their normal host plant 

species and starved for 2-3 h. Third or fourth-instar nymphs or adults are given a 

5-6 hours - acquisition access period on virus suspension with lectins (GNA, 

WGA, PSA) (virus solution + 15% sucrose + 0.05% lectin) through a stretched 

parafilm membrane. After acquisition access period (AAP), aphids will be 

transferred onto virus-free plant seedlings to assess their capacity to transmit the 

virus for overnight. (For each treatment, 10 seedlings are infested for a total of 50 

seedlings over five replicated experiments.) After inoculation, the seedlings will 

be sprayed with pesticide, placed in a greenhouse, and observed for CMV 

symptoms. The plants are then tested for CMV infection 3 weeks later using 
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ELISA. Virus suspension without lectins is for the control. The data is analyzed 

by One-Way ANOVA / Duncan's multiple range tests with SPSS.  

Inhibition rate of different lectins 

According to inhibition rate, (control - treat)/control, the results will be analysed. 

Results 

Controls of percentage (24±4.00%, 12±4.90%) are higher than treatments of 

antificial diet with lectins (GNA, WGA and PSA). And the inhibition rate of each 

lectin is more than 50%. For each aphid, treatment of lectins is different. 

Percentage of aphid ST turnip is higher than aphid BJ tobacco (Fig 1), so the 

inhibition is opposite (Fig 2). 

Discussion 

Feeding with artificial diets clearly showed that GNA, WGA and PSA had a 

negative effect on the development of aphid. Also result showed that aphids fed 

on artificial diet with these three lectins had an effect on virus transmission. It 

means lectins reduced the transmission efficiency of virus transmitted by aphids. 

Inhibition rate are all above 50%. Although many lectins are showed to have 

clear entomotoxic properties, at this moment it remains very difficult to predict 

whether a specific plant lectin will be active against a given pest insect and/or 

non-target insect. Such as WGA which belongs to Hevein-related lectins will 

bind to carbohydrate structures such as the chitin-microfibrils in the peritrophic 
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membrane (PM)(Vandenborre et al., 2011), and Hemipteran insects lack a 

functional PM in their midgut in contrast to insect species belonging to the order 

of Lepidoptera or Coleoptera, but the result showed the effect is negative. It may 

be due to different reasons. 
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Chapter VII: General conclusions 
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The control of virus diseases transmitted in a non-persistent manner by aphids 

should be one task to avoid prophylactic pesticide treatments to prevent virus 

spread, importantly continuous threat. We focus on transmission efficiency 

affected by geographic aphid species, virus strains, and effects of lectins, and 

finally we hope to get a better understanding of the virus-aphid interactions and 

to improve virus and aphid control in non-persistent virus transmission in crop 

protection. 

1) Molecular characterization of coat protein of Cucumber Mosaic Virus 

(CMV) 

Conclusion：CMV isolates based on the nucleotide alignment using MEGA v5.1 

phylogenetic analysis (Neighboring Joining Analysis) show that they belong to 

subgroup IB. Studies on genetic structure and diversity would be important to 

help in better understanding the evolutionary mechanisms that generate and/or 

maintain variation in viral populations and their evolution, and also can be used 

to develop transgenic geraniums that will be useful for the growers 

2) Transmission efficiency of different strains of CMV by Myzus persicae 

Conclusion：D1772 (CMV) is transmitted by aphids (M. persicae) better than 

other viruses, so D1772 is chosen to do next part that is to choose good and bad 

vector from 7 aphids from different places. Virus strains have less effect on virus 

transmission. Even transmission efficiency is affected by a number of factors, 

like virus strains, aphid species, source and recipient plant species, and plant 
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species on which the aphid is maintained, but virus strains in virus transmission 

are very important, which combined with aphid receptors, especially in natural 

environment for non-persistent virus and the contact between them could be the 

most important part for virus transmission. 

3) Transmission efficiency of D1772 by different clones of aphids 

Conclusion: ST turnip (STp) is higher than other clones of aphids, and also it 

shows significant differences between STp and other clones of aphids expect ST 

cabbage (STe) from results of statistical analysis (F=5.915, df=8, P < 0.05). No 

significant differences are detected among other clones (F=3.226, df=5, P > 0.05). 

For transmission efficiency of different aphids, it was divided into two parts 

because it is hard to manage numbers of plants. BJp, BJe and STo are in first part, 

and others are in next part. All parts had been done in one week. From the results, 

it showed that aphids from Shandong area had high efficient transmission than 

others, expect STo. But this clone of aphid was raised in Beijing collected from 

tobacco in Shandong in 2010. Maybe it changed in two years and just was similar 

with BJo. And compare with conclusion 2, we will see aphids have more effects 

on virus transmission than virus strains. 

4)  Detection of endosymbiotic bacteria in Myzus persicae. 

Conclusion：The essential intracellular symbiotic bacterium Buchnera was 

detected in all the strains examined, also Rickettsia (16SrDNA), while others 

bacteria were not detected at all. Spiroplasma is not found only in BJ-tobacco. 
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PAUS in ST-turnip, JN-turnip, BJ-turnip, BJ-cabbage and PASS (16SrDNA) 

ST-turnip, BJ-tobacco, JN-turnip, ST-tobacco are not found. Rickettsia (Citrate) 

just exists in BJ-turnip.  

5) Effects of lectins on virus transmission 

Conclusion：Galanthus nivalis agglutinin (GNA), Wheat germ agglutinin (WGA) 

and Pisum sativum lectin (PSL) had a negative effect on the development of 

aphid. Also result showed that artificial diet with these three lectins to feed aphids 

had an effect on virus transmission. It means lectins reduced the transmission 

efficiency of virus transmitted by aphids. Inhibition rate are all above 50%. 

Indeed, according to this study, we could partly and reasonably combine those 

strategies of strains diversity, aphids on virus transmission and effects of lectins 

to regulate and control the population of vegetable aphids in order to regralute the 

stability of agricultural system, and will be useful and convenient for farmers. 
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