

- 2 Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris-Meudon, France
- 3 Docotrant, Boursier F.R.I.A.

Abstract

Université

de Liège

Corot and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. An important question comes from the observation of mixed modes : When during the star's ascension on the RGB are mixed-modes more likely to be detectable ? We compute the power spectra of three red giant branch models of 1.5 M \odot (typical of CoRoT and Kepler targets). The theoretical mode lifetimes are computed with a non-radial non-adiabatic pulsation code including time-dependent convection. Then we computed the oscillation amplitudes through a stochastic excitation model. We found that for the first two models mixed-modes are detectable. This is no longer the case for the third model (higher on the RGB) because of a high radiative damping.

Method : Stellar models are computed

Models : We focus on 3 models on the RGB.

Lifetimes :

The TDC treatement involves a β complex parameter in the closure term of the perturbed energy equation. It is adjusted so that the depression of the damping rates occure at ν_{max} (Belkacem et al 2012) Lifetimes are given by the inverse of damping rates.

with the code ATON (Ventura et al 2008) using MLT for the treatment of the convection with $\alpha_{MLT} = 1.9$

Non-adiabatic oscillations are modeled with the code MAD (Dupret 2002) including a nonlocal, time-dependant treatment of the convection (TDC, Grigahcène et al 2005)

Amplitudes are computed using a stochastic excitation model (Samadi & Goupil 2001) with solar parameters for the description of the turbulence.

 $\left(\mathsf{B} \right)$

Heights

To compute the height (H) of a mode we have to distinguish resolved and unresolved modes.

For resolved modes : $\tau < T_{obs}/2$ $H = V^2(R) * \tau$ For unresolved modes : $\tau \geq T_{obs}/2$

 $H = V^2(R) * T_{obs}/2$

where V(r) is the amplitude of the oscillation at the surface, τ the lifetime of the mode and T_{obs} the duration of observations We used $T_{obs} = 150$ days, which corresponds to a CoRoT long run.

All our results extend the tendencies found by Dupret et al 2009 to lower stellar masses, more representative of the mass range of CoRot and Kepler targets.

Model A : Lifetimes are modulated by the inertia because there is no radiative damping in this model and mixed-modes are detectable.

Modes have a large period spacing.

Model B: Lifetimes are still modulated by inertia except for the I=2 low frequency g-types modes. This is due to a non negligeable radiative damping. This damping is still low enough to have detectables mixed-modes in the power sepctra. Modes have a smaller periodspacing because of a higher density contrast between the core and the envelope.

Model C : There is a very important radiative damping for all modes except those strongly trapped in the envelope. No mixed-modes are detectable in this model.

Conclusion : On the red-giant branch mixed-modes are detectable until the radiative damping becomes too important. For 1.5 M_o stars on the RGB and with 150 days of observations mixed-modes are detcteable for stars with $|
u_{max} \ge 98 \; \mu Hz$ and $|\Delta
u \ge 8.3 \; \mu HZ$

Belkacem,K., Samadi,R., Goupil,M.J. & Dupret,M.A., 2008, A&A, 478, 163 Belkacem,K., Dupret,M.A., Baudin,F., Appourchaux,T., Marques,J.P. & Samadi,R., 2012, A&A, 540 Dupret, M.A. 2002, Bull. Soc. Roy. Sc. Liège, 5, 249 Dupret, M.A., Belkacem, K., Samadi, R., Montalban, J. et al., 2009, A&A, 506, 57 Montalban, J., Miglio.A., Noels.A, Scuflaire.R, Ventura.P, 2010, AN, 331, 1010

Montalban, J., Miglio.A., Noels.A, Scuflaire.R, Ventura.P, 2010, ApJ, 721, 182 Grigahcène, A., Dupret, M.A., Gabriel, M., Garrido, R. & Scufflaire, R. 2005, A&A, 434, 1055 Ventura, P. D'Antona, F. & Mazzitelli, I., 2008, Ap&SS, 316, 93 Samadi,R., Goupil,M.J. 2001, A&A, 370, 136