
Contributions to Monte-Carlo

Search

David Lupien St-Pierre

Montefiore Institute

Liège University

A thesis submitted for the degree of

PhD in Engineering

2013 June

dlspierre@ulg.ac.be
http://www.montefiore.ulg.ac.be/
http://www.ulg.ac.be/cms/c_5000/home

ii

Acknowledgements

First and foremost, I would like to express my deepest gratitude and appre-

ciation to Prof. Quentin Louveaux, for offering me the opportunity to do

research at the University of Liège. Along these three years, he proved to

be a great collaborator on many scientific and human aspects. The present

work is mostly due to his support, patience, enthusiasm and creativity.

I would like to extend my deepest thanks to Prof. Damien Ernst for his up

to the point suggestions and advices regarding every research contribution

reported in this dissertation. His remarkable talent and research experience

have been very valuable at every stage of this research.

My deepest gratitude also goes to Dr. Francis Maes for being such an

inspiration in research, for his suggestions and for his enthusiasm.

A special acknowledgment to Prof. Olivier Teytaud, who was always very

supportive and helped me focus on the right ideas. I cannot count the

number of fruitful discussions that resulted from his deep understanding of

this work. More than this, I am glad to have met somebody with an equal

passion for games.

I also address my warmest thanks to all the SYSTMOD research unit, the

Department of Electrical Engineering and Computer Science, the GIGA

and the University of Liege, where I found a friendly and a stimulating

research environment. A special mention to François Schnitzler, Laurent

Poirrier, Raphael Fonteneau, Stéphane Lens, Etienne Michel, Guy Lejeune,

Julien Becker, Gilles Louppe, Anne Collard, Samuel Hiard, Firas Safadi,

Laura Trotta and many other colleagues and friends from Monteore and

the GIGA that I forgot to mention here. I also would like to thank the

administrative staff of the University of Liege and, in particular, Charline

Ledent-De Baets and Diane Zander for their help.

Many thanks to the members of the jury for carefully reading this disserta-

tion and for their advice to improve its quality.

To you Zhen Wu, no words can express how grateful I feel for your uncon-

ditional support. Thank you for everything.

David Lupien St-Pierre

Liège,

June 2013

Abstract

This research is motivated by improving decision making under uncertainty

and in particular for games and symbolic regression. The present disser-

tation gathers research contributions in the field of Monte Carlo Search.

These contributions are focused around the selection, the simulation and

the recommendation policies. Moreover, we develop a methodology to au-

tomatically generate an MCS algorithm for a given problem.

For the selection policy, in most of the bandit literature, it is assumed that

there is no structure or similarities between arms. Thus each arm is in-

dependent from one another. In several instances however, arms can be

closely related. We show both theoretically and empirically, that a signifi-

cant improvement over the state-of-the-art selection policies is possible.

For the contribution on simulation policy, we focus on the symbolic regres-

sion problem and ponder on how to consistently generate different expres-

sions by changing the probability to draw each symbol. We formalize the

situation into an optimization problem and try different approaches. We

show a clear improvement in the sampling process for any length. We fur-

ther test the best approach by embedding it into a MCS algorithm and it

still shows an improvement.

For the contribution on recommendation policy, we study the most common

in combination with selection policies. A good recommendation policy is a

policy that works well with a given selection policy. We show that there is

a trend that seems to favor a robust recommendation policy over a riskier

one.

We also present a contribution where we automatically generate several

MCS algorithms from a list of core components upon which most MCS

algorithms are built upon and compare them to generic algorithms. The

results show that it often enables discovering new variants of MCS that

significantly outperform generic MCS algorithms.

iv

Contents

1 Introduction 1

1.1 Monte Carlo Search . 2

1.2 Multi-armed bandit problem . 3

1.2.1 Computing rewards . 3

1.3 MCS algorithms . 5

1.4 Selection Policy . 6

1.5 Simulation Policy . 7

1.6 Recommendation Policy . 8

1.7 Automatic MCS Algorithms Generation 9

2 Overview of Existing Selection Policies 11

2.1 Introduction . 11

2.2 The game of Tron . 13

2.2.1 Game description . 13

2.2.2 Game complexity . 14

2.2.3 Previous work . 15

2.3 Simultaneous Monte-Carlo Tree Search 16

2.3.1 Monte-Carlo Tree Search . 16

2.3.1.1 Selection . 16

2.3.1.2 Expansion . 16

2.3.1.3 Simulation . 17

2.3.1.4 Backpropagation . 17

2.3.2 Simultaneous moves . 17

2.4 Selection policies . 19

2.4.1 Deterministic selection policies 19

v

CONTENTS

2.4.1.1 UCB1 . 20

2.4.1.2 UCB1-Tuned . 20

2.4.1.3 UCB-V . 21

2.4.1.4 UCB-Minimal . 21

2.4.1.5 OMC-Deterministic . 22

2.4.1.6 MOSS . 22

2.4.2 Stochastic selection policies . 22

2.4.2.1 Random . 23

2.4.2.2 εn-greedy . 23

2.4.2.3 Thompson Sampling . 23

2.4.2.4 EXP3 . 24

2.4.2.5 OMC-Stochastic . 24

2.4.2.6 PBBM . 25

2.5 Experiments . 25

2.5.1 Simulation heuristic . 25

2.5.2 Tuning parameter . 26

2.5.3 Results . 27

2.6 Conclusion . 31

3 Selection Policy with Information Sharing for Adversarial Bandit 33

3.1 Introduction . 33

3.2 Problem Statement . 34

3.2.1 Nash Equilibrium . 35

3.2.2 Generic Bandit Algorithm . 35

3.2.3 Problem Statement . 36

3.3 Selection Policies and Updating rules . 37

3.3.1 EXP3 . 37

3.3.2 TEXP3 . 38

3.3.3 Structured EXP3 . 38

3.4 Theoretical Evaluation . 39

3.5 Experiments . 44

3.5.1 Artificial experiments . 44

3.5.2 Urban Rivals . 46

vi

CONTENTS

3.6 Conclusion . 48

4 Simulation Policy for Symbolic Regression 49

4.1 Introduction . 49

4.2 Symbolic Regression . 50

4.3 Problem Formalization . 51

4.3.1 Reverse polish notation . 52

4.3.2 Generative process to sample expressions 54

4.3.3 Problem statement . 55

4.4 Probability set learning . 56

4.4.1 Objective reformulation . 56

4.4.2 Instantiation and gradient computation 59

4.4.3 Proposed algorithm . 60

4.5 Combination of generative procedures 62

4.6 Learning Algorithm for several Probability sets 66

4.6.1 Sampling strategy . 67

4.6.2 Clustering . 67

4.6.2.1 Distances considered . 68

4.6.2.2 Preprocessing . 68

4.6.3 Meta Algorithm . 68

4.7 Experimental results . 68

4.7.1 Sampling Strategy: Medium-scale problems 71

4.7.2 Sampling Strategy: Towards large-scale problems 73

4.7.3 Sampling Strategy: Application to Symbolic Regression 74

4.7.4 Clustering: Parameter study . 77

4.7.5 Clustering: Evaluation . 79

4.8 Conclusion . 80

5 Contribution on Recommendation Policy applied on Metagaming 83

5.1 Introduction . 83

5.2 Recommendation Policy . 84

5.2.1 Formalization of the problem . 84

5.2.2 Terminology, notations, formula 87

5.3 Algorithms . 88

vii

CONTENTS

5.3.1 Algorithms for exploration . 88

5.3.2 Algorithms for final recommendation 89

5.4 Experimental results . 91

5.4.1 One-player case: killall Go . 91

5.4.1.1 7x7 killall Go . 91

5.4.1.2 13x13 killall Go . 93

5.4.2 Two-player case: Sparse Adversarial Bandits for Urban Rivals . . 94

5.5 Conclusions . 96

5.5.1 One-player case . 97

5.5.2 Two-player case . 98

6 Algorithm discovery 101

6.1 Introduction . 101

6.2 Problem statement . 103

6.3 A grammar for Monte-Carlo search algorithms 104

6.3.1 Overall view . 104

6.3.2 Search components . 105

6.3.3 Description of previously proposed algorithms 109

6.4 Bandit-based algorithm discovery . 111

6.4.1 Construction of the algorithm space 112

6.4.2 Bandit-based algorithm discovery 113

6.4.3 Discussion . 114

6.5 Experiments . 115

6.5.1 Protocol . 115

6.5.2 Sudoku . 117

6.5.3 Real Valued Symbolic Regression 122

6.5.4 Morpion Solitaire . 126

6.5.5 Discussion . 127

6.6 Related Work . 129

6.7 Conclusion . 130

7 Conclusion 133

References 135

viii

1

Introduction

I spent the past few years studying only one question: Given a list of choices, how to

select the best one(s)? It is a vast subject that is universal. Think about every time

one takes a decision and the process of taking it. Which beer to buy at the grocery,

which path to take when going to work or more difficult questions such as where to

invest your money (if you have any). Is there an optimal choice? Can we find it? Can

an algorithm do the same?

More specifically, the question that is of particular interest is how to make the

best possible sequence of decisions, a situation commonly encountered in production

planning, facility planning and in games. Games are especially well suited for studying

sequential decisions because you can test every crazy strategy without worrying about

the human cost on top of it. And let us face it, it is usually a lot of fun. Games are

used as a testbed for most of the contributions developed in the different chapters.

To find the best sequence of decisions might be relatively simple for a game like

Tic− Tac− Toe, even to some extent for a game like Chess, but what about modern

board games and video games where you have a gazillion possible sequences of choices

and limited time to decide.

In this thesis we discuss over the general subject of algorithms that take a sequence

of decisions under uncertainty. More specifically, we describe several contributions to

a specific class of algorithms called Monte-Carlo Search (MCS) Algorithms. In the

following we first introduce the notion of MCS algorithms in Section 1.1 and its general

framework in Section 1.2. Section 1.3 describes a classic MCS algorithm. Section 1.4,

1

1. INTRODUCTION

Section 1.5, Section 1.6 and Section 1.7 introduce the different contributions of the

thesis.

1.1 Monte Carlo Search

Monte-Carlo Search derives from Monte-Carlo simulation, which originated in the com-

puter of Los Alamos [1] and consists of a sequence of actions chosen at random. Monte-

Carlo simulations is at the heart of several state-of-the-art applications in diverse fields

such as finance, economics, biology, chemistry, optimization, mathematics and physics

[2, 3, 4, 5] to name a few.

There is no formal definition of Monte-Carlo Search (MCS) algorithms, yet it is

widely understood as a step-by-step procedure (algorithm) that relies on random simu-

lations (Monte Carlo) to extract information (search) from a space. MCS relies heavily

on the multi-armed bandit problem formalization that is introduced in Section 1.2.

What makes it so interesting in contrast to classic search algorithms is that it

does not rely on the knowledge of the problem beforehand. Prior to MCS, algorithms

designed to decide what is the best possible move to execute were mostly relying on an

objective function. An objective function is basically a function designed by an expert

in the field that decides which move is the best. Obviously the main problem with

this approach is that such a function seldom covers every situation encountered, and

the quality of the decision depends on the quality of the expert. Moreover, it is very

difficult to tackle new problems or problems where there is little information available.

MCS algorithms do not suffer from either of these drawbacks. All it requires is

a model of the problem at hand upon which they can execute (a lot of) simulations.

Here lies the strength of these algorithms. It is not in the ability to abstract like the

human brain, but in the raw computational power that computers excel. Computers

can do a lot of simulations very quickly and if needed simulations are suitable for

massive parallelization. More importantly, from an optimization point of view most

MCS algorithms can theoretically converge to the optimal decision given enough time.

Before the description of a well-known MCS algorithms, Section 1.2 first introduces the

underlying framework needed to define the algorithms.

2

1.2 Multi-armed bandit problem

1.2 Multi-armed bandit problem

The multi-armed bandit problem [6, 7, 8, 9] is a framework where one has to decide

which arm to play, how many times and/or in which order. For each arm there is

a reward associated, either deterministic or stochastic, and the objective is (usually)

to maximize the sum of rewards. Here arm is a generic term that can, for example,

represent a possible move in a given game.

Perhaps a simple example of a typical multi-armed bandit problem can help to

explain this framework. Imagine a gambler facing several slot machines. The gambler

objective is to select the slot machine (arm) that allows him to earn as much money

as possible. In other words, the gambler wants to maximize its cumulative reward or

minimize its regret, where the regret is the difference in gain between the best arm

and the one the gambler chose. In terms of games, the multi-armed bandit problem

generally translate into finding the move that leads toward the highest probability of

winning.

In order to do so, the gambler has to try different arms (explore) and then focus

(exploit) on the best one. This example clearly shows the dilemma between exploration

and exploitation. Imagine the gambler with a finite number of coins to spend. He wants

to find quickly the best arm and then select it over and over again. As the gambler

explores, he is more certain about which arm is the best, yet the coins spent exploring

are lost. On the opposite as the gambler exploits an arm, he can expect a specific

reward. He is however less certain about the fact that the he has chosen the best arm.

This dilemma is ever present in decision making and this framework embeds it fairly

well. Figure 1.1 shows a layout representation of a problem with 2 choices (think about

2 slot machines) and the reward is computed through a simulation represented here by

a wavy line. To find the best one, one can simply start from the root (the top node),

select a slot machine and get a reward through simulation. If such a process is repeated

enough times, we can compute the mean reward of each slot machine and finally make

an informed choice.

1.2.1 Computing rewards

From a pragmatic point of view, computing a reward can be a very difficult task. In the

previous example, the reward was rather straightforward to obtain as it was directly

3

1. INTRODUCTION

Figure 1.1: An example of 2 slot machines where the root node (at the top) is the starting

position. Each child represents a slot machine. The wavy line represents the simulation

process to evaluate the value of the reward.

given by the slot machine. However, anyone who played slot machines knows that we

do not win every turn. The best slot machine is the one that makes you win more often

(for a fixed reward). This ratio win/loss can be expressed in terms of probability and

is generally called a stochastic process. Stochasticity is one example that can make a

reward hard to compute. Because from the same initial setting 2 simulations can give 2

different rewards. One can overcome this problem by executing several simulations to

get an approximation of the true value of the reward, yet this increases the complexity

of an algorithm.

Another situation where a reward is difficult to compute can be explained through

an example. Imagine you are in the middle of a Chess game and try to evaluate the

value of a specific move. The reward here is given by the overall probability of winning

(there are others ways to evaluate a reward, this is simply for the sake of the example).

There are no stochastic process in the game of Chess, everything is deterministic, yet

what makes the reward hard to compute is the sheer number of possible sequences of

moves before the end of a game. Because there are so many possible combinations of

moves and the outcome vary greatly from one combination to another, it is difficult to

4

1.3 MCS algorithms

correctly evaluate.

In many games, these two characteristics are present which makes the computation

of a reward a difficult task. There is indeed a possible trade off between knowing the

exact reward and minimizing the complexity of an algorithm, but it is something to

bear in mind throughout this thesis.

1.3 MCS algorithms

In this section we present an iconic algorithm of the MCS class called Monte-Carlo Tree

Search (MCTS). MCTS is interesting because all contributions presented in this thesis

can be related to it.

Monte-Carlo Tree Search is a best-first search algorithm that relies on random

simulations to estimate the value of a move. It collects the results of these random

simulations in a game tree that is incrementally grown in an asymmetric way that favors

exploration of the most promising sequences of moves. This algorithm appeared in

scientific literature in 2006 in three different variants [10, 11, 12] and led to breakthrough

results in computer Go. Computer Go is a term that refers to algorithms playing the

game of Go.

In the context of games, the central data structure in MCTS is the game tree in

which nodes correspond to game states and edges correspond to possible moves. The

role of this tree is two-fold: it stores the outcomes of random simulations and it is used

to bias random simulations towards promising sequences of moves.

MCTS is divided in four main steps that are repeated until the time is up [13]:

Selection This step aims at selecting a node in the tree from which a new random

simulation will be performed.

Expansion If the selected node does not end the game, this step adds a new leaf

node (chosen randomly) to the selected one and selects this new node.

Simulation This step starts from the state associated to the selected leaf node, ex-

ecutes random moves in self-play until the end of the game and returns the result (in

games usually victory, defeat or draw). The use of an adequate simulation strategy can

improve the level of play [14].

5

1. INTRODUCTION

Backpropagation The backpropagation step consists in propagating the result of the

simulation backwards from the leaf node to the root.

Figure 1.2 shows the first three steps.

(a) Selection (b) Expansion (c) Simulation

Figure 1.2: Main steps of MCTS. Figure 1.2(a) shows the selection process. The node

in white represent the selected one. Figure 1.2(b) shows the expansion process. From

the selected node (in white) we simply add one node. Figure 1.2(c) shows the simulation

process (the wavy line) from the newly added node.

1.4 Selection Policy

The selection policy, also termed exploration policy, tree policy or even default policy

depending on the community, is the policy that tackles the exploration exploitation

dilemma within the tree. As its name suggests, it is related to the selection step (see

Figure 1.2). The way this step is performed is essential since it determines in which way

the tree is grown and how the computational budget is allocated to random simulations.

In MCTS, the selection step is performed by traversing the tree recursively from

the root node to a leaf node (a node where not all its children have been explored yet).

At each step of this traversal, we use a selection policy to select one of the child nodes

6

1.5 Simulation Policy

from the current one. It is a key component for the efficiency of an algorithm because

it regulates the trade off between exploration and exploitation.

There exist many different selection policies, yet they can be classified into 2 main

categories: Deterministic and Stochastic. The deterministic policies assign a value

for each possible arm and the selection is based upon a comparison of these values

(generally the arm with the highest value is selected). The stochastic policies assign a

probability to be selected for each arm. Chapter 2 formalizes the notion and studies

the most popular applied to the game of Tron. Our findings are cogent with the current

literature where the deterministic policies perform better than the stochastic ones.

In most of the bandit literature, it is assumed that there is no structure or simi-

larities between arms. Thus each arm are independent from one another. In games

however, arms can be closely related. The reasons for sharing information between

arms are threefold. First, each game possesses a specific set of rules. As such, there

is inherently an underlying structure that allows information sharing. Second, the

sheer number of possible actions can be too large to be efficiently explored. Third,

as mentioned in Section 1.2.1, to get a precise reward can be a difficult task. For in-

stance, it can be time consuming or/and involve highly stochastic processes. Under

such constraints, sharing information between arms seems a legitimate concept. Chap-

ter 3 presents a novel selection policy that makes use of the structure within a game.

The results, both theoretical and empirical, show a significant improvement over the

state-of-the-art selection policies.

1.5 Simulation Policy

The simulation policy is, as its name states, the policy used during the simulation

process (see Figure 1.2). Basically it involves a process that executes random moves

until it reaches the end of a game. The simulation policy is another key component of

a performing algorithm because this is how you extract information from the space.

There can be many forms of randomness. For instance, people usually refer to

uniform distribution when they think about random sampling. A uniform distribution

means that each move has the same chance of being chosen. The initial idea is quite

simple. However, executing random moves with uniform distribution can be somewhat

tricky and introduce bias.

7

1. INTRODUCTION

How come? Instead of using games this time, we take as an example a toy problem

in Symbolic Regression (which can be viewed as a game if we get technical). In short,

Symbolic Regression means to generate expressions (formulas) from symbols. For in-

stance, with a set of symbols {a, b,+,−} and if we draw 3 consecutive symbols, only the

following valid expressions can be created: {a+a, b+b, a−b, b−a, a−a, b−b, a+b, b+a}.
The probability to generate an expression is given by the multiplication of the

probability to draw each symbol. The problem becomes apparent when you take into

account the commutativity, distributivity and associativity property of an expression.

For instance, a − a and b − b are in fact the same expression 0. The same goes for

a + b and b + a. Thus, these 2 expressions are more likely to be randomly sampled

than other expressions. By using a uniform sampling over the symbols, in fact it leads

to a non-uniform sampling of the space. As the problem grows in size, there are a few

expressions that are repeatedly generated and others that are unlikely to be generated.

This simple example shows the importance of a relevant simulation policy.

In Chapter 4, we ponder on how to consistently generate different expressions by

changing the probability to draw each symbol. We formalize the situation into an

optimization problem and try different approaches. When the length of an expression

is relatively small (as in the simple example), it is easy to enumerate all the possible

combinations and validate our answer. However, we are interested into situations where

the length is too big to allow an enumeration (for instance a length of 25 or 30). We

show a clear improvement in the sampling process for any length. We further tested

the approach by embedding it into a MCS algorithm and it still shows an improvement.

1.6 Recommendation Policy

Sometimes the recommendation policy is confused with the selection policy. The dif-

ference is simple. The selection policy is used to gather information. It is designed to

tackle the trade off between exploration and exploitation. Such a trade off does not

exist when it is time to make a decision. Instinctively we usually just go for the best

move found so far.

So, a recommendation policy is the policy to use when we make the actual decision,

which has nothing to do with the strategy of how we gather the information. There is

no unique and universal recommendation policy. Simply put, it depends on what we

8

1.7 Automatic MCS Algorithms Generation

are looking for. For instance, do we want to make a robust (safe) decision, perhaps a

riskier one but with a potentially higher reward or a mix of both ?

In fact, the selection policy and the recommendation policy are mutually dependent.

A good recommendation policy is a policy that works well with a given selection policy.

There are several different strategies of recommendation and Chapter 5 studies the

most common in combination with selection policies. There is a trend that seems to

favor a robust recommendation policy over a riskier one.

1.7 Automatic MCS Algorithms Generation

The development of new MCS algorithms is mostly a manual search process. It usually

requires much human time and is error prone. Remember in Section 1.3 we defined

4 steps, or components, that represent the MCTS algorithm (Selection, Expansion,

Simulation and Backpropagation). In fact, if we take any MCS algorithm it is always

possible to break it down into smaller components. Chapter 6 presents a contribution

where the idea is to first list the core components upon which most MCS algorithms

are built upon.

Second, from this list of core components we automatically generate several MCS

algorithms and propose a methodology based on multi-armed bandits for identifying

the best MCS algorithm(s) for a given problem. The results show that it often enables

discovering new variants of MCS that significantly outperform generic MCS algorithms.

This contribution is significant because it presents an approach to provide a fully cus-

tomized MCS algorithm for a given problem.

9

1. INTRODUCTION

10

2

Overview of Existing Selection

Policies

2.1 Introduction

In this chapter we study the performance of different selection policies applied onto

an MCTS framework when the time allowed to gather information is rather small

(typically only a few hundred millisecond). This is an important question because

it requires efficient selection policies to gather the relevant information as rapidly as

possible.

Games provide a popular and challenging platform for research in Artificial Intelli-

gence (AI). Traditionally, the wide majority of work in this field focuses on turn-based

deterministic games such as Checkers [15], Chess [16] and Go [17]. These games are

characterized by the availability of a long thinking time (e.g. several minutes), making

it possible to develop large game trees before deciding which move to execute. Among

the techniques to develop such game trees, Monte-Carlo tree search (MCTS) is probably

the most important breakthrough of the last decade. This approach, which combines

the precision of tree-search with the generality of random simulations, has shown spec-

tacular successes in computer Go [12] and is now a method of choice for General Game

Playing (GGP) [18].

In recent years, the field has seen a growing interest for real-time games such as Tron

[19] and Miss Pac-Man [20], which typically involve short thinking times (e.g. 100 ms

per turn). Due to the real-time constraint, MCTS algorithms can only make a limited

11

2. OVERVIEW OF EXISTING SELECTION POLICIES

number of game simulations, which is typically several orders of magnitude less than

the number of simulations used in Go. In addition to the real-time constraint, real-

time video games are usually characterized by uncertainty, massive branching factors,

simultaneous moves and open-endedness. In this chapter, we focus on the game Tron,

for which simultaneous moves play a crucial role.

Applying MCTS to Tron was first proposed in [19], where the authors apply the

generic Upper Confidence bounds applied to Trees (UCT) algorithm to play this game.

In [21], several heuristics specifically designed for Tron are proposed to improve upon

the generic UCT algorithm. In both cases, the authors rely on the original UCT

algorithm that was designed for turn-based games. The simultaneous property of the

game is simply ignored. They use the algorithm as if players would take turn to play.

It is shown in [21] that this approximation generates artefacts, especially during the

last turns of a game. To reduce these artefacts, the authors propose a different way of

computing the set of valid moves, while still relying on the turn-based UCT algorithm.

In this chapter, we focus on variants of MCTS that explicitly take simultaneous

moves into account by only considering joint moves of both players. Adapting UCT

in this way has first been proposed by [22], with an illustration of the approach on

Rock-paper-scissors, a simple one-step simultaneous two-player game. Recently, the

authors of [23] proposed to use a stochastic selection policy specifically designed for

simultaneous two-player games: EXP3. They show that this stochastic selection policy

enables to outperform UCT on Urban Rivals, a partially observable internet card game.

The combination of simultaneous moves and short thinking time creates a unusual

setting for MCTS algorithms and has received little attention so far. On one side,

treating moves as simultaneous increases the branching factor and, on the other side,

the short thinking time limits the number of simulations that can be performed during

one turn. Algorithms such as UCT rely on a multi-armed bandit policy to select which

simulations to draw next. Traditional policies (e.g. UCB1) have been designed to

reach good asymptotic behavior [24]. In our case, since the ratio between the number

of simulations and the number of arms is relatively low, we may be far from reaching

this asymptotic regime, which makes it legitimate to wonder how other selection policies

would behave in this particular setting.

This chapter provides an extensive comparison of selection policies for MCTS ap-

plied to the simultaneous two-player real-time game Tron. We consider six deterministic

12

2.2 The game of Tron

selection policies (UCB1, UCB1-Tuned, UCB-V, UCB-Minimal, OMC-Deterministic

and MOSS) and six stochastic selection policies (εn-greedy, EXP3, Thompson Sam-

pling, OMC-Stochastic, PBBM and Random). While some of these policies have al-

ready been proposed for Tron (UCB1, UCB1-Tuned), for MCTS (OMC-Deterministic,

OMC-Stochastic, PBBM) or for simultaneous two-player games (εn-greedy, EXP3), we

also introduce four policies that, to the knowledge of the authors, have not been tried

yet in combination with MCTS: UCB-Minimal is a recently introduced policy that

was found through automatic discovery of good policies on multi-armed bandit prob-

lems [25], UCB-V is a policy that uses the estimated variance to obtain tighter upper

bounds [26], Thompson Sampling is a stochastic policy that has recently been shown

to behave very well on multi-armed bandit problems [27] and MOSS is a deterministic

policy that modifies the upper confidence bound of the UCB1 policy.

The outline of this chapter is as follows. Section 2.1 provides information on the

subject at hand. Section 2.2 first presents a brief description of the game of Tron.

Section 2.3 describes MCTS and details how we adapted MCTS to treat simultaneous

move. Section 2.4 describes the twelve selection policies that we considered in our

comparison. Section 2.5 shows obtained results and, finally, the conclusion and an

outlook of future search are covered in Section 2.6.

2.2 The game of Tron

This section introduces the game Tron, discusses its complexity and reviews previous

AI work for this game.

2.2.1 Game description

The Steven Lisberger’s film Tron was released in 1982 and features a Snake-like game.

This game, illustrated in Figure 2.1, occurs in a virtual world where two motorcycles

move at constant speed making only right angle turns. The two motorcycles leave solid

wall trails behind them that progressively fill the arena, until one player or both crashes

into one of them.

Tron is played on a N ×M grid of cells in which each cell can either be empty or

occupied. Commonly, this grid is a square, i.e. N = M . At each time step, both players

move simultaneously and can only (a) continue straight ahead, (b) turn right or (c)

13

2. OVERVIEW OF EXISTING SELECTION POLICIES

Figure 2.1: Illustration of the game of Tron on a 20× 20 board.

turn left. A player cannot stop moving, each move is typically very fast (e.g. 100 ms per

step) and the game is usually short. The goal is to survive his opponent until he crashes

into a wall. The game can finish in a draw if the two players move at the same position

or if they both crash at the same time. The main strategy consists in attempting to

reduce the movement space of the opponent. For example, in the situation depicted in

Figure 2.1, player 1 has a bigger share of the board and will probably win.

Tron is a finite-length game: the number of steps is upper bounded by N×M
2 . In

practice, the number of moves in a game is often much lower since one of the player

can usually quickly confine his opponent within a small area, leading to a quick end of

the game.

Tron became a popular game implemented in a lot of variants. A well-known

variant is the game “Achtung, die kurve!”, that includes bonuses (lower and faster

speed, passing through the wall, etc.) and curve movements.

2.2.2 Game complexity

Several ways of measuring game complexity have been proposed and studied in game

theory, among which game tree size, game-tree complexity and computational com-

plexity [28]. We discuss here the game-tree complexity of Tron. Since moves occur

simultaneously, each possible pair of moves must be considered when developing a

14

2.2 The game of Tron

node in the game tree. Given that agents have three possible moves (go straight, turn

right and turn left), there exists 32 pairs of moves for each state, hence the branching

factor of the game tree is 9.

We can estimate the mean game-tree complexity by raising the branching factor to

the power of the mean length of games. It is shown in [29], that the following formula

is a reasonable approximation of the average length of the game:

a =
N2

1 + log2N

for a symmetric game N = M . In this chapter, we consider 20 × 20 boards and have

a ' 75. Using this formula, we obtain that the average tree-complexity for Tron on a

20× 20 board is O(1071). If we compare 20× 20 and 32× 32 Tron to some well-known

games, we obtain the following ranking:

Draughts(1054) < Tron20×20(1071) < Chess(10123)

< Tron32×32(10162) < Go19×19(10360)

Tron has been studied in graph and game complexity theory and has been proven

to be PSPACE -complete, i.e. to be a decision problem which can be solved by a Turing

machine using a polynomial amount of space and every other problem that can be

solved in polynomial space can be transformed to it in polynomial time [30, 31, 32].

2.2.3 Previous work

Different techniques have been investigated to build agents for Tron. The authors of

[33, 34] introduced a framework based on evolutionary algorithms and interaction with

human players. At the core of their approach is an Internet server that enables to per-

form agent vs. human games to construct the fitness function used in the evolutionary

algorithm. In the same spirit, [35] proposed to train a neural-network based agent by

using human data. Turn-based MCTS has been introduced in the context of Tron in

[19] and [29] and further developed with domain-specific heuristics in [21].

Tron was used in the 2010 Google AI Challenge, organised by the University of

Waterloo Computer Science Club. The aim of this challenge was to develop the best

agent to play the game using any techniques in a wide range of possible programming

15

2. OVERVIEW OF EXISTING SELECTION POLICIES

languages. The winner of this challenge was Andy Sloane who implemented an Alpha-

Beta algorithm with an evaluation function based on the tree of chambers heuristic1.

2.3 Simultaneous Monte-Carlo Tree Search

This section introduces the variant of MCTS that we use to treat simultaneous moves.

We start with a brief description of the classical MCTS algorithm.

2.3.1 Monte-Carlo Tree Search

Monte-Carlo Tree Search is a best-first search algorithm that relies on random simula-

tions to estimate position values. MCTS collects the results of these random simulations

in a game tree that is incrementally grown in an asymmetric way that favors explo-

ration of the most promising sequences of moves. This algorithm appeared in scientific

literature in 2006 in three different variants [11, 36, 37] and led to breakthrough results

in computer Go. Thanks to the generality of random simulations, MCTS can be applied

to a wide range of problems without requiring any prior knowledge or domain-specific

heuristics. Hence, it became a method of choice in General Game Playing.

The central data structure in MCTS is the game tree in which nodes correspond to

game states and edges correspond to possible moves. The role of this tree is two-fold:

it stores the outcomes of random simulations and it is used to bias random simulations

towards promising sequences of moves.

MCTS is divided in four main steps that are repeated until the time is up [13]:

2.3.1.1 Selection

This step aims at selecting a node in the tree from which a new random simulation will

be performed.

2.3.1.2 Expansion

If the selected node does not end the game, this steps adds a new leaf node to the

selected one and selects this new node.

1http://a1k0n.net/2010/03/04/google-ai-postmortem.html

16

http://a1k0n.net/2010/03/04/google-ai-postmortem.html

2.3 Simultaneous Monte-Carlo Tree Search

2.3.1.3 Simulation

This step starts from the state associated to the selected leaf node, executes random

moves in self-play until the end of the game and returns the following reward: 1 for a

victory, 0 for a defeat or 0.5 for a draw. The use of an adequate simulation strategy

can improve the level of play [14].

2.3.1.4 Backpropagation

The backpropagation step consists in propagating the result of the simulation backwards

from the leaf node to the root.

The main focus of this chapter is on the selection step. The way this step is

performed is essential since it determines in which way the tree is grown and how

the computational budget is allocated to random simulations. It has to deal with

the exploration/exploitation dilemma: exploration consists in trying new sequences of

moves to increase knowledge and exploitation consists in using current knowledge to

bias computational efforts towards promising sequences of moves.

When the computational budget is exhausted, one of the moves is selected based

on the information collected from simulations and contained in the game tree. In this

chapter, we use the strategy called robust child, which consists in choosing the move

that has been most simulated.

2.3.2 Simultaneous moves

In order to properly account for simultaneous moves, we follow a strategy similar to the

one proposed in [22, 23]: instead of selecting a move for the agent, updating the game

state and then selecting an action for its opponent, we select both actions simultane-

ously and independently and then update the state of the game. Since we treat both

moves simultaneously, edges in the game tree are associated to pairs of moves (α, β)

where α denotes the move selected by the agent and β denotes the move selected by

its opponent.

Let N be the set of nodes in the game tree and n0 ∈ N be the root node of the

game tree. Our selection step is detailed in Algorithm 1. It works by traversing the

tree recursively from the root node n0 to a leaf node n ∈ N. We denote by M the set of

possible moves. Each step of this traversal involves selecting moves α ∈M and β ∈M

17

2. OVERVIEW OF EXISTING SELECTION POLICIES

Algorithm 1 Simultaneous two-players selection procedure. The main loop consists

of choosing independently a move for both α and β and select the corresponding child

node.
Require: The root node n0 ∈ N

Require: The selection policy π(·) ∈M

n← n0

while n is not a leaf do

α← π(P agent(n))

β ← π(P opponent(n))

n← child(n, (α, β))

end while

return n

and moving into the corresponding child node, denoted child(n, (α, β)). The selection

of a move is done in two steps: first, a set of statistics P player(n) is extracted from the

game tree to describe the selection problem and then, a selection policy π is invoked

to choose the move given this information. The rest of this section details these two

steps.

For each node n ∈ N, we store the following quantities:

� t(n) is the number of simulations involving node n, which is known as the visit

count of node n.

� r(n) is the empirical mean of the rewards the agent obtained from these sim-

ulations. Note that because it is a one-sum game, the average reward for the

opponent is 1− r(n).

� σ(n) is the empirical standard deviation of the rewards (which is the same for

both players).

Let Lagent(n) ⊂M (resp. Lopponent(n) ⊂M) be the set of legal moves for the agent

(resp. the opponent) in the game state represented by node n. In the case of Tron,

legal moves are those that do not lead to an immediate crash: e.g. turning into an

already existing wall is not a legal move1.

Let player ∈ {agent, opponent}. The function P player(·) computes a vector of statis-

tics S = (m1, r1, σ1, t1, . . . ,mK , rK , σK , tK) describing the selection problem from the

1If the set of legal moves is empty for one of the players, this player loses the game.

18

2.4 Selection policies

point of view of player. In this vector, {m1, . . . ,mK} = Lplayer(n) is the set of valid

moves for the player and ∀k ∈ [1,K], rk, σk and tk are statistics relative to the move

mk. We here describe the statistics computation in the case of P agent(·). Let C(n, α)

be the set of child nodes whose first action is α, i.e. C(n, α) = {child(n, α, β)|β ∈
Lopponent(n)}. For each legal move mk ∈ Lagent(n), we compute:

tk =
∑

n′∈C(n,mk)

t(n′),

rk =

∑
n′∈C(n,mk) t(n

′)r(n′)

tk
,

σk =

∑
n′∈C(n,mk) t(n

′)σ(n′)

tk
.

P opponent(·) is simply obtained by taking the symmetric definition of C: i.e. C(n, β) =

{child(n, α, β)|α ∈ Lplayer(n)}.
The selection policy π(·) ∈M is an algorithm that selects a movemk ∈ {m1, . . . ,mK}

given the vector of statistics S = (m1, r1, σ1, t1, . . . ,mK , rK , σK , tK). Selection policies

are the topic of the next section.

2.4 Selection policies

This section describes the twelve selection policies that we use in our comparison.

We first describe deterministic selection policies and then move on stochastic selection

policies.

2.4.1 Deterministic selection policies

We consider deterministic selection policies that belong to the class of index-based

multi-armed bandit policies. These policies work by assigning an index to each can-

didate move and by selecting the move with maximal index: πdeterministic(S) = mk∗

with

k∗ = argmax
k∈[1,K]

index(tk, rk, σk, t)

where t =
∑K

k=1 tk and index is called the index function. Index functions typically

combine an exploration term to favor moves that we already know perform well with an

19

2. OVERVIEW OF EXISTING SELECTION POLICIES

exploitation term that aims at selecting less-played moves that may potentially reveal

interesting. Several index-policies have been proposed and they vary in the way they

define these two terms.

2.4.1.1 UCB1

The index function of UCB1 [24] is:

index(tk, rk, σk, t) = rk +

√
C

ln t

tk
,

where C > 0 is a parameter that enables to control the exploration/exploitation trade-

off. Although the theory suggest a default value of C = 2, this parameter is usually

experimentally tuned to increase performance.

UCB1 has appeared the first time in the literature in 2002 and is probably the best

known index-based policy for multi-armed bandit problem [24]. It has been popularized

in the context of MCTS with the Upper confidence bounds applied to Trees (UCT)

algorithm [36], which is the instance of MCTS using UCB1 as selection policy.

2.4.1.2 UCB1-Tuned

In their seminal paper, the authors of [24] introduced another index-based policy called

UCB1-Tuned, which has the following index function:

index(tk, rk, σk, t) = rk +

√
min{1

4 , V (tk, σk, t)} ln t

tk
,

where

V (tk, σk, t) = σ2
k +

√
2 ln t

tk
.

UCB1-Tuned relies on the idea to take empirical standard deviations of the rewards

into account to obtain a refined upper bound on rewards expectation. It is analog

to UCB1 where the parameter C has been replaced by a smart upper bound on the

variance of the rewards, which is either 1
4 (an upper bound of the variance of Bernouilli

random variable) or V (tk, σk, t) (an upper confidence bound computed from samples

observed so far).

Using UCB1-Tuned in the context of MCTS for Tron has already been proposed

by [19]. This policy was shown to behave better than UCB1 on multi-armed bandit

problems with Bernouilli reward distributions, a setting close to ours.

20

2.4 Selection policies

2.4.1.3 UCB-V

The index-based policy UCB-V [26] uses the following index formula:

index(tk, rk, σk, t) = rk +

√
2
σ2
kζ ln t

tk
+ c

3ζ ln t

tk
.

UCB-V has two parameters ζ > 0 and c > 0. We refer the reader to [26] for

detailed explanations of these parameters.

UCB-V is a less tried multi-armed bandit policy in the context of MCTS. As UCB1-

Tuned, this policy relies on the variance of observed rewards to compute tight upper

bound on rewards expectation.

2.4.1.4 UCB-Minimal

Starting from the observation that many different similar index formulas have been

proposed in the multi-armed bandit literature, it was recently proposed in [25, 38] to

explore the space of possible index formulas in a systematic way to discover new high-

performance bandit policies. The proposed approach first defines a grammar made of

basic elements (mathematical operators, constants and variables such as rk and tk) and

generates a large set of candidate formulas from this grammar. The systematic search

for good candidate formulas is then carried out by a built-on-purpose optimization

algorithm used to navigate inside this large set of candidate formulas towards those

that give high performance on generic multi-armed bandit problems. As a result of this

automatic discovery approach, it was found that the following simple policy behaved

very well on several different generic multi-armed bandit problems:

index(tk, rk, σk, t) = rk +
C

tk
,

where C > 0 is a parameter to control the exploration/exploitation tradeoff. This

policy corresponds to the simplest form of UCB-style policies. In this chapter, we

consider a slightly more general formula that we call UCB-Minimal :

index(tk, rk, σk, t) = rk +
C1

tC2
k

,

where the new parameter C2 enables to fine-tune the decrease rate of the exploration

term.

21

2. OVERVIEW OF EXISTING SELECTION POLICIES

2.4.1.5 OMC-Deterministic

The Objective Monte-Carlo (OMC) selection policy exists in two variants: stochastic

(OMC-Stochastic) [11] and deterministic (OMC-Deterministic) [39]. The index-based

policy for OMC-Deterministic is computed in two steps. First, a value Uk is computed

for each move k:

Uk =
2√
π

∫ ∞
α

e−u
2
du,

where α is given by:

α =
v0 − (rktk)√

2σk
,

and where

v0 = max(riti) ∀i ∈ [1,K].

After that, the following index formula is used:

index(tk, rk, σk, t) =
tUk

tk
K∑
i=1

Ui

.

2.4.1.6 MOSS

Minimax Optimal Strategy in the Stochastic Case (MOSS) is an index-based policy

proposed in [40] where the following index formula is introduced:

index(tk, rk, σk, t) = rk +

√
max

(
log
(
tk
Kt

)
, 0
)

t
.

This policy is inspired from the UCB1 policy. The index of a move is the mean

of rewards obtained from simulations if the move has been selected more than tk
K .

Otherwise, the index value is an upper confidence bound on the mean reward. This

bound holds with a high probability according the Hoeffding’s inequality. Similarly to

UCB1-Tuned, this selection policy has no parameters to tune thus facilitating its use.

2.4.2 Stochastic selection policies

In the case of simultaneous two-player games, the opponent’s moves are not immedi-

ately observable, and following the analysis of [23], it may be beneficial to also consider

22

2.4 Selection policies

stochastic selection policies. Stochastic selection policies π are defined through a con-

dition distribution pπ(k|S) of moves given the vector of statistics S:

πstochastic(S) = mk, k ∼ pπ(·|S).

We consider six stochastic policies:

2.4.2.1 Random

This baseline policy simply selects moves with uniform probabilities:

pπ(k|S) =
1

K
, ∀k ∈ [1,K].

2.4.2.2 εn-greedy

The second baseline is εn-greedy [41]. This policy consists in selecting a random move

with low probability εt or the empirical best move according to rk:

pπ(k|S) =

{
1− εt if k = argmaxk∈[1,K] rk

εt/K otherwise.

The amount of exploration εt is chosen to decrease with time. We adopt the scheme

proposed in [24]:

εt =
c K

d2 t
,

where c > 0 and d > 0 are tunable parameters.

2.4.2.3 Thompson Sampling

Thompson Sampling adopts a Bayesian perspective by incrementally updating a belief

state for the unknown reward expectations and by randomly selecting actions according

to their probability of being optimal according to this belief state.

We consider here the variant of Thompson Sampling proposed in [27] in which the

reward expectations are modeled using a beta distribution. The sampling procedure

works as follows: it first draw a stochastic score

s(k) ∼ beta
(
C1 + rkt, C2 + (1− rk)tk

)
for each candidate move k ∈ [1,K] and then selects the move maximizing this score:

pπ(k|S) =

{
1 if k = argmaxk∈[1,K] s(k)

0 otherwise.

23

2. OVERVIEW OF EXISTING SELECTION POLICIES

C1 > 0 and C2 > 0 are two tunable parameters that reflect prior knowledge on reward

expectations.

Thompson Sampling has recently been shown to perform very well on Bernouilli

multi-armed bandit problems, in both context-free and contextual bandit settings [27].

The reason why Thompson Sampling is not very popular yet may be due to his lack of

theoretical analysis. At this point, only the convergence has been proved [42].

2.4.2.4 EXP3

This stochastic policy is commonly used in simultaneous two-player games [23, 43, 44]

and is proved to converge towards the Nash equilibrium asymptotically. EXP3 works

slightly differently from our other policies since it requires storing two additional vectors

in each node n ∈ N denoted wagent(n) and wopponent(n). These vectors contain one

entry per possible move m ∈ Lplayer, are initialized to wplayerk (·) = 0, ∀k ∈ [1,K] and

are updated each time a reward r is observed, according to the following formulas:

wagentk (n)← wagentk (n) +
r

pπ(k|P agent(n))
,

wopponentk (n)← wopponentk (n) +
1− r

pπ(k|P opponent(n))
.

At any given time step, the probabilities to select a move are defined as:

pπ(k|S) = (1− γ)
eηw

player
k (n)∑

k′∈[1,K]

eηw
player

k′
+
γ

K
,

where η > 0 and γ ∈]0; 1] are two parameters to tune.

2.4.2.5 OMC-Stochastic

The OMC-Stochastic selection policy [11] uses the same Uk quantities than OMC-

Deterministic. The stochastic version of this policy is defined as following:

pπ(k|S) =
Uk
K∑
i=1

Ui

∀k ∈ [1,K].

The design of this policy is based on the Central Limit Theorem and EXP3.

24

2.5 Experiments

2.4.2.6 PBBM

Probability to be Better than Best Move (PBBM) is a selection policy [12] with a

probability proportional to

pπ(k|S) = e−2.4α ∀k ∈ [1,K].

The α is computed as:

α =
v0 − (rktk)√
2(σ2

0 + σ2
k)
,

where

v0 = max(riti) ∀i ∈ [1,K],

and where σ2
0 is the variance of the reward for the move selected to compute v0.

This selection policy was successfully used in Crazy Stone, a computer Go program

[12]. The concept is to select the move according to its probability of being better than

the current best move.

2.5 Experiments

In this section we compare the selection policies π(·) presented in Section 2.4 on the

game of Tron introduced previously in this chapter. We start this section by first

describing the strategy used for simulating the rest of the game when going beyond

a terminal leaf of the tree (Section 2.5.1). Afterwards, we will detail the procedure

we adopted for tuning the parameters of the selection policies (Section 2.5.2). And,

finally, we will present the metric used for comparing the different policies and discuss

the results that have been obtained (Section 2.5.3).

2.5.1 Simulation heuristic

It has already been recognized for a long time that using pure random strategies for

simulating the game beyond a terminal leaf node of the tree built by MCTS techniques

is a suboptimal choice. Indeed, such a random strategy may lead to a game outcome

that poorly reflects the quality of the selection procedure defined by the tree. This

in turn requires to build large trees in order to compute high-performing moves. To

define our simulation heuristic we have therefore decided to use prior knowledge on

25

2. OVERVIEW OF EXISTING SELECTION POLICIES

the problem. Here, we use a simple heuristic developed in [29] for the game on Tron

that, even if still far from an optimal strategy, lead the two players to adopt a more

rationale behaviour. This heuristic is based on a distribution probability Pmove(·) over

the moves that associates a probability of 0.68 to the “go straight ahead” move and

a probability of 0.16 to each of the two other moves (turn left or right). Afterwards,

moves are sequentially drawn from Pmove(·) until a move that is legal and that does not

lead to self-entrapment at the next time step is found. This move is the one selected

by our simulation strategy.

To prove the efficiency of this heuristic, we performed a short experiment. We

confronted two identical UCT opponents on 10 000 rounds: one using the heuristic and

the other making purely random simulations. The result of this experiment is that the

agent with the heuristic has a winning percentage of 93.42± 0.5% in a 95% confidence

interval.

Note that the performance of the selection policy depends on the simulation strategy

used. Therefore, we cannot exclude that if a selection policy is found to behave better

than another one for a given simulation strategy, it may actually behave worse for

another one.

2.5.2 Tuning parameter

The selection policies have one or several parameters to tune. Our protocol to tune

these parameters is rather simple and is the same for every selection policy.

First, we choose for the selection policy to tune reference parameters that are used

to define our reference opponent. These reference parameters are chosen based on

default values suggested in the literature. Afterwards, we discretize the parameter

space of the selection policy and test for every element of this set the performance of

the corresponding agent against the reference opponent. The element of the discretized

space that leads to the highest performance is then used to define the constants.

To test the performance of an agent against our reference opponent, we used the

following experimental protocol. First, we set the game map to 20 × 20 and the time

between two recommendations to 100 ms on a 2.5Ghz processor. Afterwards we perform

a sequence of rounds until we have 10,000 rounds that do not end by a draw. Finally,

we set the performance of the agent to its percentage of winnings.

26

2.5 Experiments

Table 2.1: Reference and tuned parameters for selection policies

Agent Reference constant Tuned

UCB1 C = 2 C = 3.52

UCB1-Tuned – –

UCB-V c = 1.0, ζ = 1.0 c = 1.68, ζ = 0.54

UCB-Minimal C1 = 2.5, C2 = 1.0 C1 = 8.40, C2 = 1.80

OMC-Deterministic – –

MOSS – –

Random – –

εn-greedy c = 1.0, d = 1.0 c = 0.8, d = 0.12

Thompson Sampling C1 = 1.0, C2 = 1.0 C1 = 9.6, C2 = 1.32

EXP3 γ = 0.5 γ = 0.36

OMC-Stochastic – –

PBBM – –

Figure 2.2 reports the performances obtained by the selection policies on rather large

discretized parameter spaces. The best parameters found for every selection policy as

well as the reference parameters are given in Table 2.1. Some side simulations have

shown that even by using a finer disretization of the parameter space, significantly

better performing agents cannot not be found.

It should be stressed that the tuned parameters reported in this table point towards

higher exploration rates than those usually suggested for other games, such as for

example the game of Go. This is probably due to the low branching factor of the game

of Tron combined with the fact that we use the robust child recommendation policy.

Even though after 10 000 the standard error of the mean (SEM) is rather low, the

behavior of some curves seems to indicate potential noise. We leave as future research

the study of the impact of the simluation policy on the noise.

2.5.3 Results

27

2. OVERVIEW OF EXISTING SELECTION POLICIES

Tuning of UCB-Minimal agent

value of C1

va
lu
e
o
f
C

2

1 2 3 4 5 6 7 8 9
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Tuning of Thompson Sampling agent

value of C1

va
lu
e
o
f
C

2

2 4 6 8 10 12 14 16 18

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Tuning of UCB-V agent

value of c

va
lu
e
o
f
ζ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Tuning of ǫn-greedy agent

value of c

va
lu
e
o
f
d

0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100
Tuning of UCB1 agent

value of C

v
ic
to
ry
(%

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100
Tuning of EXP3 agent

value of γ

v
ic
to
ry
(%

)
25

30

35

40

45

50

55

60

65

70

75

80

35

40

45

50

55

60

65

70

75

80

20

25

30

35

40

45

50

55

60

65

45

50

55

60

65

70

75

80

Figure 2.2: Tuning of constant for selection policies over 10 000 rounds. Clearer areas

represent a higher winning percentage.

28

2
.5

E
x
p

e
rim

e
n
ts

Table 2.2: Percentage of victory on 10 000 rounds between selection policies

hhhhhhhhhhhhhhhhhhhhSelection policies

Selection policies
UCB1-Tuned UCB1 MOSS UCB-Minimal EXP3 Thompson Sampling εn-greedy OMC-Deterministic UCB-V OMC-Stochastic PBBM Random Average

UCB1-Tuned – 60.11 ± 0.98% 59.14 ± 0.98% 53.14 ± 1.00% 91.07 ± 0.57% 80.79 ± 0.80% 86.66 ± 0.68% 90.20 ± 0.60% 79.82 ± 0.80% 84.48 ± 0.72% 87.08 ± 0.67% 98.90 ± 0.21% 85.11 ± 0.71%

UCB1 39.89 ± 0.98% – 55.66 ± 0.99% 35.76 ± 0.96% 84.36 ± 0.73% 85.57 ± 0.70% 81.18 ± 0.78% 94.02 ± 0.47% 81.02 ± 0.75% 91.24 ± 0.57% 87.38 ± 0.67% 99.47 ± 0.15% 75.69 ± 0.86%

MOSS 40.86 ± 0.98% 44.34 ± 0.99% – 63.34 ± 0.96% 34.10 ± 0.95% 83.08 ± 0.75% 82.24 ± 0.76% 93.38 ± 0.50% 91.02 ± 0.57% 89.00 ± 0.63% 87.88 ± 0.65% 98.98 ± 0.21% 72.24 ± 0.90%

UCB-Minimal 46.86 ± 1.00% 64.24 ± 0.96% 36.66 ± 0.96% – 80.79 ± 0.79% 85.27 ± 0.71% 82.15 ± 0.77% 88.12 ± 0.65% 87.71 ± 0.66% 32.64 ± 0.94% 89.82 ± 0.61% 99.37 ± 0.16% 70.40 ± 0.91%

EXP3 8.93 ± 0.57% 15.64 ± 0.73% 65.90 ± 0.95% 19.21 ± 0.79% – 59.01 ± 0.98% 84.19 ± 0.73% 68.28 ± 0.93% 39.89 ± 0.98% 77.72 ± 0.83% 72.30 ± 0.90% 54.18 ± 0.99% 53.24 ± 0.99%

Thompson Sampling 19.21 ± 0.79% 14.43 ± 0.70% 16.92 ± 0.75% 24.73 ± 0.86% 40.99 ± 0.98% – 62.40 ± 0.97% 69.08 ± 0.92% 49.68 ± 1.00% 84.62 ± 0.72% 83.42 ± 0.74% 95.80 ± 0.40% 50.80 ± 1.00%

εn-greedy 13.34 ± 0.68% 18.82 ± 0.79% 17.76 ± 0.76% 17.85 ± 0.77% 15.81 ± 0.73% 37.60 ± 0.97% – 68.24 ± 0.93% 66.62 ± 0.94% 80.16 ± 0.80% 83.12 ± 0.75% 91.45 ± 0.56% 46.16 ± 1.00%

OMC-Deterministic 9.80 ± 0.60% 5.98 ± 0.47% 6.62 ± 0.50% 11.88 ± 0.65% 11.72 ± 0.93% 30.92 ± 0.92% 31.76 ± 0.73% – 87.60 ± 0.66% 69.12 ± 0.92% 83.18 ± 0.75% 64.14 ± 0.96% 35.07 ± 0.95%

UCB-V 20.18 ± 0.80% 18.99 ± 0.78% 8.98 ± 0.57% 12.29 ± 0.66% 60.11 ± 0.98% 50.32 ± 1.00% 33.38 ± 0.94% 12.40 ± 0.66% – 39.16 ± 0.98% 46.02 ± 0.99% 65.60 ± 0.95% 34.43 ± 0.95%

OMC-Stochastic 15.52 ± 0.72% 8.76 ± 0.57% 11.00 ± 0.63% 67.36 ± 0.94% 22.28 ± 0.83% 15.38 ± 0.72% 19.84 ± 0.80% 30.88 ± 0.92% 60.84 ± 0.98% – 60.04 ± 0.98% 52.50 ± 1.00% 31.72 ± 0.93%

PBBM 12.92 ± 0.67% 12.62 ± 0.66% 12.12 ± 0.65% 10.18 ± 0.61% 27.70 ± 0.90% 16.58 ± 0.74% 16.88 ± 0.75% 16.82 ± 0.75% 53.98 ± 0.99% 39.96 ± 0.98% – 52.76 ± 1.00% 23.98 ± 0.85%

Random 1.10 ± 0.21% 0.53 ± 0.15% 1.02 ± 0.21% 0.63 ± 0.16% 45.82 ± 0.99% 4.20 ± 0.40% 8.55 ± 0.56% 35.86 ± 0.96% 34.40 ± 0.95% 47.50 ± 1.00% 47.24 ± 1.00% – 19.09 ± 0.79%

29

2. OVERVIEW OF EXISTING SELECTION POLICIES

To compare the selection policies, we perform a round-robin to determine which

one gives the best results. Table 2.2 presents the outcome of the experiments. In this

double entry table, each data represents the victory ratio of the row selection policy

against the column one. Results are expressed in percent ± a 95% confidence interval.

The last column shows the average performance of the selection policies.

The main observations can be drawn from this table:

UCB1-Tuned is the winner. The only policy that wins against all other policies is

UCB1-Tuned. This is in line with what was reported in the literature, except perhaps

with the result reported in [19] where the authors conclude that UCB1-Tuned performs

slightly worse than UCB1. However, it should be stressed that in their experiments,

they only perform 20 rounds to compare both algorithms, which is not enough to make

a statistically significant comparison. Additionally, their comparison was not fair since

they used for the UCB1 policy a thinking time that was greater than for the UCB1-

Tuned policy.

Stochastic policies are weaker than deterministic ones. Although using stochas-

tic policies have some strong theoretical justifications in the context of simultaneous

two-player games, we observe that our three best policies are deterministic. Whichever

selection policy, we are probably far from reaching asymptotic conditions due to the

real-time constraint. So, it may be the case that stochastic policies are preferable when

a long thinking-time is available, but disadvantageous in the context of real-time games.

Moreover, for the two variants of OMC selection policy, we show that the deterministic

one outperforms the stochastic.

UCB-V performs worse. Surprisingly, UCB-V is the only deterministic policy that

performs bad against stochastic policies. Since UCB-V is a variant of UCB1-Tuned

and the latter performs well, we expected UCB-V to behave similarly yet it is not the

case. From our experiments, we conclude that UCB-V is not an interesting selection

policy for the game of Tron.

UCB-Minimal performs quite well. Even if ranked fourth, UCB-Minimal gives

average performances which are very close to those UCB1 and MOSS ranked second

and third, respectively. This is remarkable for a formula found automatically in the

context of generic bandit problems. This suggests that an automatic discovery algo-

rithm formula adapted to our specific problem may actually identify very good selection

policies.

30

2.6 Conclusion

2.6 Conclusion

We studied twelve different selection policies for MCTS applied to the game of Tron.

Such a game is an unusual setting compared to more traditional testbeds because it

is a fast-paced real-time simultaneous two-player game. There is no possibility of long

thinking-time or to develop large game trees before choosing a move and the total

number of simulations is typically small.

We performed an extensive comparison of selection policies for this unusual setting.

Overall the results showed a stronger performance for the deterministic policies (UCB1,

UCB1-Tuned, UCB-V, UCB-Minimal, OMC-Deterministic and MOSS) than for the

stochastic ones (εn-greedy, EXP3, Thompson Sampling, OMC-Stochastic and PBBM).

More specifically, from the results we conclude that UCB1-Tuned is the strongest se-

lection policy, which is in line with the current literature. It was closely followed by

the recently introduced MOSS and UCB-Minimal policies.

The next step in this research is to broaden the scope of the comparison by adding

other real-time testbeds that possess a higher branching factor to further increase our

understanding of the behavior of these selection policies.

31

2. OVERVIEW OF EXISTING SELECTION POLICIES

32

3

Selection Policy with Information

Sharing for Adversarial Bandit

3.1 Introduction

In this chapter we develop a selection policy for 2-Player games. 2-Player games in

general provide a popular platform for research in Artificial Intelligence (AI). One of

the main challenge coming from this platform is approximating the Nash Equilibrium

(NE) over zero-sum matrix games. To name a few examples where the computation

(or approximation) of a NE is relevant, there is Rock-Paper-Scissor, simultaneous Risk,

metagaming [45] and even Axis and Allies [46]. Such a challenge is not only important

for the AI community. To efficiently approximate a NE can help solving several real life

problems. One can think for example about financial applications [47] or in psychology

[48].

While the problem of computing a Nash Equilibrium is solvable in polynomial time

using Linear Programming (LP), it rapidly becomes infeasible to solve as the size of the

matrix grows; a situation commonly encountered in games. Thus, an algorithm that

can approximate a NE faster than polynomial time is required. [43, 49, 50] show that

it is possible to ε-approximate a NE for a zero-sum game by accessing only O(K log(K)
ε2

)

elements in a K × K matrix. In other words, by accessing far less elements than the

total number in the matrix.

The early studies assume that there is an exact access to reward values for a given

element in a matrix. It is not always the case. In fact, the exact value of an element

33

3. SELECTION POLICY WITH INFORMATION SHARING FOR
ADVERSARIAL BANDIT

can be difficult to know, as for instance when solving difficult games. In such cases,

the value is only computable approximately. [40] considers a more general setting

where each element of the matrix is only partially known from a finite number of

measurements. They show that it is still possible to ε-approximate a NE provided that

the average of the measurements converges quickly enough to the real value.

[44, 51] propose to improve the approximation of a NE for matrix games by exploit-

ing the fact that often the solution is sparse. A sparse solution means that there are

many pure (i.e. deterministic) strategies, but only a small subset of these strategies

are part of the NE. They used artificial matrix games and a real game, namely Urban

Rivals, to show a dramatic improvement over the current state-of-the art algorithms.

The idea behind their respective algorithms is to prune uninteresting strategies, the

former in an offline manner and the latter online.

This chapter focuses on further improving the approximation of a NE for zero-sum

matrix games such that it outperforms the state-of-the-art algorithms given a finite

(and rather small) number T of oracle requests to rewards. To reach this objective, we

propose to share information between the different relevant strategies. To do so, we

introduce a problem dependent measure of similarity that can be adapted for different

challenges. We show that information sharing leads to a significant improvement of the

approximation of a NE. Moreover, we use this chapter to briefly describe the algorithm

developed in [44] and their results on generic matrices.

The rest of the chapter is divided as follow. Section 3.2 formalizes the problem and

introduces notations. The algorithm is defined in Section 3.3. Section 3.4 evaluates

our approach from a theoretical point of view. Section 3.5 evaluates empirically the

proposed algorithm and Section 3.6 concludes.

3.2 Problem Statement

We now introduce the notion of Nash Equilibrum in Section 3.2.1 and define a generic

bandit algorithm in Section 3.2.2. Section 3.2.3 states the problem that we address in

this chapter.

34

3.2 Problem Statement

3.2.1 Nash Equilibrium

Consider a matrix M of size K1 ×K2 with rewards bounded in [0, 1], player 1 chooses

an action i ∈ [1,K1] and player 2 chooses an action j ∈ [1,K2]1. In order to keep

the notations short and because the extension is straightforward, we will assume that

K1 = K2 = K. Then, player 1 gets reward Mi,j and player 2 gets reward 1 −Mi,j .

The game therefore sums to 1. We consider games summing to 1 for commodity of

notations, but 0-sum games are equivalent. A Nash equilibrium of the game is a pair

(x∗, y∗) both in [0, 1]K such that if i and j are chosen according to the distribution x∗

and y∗ respectively (i.e i = k with probability x∗k and j = k with probability y∗k with

k ∈ K), then neither player can expect a better average reward through a change in

their strategy distribution.

As mentioned previously, [44, 51] observe that in games, the solution often involves

only a small number of actions when compared to the set K. In other words, often

{i;x∗i > 0} and {j; y∗j > 0} both have cardinality << K.

3.2.2 Generic Bandit Algorithm

The main idea behind a bandit algorithm (adversarial case) is that it iteratively con-

verges towards a NE. Bandit algorithms have the characteristic of being ‘anytime’,

which means they can stop after any number of iterations and still output a reasonably

good approximation of the solution. For a given player p ∈ P where P = {1, 2} for a

2-player game, each possible action is represented as an arm ap ∈ [1,Kp] and the pur-

pose is to determine a probability distribution θp over the set of actions, representing

a mixed (randomized) strategy as a probability distribution over deterministic (pure)

strategies.

During the iteration process, each player selects an arm from their own set of actions

Kp, forming a pair of action (a1, a2), according to their current distribution θp and

their selection policy πp(·). A selection policy πp(·) ∈ Kp is an algorithm that selects

an action ap ∈ Kp based on the information at hand. Once the pair of action (a1, a2)

is selected, a reward rt is computed for the tth iteration. Based upon the reward, both

distributions θ1 and θ2 are updated. A detailed description of the selection policies and

the distribution updates used in this chapter are provided in Section 3.3.

1From here on in, we will do a small abuse of notation by stating Kp = [[1,Kp]] ∀ player p

35

3. SELECTION POLICY WITH INFORMATION SHARING FOR
ADVERSARIAL BANDIT

Such a process is repeated until the allocated number of iterations T has been

executed. Afterward, the action to be executed consists in choosing an arm âp according

to the information gathered so far. The pseudo code for a generic bandit algorithm up

to the recommendation of âp is provided in Algorithm 2.

Algorithm 2 Generic Bandit Algorithm. The problem is described through the “get

reward” function and the action sets. The “return” method is formally called the

recommendation policy. The selection policy is also commonly termed exploration

policy.

Require: T > 0: Computational budget

Require: P = {1, 2}: Set of players

Require: Kp: Set of actions specific for each p ∈ P
Require: πp: Selection policy

Initialize θp: Distribution over the set of actions Kp

for t = 1 to T do

Select ap ∈ Kp based upon πp(θp)

Get reward rt (from a1 and a2): player 1 receives rt and player 2 receives 1− rt.
Update θp using rt

end for

Return âp

3.2.3 Problem Statement

In most of the bandit literature, it is assumed that there is no structure over the action

set Kp. Consequently, there is essentially only one arm updated for any given iteration

t ∈ T .

In games however, the reasons for sharing information among arms are threefold.

First, each game possesses a specific set of rules. As such, there is inherently an

underlying structure that allows information sharing. Second, the sheer number of

possible actions can be too large to be efficiently explored. Third, to get a precise

reward rt can be a difficult task. For instance, computing rt from a pair of arms (a1

and a2) can be time consuming or/and involve highly stochastic processes. Under such

constraints, sharing information along Kp seems a legitimate approach.

Given ψ = (ψ1, ψ2) that describes some structure of the game, we propose an

algorithm αψ that shares information along the set of actions Kp. To do so, we propose

36

3.3 Selection Policies and Updating rules

to include a measure of similarity ψp(·, ·) between actions of player p. Based upon the

measure ψp(·, ·), the algorithm αψ shares the information with all other arms deemed

similar. The sharing process is achieved by changing the distribution update of θp.

3.3 Selection Policies and Updating rules

As mentioned in Section 3.2.2, a selection policy π(·) is an algorithm that selects an

action ap ∈ Kp based upon information gathered so far. There exist several selection

policies in the context of bandit algorithms, [52] studied the most popular, comparing

them in a Monte-Carlo Tree Search architecture. Here we develop a variant of a selection

policy π(·) relevant in the adversarial case called EXP3 [43]. Throughout this section,

the reference to a specific player p is avoided to keep the notation short.

Section 3.3.1 describes the EXP3 selection policy. Section 3.3.2 presents a recom-

mendation policy, TEXP3 [51] dedicated to sparse Nash Equilibria. Finally, Section

3.3.3 introduces the notion of similarity and define our new updating rule.

3.3.1 EXP3

This selection policy is designed for adversarial problems. For each arm a ∈ K, we

gather the following quantities:

� ta, the number of simulations involving arm a, or its visit count.

� θa, the current probability to select this arm

� wa, a weighted sum of rewards

The idea is to keep a cumulative weighted sum of reward per arm and use it to infer a

distribution of probability over the different arms. An interesting fact is that it is not

the probability θa that converges to the Nash, but the counter ta. More formally, every

time an arm a receives a reward rt, the value wa is updated as follows:

wa ← wa +
rt
θa

(3.1)

for the player which maximizes its reward (rt is replaced by 1− rt for the opponent).

37

3. SELECTION POLICY WITH INFORMATION SHARING FOR
ADVERSARIAL BANDIT

At any given time, the probability θa to select an action a is defined as:

θa = (1− γ)
exp(ηwa)∑

k∈[1,K]

exp(ηwk)
+
γ

C
, (3.2)

where η > 0 and γ ∈]0; 1] and C ∈ R are three parameters to tune.

3.3.2 TEXP3

This recommendation policy is an extension of EXP3. It is a process that is executed

only once before choosing â, the arm to be pulled. Basically, it uses the property that,

over time, the probability to pull an arm a, given by the ratio ta
T , that is not part of

the optimal solution will tend toward 0. Therefore, for all arms a ∈ K deemed to be

outside the optimal solution, it artificially truncates these arms. The decision whether

an arm is part of the NE is based upon a threshold c. Following [51], the constant c

is chosen as max
a∈K

(T×ta)α

T , where α ∈]0, 1]. If the ratio ta
T of an arm a ∈ K is below

such threshold, it is removed and the remaining arms have their probability rescaled

accordingly.

3.3.3 Structured EXP3

As mentioned previously, one of the main reason for sharing information is to exploit

a priori regularities that are otherwise time consuming to let an algorithm find by

itself. The core idea is that simliar arms are likely to produce similar results. The

sharing of information is mostly important in the early iterations because afterwards

the algorithm gathers enough information to correctly evaluate each individual relevant

arm.

EXP3 uses an exponential at its core combined with cumulative rewards. One must

be careful about the sharing of information under such circumstance. The exponential

makes the algorithm focus rapidly on a specific arm. The use of cumulative reward

is also problematic. For example, sharing several times a low reward can, over time,

mislead the algorithm into thinking an arm is better than one that received only once

a high reward. To remedy this situation, we only share when the reward is interesting.

To keep it simple, the decision whether to share or not is made by a threshold ζ that

is domain specific.

38

3.4 Theoretical Evaluation

Let us define ϕa ⊆ K as a set of arms that are considered similar to a based upon

the measure ψ(a, k), i.e. ϕa = {k;ψ(a, k) > 0}. If rt > ζ, for all k ∈ ϕa we update as

follow:

wk ← wk +
rt
θk
. (3.3)

The probability θk to select an action k is still defined as:

θk = (1− γ)
exp(ηwk)∑

k′∈[1,K]

exp(ηwk′)
+
γ

C
, (3.4)

where η > 0, γ ∈]0; 1] and C ∈ R are three parameters to tune. In the case where

rt ≤ ζ, the update is executed following (3.1) and (3.2).

3.4 Theoretical Evaluation

In this section we present a simple result showing that structured-EXP3 performs

roughly S times faster when classes of similar arms have size S. The result is basically

aimed at showing the rescaling of the update rule.

A classical EXP3 variant (from [40]) uses, as explained in Alg. 3, the update rule

θa = γ/C + (1− γ)
exp(ηωa)∑

i∈K
exp(ηωi)

,

where

C = K, γ = min(0.8

√
log(K)

Kt
, 1/K) and η = γ.

Note that the parameters γ and η depend on t, removed for shorter notation.

The pseudo-regret L after T iterations is defined as:

LT = max
i=1,...,K

E

(
T∑
t=1

rt(i)− rt

)

where rt is the reward obtained at iteration t and rt(i) is the reward which would have

been obtained at iteration t by choosing arm i at iteration t. Essentially, the pseudo-

regret is negative, and is zero if we always choose an arm that gets optimal reward.

With this definition, EXP3 verifies the following[40, 53]:

39

3. SELECTION POLICY WITH INFORMATION SHARING FOR
ADVERSARIAL BANDIT

Algorithm 3 The EXP3 algorithm as in [40] (left) and TEXP3, sEXP and sTEXP3

variants (right). Strategies are given for player 1. Player 2 use 1− rt instead of rt.

for each iteration t ∈ {1, 2, . . . , T}
do

Selection policy π: choose arm a

with probability θa (Eq. 3.4).

Get reward rt.

Update ωa:

wa ← wa +
rt
θa
.

end for

Recommendation: choose arm â with

probability nT (a) = ta
T .

for each iteration t ∈ {1, 2, . . . , T}
do

Selection policy π: choose arm a

with probability θa (Eq. 3.4).

Get reward rt.

Update ωa: wa ← wa + rt
θa
.

if sEXP3 or sTEXP3 and rt < ζ

then

for each b ∈ ϕ(a) \ a do

wb ← wb +
rt
θb
.

end for

end if

end for

if TEXP3/sTEXP3 then

if ta/T ≤ c then

Set ta = 0.

end if

Rescale ta: ta ← ta/
∑

b∈[[1,K]] tb.

end if

Recommendation: choose arm â with

probability nT (a) = ta
T .

40

3.4 Theoretical Evaluation

Theorem 1: pseudo-regret L of EXP3.

Consider a problem with K arms and 1-sum rewards in [0, 1]. Then, EXP3 verifies

LT ≤ 2.7
√
TKln(K).

It is known since [49] that it is not possible to do better than the bound above, within

logarithmic factors, in the general case.

We propose a variant, termed Structured-EXP3 or sEXP3, for the case in which for

each arm a, there is a set ϕa (of cardinality S) containing arms similar to a. Under mild

assumptions upon ϕa, the resulting algorithms has some advantages over the baseline

EXP3. The parameters γ and η for sEXP3 are defined by (3.5) and (3.6) respectively

(C = K is preserved, as in EXP3).

γ = min(0.8

√
S log(K/S)

Kt
, S/K), (3.5)

η = γ/S. (3.6)

In other words, γ is designed (as detailed in the theorem below) for mimicking the values

corresponding to the problem with K/S arms instead of K arms and η is designed for

avoiding a too aggressive pruning.

The following theorem is aimed at showing that parameters in (3.5) and (3.6) ensure

that Structured-EXP3 emulates EXP3 on a bigger problem with a particular structure.

Theorem 2: Structured-EXP3 and pseudo-regret.

Consider a problem where there are K ′ classes of S similar arms i.e. K = K ′ × S
(arms from different classes have no similarity); ϕa is the set of arms of the same class

as arm a. Assume that all arms in a class have the same distribution of rewards, i.e.

a ∈ ϕb implies that a and b have the same distribution of rewards against any given

strategy of the opponent. Set ζ = −∞. Then, Structured-EXP3 verifies

LT ≤ 2.7
√
T (K/S)ln(K/S),

where S is the cardinal of ϕa (whereas the EXP3 bound is 2.7
√
TKlnK).

Proof: For this proof, we compare the Structured-EXP3 algorithm with K arms

including classes of S similar arms (i.e. ∀ a ∈ [[1,K]], ϕa = S) and an EXP3 algorithm

working on an ad hoc problem with K/S arms. The ad hoc problem is built as follows.

Instead of arms A = {1, 2, . . . ,K} (ordered by similarity, so that blocks of S

successive arms are similar) for the Structured-EXP3 bandit, consider arms A′ =

41

3. SELECTION POLICY WITH INFORMATION SHARING FOR
ADVERSARIAL BANDIT

{1, S + 1, 2S + 1, . . . ,K − S + 1} for the EXP3 bandit. Consider the same reward

as in the Structured-EXP3 bandit problem.

Any mixed strategy on the EXP3 problem can be transformed without changing

its performance into a mixed strategy on the Structured-EXP3 problem by arbitrarily

distributing the probability of choosing arm i ∈ A′ onto arms {i, i+1, . . . , i+S−1} ⊂ A.

Let us use θ′a′ , the probability that EXP3 chooses a′ ∈ A′; and ω′a′ , the sum of

rewards associated to a′ ∈ A′ for EXP3 (notations with no “prime” are for Structured-

EXP3). We now show by induction that

� ωa = S×ω′a′ for a ∈ A similar to a′ ∈ A′ when EXP3 and Structured-EXP3 have

the same history1;

� θa = 1
S θ
′
a′ for a ∈ A similar to a′ ∈ A′.

The proof is based on the following steps, showing that when the induction properties

hold at some time step then they also hold at the next time step. We assume that

ωa = S×ω′a′ (for all a′ ∈ A′ similar to a) at some iteration, and we show that it implies

θa = 1
S θ
′
a′ at the same iteration (also for all a′ ∈ A′ similar to a) and that ωa = S×ω′a′

at the next iteration (also for all a′ ∈ A′ similar to a). More formally, we show that

∀(a, a′) ∈ A×A′, a ∈ ϕa′ , ωa = S × ω′a′ (3.7)

⇒

∀(a, a′) ∈ A×A′, a ∈ ϕa′ , θa =
1

S
× θ′a′ (3.8)

and at next iteration (3.7) still holds. The properties of (3.7) and (3.8) hold at the

initial iteration (we have only zeros) and the induction from one step to the next is as

follows:

� Let us show that (3.7) implies (3.8), i.e. if, for all a, ωa for Structured-

EXP3 is S times more than ω′a′ for a′ ∈ A′ similar to a, then the prob-

ability for Structured-EXP3 to choose an arm a ∈ A similar to a′ ∈ A′

is exactly S times less than the probability for EXP3 to choose a′. The

1The set of arms are not the same in Structured-EXP3 and EXP3. By same history we mean up

to the projection a→ a′ = b(a− 1)/Sc+ 1.

42

3.4 Theoretical Evaluation

probability that Structured-EXP3 chooses arm a at iteration t given an history

a1, . . . , at−1 of chosen arms with rewards r1, . . . , rt−1 until iteration t− 1 is

θa = (1− γ)
exp(ηwa)∑

k∈[1,K]

exp(ηwk)
+
γ

K
, (3.9)

which is exactly S times less than the probability that EXP3 chooses arm b(a−
1)/Sc+1 given a history b(a1−1)/Sc+1, b(a2−1)/Sc+1,. . . ,b(at−1−1)/Sc+1.

Thus,

θa =
1

S
θ′a′ .

This is the case because the S additional factor in ωa is compensated by the S

denominator in (3.6) so that terms in the exponential are the same as in the

Structured-EXP3 case; but the numerator is S times bigger. This concludes the

proof that (3.8) holds.

� We now show that the probability that Structured-EXP3 chooses an arm

in {a′, a′+1, . . . , a′+S−1} similar to a′ ∈ A is the same as the probability

that EXP3 chooses a′ ∈ A′ (given the same history). The update rule in

Structured-EXP3 ensures that ωa = ωb as soon as a and b are similar. So the

probability of an arm of the same class as a ∈ A to be chosen by Structured-EXP3

is exactly the probability of a′ ∈ A′ (similar to A) being chosen by EXP3:∑
a similar to a′

θa = θ′a′ . (3.10)

� Let us now show that (3.7) and (3.8) implies (3.7) at the next iteration,

i.e. the weighted sum of rewards ωa for a ∈ A is S times more than

the weighted sum of rewards ω′a′ for a similar to a′ (given the same

histories). This is because (i) probabilities that Structured-EXP3 chooses an

arm a among those similar to an arm a′ is the same as the probability that EXP3

chooses a′ (given the same history), as explained by (3.10), and (ii) probabilities

used in the update rule are divided by S in the case of Structured-EXP3 (updates

have K at the denominator). This concludes the induction, from an iteration to

the next.

The induction is complete.

43

3. SELECTION POLICY WITH INFORMATION SHARING FOR
ADVERSARIAL BANDIT

3.5 Experiments

This section describes a set of experiments that evaluates the quality of our approach.

The first testbed is automatically generated sparse matrices and the results are pre-

sented in section 3.5.1. The second testbed, presented in section 3.5.2, is the game

UrbanRivals (UR), an internet card game. Throughout this section, we used 3 base-

lines: EXP3, TEXP3 and Random. The parameters γ, η and C were tuned indepen-

dantly for each testbed (and each algorithm) to ensure they are performing as good as

they can. For the automatically generated sparse matrices, the set of parameters that

gave the best results are η = 1√
t
, γ = 1√

t
, C = 0.65 and α = 0.8. In the game Urban

Rivals, the best values found for the parameters are η = 1√
t
, γ = 1√

t
, C = 0.7 and

α = 0.75.

As a reminder, we add the prefix s when we exploit the notion of distance. The

distance ψ(·, ·) is specific to the testbed and is thus defined in each section.

3.5.1 Artificial experiments

First we test on automatically generated matrices that have a sparse solution and

contain an exploitable measure of distance between the arms. We use matrix M defined

by Mi,j = 1
2 + 1

5(1 + cos(i× 2× π/100))χi mod ω − 1
5(1 + cos(j × 2× pi/100))χj mod ω,

where ω ∈ N is set to 5 and M is of size 50 × 50. The distance ψ(·, ·) is based on the

position of the arm in the matrix. It is defined such that the selected arm a and k ∈ K
have a similarity

ψ(a, k) =

{
1 if (k′ − a′) mod ω = 0

0 otherwise,
(3.11)

where k′ and a′ are the position of respectively k and a in the matrix M . The set ϕa

includes all k where ψ(a, k) = 1. At any t ∈ T the reward is given by the binomial

distribution rt ∼ B(20,M(i, j)), where 20 is the number of Bernoulli trials with pa-

rameter M(i, j). The threshold ζ is fixed at 0.8 and for any given T , the experiment is

repeated 100 times.

Figure 3.1 analyses the score (%) in relation to the maximal number of iterations T

of our approach playing against the baselines. Note that any result over 50% means that

the method wins more often than it looses. Figure 3.1(a) presents the results of sEXP3

and EXP3 playing against the baseline Random. Figure 3.1(b) shows sTEXP3 and

44

3.5 Experiments

TEXP3 also playing against the baseline Random. Figure 3.1(c) depicts the results of

sEXP3 playing against EXP3 and sTEXP3 playing against TEXP3.

0 100 200 300 400 500 600 700 800 900 1000
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

sEXP3
EXP3

(a) Without Truncation

0 100 200 300 400 500 600 700 800 900 1000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

sTEXP3
TEXP3

(b) With Truncation

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.52

0.54

0.56

0.58

0.6

0.62

(a)
(b)

(c) Exploit Structure vs Not

Figure 3.1: Performance (%) in relation to the number of iterations T of our approach

compared to different baselines. Each of the 99 different positive abscissa is an independent

run, so the null hypothesis of an average ordinate ≤ 50% is less than 10−29. We see

that (a) sEXP3 converges faster than EXP3 (in terms of success rate against random),

(b) sTEXP3 converges faster than TEXP3 (in terms of success rate against random),

(c.a) sEXP3 outperforms EXP3 (direct games of sEXP3 vs EXP3) and (c.b) sTEXP3

outperforms TEXP3 (direct games of sTEXP3 vs TEXP3).

Figure 3.1(a) shows that sEXP3 significantly outperforms EXP3. It requires as

little as T = 30 iterations to reach a significant improvement over EXP3. As the

maximal number of iterations T grows, sEXP3 still clearly outperforms its counterpart

EXP3.

Figure 3.1(b) shows again a clear improvement of exploiting the structure (as in

sTEXP3) versus not (as in TEXP3). It requires T = 30 iterations to reach a signifi-

cant improvement. The score in Figure 3.1(b) are clearly higher than in Figure 3.1(a),

which is in line with previous findings. Moreover, a Nash player would score 87.64%

versus the Random baseline. The best score 75.68% is achieved by sTEXP3 which is

fairly close to the Nash, using only 1 000 requests to the matrix.

The results in Figure 3.1(c) are in line with Figure 3.1(a) and 3.1(b). The line

representing sEXP3 versus EXP3 (labeled (a) in reference to Figure 3.1(a)) shows

that even after T = 1 000 iterations, EXP3 does not start to close the gap with

sEXP3. The line representing sTEXP3 versus TEXP3 shows that it takes around

T = 500 iterations for TEXP3 to start filling the gap with the algorithm that shares

information sTEXP3. Yet even after T = 1 000 it is still far from performing as well.

45

3. SELECTION POLICY WITH INFORMATION SHARING FOR
ADVERSARIAL BANDIT

Overall for this testbed, the sharing of information greatly increases the performance

of the state-of-the-art algorithms. The good behavior of sparsity techniques such as

TEXP3 is also confirmed.

3.5.2 Urban Rivals

Urban Rivals (UR) is a widely played internet card game, with partial information.

As pointed out in [51], UR can be consistently solved by a Monte-Carlo Tree Search

algorithm (MCTS) thanks to the fact that the hidden information is frequently revealed.

A call for getting a reward leads to 20 games played by a Monte-Carlo Tree Search with

1 000 simulations before an action is chosen.

Reading coefficients in the payoff matrices at the root is quite expensive, and we

have to solve the game approximately.

We consider a setting in which two players choose 4 cards from a finite set of 10

cards. We use two different representations. In the first one, each arms a ∈ K is

a combinations of 4 cards and K = 104. In the second representation, we remove

redundant arms. There remain K = 715 different possible combinations if we allow the

same card to be used more than once in the same combination.

There are two baseline methods tested upon UR, namely EXP3 and TEXP3.

The distance ψ(·, ·) is based on the number of similar cards. It is defined such that

the selected arm a and k ∈ K have a distance

ψ(a, k) =

{
1 if k and a share more than 2 cards

0 otherwise,
(3.12)

The set ϕa includes all k where ψ(a, k) = 1. At any t ≤ T the reward rt is given by 20

games played with the given combinations. The threshold ζ is fixed at 0.8 and for any

given T .

For a given number of iterations T , each algorithm is executed 10 times and the

output is saved. To compute the values in Figure 3.2, we play a round-robin (thus

comparing 10 × 10 different outputs) where each comparison between two outputs

consist in repeating 100 times the process of selecting an arm and executing 20 games.

Figure 3.2 presents the score (%) in relation to the maximal number of iterations

T of our approach playing against their respective baselines. Figure 3.2(a) presents

the results of sEXP3 playing against EXP3. Figure 3.2(b) shows sTEXP3 playing

46

3.5 Experiments

against TEXP3. In both cases, we present the results for 2 different representations

(K = 104, and K = 715).

100 200 300 400 500 600 700 800 900 1000
0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

K = 104

K = 715

(a) sEXP3 vs EXP3

100 200 300 400 500 600 700 800 900 1000

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

K = 104

K = 715

(b) sTEXP3 vs TEXP3

Figure 3.2: Performance (%) in relation to the number of iterations T of our approach

compared to different baselines. Standard deviations are smaller than 1%. We see that

(a) sEXP3 outperforms EXP3 in both versions (game with 10K arms and game with 715

arms) (b) sTEXP3 outperforms TEXP3 in both versions (game with 10K arms and game

with 715 arms).

Figure 3.2(a) shows that sEXP3 significantly outperforms EXP3 independently

of the representation since the values are far beyond 50%. Even at the lowest number

of iterations (T = 100), there is a significant improvement over EXP3 with both

representations (K = 104 and K = 715). As the maximal number of iterations T grows,

sEXP3 still clearly outperforms its counterpart EXP3. Moreover, Figure 3.2(a) shows

that the representation impacts greatly on the quality of the results. The discrepancy

between the two lines is probably closely related to the ratio T
K . For instance, when

T = 1 000 and K = 104 the score is equal to 60.88%. If we compare such a result to

T = 100 and K = 715, a ratio T
K relatively close, the score (60.22%) is rather similar.

Figure 3.2(b) shows that sTEXP3 significantly outperforms TEXP3 independently

of the representation since the values are also far beyond 50%. The conclusion drawn

from Figure 3.2(b) are quite similar to the ones from Figure 3.2(a). However, the

sudden drop at T = 1 000 and K = 715 indicates that TEXP3 also start to converge

toward the Nash Equilibrium, thus bringing the score relatively closer to the 50% mark.

47

3. SELECTION POLICY WITH INFORMATION SHARING FOR
ADVERSARIAL BANDIT

For the game UR, it seems that sharing information does also greatly improve the

performance of the state-of-the-art algorithms.

3.6 Conclusion

In this chapter, we present an improvement over state-of-the-art algorithms to compute

an ε-approximation of a Nash Equilibrium for zero-sum matrix games. The improve-

ment consists in exploiting the similarities between arms of a bandit problem through

a notion of distance and in sharing information among them.

From a theoretical point of view, we compute a bound for our algorithm that is

better then the state-of-the-art by a factor roughly based on the number of similar

arms. The sparsity assumption is not a necessity to ensure convergence, it simply

ensure faster convergence.

Moreover, empirical results on the game of Urban Rival and automatically generated

matrices with sparse solutions show a significant better performance of the algorithms

that share information compared to the ones that do not. This is when results are

compared on the basis of EXP3 parameters that are optimized on the application.

As future work, the next step is to create a parameter free version of our algorithm,

for instance by automatically fixing the parameter ζ. Also, so far we solely focus on

problem where the total number of iterations T is too small for converging to the NE.

As the maximal number of iterations T gets bigger, there would be no reason for sharing

information anymore. A degradation function can be embedded into the updating rule

to ensure convergence. We do not know for the moment whether we should stop sharing

information depending on rewards (using ζ), depending on iterations (using a limit on

t/T) or more sophisticated criteria.

48

4

Simulation Policy for Symbolic

Regression

4.1 Introduction

In this chapter, we study the simulation policy. The reason to seek an improvement over

the simulation policy is rather straightforward. A more efficient sampling of a space

requires less samples to find a solution. Simulation policy is considered essentially, albeit

not exclusively, domain specific or problem dependent. It means that an improvement

of the simulation policy for a given problem may not be adequate for another one. A

modification in such policy can be tricky when embedded into a MCS algorithms. For

instance, it can either prevent the algorithm to converge to a solution or converge to

the wrong one.

Lets take the game of Go as an example, where the best algorithms are mainly

MCTS. It was repeatedly shown that the use of stronger simulation policies can lead

to weaker MCS algorithms [54, 55]. It is mainly related to the fact that a modification

of the simulation policy is introducing a bias in the probability distribution to exploit

specific knowledge [56]. By doing so, one can basically increase its winning probability

against a specific opponent while moving further away from the optimal solution. It

is thus important to focus on improving a simulation policy embedded into a MCS

algorithms rather than simply improving the simulation policy alone.

For our discussion on the work done over the simulation policy, we focus on a specific

problem that is commonly labeled Symbolic Regression. This problem was chosen over

49

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

several others because it has two main advantages. First, Symbolic Regression is well-

known and has potential applications in many different fields. Thus, a finding on this

problem is relevant to many. Second, Symbolic Regression is essentially finding an

expression that best represents an input. It is not far-fetched to imagine that such a

work can be used to build our own selection policy as it was done in [38, 57] or even

customize our own MCS algorithm [58].

In the following, Section 4.2 introduces more specifically the notion of Symbolic

Regression and Section 4.3 formalizes the problem. Section 4.4 describes the proposed

approach to modify the probabilities inside a set. Section 4.5 present the notion of

partitionning the problem into smaller ones and computes several sets of probabilities.

Section 4.5 describes such an approach. Section 4.6 explains the resulting learning

algorithm. Section 4.7 presents the experimental results and Section 4.8 concludes on

the chapter.

4.2 Symbolic Regression

A large number of problems can be formalized as finding the best expressions, or

more generally the best programs, to maximize a given numerical objective. Such

optimization problems over expression spaces arise in the fields of robotics [59], finance

[60], molecular biology [61], pattern recognition [62], simulation and modeling [63] or

engineering design [64] to name a few.

These optimization problems are hard to solve as they typically involve very large

discrete spaces and possess few easily exploitable regularities, mainly due to the com-

plexity of the mapping from an expression syntax to its semantic (e.g. the expressions

c× (a+ b) and c/(a+ b) differ only by one symbol but have totally different semantics).

Due to the inherent difficulties related to the nature of expression spaces, these

optimization problems can rarely be solved exactly and a wide range of approximate

optimization techniques based on stochastic search have been proposed. In particular, a

large body of work has been devoted to evolutionary approaches known as genetic pro-

gramming [65, 66, 67]. While genetic programming algorithms have successfully solved

a wide range of real-world problems, these algorithms may be complex to implement

and are often too difficult to analyze from a theoretical perspective.

50

4.3 Problem Formalization

[68] recently proposed to use a search technique based on Monte-Carlo sampling to

solve optimization problems over expression spaces, a promising alternative approach

that avoids some important pitfalls of genetic programming. One key component of

this Monte-Carlo approach is the procedure that samples expressions randomly. The

proposed approach was based on uniformly sampling expression symbols. This choice

fails to tackle the redundancy of expressions: it is often the case that a large number

of syntactically different expressions are equivalent, for example due to commutativity,

distributivity or associativity. This choice also does not take into account that some

expressions may have an undefined semantic, due to invalid operations such as division

by zero.

In this chapter we focus on the two improvements. First, an improvement of the

sampling procedure used in the context of Monte Carlo search over expression spaces

[69]. Given a number T of trials, we want to determine a memory-less sampling proce-

dure maximizing the expected number of semantically different valid expressions gen-

erated ST ≤ T . To reach this objective, we propose a learning algorithm which takes

as input the available constants, variables and operators and optimizes the set of sym-

bol probabilities used within the sampling procedure. We show that, on medium-scale

problems, the optimization of symbol probabilities significantly increases the number

of non-equivalent expressions generated. For larger problems, the optimization prob-

lem cannot be solved exactly. However, we show empirically that solutions found on

smaller problems can be used on larger problems while still significantly outperforming

the default uniform sampling strategy.

Second, we build on this work and further enhance the sampling methods by con-

sidering several different sets of parameters to generate expressions [70]. In order to

obtain these different sets, we provide a method that first partition the samples into

different subsets, then apply a learning algorithm that computes a probability distri-

bution on each cluster. The sheer number of different expressions generated increases

compared to both the uniform sampling [68] and the one in [69].

4.3 Problem Formalization

We now introduce Reverse Polish Notation (RPN) as a way of representing expressions

in Section 4.3.1 and describe a generative process compliant with this representation

51

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

Algorithm 4 RPN evaluation

Require: s ∈ AD: a sequence of length D

Require: x ∈ X: variable values

stack ← ∅
for d = 1 to D do

if αd is a variable or a constant then

Push the value of αd onto the stack.

else

Let n be the arity of operator αd.

if |stack| < n then

syntax error

else

Pop the top n values from the stack, compute αd with these operands, and

push the result onto the stack.

end if

end if

end for

if |stack| 6= 1 then

syntax error

else

return top(stack)

end if

in Section 4.3.2. Section 4.3.3 carefully states the problem addressed in this chapter.

4.3.1 Reverse polish notation

RPN is a representation wherein every operator follows all of its operands. For in-

stance, the RPN representation of the expression c× (a+ b) is the sequence of symbols

[c, a, b,+,×]. This way of representing expressions is also known as postfix notation

and is parenthesis-free as long as operator arities are fixed, which makes it simpler to

manipulate than its counterparts, prefix notation and infix notation.

Let A be the set of symbols composed of constants, variables and operators. A

sequence s is a finite sequence of symbols of A: s = [α1, . . . , αD] ∈ A∗. The evaluation

of an RPN sequence relies on a stack and is depicted in Algorithm 4. This evaluation

fails either if the stack does not contain enough operands when an operator is used or if

52

4.3 Problem Formalization

Table 4.1: Size of UD, ED and AD for different sequence lengths D.

D |UD| |ED| |UD|
|ED|% |AD| |ED|

|AD|%

1 4 4 100 11 36.4

2 20 28 71.4 121 23.1

3 107 260 41.2 1331 19.5

4 556 2 460 22.6 14 641 16.8

5 3 139 24 319 12.9 161 051 15.1

6 18 966 244 299 7.8 1 771 561 13.8

7 115 841 2 490 461 4.7 19 487 171 12.8

the stack contains more than one single element at the end of the process. The sequence

[a,×] leads to the first kind of errors: the operator × of arity 2 is applied with a single

operand. The sequence [a, a, a] leads to the second kind of errors: evaluation finishes

with three different elements on the stack. Sequences that avoid these two errors are

syntactically correct RPN expressions and are denoted e ∈ E ⊂ A∗.

Let X denote the set of admissible values for the variables of the problem. We

denote e(x) the outcome of Algorithm 4 when used with expression e and variable

values x ∈ X. Two expressions e1 ∈ E and e2 ∈ E are semantically equivalent if

∀x ∈ X, e1(x) = e2(x). We denote this equivalence relation e1 ∼ e2. The set of

semantically incorrect expressions I ⊂ E is composed of all expressions e for which

there exists x ∈ X such that e(x) is undefined, due to an invalid operation such as

division by zero or logarithm of a negative number. In the context of Monte-Carlo

search, we are interested in sampling expressions that are semantically correct and

semantically different. We denote U = (E − I)/ ∼ the quotient space of semantically

correct expressions by relation ∼. One element u ∈ U is an equivalence class which

contains semantically equivalent expressions e ∈ u.

We denote AD (resp. ED and UD) the set of sequences (resp. expressions and

equivalence classes) of length D. Table 4.1 presents the cardinality of these sets for

different lengths D with a hypothetical alphabet containing four variables, three unary

operators and four binary operators: A = {a, b, c, d, log ,
√
·, inv,+,−,×,÷}, where inv

stands for inverse. It can be seen that both the ratio between |ED| and |AD| and the

ratio between |UD| and |ED| decrease when increasing D. In other terms, when D

gets larger, finding semantically correct and different expressions becomes harder and

53

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

Table 4.2: Set of valid symbols depending on the current state. Symbols are classified

into C onstants, V ariables, U nary operators and B inary operators

State Valid symbols

|stack| = 0 C,V

|stack| = 1 & d < D − 1 C,V,U

|stack| = 1 & d = D − 1 U

|stack| ∈ [2, D − d[C,V,U,B

|stack| = D − d U,B

|stack| = D − d+ 1 B

harder, which is an essential motivation of this work.

4.3.2 Generative process to sample expressions

Monte-Carlo search relies on a sequential generative process to sample expressions e ∈
ED. We denote by P [αd|α1, . . . , αd−1] the probability to sample symbol αd after having

sampled the (sub)sequence α1, . . . , αd−1. The probability of an expression e ∈ ED is

then given by:

PD[e] =
D∏
d=1

P [αd|α1, . . . , αd−1]. (4.1)

An easy way to exclude syntactically incorrect sequences is to forbid symbols that

could lead to one of the two syntax errors described earlier. This leads to a set of

conditions on the current state of the stack and on the current depth d that Table 4.2

summarizes for a problem with variables, constants, unary and binary operators. As it

can be seen, conditions can be grouped into a finite number of states, 6 in this case. In

the following, we denote S the set of these states, we use the notation s(α1, . . . , αd) ∈ S

to refer to the current state reached after having evaluated α1, . . . , αd and we denote

As ⊂ A the set of symbols which are valid in state s ∈ S.

The default choice when using Monte-Carlo search techniques consists in using a

uniformly random policy. Combined with the conditions to generate only syntactically

correct expressions, this corresponds to the following probability distribution:

P [αd|α1, . . . , αd−1] =

{
1
|As| if αd ∈ As

0 otherwise,
(4.2)

54

4.3 Problem Formalization

with s = s(α1, . . . , αd−1).

Note that the sampling procedure described above generates expressions of size

exactly D. If required, a simple trick can be used to generate expressions of size between

1 and D: it consists in using a unary identity operator that returns its operand with

no modifications. An expression of size d < D can then be generated by selecting

αd+1 = · · · = αD = identity.

4.3.3 Problem statement

Using a uniformly random strategy to sample expressions does neither take into account

redundancy nor semantic invalidity. We therefore propose to optimize the sampling

strategy, to maximize the number of valid, semantically different, generated expressions.

Given a budget of T trials, a good sampling strategy should maximize ST , the num-

ber of semantically different, valid generated expressions, i.e. the number of distinct

elements drawn from UD. A simple approach therefore would be to use a rejection sam-

pling algorithm. In order to sample an expression, such an approach would repeatedly

use the uniformly random strategy until sampling a valid expression that differs from

all previously sampled expressions in the sense of ∼. However, this would quickly be

impractical: in order to sample T expressions, such an approach requires memorizing T

expressions, which can quickly saturate memory. Furthermore, in regards of the results

of Table 4.1, the number of trials required within the rejection sampling loop could

quickly grow.

In order to avoid the excessive CPU and RAM requirements of rejection sampling,

and consistently with the definitions given previously, we focus on a distribution PD[e]

which is memory-less. In other terms, we want a procedure that generates i.i.d. ex-

pressions. In addition to the fact that it requires only limited CPU and RAM, such

a memory-less sampling scheme has another crucial advantage: its implementation

requires no communication, which makes it particularly adapted to (massively) paral-

lelized algorithms.

In summary, given the alphabet A, a target depth D and a target number of trials

T , the problem addressed in this chapter consists in finding the distribution P̂D[·] ∈ P

such that:

P̂ = argmax
P∈P

E{ST }, (4.3)

55

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

where ST is the number of semantically different valid expressions generated using the

generative procedure PD[·] defined by P̂ .

4.4 Probability set learning

We now describe our approach to learn a sampling strategy taking into account redun-

dant and invalid expressions. Section 4.4.1 reformulates the problem and introduces two

approximate objective functions with good numerical properties. Section 4.4.2 focuses

on the case where the sampling strategy only depends on the current state of the stack

and depth. Finally, the proposed projected gradient descent algorithm is described in

Section 4.4.3.

4.4.1 Objective reformulation

Let PD[u] be the probability to draw any member of the equivalence class u:

PD[u] =
∑
e∈u

PD[e] (4.4)

The following lemma shows how to calculate the expectation of obtaining at least one

member of a given equivalence class u after T trials.

Lemma 4.1 Let Xu be a discrete random variable such that Xu = 1 if u is generated

after T trials and Xu = 0 otherwise. The probability to generate at least once u over T

trials is equal to

E{Xu} = 1− (1− PD[u])T . (4.5)

Proof Since at each trial the probability for u ∈ U to be generated does not depend on

the previous trials, the probability over T trials that Xu = 0 is given by (1− PD[u])T .

Thus, the probability that Xu = 1 is its complementary and given by 1− (1−PD[u])T .

We now aggregate the different random variables.

Lemma 4.2 The expectation of the number TS of different equivalence classes u gen-

erated after T trials is equal to

E{TS} =
∑
u∈UD

1− (1− PD[u])T . (4.6)

56

4.4 Probability set learning

Proof This follows from E{
∑
u∈UD

Xu} =
∑
u∈UD

E{Xu}.

Unfortunately, in the perspective of a using gradient descent optimization scheme,

the formula given by Lemma 4.2 is numerically unstable. Typically, PD[u] is very

small and the value (1− PD[u])T has a small number of significant digits. This causes

numerical instabilities that become particularly problematic as T and |U| increase.

Therefore, we have to look for an approximation of (4.6) that has better numerical

properties.

Lemma 4.3 For 0 < PD[u] < 1
T , using the Newton Binomial Theorem to compute

1− (1− PD[u])T , the terms are decreasing.

Proof Using the Newton Binomial Theorem, (4.5) reads

1− (1− PD[u])T = 1−
T∑
k=0

(
T
k

)
(−PD[u])k

=

(
T
1

)
(−PD[u]) +

(
T
2

)
(−PD[u])2

+ · · ·+ (−PD[u])T . (4.7)

If PD[u] is sufficiently small, the first term in (4.7) is the biggest. In particular, if

PD[u] < 1
T , we claim that

(
T
0

)
PD[u]0 >

(
T
1

)
PD[u]1 >(

T
2

)
PD[u]2 > · · · >

(
T
n

)
PD[u]n

As a proof, considering n ∈ {1, 2, . . . , T}, we have to check that

(
T
n

)
PD[u]n <

(
T

n− 1

)
PD[u]n−1

⇔ T !

n!(T − n)!
PD[u]n <

T !

(n− 1)!(T − n+ 1)!
PD[u]n−1

⇔ PD[u] <
n

T − n+ 1
(4.8)

(4.8) holds when 0 < PD[u] < 1
T , n ≥ 1 and T ≥ 0.

Observation 1 For 0 < PD[u] < 1
λT , two successive terms in the Newton Binomial

Theorem decrease by a coefficient of 1
λ .

57

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

[u]

E
(X

u)

1−(1−P

D
[u]) T

1/T
1−ε(1/T)

Figure 4.1: Expected value of Xu as a function of PD[u] with T = 1000.

Proof (
T
n

)
PD[u]n <

1

λ

(
T

n− 1

)
PD[u]n−1

PD[u] <
n

λ(T − n+ 1)
(4.9)

Figure 4.1 shows the shape of (4.5) for a fixed T of 1000. It appears that, for

small values of PD[u], the expectation varies almost linearly as suggestd by Lemma 4.3.

Observe that, for large values of PD[u], the expectation tends rapidly to 1.

Observation 2 Let ε > 0. PD[u] > 1− ε
1
T implies that 1− ε ≤ 1− (1− PD[u])T ≤ 1.

We observe from Figure 4.1 that the curve can be split into 3 rough pieces. The first

piece, when PD[u] < 1
2T , seems to vary linearly based on Figure 4.1 and Observation

1 since the leading term of the Binomial expansion dominates all the others. The last

piece can be approximated by 1 based upon Observation 2. The middle piece can be

fitted by a logarithmic function. We therefore obtain

∑
u∈U

1− (1− PD[u])T '∑
u|PD[u]< 1

2T

TPD[u] +
∑

u|PD[u]≥1−ε
1
T

1 +

∑
u| 1

2T <PD[u]<1−ε
1
T

(
1

(1− 1
T)T

logPD[u] + (1− 1

T
)T
)
. (4.10)

58

4.4 Probability set learning

An even rougher approach could be to consider only two pieces and write (4.6),

using Lemma 4.3 and Observation 2 as

∑
u∈U

1− (1− PD[u])T '∑
u|PD[u]< 1

T

TPD[u] +
∑

u|PD[u]≥ 1
T

1. (4.11)

4.4.2 Instantiation and gradient computation

In this section, we focus on a simple family of probability distributions with the as-

sumption that the probability of a symbol only depends on the current state s ∈ S and

is otherwise independent of the full history α1, . . . , αd−1. We thus have:

PD[e] =
D∏
d=1

P [αd|s(α1, . . . , αd−1)]. (4.12)

In the following, we denote {ps,α} the set of probabilities, such that P [α|s] = ps,α

for all s ∈ S and α ∈ As.

Our objective is to optimize (4.10) or (4.11) subject to
∑
α∈As

ps,α = 1 for all s ∈ S

and the nonnegative constraint ps,α > 0 for all s ∈ S and α ∈ As.

Observe that the gradient is easy to compute for both objectives. We detail here

the gradient when (4.11) is used as the objective function.

Lemma 4.4 The derivative ∂(·)
∂ps,α

of (4.11) is given by

T
∑

u|PD[u]< 1
T

∑
e∈u

ns,α(e)PD[e],

where ns,α(e) is the number of times the symbol α ∈ As is used from state s ∈ S when

generating e.

59

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

Proof

∂f

∂ps,α
=

∂

∂ps,α
(

∑
u|PD[u]< 1

T

TPD[u] +
∑

u|PD[u]≥ 1
T

1)

=
∂

∂ps,α
(T

∑
u|PD[u]< 1

T

∑
e∈u

PD[e])

= T
∑

u|PD[u]< 1
T

∑
e∈u

∂

∂ps,α
(

∏
s,α|ns,α(e)>0

p
ns,α
s,α)

Note that this objective function is not convex. However, empirical experiments

show that it is rather easy to optimize and that obtained solutions are robust w.r.t. to

choice of the starting point of the gradient descent algorithm.

4.4.3 Proposed algorithm

We propose to use a classical projected gradient descent algorithm to solve the opti-

mization problem described previously. Algorithm 5 depicts our approach. Given the

symbol alphabet A, the target depth D and the target number of trials T , the algorithm

proceeds in two steps. First, it constructs an approximated set ÛD by discriminating

the expressions on the basis of random samples of the input variables, following the

procedure detailed below. It then applies projected gradient descent, starting from

uniform ps,α probabilities and iterating until some stopping conditions are reached.

To evaluate approximately whether e1 ∼ e2, we compare e1(x) and e2(x) using a

finite amount X of samples x ∈ X. If the results of both evaluations are equal on

all the samples, then the expressions are considered as semantically equivalent. If the

evaluation fails for any of the samples, the corresponding expression is considered as

semantically incorrect and is rejected. Empirical tests showed that with as little as

X = 5 samples, more than 99% of U was identified correctly for D ranging in [1, 8].

With X = 100 samples the procedure was almost perfect.

The complexity of Algorithm 5 is linear in the size of ED. In practice, only a few

tens iterations of gradient descent are necessary to reach convergence and most of the

computing time is taken by the construction of Û. The requirement that the set ED

can be exhaustively enumerated is rather restrictive, since it limits the applicability

of the algorithm to medium values of D. Nevertheless, we show in Section 4.7 that

60

4.4 Probability set learning

Algorithm 5 Symbol probabilities learning

Require: Alphabet A,

Require: Target depth D,

Require: Target budget T ,

Require: A set of input samples x1, . . . , xX

Û← ∅
for e ∈ ED do

if ∀i ∈ [1, X], e(xi) is well-defined then

Add e to Û using key k = {e(x1), . . . , e(xX)}
end if

end for

Initialize: ∀s ∈ S, ∀α ∈ As, ps,α ← 1
|As|

repeat

∀s ∈ S, ∀α ∈ As, gs,α ← 0

for each u ∈ Û with PD[u] < 1
T do

for each e ∈ u do

for each s ∈ S, α ∈ As with ns,α(e) > 0 do

gs,α ← gs,α + ns,α(e)PD[e]

end for

end for

end for

Apply gradient gs,α and renormalize ps,α

until some stopping condition is reached

return {ps,α}

61

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

probabilities learned for a medium value of D can be used for larger-scale problems

and still significantly outperform uniform probabilities.

4.5 Combination of generative procedures

In Section 4.4, we propose a technique that, given the complete set of unique expressions

of a given depth, is able to compute an optimal set of parameters that maximizes

the expectation of the number of different expressions generated after T trials. The

main drawback of the method is that it needs to have the complete description of all

expressions in order to be able to compute the set of optimal parameters. This is

however computationally prohibitive to enumerate when the depth of the considered

expressions becomes large. There are two alternatives proposed in [69]. The first

alternative is to extrapolate the sets of parameters obtained for a low depth to a larger

depth. The second alternative is to uniformly sample the expressions, identify identical

expressions and optimize the parameters of the distributions P (α|S) used to generate

expressions (see section 4.3.2), based on the expressions sampled and using a gradient-

descent upon the objective defined by

∑
u|PD[u]< 1

T

TPD[u] +
∑

u|PD[u]≥ 1
T

1. (4.13)

In this section, we investigate the possibility to use a combination of generative

procedures rather than a single one. In other words, we propose to deviate from the

idea of selecting only one set of parameters throughout T trials. Instead, we show

analytically that using different sets of parameters can increase E{ST }, the expected

number of different valid expressions generated. We compare the two strategies to

generate expressions.

Both processes start by generating Ê, a set of initial expressions by uniform sam-

pling. The first process consists in optimizing a single set of parameters as suggested by

[69]. We make T trials with the optimized static set of parameters and every expression

e has a probability pe of being drawn in one trial t.

In the second process, we partition the expressions e ∈ Ê into K clusters (the

practical procedure is described in Section 4.6) and, for each cluster Ck∈K , we optimize

a distinct set of parameters using only e ∈ Ê ∩ Ck, the expressions in that cluster.

62

4.5 Combination of generative procedures

Although we consider only a small subset of the complete list of expressions, we aim

with such a procedure at considering very different sets of parameters. In particular,

by maximizing the expected number of different expressions of a given small subset,

we hope that a superset of the expressions considered for the optimization problem see

their overall probability of being generated increased by a small value δ. This should be

the case for all expressions that are sufficiently syntactically similar to those considered

in the cluster. In the same time, some other expressions see their overall probability

decrease by a small value ε. This should consist of expressions that are syntactically

different from those considered in the cluster.

From a theoretical point of view, we can justify this idea with a toy example.

Imagine a set of 2 expressions {e1, e2} and a number of trials T = 2. In the first case,

we place ourselves in a perfect situation where they both have a probability of being

generated of 50%. The expectancy is 1.5 (2 × 0.5 + 1 × 0.5). In the second, we use 2

different sets of parameters, one for each trial. In the first set, the parameters are {1, 0}
and in the second they are equal to {0, 1}. This time, the expectancy is 2. Obviously

this is a rather extreme example, but the core idea is clearly presented.

Note that the cluster C0 contains all expressions whose individual probability pe is

large enough (pe >
1
T) such that the probability of drawing an expression e ∈ C0 at

least once after T trials is close to 1. These expressions do not require any attention

and therefore we only discuss expressions in clusters C1, . . . , CK , expressions that have

a relatively low probability pe <
1
T of being drawn.

We assume that, during the T ′ < T
2 first trials, the probability of every expression

in Ck increases by δ, thus becoming pe + δ. Moreover, to simplify the analysis, let us

also assume that every expression in Ck has its probability decreased by ε = δ during

T ′ other trials.

We will now prove that the expectation of the random variable

Xq
e =

{
1 if expression e is drawn at least once

0 otherwise,
(4.14)

where q = 1 represents the first process and q = 2 represents the second process,

increases in the second process for all expressions in clusters C1, . . . , Ck compared to

the first process. The expectation of expressions e ∈ C0 is trivially equal in both

processes. We now compare the expectation in the two processes.

63

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

Theorem 1 We consider an event and a process of T trials, where the event has a

probability pe <<
1
T of being drawn. Let X1

e be defined by (4.14) for the first event. Let

consider a second process of T trials, where the event has a probability pe + δ << 1
T of

being drawn during T ′ trials, a probability pe − δ of being drawn during T ′ trials and a

probability pe of being drawn during T − 2T ′ trials. Let X2
e be defined by (4.14) for the

second event.

Then,

E(X2
e)− E(X1

e) ≈ T ′δ2(1− pe)T−2T ′ > 0 . (4.15)

Proof We have

E(X1
e) = 1− (1− pe)T and

E(X2
e) = 1− (1− pe)T−2T ′(1− pe − δ)T

′
(1− pe + δ)T

′
.

By computing the difference of these two expectations, we obtain

E(X2
e)− E(X1

e) = (1− pe)T − (1− pe)T−2T ′(1− pe − δ)T
′
(1− pe + δ)T

′

= (1− pe)T−2T ′
(

(1− pe)2T ′ − (1− pe − δ)T
′
(1− pe + δ)T

′
)
.

In the following, we now try to simplify the expression in the last parenthesis. In

particular, following the assumption that pe <<
1
T , we may assume that pe <<

1
T ′ as

well and therefore, expanding the Newton binomial, we consider linear and quadratic

terms only. This yields

E(X2
e)− E(X1

e)

(1− pe)T−2T ′
≈ 1− 2T ′pe +

(
2T ′

2

)
p2
e −

(
1− T ′(pe + δ) +

(
T ′

2

)
(pe + δ)2

)
(

1− T ′(pe − δ) +

(
T ′

2

)
(pe − δ)2

)
≈ 1− 2T ′pe +

(
2T ′

2

)
p2
e − 1 + T ′(pe − δ)−

(
T ′

2

)
(pe − δ)2

+ T ′(pe + δ)− T ′2(pe + δ)(pe − δ)−
(
T ′

2

)
(pe + δ)2

≈
(

2T ′

2

)
p2
e −

(
T ′

2

)
(pe − δ)2 − T ′2(pe + δ)(pe − δ)−

(
T ′

2

)
(pe + δ)2.

After expanding, we obtain

64

4.5 Combination of generative procedures

E(X̄e − E(Xe)

(1− pe)T−2T ′
≈ (2T ′ − 1)(2T ′)

2
p2
e −

T ′(T ′ − 1)

2
(pe − δ)2

− T ′2(p2
e − δ2)− T ′(T ′ − 1)

2
(pe + δ)2

≈ (2T ′ − 1)(T ′)p2
e − T ′(T ′ − 1)(p2

e + δ2)− T ′2(p2
e − δ2)

≈ p2
e(2T

′2 − T ′ − T ′2 + T ′ − T ′2) + δ2(T ′2 − T ′2 + T ′)

≈ T ′δ2.

This theorem allows us to prove that, compared to a process where all the param-

eters of the generative distribution are static, varying (by changing these parameters)

the probability of generating e (for each expression e in a subset of expressions) allows

us to increase the expectation of every expression in the subset, except for those that

either initially have a large value or those that stay unchanged with our process.

The assumption used in Theorem 1 that the probability of every expression increases

by δ during T ′ trials and decreases by δ during T ′ trials is oversimplified and impossible

to obtain in practice. What we now try to provide is an evidence that we can mimic

approximately such a process using our clustering approach. In particular, we want to

empirically show that the expectation of generating every expression indeed increases

in average. To do so we generate for a small depth (D = 6) the complete list of possible

expressions and compute the expectation of the random variables X1
e and X2

e of being

drawn for all e ∈ ED after T = 100 trials, where X2
e follows a clustering (K = 10)

described in Section 4.6.

In Figure 4.2, we represent in dashed lines the density function of E(X1
e) and the

density function of E(X2
e) in solid line for expressions that have pe <

1
|E|D . We see

that the assumptions of Theorem 1 are not met since some of the expressions see their

expectation decrease. This was to be expected since some of the expressions are prob-

ably syntactically too far away from all clusters and therefore have their probabilities

decreased in all cases. However, for a significant fraction of the expressions, we observe

that their expectation increases. This supports the idea of using several sets of param-

eters in order to perform our test. In the next section, we delve into more detail in the

clustering approach.

65

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

E(X
e
)

De
ns

ity

1 cluster
K Clusters

Figure 4.2: Empirical test showing the distribution of Xq
e for q = 1 and q = 2.

4.6 Learning Algorithm for several Probability sets

We now discuss how it is possible to construct a combination of generative proce-

dures, using a set of expressions Ê and an algorithm to optimize the parameters of

P̂ [αd|α1, . . . , αd−1] such that it maximizes the expected number of different expressions

E(ST) over T trials.

A naive method would be to partition the expressions e ∈ Ê at random into K

disjoint subsets Ck∈K and to optimize a specific distribution P̂k on each subset. How-

ever, the resulting distributions are likely to be close to one another, and not lead to a

significant improvement. Even if we ensure that equivalent expressions are part of the

same subset Ck, it is not enough to assume that pe < pe + δ ∀ e ∈ Ck. Moreover, the

procedure used to optimize P̂k provides no guarantee that expressions outside the sub-

set Ck will not be generated by P̂k (yet this will generally not be the case). Therefore,

we propose to use clustering algorithms to group “similar” expressions together such

that the different P̂k optimized on each cluster Ck will be “specialized” for different

expressions and minimize the overlapping.

This procedure also provides a significant computational advantage in comparison

to optimizing a single generative distribution P̂ over all expressions e ∈ Ê. The fewer

expressions considered, the faster the optimization. In average, we expect to gain a

factor of T/K times the complexity of the optimization algorithm. In this chapter we

used a gradient descent algorithm to optimize with a complexity of O(|Ck|2).

66

4.6 Learning Algorithm for several Probability sets

4.6.1 Sampling strategy

We identified three different possible scenarios s ∈ S for the sampling strategy. The

first one is to sample uniformly across each cluster Ck∈K , independently of the cardinal

of the cluster. Thus, the number of times Tk a specific cluster Ck is sampled is equal

to T
K . The second scenario is to sample each cluster Ck based upon the number of

expressions e present in their respective cluster. In other word, Tk = |e∈Ck|
|Ê|

. The third

and last scenario is to sample based upon the weighted number of unique expressions

per cluster Tk = |u∈Ck|
|Ê|

, where u = u ∈ U ∩ Ck.

4.6.2 Clustering

The goal of clustering is to organize a set of objects into different groups such that an

object is more similar to objects belonging to the same cluster than to those belonging

to other groups. More formally, a clustering of a set of N objects X = {xn}n∈N is a

partition of these objects into K clusters {C}Kj=1, where
⋃K
j=1 Cj = X and Cj ∩ Ck =

∅ ∀j 6= k, in order to, for example, minimize

K∑
j=1

∑
xn∈Cj

∑
xn′∈Cj

b(xn, xn′) , (4.16)

where b(·, ·) is a measure of dissimilarity between objects.

In order to clusterize the expressions e ∈ Ê, we used the K-means algorithm on the

semantic output of the expressions, evaluated for L different values v ∈ V. K-means

[71] is an iterative clustering algorithm that alternates between two steps:

� one centroid ck (an object) is constructed for each cluster such that

ck = argmin
x

∑
xn∈Ck

b(x, xn) ; (4.17)

� each object is assigned to the cluster whose centroid is closer to the object.

In the following, we describe different variants of the K-means algorithms, based on

two different distances and three different preprocessing methods.

67

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

4.6.2.1 Distances considered

We used two distances b ∈ B between semantic vectors as dissimilarity measures. Let

xl denotes the lth coordinate of vector x (l ∈ {1, . . . L}).

The first distance, the squared Euclidean norm, is given by b(x, y) =
∑L

l=1(xl − yl)2.

The second one, the Manhattan norm, is given by b(x, y) =
∑L

l=1 |xl − yl|.

For these two distances, the centroid ck of a cluster is respectively the arithmetic

mean of the elements in the cluster, their median.

4.6.2.2 Preprocessing

Semantic values associated to an expression can be high and dominate distances. In

order to reduce this effect, we considered three preprocessing steps m ∈ M before

clustering applied for all x ∈ X. We denote by x′ln the new values. The first one

consist in doing nothing x′li ≡ xli. The second preprocessing is a normalization x′l ≡
xl − µl√∑N
n=1(xln − µl)2

, where µl ≡ 1
N

∑N
i=1 x

l
n. The third and last one is a transformation

based on a sigmoid x′ln ≡
1

1 + exln
.

4.6.3 Meta Algorithm

We define a setting w ∈ W as a specific combination of a maximal length d ∈ D,

a number of clusters k ∈ K, a sampling strategy s ∈ S, a distance b ∈ B and a

preprocessing m ∈M . We can summarize our approach Z(w, T) by Algorithm 6.

4.7 Experimental results

This section describes a set of experiments that aims at evaluating the efficiency of our

approaches. Section 4.7.1 and Section 4.7.2 evaluates the quality of the optimization

for a single set of probabilities. In these sections, we distinguish between medium-scale

problems where the set ED is enumerable in reasonable time (Section 4.7.1) and large-

scale problems where some form of generalization has to be used (Section 4.7.2). We

rely on the same alphabet as previously: A = {a, b, c, d, log ,
√
·, inv,+,−,×,÷} and

evaluate the various sampling strategies using empirical estimations of E{ST }
T obtained

68

4.7 Experimental results

Algorithm 6 Generic Learning Algorithm

Require: T > 0

Require: Ê

Require: w ≡ (d,K, s, b,m): A setting

Ē← ∅
Normalize the semantic input of Ê with m

Clusterize Ê into K cluster based upon b

for k = 1 to K do

Apply the gradient descent

end for

for t = 1 to T do

Generate an expression ed ∈ Ed, following s

if Ē does not contain ed then

Ē← ed

end if

end for

ST = |Ē|
return ST the number of different valid expressions generated

69

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

by averaging ST over 106 runs. We consider two baselines in our experiments: Syntac-

tically Uniform is the default strategy defined by (4.2) and corresponds to the starting

point of Algorithm 5. The Semantic Uniform baseline refers to a distribution where

each expression u ∈ Û has an equal probability to be generated and corresponds to the

best that can be achieved with a memory-less sampling procedure. Objective 1 (resp.

Objective 2) is our approach used with objective (4.10) (resp. objective (4.11)). Sec-

tion 4.7.3 embeds the sampling process into MCS algorithms and applies it to a classic

symbolic regression problem.

Section 4.7.4 and Section 4.7.5 evaluates the quality of the optimization for several

sets of probabilities. There are several parameters that can impact on the solution.

As such, we try to explore different values and evaluate their respective impact on

the performance. The learning algorithm is initialized with a training set Ê fixed at

1 000 000 expressions e ∈ E. The partitioning is executed upon Ê and the gradient

descent is applied on each cluster separately. The first parameter under study is the

depth. As the depth grows, the expression spaces E and U grow. We set different

maximal lengths D = {15, 20, 25} in order to explore the resilience of our approach.

The second parameter to evaluate is the number of clusters. Since the clustering is at

the core of our approach, we test numerous different partitioning sizes. The number of

clusters K are {1, 5, 10, 15, 20, 50, 100}. The third parameter is the sampling strategy

s ∈ S, defined in Section 4.6.1. The fourth and fifth parameters that we test are the

two different distances b ∈ B and the three different preprocessings m ∈M as defined

in Section 4.6.2.1.

For each settings w(d,K, s, b,m), the resulting procedure is evaluated by generating

T = 10 000 000 expressions. This is performed 100 times to minimize the noise. Overall,

we test 378 different combinations plus one baseline for each depth. The baseline is

the approach of [68], i.e. a uniform distribution over the symbols. We consider the

second baseline as any setting where K = 1, i.e. a single generative procedure that is

optimized on the whole training set Ê.

Comparing 378 methods directly is not possible. Thus, we chose to present the

results sequentially. Section 4.7.4 describes the marginal effect of each parameter, and

Section 4.7.5 compares to one baseline the best combination of parameters w∗, where

w∗ = argmax
w∈W

Z(w, T).

70

4.7 Experimental results

1 2 3 4 5 6 7 8
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

D

E
[S

T
]/T

Syntactically Uniform
Objective 1
Objective 2
Semantically Uniform

Figure 4.3: Ratio of E{ST }
T for different lengths D with T = |UD|.

4.7.1 Sampling Strategy: Medium-scale problems

We first carried out a set of experiments by evaluating the two baselines and the two

learned sampling strategies for different values of D. For each tested value of D, we

launched the training procedure. Figure 4.3 presents the results of these experiments,

in the case where the number of trials is equal to the number of semantically different

valid expressions: T = |UD|.

It can be seen that sampling semantically different expressions is harder and harder

as D gets larger, which is coherent with the results given in Table 4.1. We also observe

that the deeper it goes, the larger the gap between the naive uniform sampling strategy

and our learned strategies becomes. There is no clear advantage of using Objective 1

(corresponding to (4.10)) over Objective 2 (corresponding to (4.11)) for the approxi-

mation of (4.6). By default, we will thus use the simplest of the two in the following,

which is Objective 2.

Many practical problems involve objective functions that are heavy to compute.

In such cases, although the set UD can be enumerated exhaustively, the optimization

71

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

3 4 5 6 7 8
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

D

E
[S

T
]/T

Syntactically Uniform
Objective 1
Objective 2
Semantically Uniform

Figure 4.4: Ratio of E{ST }
T for different lengths D with T = |UD|/100.

budget only enables to evaluate the objective function for a small fraction T � |UD|

of candidate expressions. We thus performed another set of experiments with T =

|UD|/100, whose results are given by Figure 4.4. Since we have T = 0 for values

D < 3, we only report results for D ≥ 3. Note also that the small variations in

Semantically Uniform comes from the rounding bias. The overall behavior is similar to

that observed previously: the problem is harder and harder as D grows and our learned

strategies still significantly outperform the Syntactically Uniform strategy. Note that

all methods perform slightly better for D = 8 than for D = 7. One must bear in

mind that beyond operators that allow commutativity, some operators have the effect

to increase the probability of generating semantically invalid expressions. For instance,

one could think that subtractions should have a higher probability of being drawn than

the additions or multiplications. However, when combined in a logarithm or a square

root, the probability to generate an invalid expression increases greatly. The relation

between the symbols is more convoluted then it looks at first sight, which may be part

of the explanation of the behavior that we observe for D = 8.

72

4.7 Experimental results

4.7.2 Sampling Strategy: Towards large-scale problems

When D is large, the set of ED is impossible to enumerate exhaustively and our learning

algorithm becomes inapplicable. We now evaluate whether the information computed

on smaller lengths can be used on larger problems. We performed a first set of exper-

iments by targeting a length of Deval = 20 with a number of trials Teval = 106. Since

our approach is not applicable with such large values of D, we performed training with

a reduced length Dtrain � Deval and tried several values of Ttrain with the hope to

compensate the length difference.

1 10 100 1000 10000 100000 1e+06 1e+07
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

T
train

E
[S

T
]/T

Syntactically Uniform
D

train
=5

D
train

=6

D
train

=7

Figure 4.5: Ratio of
E{STeval

}
Teval

for different values of Dtrain and Ttrain with Teval = 106

and Deval = 20.

The results of these experiments are reported in Figure 4.5 and raise several ob-

servations. First, for a given Dtrain, the score
E{STeval}
TTeval

starts increasing with Ttrain,

reaches a maximum and then drops rapidly to a score roughly equal to the one ob-

tained by the Syntactically Uniform strategy. Second, the value of Ttrain for which this

maximum occurs (T ∗train) always increases with Dtrain. Third, the best value T ∗train is

always smaller than Teval. Fourth, for any Dtrain, even for very small values of Ttrain

73

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

10 15 20 25 30
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

D
eval

E
[S

T
]/T

Syntactically Uniform
D

train
=9 & T

train
*

Figure 4.6: Ratio of
E{STeval

}
Teval

for different evaluation length Deval with Teval = 106.

the learned distribution already significantly outperforms the Syntactically Uniform

strategy. Based on these observations, and given the fact that the complexity of the

optimisation problem does not depend on Ttrain, we propose the following approach to

tune these two parameters: (i) choose the largest possible Dtrain value, (ii) find using

a dichotomy search approach in {0, . . . , Teval} the value of Ttrain that maximizes the

target score.

Figure 4.6 reports for different values of Deval the results obtained when assuming

that Dtrain cannot be larger than 9 and when Ttrain has been optimized as mentioned

above. Teval is still here equal to 106. As we can see, even for large values of Deval, the

learned distribution significantly outperforms the Syntactically Uniform distribution,

which clearly shows the interest of our approach even when dealing with very long

expressions.

4.7.3 Sampling Strategy: Application to Symbolic Regression

We have showed that our approach enables to improve the diversity of valid generated

expressions when compared to a default random sampling strategy. This section aims

at studying whether this improved diversity leads to better exploration of the search

74

4.7 Experimental results

Name Function Examples

f1 x3 + x2 + x 20 points ∈ [−1, 1]

f2 x4 + x3 + x2 + x 20 points ∈ [−1, 1]

f3 x5 + x4 + x3 + x2 + x 20 points ∈ [−1, 1]

f4 x6 + x5 + x4 + x3 + x2 + x 20 points ∈ [−1, 1]

f5 sin(x2) cos(x)− 1 20 points ∈ [−1, 1]

f6 sin(x) + sin(x+ x2) 20 points ∈ [−1, 1]

f7 log(x+ 1) + log(x2 + 1) 20 points ∈ [0, 2]

f8
√
x 20 points ∈ [0, 4]

f9 sin(x) + sin(y2) 100 points ∈ [−1, 1]× [−1, 1]

f10 2 sin(x) cos(y) 100 points ∈ [−1, 1]× [−1, 1]

Table 4.3: Description of the benchmark symbolic regression problems.

space in the context of optimization over expression spaces. We therefore focus on

symbolic regression problems.

Symbolic regression problems. We use the same set of benchmark symbolic regression

problems as in [72], which is described in Table 6.7. For each of problem, we generate a

training set by taking regularly spaced input points in the domain indicated in the “Ex-

amples” column. The alphabet is {x, 1,+,−, ∗, /, sin, cos, log, exp} for single variable

problems ({f1, . . . , f8}) and {x, y,+,−, ∗, /, sin, cos, log, exp} for bivariable problems.

Search algorithms. We focus on two search algorithms: random search and the re-

cently proposed Nested Monte-Carlo (NMC) search algorithm. The former algorithm

is directly related to our sampling strategy, while the latter is relevant since it has

recently been applied with success to expression discovery [68]. NMC is a search algo-

rithm constructed recursively. Level 0 NMC is equivalent to random search. Level N

NMC selects symbols αd ∈ As by running the level N-1 algorithm for each candidate

symbol and by picking the symbols that lead to the best solutions discovered so far.

We refer the reader to [73] for more details on this procedure.

Protocol. We compare random search and level {1, 2} NMC using for each algorithm

two different sampling strategies: the syntactically uniform strategy (denoted U) and

our learned sampling strategy (denoted L). We use two different maximal lengths D,

one for which the optimization problem can be solved exactly (depth 8) and one for

75

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

Depth 8 (Depth 20)

Pr. Random NMC(1) NMC(2)

- U L U L U L

f1 5(7) 6(5) 6(8) 5(6) 6(6) 6(7)

f2 127(193) 95(113) 151(210) 89(97) 110(167) 98(97)

f3 317(385) 183(179) 331(323) 149(203) 143(236) 157(203)

f4 345(463) 272(365) 270(493) 194(318) 205(247) 262(278)

f5 21(28) 13(19) 22(24) 15(19) 18(19) 17(12)

f6 5(5) 6(6) 6(6) 6(5) 6(7) 7(5)

f7 7(9) 6(7) 10(10) 8(7) 7(6) 7(7)

f8 39(70) 18(46) 28(49) 21(38) 26(40) 22(32)

f9 4(5) 3(4) 4(6) 4(3) 4(4) 4(4)

f10 6(5) 5(5) 8(8) 4(6) 5(5) 5(5)

Mean 23.3(29.7) 18.0(22.0) 25.0(31.3) 17.8(21.1) 19.4(22.8) 19.7(20.0)

Ratio 1.3(1.4) 1.4(1.4) 1.0(1.1)

Table 4.4: Median number of iterations it takes to reach a solution whose score is less than

ε = 0.5 with random search and level {1, 2} nested Monte-Carlo search. Bold indicates

the best sampling strategy. The mean represents the geometric mean. The results are

presented in the format Depth 8 (Depth 20).

which it cannot (depth 20) and for which we use the procedure described in Section

4.7.2. Note that since we use only two different alphabets and two different depths, we

only had to perform our optimization procedure four times for all the experiments1.

The quality of a solution is measured using the mean absolute error and we focus on

the number of function evaluations which is required to reach a solution whose score is

lower than a given threshold ε ≥ 0. We test each algorithm on 100 different runs.

Results. Table 4.4 and Table 4.5 summarize the results by showing the median number

of evaluations it takes to find an expression whose score is better than ε = 0.5 and

ε = 0.1, respectively. We also display the mean of these median number of evaluations

averaged over all 10 problems and the ratio of this quantity with uniform sampling over

this quantity with our improved sampling procedure.

We observe that in most cases, our sampling strategy enables to significantly reduce

the required number of function evaluations to reach the same level of solution quality.

The amount of reduction is the largest when considering expressions of depth 20, which

1More generally, when one has to solve several similar optimization problems, our preprocessing

has only to be performed once.

76

4.7 Experimental results

Depth 8 (Depth 20)

Pr. Random NMC(1) NMC(2)

- U L U L U L

f1 37(53) 28((19) 29(23) 17(8) 8(5) 5(4)

f2 18(89) 12(38) 13(25) 6(18) 7(10) 5(10)

f3 37(127) 21(66) 47(67) 17(34) 8(16) 8(17)

f4 19(302) 30(140) 17(127) 20(72) 16(26) 16(27)

f5 .8(2) .5(.7) .5(.6) .5(.7) .5(.8) .4(.6)

f6 26(38) 9(11) 16(18) 12(6) 8(6) 7(6)

f7 2(6) .7(2) 2(2) .7(1) .5(2) .6(1)

f8 36(41) 22(28) 20(14) 15(11) 13(6) 8(8)

f9 .8(2) .4(.9) .5(1) .3(.8) .4(1) .3(1)

f10 .6(1) .3(.6) .7(1) .4(.5) .3(.5) .2(.5)

Mean 7.1(19.2) 4.2(8.3) 5.7(8.3) 3.5(4.8) 2.7(3.8) 2.2(3.5)

Ratio 1.7(2.3) 1.6(1.7) 1.2(1.1)

Table 4.5: Median number of thousands of iterations it takes to reach a solution whose

score is less than ε = 0.1 with random search and level {1, 2} nested Monte-Carlo search.

The results are expressed in thousands (k) for the sake of readability. The results are

presented in the format Depth 8 (Depth 20).

can be explained by the observation made in Section 4.3.1: when the depth increases, it

is harder and harder to sample semantically different valid expressions. The highest im-

provement is obtained with depth 20 random search: the ratio between the traditional

approach and our approach is of 1.32 and 1.17 for ε = 0.5 and ε = 0.1, respectively.

We observe that the improvements tend to be more important with random search and

with level 1 NMC than with level 2 NMC. This is probably related to the fact that the

higher the level of NMC is, the more effect the bias mechanism embedded in NMC has;

hence reducing the effect of our sampling strategy.

4.7.4 Clustering: Parameter study

In this section, we study the parameters presented in section 4.6. We analyze the

evolution of ST , the number of different expressions generated after T trials, with

respect to the number of clusters K.

Figure 4.7 shows the aggregated (i.e. averaged over all other settings) score of

the different sampling strategies s ∈ S. The first observation we can make is that the

uniform sampling strategy is worse than both sampling proportionally to the number of

77

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

expressions and to the number of equivalent expressions in each cluster. Furthermore,

these two strategies are quite similar in terms of performance. The reason is that

the ratio between expressions and equivalent expressions is relatively constant between

clusters. Thus, the difference between the number of expressions and the number of

unique expressions seems unimportant. Also, as the number of clusters grows, the

uniform sampling strategy catches on. We explain this by the fact that the number of

expressions inside a cluster diminishes up to a point where any of the three strategies

are similar.

From here on, any setting w ∈W where the sampling strategy s ∈ S is the uniform

sampling strategy is removed from the results. Figure 4.8 present the aggregated results

over the preprocessing parameters m ∈M . It appears that the sigmoid transformation

generally decreases the performance of the algorithm and the normalization increases

it slightly over the choice of not doing any change. It seems that in this testbed,

normalization is advantageous over the use of the sigmoid. We conjecture that this

difference is due to the importance of preserving extreme values to group expressions

containing certain operators (e.g. exponential), yet here we only focus on identifying

the best preprocessing for this testbed. From here on, any setting w ∈ W where the

preprocessing m ∈M is not the normalization is removed from the results.

0 20 40 60 80 100
Cluster

3.5

4.0

4.5

5.0

5.5

6.0

S
_T

 1
0

^
6

Depth 15

Uniform

|C_k|

Unique expression in |C_k|

0 20 40 60 80 100
4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0
Depth 20

0 20 40 60 80 100
4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6
Depth 25

Figure 4.7: ST for sampling strategy s ∈ S.

Figure 4.9 shows the impact of the distance minimized during the partitioning

procedure. Overall, we cannot conclude which distance is better suited for this testbed.

Both of them seem to work properly in most cases. However, at depth 15, the use of the

78

4.7 Experimental results

0 20 40 60 80 100
Cluster

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
_T

 1
0

^
6

Depth 15

no change

normal law

sigmoid

0 20 40 60 80 100
4.2

4.3

4.4

4.5

4.6

4.7

4.8
Depth 20

0 20 40 60 80 100
3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0
Depth 25

Figure 4.8: ST for preprocessing m ∈M .

euclidean distance (L2) is a better choice. At depth 20, up to 50 clusters the distance

L2 is again a safe and sound choice, yet the best result of depth 20 is obtained by the

Manhattan distance (L1) combined with 100 clusters. The same phenomenon happens

at depth 25. Up to 20 clusters, the distance L2 provides better performance and yield

the best results at this depth with 5 clusters, yet it is L1 that is to be recommended as

the number of clusters grows. Thus, we choose to keep both distance in the results.

4.7.5 Clustering: Evaluation

This section shows the best combination of parameters for a given number of clusters.

This time, along the X axis we show the number of trials T and along the Y axis we

present Z(w∗,T)−Z(wbase,T)
Z(wbase,T) for the different depth d ∈ D.

Figure 4.10 shows a clear improvement for each depth, with over 20% for both

depths 15 and 25 and almost 20% for depth 20. The best k number of clusters at depth

15 is 15. At depth 20, the number of clusters that yielded the highest results is 50

whereas at depth 25, the best number of clusters is 5. It is worth mentioning that the

performance varies closely with the number of clusters. For instance, at depth 15, from

a k = 1 up to k = 15 there is a steady rise in the number of different valid expressions

generated ST . Past this number of clusters, the performance decline. The same pattern

is observable at the other depths.

79

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

0 20 40 60 80 100
Cluster

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

S
_T

 1
0

^
6

Depth 15

L2

L1

0 20 40 60 80 100
4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0
Depth 20

0 20 40 60 80 100
4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6
Depth 25

Figure 4.9: ST for the distances b ∈ B.

4.8 Conclusion

In this chapter, we presented two contributions to the simulation policy applied to

Symbolic Regression. Symbolic Regression is the testbed of choice because of its rele-

vance to a wide range of applications and its potential use to further our work on MCS

algorithms.

First, we have proposed an approach to learn a distribution for expressions written

in reverse polish notation, with the aim to maximize the expected number of semanti-

cally different, valid, generated expressions. We have empirically tested our approach

and have shown that the number of such generated expressions can significantly be

improved when compared to the default uniform sampling strategy. It also improves

the exploration strategy of random search and nested Monte-Carlo search applied to

symbolic regression problems. When embedded into a MCS algorithm it still show a

significant increase in performance. The second contribution is to partition the input

into smaller subset to make the learning phase faster. Again, such a modification led

to a significant improvement.

Second we proposed an approach to learn a combination of distributions over a set of

symbols, with the aim to maximize the expected number of semantically different, valid,

generated expressions. We have empirically shown that a combination of distributions

computed from a partitioning of the expressions space and optimizing one distribution

per partition can significantly improve the number of generated expressions, with re-

80

4.8 Conclusion

0 5 10 15 20 25
2^

�0.15

�0.10

�0.05

0.00

0.05

0.10

0.15

0.20

0.25

ra
ti

o
 O

p
ti

-r
a
n
d
/r

a
n
d

Depth 15

1

5

10

15

20

50

100

0 5 10 15 20 25
�0.15

�0.10

�0.05

0.00

0.05

0.10

0.15

0.20
Depth 20

0 5 10 15 20 25
�0.15

�0.10

�0.05

0.00

0.05

0.10

0.15

0.20

0.25
Depth 25

Figure 4.10: Performance of cluster k ∈ K over T .

spect to both the default uniform sampling strategy and a single optimized sampling

strategy. In addition, we studied the impact of different parameters on the performance

such as the distance, the preprocessing, the sampling strategy across several clusters

and depths.

A possible extension of this work would be to consider a more global approach to

optimize several distribution instead of using a gradient descent for each partition. For

instance, a possible extension of this work would be to consider richer distributions

making use of the whole history through the use of a general feature function. Nev-

ertheless, the improvement shown in this chapter with respect to the best baseline is

already significant (around 20% regardless of the depth). Another extension is to exe-

cute a thorough comparison with genetic programming. However I want to point out

the difficulty of such comparison. Practically all GP algorithms use a tree representa-

tion whereas here we have a sequential representation. Thus, any measure related to

the number of leaves explored are not directly applicable without significant changes.

Moreover, we cannot simply compare the number of simulations because GP have other

phases such as crossover and mutation. The only valid comparison would thus be in

terms of time. The problem with a time-based comparison is that it heavily depends

on the language used and the quality of the implementation which in my opinion is not

a good way to compare these methods

81

4. SIMULATION POLICY FOR SYMBOLIC REGRESSION

82

5

Contribution on

Recommendation Policy applied

on Metagaming

5.1 Introduction

In this chapter we study the recommendation policy. As explained previously, the

recommendation policy is the actual decision taken based upon the information gath-

ered. Such policy differs greatly from the selection policy because at this point, the

exploration-exploitation dilemma is not relevant anymore. The only purpose is to take

the best action(s) possible. As such, a recommendation policy is typically a probability

distribution over the set of possible moves.

For the discussion on the work done over the recommendation policy, the chapter

is based upon [45]. This chapter studies the best combination of both the selection

policy and the recommendation policy as they are mutually dependent. Thus, a good

recommendation policy is a policy that works well with a given selection policy.

In the following, Section 5.2 introduces more specifically the topic. Section 5.3

describes the algorithms under study. Section 5.4 presents the results and Section 5.5

concludes the chapter. To be fair with the rest of the authors in [45], it must be

pointed out that my main contribution in the paper is part of the experimentation

and the writing. Nevertheless, the paper introduces the topic in a clear manner and is

presented in its entirety.

83

5. CONTRIBUTION ON RECOMMENDATION POLICY APPLIED ON
METAGAMING

5.2 Recommendation Policy

Many important optimization problems can be separated in two parts: strategic de-

cisions and tactical behavior. Table 5.1 and Table 5.2 provides several examples in

industry and games. In the recent years, a wide body of theoretical and experimental

work, namely the bandit literature, has been developed around one-step and often un-

structured decision making. However, strategic decisions are specific bandit problems;

they usually have a very restricted time budget and, in the two-player case, a huge

sparsity (in the sense that the optimal solution, namely a Nash equilibrium, contains

very few arms compared to the initial set). This chapter is devoted to the analysis of

the relevance of this literature for strategic decisions.

Real world examples

Example Strategic Tactical

Electricity Choosing the Choosing (real-time)

Production maintenance how to satisfy the

dates demand (switching

on/off the plants)

Logistics Warehouse/factory Trucks/boats/trains

positioning scheduling

Military Choosing the date Military tactics

operations & the planning

Table 5.1: Examples of real world problems with a strategy/tactics decomposition. In

many cases it would even be possible to define more levels (e.g. deciding investments for

electricity production).

In this section we will formalize the problem (5.2.1) and present the notations

(5.2.2).

5.2.1 Formalization of the problem

There is no clear formal definition of what is a strategic choice, compared to a tactical

choice. However, the idea is that a strategic choice is at a higher level; we will formalize

this as follows: in a strategic bandit problem, the number of iterations T is not huge

compared to the number of options (K in the one player case, or K ×K ′ in the two

player case). In the one-player case, we will therefore focus on T ≤ 100K, and in the

84

5.2 Recommendation Policy

Games

Example Strategic Tactical

Handicap Placing the Standard Go

Go handicap stones gameplay

Batoo Opening Batoo variant of

stones Go gameplay

Chess Opening choice Chess gameplay

New card games Choosing Choosing

(Pokemon, the deck cards/attacks

Urban Rivals)

Table 5.2: Examples of games with a strategy/tactics decomposition. Batoo is a recent

yet quite popular game with a strong strategic component in the choice of initial stones.

two-player case T ≤ K × K ′. Also, we use simple regret, and not cumulative regret,

for the one-player case; and average performance of the recommended distribution for

the two player case, which is somehow a natural extension of simple regret for the two

player case.

Let us consider a set of strategic choices, also termed arms or options in the bandit

literature, denoted without loss of generality by {1, . . . ,K}. We want to choose θ ∈
{1, . . . ,K} for some performance criterion. We have a finite time budget T (also termed

horizon), which means that we can have access to T realizations L(θ1), L(θ2), . . . , L(θT)

and we then choose some θ̂. This is the metagame in the one-player case; it is detailed

in Algorithm 7. There are several remarks on this framework:

Algorithm 7 Metagaming with one player.

for t ∈ T do

Chooses θt ∈ {t, . . . ,K}.
Get a reward rt distributed as L(θt).

end for

Return θ̂.

Note: The loss, termed simple regret, is rT = maxθ EL(θ)− EL(θ̂).

� For evaluating L(θi), we need a simulator, including the tactical decisions. This

possibility is based on the assumption that we can simulate the tactical choices

once the strategic choices have been made.

85

5. CONTRIBUTION ON RECOMMENDATION POLICY APPLIED ON
METAGAMING

� Without loss of generality, the simple regret is always positive, and the goal is to

have a simple regret as small as possible.

In the two player case, the framework is detailed in Algorithm 8. As in the one-player

Algorithm 8 Metagaming with two players.

for t ∈ T do

Choose θt ∈ {t, . . . ,K} and θ′t ∈ {t, . . . ,K ′}.
Get a reward rt distributed as L(θt, θ

′
t).

end for

Return θ̂.

Note: The loss, termed simple regret, is rT = maxθ minθ′ EL(θ, θ′) −minθ′ EL(θ̂, θ′)

(where here maxima and minima are for random variables θ, θ′; in the 2-player case

we look for Nash equilibria and we expect optimal strategies to be non-deterministic).

case, the loss is always positive (without loss of generality), and the goal is to have a

loss as small as possible. There are several remarks on this framework:

� As in the one-player case, we assume that we can simulate the tactical behaviors

(including the tactical behavior of the opponent). Basically, this is based on the

assumption that the opponent has a strategy that we can nearly simulate, or the

assumption that the difference between the strategy we choose for the opponent

and the opponent’s real strategy is not a problem (playing optimally against

the first is nearly equivalent to playing optimally against the latter). This is a

classical assumption in many game algorithms; however, this might be irrelevant

for e.g. Poker, where opponent modelization is a crucial component of a strategy

for earning money; it might also be irrelevant in games in which humans are by

far stronger than computers, as e.g. the game of Go.

� We use a simple regret algorithm; this is somehow natural (under assumptions

above) as the simple regret is directly the expected increase of loss due to the

strategic choice (at least, if we trust assumptions above which ensure that L(·, ·)
is a good sampling of possible outcomes).

In the game literature, the non-strategic part is usually termed “ingaming” for pointing

out the difference with the metagaming.

86

5.2 Recommendation Policy

5.2.2 Terminology, notations, formula

Useful notations:

� #E is the cardinal of the set E.

� Nt(i) is the number of times the parameter i has been tested at iteration t, i.e.

Nt(i) = #{j ≤ t; θj = i}.

� L̂t(i) is the average reward for parameter i at iteration t, i.e. L̂t(i) = 1
Nt(i)

∑
j≤t;θj=i rj

(well defined if Nt(i) > 0).

� confidence bounds will be useful as well: UBt(i) = L̂t(i)+
√

log(t)/Nt(i); LBt(i) =

L̂t(i)−
√

log(t)/Nt(i).

Various constants are sometimes plugged into these formula (e.g. a multiplicative

factor in front of the
√
.). These confidence bounds are statistically asymptotically

consistent estimates of the lower and upper confidence bounds in the one-player

case for a confidence converging to 1.

� In some cases, we need a weighted average as follows (with ∀i, Ŵ0(i) = 0): Ŵt(i) =

1
t

∑
j≤t;θj=i rj/pj(i) where pj(i) is the probability that i is chosen at iteration j

given observations available at that time. This will in particular be useful for

EXP3.

When there are two players, similar notations with a ’ are used for the second player:

Ŵ ′t(j), L̂
′
t(j),. . .

As we can see in Algorithms 7 and 8, specifying a metagaming algorithm implies

specifying several components:

� The tactical simulators (necessary for computing L), which, given the sequence

of strategic and tactical decisions, provide the loss; this is part of the problem

specification.

� The simulator of our tactical strategy; this is also necessary for computing L. We

will not work on this part, which is precisely not the meta-gaming part.

� For the two-player case, the simulator of the opponent’s strategy as well. This

could be considered as a part of metagaming because the uncertainty on the

opponent’s strategy should, in a perfect world, be taken into account in the

strategic module. However, we simplify the problem by assuming that such a

simulator is given and fixed and satisfactory.

87

5. CONTRIBUTION ON RECOMMENDATION POLICY APPLIED ON
METAGAMING

� The two components which are the core of metagaming/strategic choices (follow-

ing the terminology of [74]):

– exploration module, aimed at choosing θi and θ′i (the latter in the two-player

case);

– recommendation module, aimed at choosing θ̂.

The underlying assumption in this chapter is that we do not seek to work on the de

tailed structure or the problem, and we just want to have access to it through high-level

primitives like the L function.

[75] has done a similar comparison, with a different family of bandits and a different

context; we here use their best performing bandits, and add some new ones (the LCB

recommendation, Bernstein races which were cited but not tested, Successive Rejects

and Adapt-UCB-E).

5.3 Algorithms

We summarize below the state of the art, for exploration and for recommendation.

5.3.1 Algorithms for exploration

We present below several known algorithms for choosing θi, θ
′
i.

� The UCB (Upper Confidence Bound) formula is well known since [7, 76]. It is

optimal in the one player case up to some constants, for the criterion of cumulative

regret. The formula is as follows, for some parameter α: θt = mod(t,K)+1 if t ≤
K; θt = arg maxi L̂t−1(i) + α

√
log(t)/Nt−1(i) otherwise.

� The EXP3 (Exponential weights for Exploration and Exploitation) al-

gorithm is known in the two-player case[43]. It converges to the Nash equilibrium

of the strategic game. In our variant, θt+1 = i with probability

β

K
√
t

+ (1− β/
√
t)

exp(
√
tŴt−1(i))∑

j∈{1,...,K} exp(
√
tŴt−1(j))

.

� [74] has discussed the efficiency of the very simple uniform exploration strat-

egy in the one-player case, i.e.

θt = arg min
i∈{1,...,K}

Nt−1(i);

88

5.3 Algorithms

in particular, it reaches the provably optimal expected simple regret O(exp(−cT))

for c depending on the problem. [74] also shows that it reaches the optimal

regret, within logarithmic terms, for the non-asymptotic distribution independent

framework, with O(
√
K log(K)/T).

� [77] has revisited recently the progressive discarding of statistically weak moves,

i.e. Bernstein races; in this chapter, we choose the arm with smallest number

of simulations among arms which are not statistically rejected:

θt+1 =
arg min
i∈{1,...,K}

UBt(i)≥maxk LBt(k)

Nt(i).

In many works, Bernstein bounds are used with a large set of arms, and coefficients

in LB or UB formula above take into account the number of arms; we will here

use the simple LB and UB above as our number of arms is moderate.

� Successive Reject (SR) is a simple algorithm, quite efficient in the simple regret

setting; see Alg. 9.

� Adaptive-UCB-E is a variant of UCB, with an adaptive choice of coefficients; see

Alg. 10

Algorithm 9 The Successive Reject algorithm from [78] for K arms and T iterations.

Define Z = 1
2 +

∑K
i=2 1/i and A = {1, . . . ,K} and n0 = 0 and nk = d(1/Z) T−K

K+1−ke
for k ≥ 1.

for each epoch k = 1, . . . ,K − 1 do

for each i ∈ A do

choose (exploration) arm i during nk − nk−1 steps.

end for

Then, remove from A the arm with worse average reward.

end for

Return the unique remaining element of A.

5.3.2 Algorithms for final recommendation

Choosing the final arm, used for the real case, and not just for exploration, might be

very different from choosing exploratory arms. Typical formulas are:

89

5. CONTRIBUTION ON RECOMMENDATION POLICY APPLIED ON
METAGAMING

Algorithm 10 The Adaptive-UCB-E algorithm from [78].

Define Z = 1
2 +

∑K
i=2 1/i and nk = d(1/Z) T−K

K+1−ke.
Define t0 = 0 and t1 = Kn1 and tk = n1 + · · ·+ nk−1 + (K − k + 1)nk.

Define Bi,t(a) = L̂t−1(i) +
√
a/Nt−1(i).

for each epoch k = 1, . . . ,K − 1 do

Let H = K if k = 0, and H = maxK−k+1≤i≤K i∆̂
−2(< i >, k) otherwise, where

∆̂i,k = (max1≤j≤KL̂t−1(j) − L̂t−1(i), and < i > is an ordering such that ∆<1>,k ≤
· · · ≤ ∆<K>,k.

For t = tk + 1, . . . , tk+1 choose (exploration) arm i maximizing Bi,t(cn/H).

end for

Return i that maximizes Lt(i).

� Empirically best arm (EBA): picks up the arm with best average reward.

Makes sense if all arms have been tested at least once. Then the formula is

θ̂ = arg maxi L̂T (i).

� Most played arm (MPA): the arm which was simulated most often is chosen.

This methodology has the drawback that it can not make sense if uniformity is

applied in the exploratory steps, but as known in the UCT literature (Upper

Confidence Tree[10]) it is more stable than EBA when some arms are tested a

very small number of times (e.g. just once with a very good score - with EBA

this arm can be chosen). With MPA, θ̂ = arg maxiNT (i).

� Upper Confidence Bound (UCB): θ̂ = arg maxi UBT (i). This makes sense

only if T ≥ K. UCB was used as a recommendation policy in old variants of UCT

but it is now widely understood that it does not make sense to have “optimism in

front of uncertainty” (i.e. the positive coefficient for
√
t/Nt(i) in the UB formula)

for the recommendation step.

� As Upper Confidence Bound, with their optimistic nature on the reward (they

are increased for loosely known arms, through the upper bound), are designed for

exploration more than for final recommendation, the LCB (Lower Confidence

Bound) makes sense as well: θ̂ = arg maxi LBT (i).

� EXP3 is usually associated with the empirical recommendation technique (some-

times referred to as “empirical distribution of play”), which draws an arm with

probability proportional to the frequency at which it was drawn during the ex-

90

5.4 Experimental results

ploration phase; then P (θ̂ = i) = NT (i)
T .

� For the two-player case, a variant of EXP3 benefit from sparsity through trun-

cation (TEXP3, Truncated EXP3) has been proposed [51]. It is defined in

Algorithm 11.

� For SR (successive reject), there are epochs, and one arm is discarded at each

epoch; therefore, at the end there is only one arm, so there is no problem for

recommendation.

5.4 Experimental results

We experiment algorithms above in the one-player case (with kill-all go, in which the

strategic choice is the initial placement of stones for the black player) and in the two-

player case in sections below.

5.4.1 One-player case: killall Go

We refer to classical sources for the rules of Go; KillAll Go is the special case in which

black is given an advantage (some initial stones), but has a more difficult goal: he must

kill all opponent stones on the board. So, one player only has initial stones to set up;

the game is then played as a standard Go game. We refer to two different killall-Go

frameworks: 7x7, 2 initial stones for black (Section 5.4.1.1); 13x13, 8 or 9 initial stones

for black (Section 5.4.1.2). The human opponent is Ping-Chiang Chou (5p professional

player).

5.4.1.1 7x7 killall Go

Here, the black player must choose the positioning of two initial stones. Human experts

selected 4 possibilities: (1) a black stone in C5, and next black stone chosen by the

tactical system as a first move; (2) a black stone in C4, and next black stone chosen

by the tactical system as a first move; (3) a black stone in D4 (center), and next black

stone chosen by the tactical system as a first move; (4) two black stones in C4 and E4.

We tested intensively each of these strategic choices by our tactical system (ColdMilk

program, by Dong Hwa university), in order to get a reliable estimate of the winning

rate in each case (Table 5.3). Then, we simulated (using these estimates as ground

truth) what would happen if we used various strategic tools for choosing the initial

91

5. CONTRIBUTION ON RECOMMENDATION POLICY APPLIED ON
METAGAMING

placement, for various limited budgets (T = 16, 64, 256). Results, for kill-all Go as

explained above and also for various artificial settings with the same number of arms,

are presented in Tables 5.6 and 5.7. Arms are randomly rotated for getting rid of trivial

bias.

Placement Score

of black stones for black

C5+choice by tactical system 27.9% ±2.3%

C4+choice by tactical system 33.4% ±2.4%

D4+choice by tactical system 36.2% ±3.0%

C4+E4 44.8% ±2.7%

Table 5.3: Efficiency of each strategic choice for black in killall Go. These numbers will

be used as ground truth for experiments below (Tables 5.6 and 5.7).

Two 7x7 killall-go games were then played against Ping-Chiang Chou (5P), with

one win of the computer as White and one loss of the computer as Black (i.e. White

won both). Results are presented in Fig. 5.1.

Figure 5.1: Game played by our program MoGoTW as White (left) and as Black (right)

in 7x7 killall Go. The left game is a win for the program and the right game is a loss for

the program. The pro player did not make the same strategic choice as our program (he

chose C4 E3 instead of our choice C4 E4) but agreed, after discussion, that C4 E4 is better.

92

5.4 Experimental results

5.4.1.2 13x13 killall Go

We reproduced the experiments with 13x13 initial placement of stones. Fig. 5.2 presents

the five different handicap placements considered in the experiment. As for 7x7, heavy

computations allowed us to find an approximate ground truth, and then experiments

are run on this ground truth. Experimental results for various bandit approaches on

this 13x13 killall Go metagaming are given in Table 5.4. We also test on artificial

problems.

Figure 5.2: Five different handicap placements proposed by Go experts for 13x13 killall

Go with 9 initial stones.

We then show in Fig. 5.3 the games played against Ping-Chiang Chou by our

program as White with 8 and 9 initial stones respectively; we see on these games the

strategic choice made by Ping-Chiang Chou (5P), which is the same as the strategic

choice by our program, i.e. the first choice in Fig. 5.2.

Figure 5.3: These two games are the killall-go games played by our program as White

against Ping-Chiang Chou (5P). The program won with 8 initial black stones and lost with

9 initial stones.

93

5. CONTRIBUTION ON RECOMMENDATION POLICY APPLIED ON
METAGAMING

Exploration / Recommendation Average

Algorithm simple regret

(16,64,256 time steps)

Strategic choice in 13x13 killall Go

(5 possible choices)

uniform sampling, EBA 0.0201 0.0204 0.0139

UCB+MPA 0.0215 0.0192 0.0147

UCB+UCB 0.0336 0.0274 0.0213

UCB+LCB 0.0224 0.0202 0.0137

Bernstein+LCB 0.0206 0.0206 0.0146

UCB+EBA 0.0221 0.0206 0.0137

EXP3+EDP 0.0369 0.0359 0.0357

SR 0.0239 0.0225 0.0119

adapt-UCB-E, EBA 0.0235 0.0199 0.0138

Table 5.4: Experimental results of average simple regret when comparing five different

stone placements for 9 stones in 13x13 as shown in Fig. 5.2. All experiments are reproduced

1000 times.

5.4.2 Two-player case: Sparse Adversarial Bandits for Urban Rivals

Recently [51] proposed a variant of EXP3 called TEXP3. TEXP3 takes its root into

the fact that decision making algorithms in games rarely have enough time to reach

the nice asymptotic behavior guarantied by EXP3. Also, EXP3 fails to exploit that

in most games, the number of good moves is rather low compared to the number

of possible moves K. TEXP3 is an attempt to exploit these two characteristics. It

uses the outcome of EXP3 and truncates the arms that are unlikely to be part of

the solution. Alg. 11 describes the implementation. The constant c is chosen as

1
T maxi(Txi)

α for some α ∈]0, 1[(and d accordingly), as in [51], while T is the number

of iterations executed. We set α = 0.7 in our experiments, following [51]. The natural

framework of EXP3 is a two-player game. In this section we apply EXP3 and TEXP3

to Urban Rivals, a stochastic card games available for free on Internet and that fits the

framework. The game is as follow: (1) player 1 choose a combination θ1 ∈ {1, . . . ,K1};
(2) simultaneously, player 2 choose a combination θ′ ∈ {1, . . . ,K ′}; (3) then the game

is resolved (ingaming). We consider a setting in which two players choose 4 cards from

a finite set of 10 cards. There exists 104 combinations, yet by removing redundant

94

5.4 Experimental results

Figure 5.4: These two games are the killall-go games played by our program as Black

against Ping-Chiang Chou (5P). The program lost both with 8 initial black stones and

with 9 initial stones.

Algorithm 11 TEXP3 (truncated EXP3), offline truncation post-EXP3.

Let x and y be the approximate Nash equilibria as proposed by EXP3 for the row

and column players respectively.

Truncate as follows

x′i = xi if xi > c, x′i = 0 otherwise;

y′i = yi if yi > d, y′i = 0 otherwise.

Renormalize: x′′ = x′/
∑

i x
′
i; y
′′ = y′/

∑
i y
′
i.

Output x′′, y′′.

arms, we remain with 715 different possible combinations (both K1 = K2 = 715) if

we allow the same card to be used more than once. The first objective is to test

whether EXP3 (and TEXP3) is stronger than a random player for different numbers of

iterations T . We are specifically interested in situation where T is small (compared to

K1 ×K2) as it is typically the case in games. Table 5.5 (left) present the score (in %)

of EXP3 versus a random player. EXP3 significantly beats the random player when

T > 25 000. It can thus execute a strategic choice that outperforms a random player

when they have similar tactical capabilities. As T grows, the strategic choice becomes

better. Next we look into a way to make an even better choice with a smaller T .

95

5. CONTRIBUTION ON RECOMMENDATION POLICY APPLIED ON
METAGAMING

Table 5.5: EXP3 vs Random (left) and TEXP3 vs Random (right).

T Score ±1σ

10 000 0.5042 ± 0.001

25 000 0.5278 ± 0.001

50 000 0.5421 ± 0.002

100 000 0.5749 ± 0.004

T Score ±1σ

10 000 0.7206 ± 0.005

25 000 0.7238 ± 0.003

50 000 0.7477 ± 0.002

100 000 0.7871 ± 0.006

Recently TEXP3 has been proven to outperform a random player with less information

than EXP3 (experimentally in [51], theoretically in [79]). Table 5.5 (right) presents

the performance of TEXP3 against a random player under the same settings as EXP3

above. These results are in line with previous studies; however, the improvement is

much better - probably because we have here a highly sparse problem. Even with

the lowest setting (T = 10 000), TEXP3 managed a strong performance against a

random player. Again, with little information (T << K1 × K2), TEXP3 can make

strategic choices that influence the outcome of the game positively; furthermore, it

clearly outperforms EXP3.

5.5 Conclusions

We compared various algorithms for strategic choices including widely played games

(Killall Go, a classical exercise of Go schools, and Urban Rivals); we defined strategic

choices in terms of moderate exploration budget for a simple regret criterion. We

distinguished the one-player case and the two-player case; this distinction, in bandit

terms, is a distinction between stochastic and adversarial bandits.

As clearly shown by the good performance of UCB/LCB variants, SR, and EXP3

on their original frameworks (one-player and two-player cases respectively), and by the

poor performance of EXP3 in the one-player case, this distinction is relevant. Consis-

tently with theory, bandits designed for the stochastic case (typically UCB) performed

well in the one-player case and bandits designed for the adversarial case (typically

EXP3) performed well in the two-player case. The distinction between simple regret

and cumulative regret is less striking; yet, successive rejects, which was designed for

simple regret algorithms, performed very well in particular for very small budgets.

96

5.5 Conclusions

We also show the relevance of a careful recommendation algorithm; UCB is a good

exploration algorithm, but it should be accompanied by a good recommendation strat-

egy like LCB or MPA as soon as the number of options is not negligible compared to

the number of time steps; otherwise weak poorly explored arms can be recommended.

This is however less critical than in Monte-Carlo Tree Search, where bandits are applied

many times per run (once per move in a control problem or in a game).

The results in the two-player case also suggest that sparsity should be used whenever

possible in the adversarial case; the superiority of TEXP3 over EXP3 in this context is

the most clearest contrast in this work. Whereas simple regret and cumulative regret

make little difference, even in the context of small time budget, sparse or not sparse

makes a big difference, as much as distinguishing one-player case and two-player case.We

conclude below with more details for the one-player and two-player case respectively.

5.5.1 One-player case

There are two crucial components under test: exploration algorithm, and recommenda-

tion algorithm. The most important component in strategic choices is the exploration

formula. In many of our tests (with the notable exception of very small budget, very

relevant here for our setting), the best algorithm for exploration is UCB, which is

designed for the one-player case with cumulative regret; the surprising thing is that we

here work on the simple regret, which is the natural notion of regret for the framework

of strategic choices. Nonetheless, the variant of UCB termed Adapt-UCB-E, designed

for parameter free simple regret, performs correctly. Consistently with artificial tests in

[74], UCB is non-asymptotically much better than uniform exploration variants (which

are nonetheless proved asymptotically optimal within logarithmic factors both for a

fixed distribution and in a distribution free setting, in the “simple regret” setting).

The asymptotic behavior is far from being a good approximation here. Importantly for

our framework, Successive Reject, designed for simple regret, is very stable

(never very bad) and outperforms UCB variants for the smallest budgets.

Consistently with some folklore results in Monte-Carlo Tree Search, the recommen-

dation should not be made in a UCB manner; in fact, the lower confidence bound

performed very well; we also got good results with the most played arm or

the empirically best arm, as recommendation rules. We point out that many

practitioners in the Computer-Go literature (which is based on heavily tuned bandit

97

5. CONTRIBUTION ON RECOMMENDATION POLICY APPLIED ON
METAGAMING

algorithms) use combinations of EBA and MPA and LCB as recommendation arms for

optimal performance. Consistently with intuition, EBA becomes weaker with larger

numbers of arms. This is consistent with experiments in [75]. Bernstein races per-

formed moderately well; there was no effort for tuning them and maybe they might be

improved by some tuning. Adapt-UCB-E performed well as a variant of UCB dedicated

to simple regret, but not better than SR or other UCB variants.

Results include games won against a professional player, in 7x7 Killall Go and in

13x13 Killall Go; in this case, the strategic decision is the initial choice.

5.5.2 Two-player case

In the two-player case, EXP3 (dedicated to this adversarial setting) naturally performed

well.We made experiments confirming the good behavior of the algorithm, following

[51, 80, 81]. As metagaming is a good candidate for providing sparse problems, we

tested the efficiency of the truncation algorithm TEXP3 [51], with indeed much better

results here than in the original paper (this is certainly due to the fact that, in our

metagaming context, we have a much more sparse benchmark than [51]).

Results include experiments on a real game, namely Urban Rivals; the strategic

choice consists in choosing the cards, which is directly a strategic choice setting.

Further work. Importantly, we worked only on variants of bandits which have

no expert knowledge and no similarity measure on arms; we just consider the set of

strategic possibilities with no structure on it. In the one-player case, there is already

a wide literature on how to use some prior knowledge in a bandit [82, 83, 84, 85]

(progressive widening, progressive unpruning); the use of a structure on it (a distance

between arms) is not so clear and will be the object of a future work. In the case of

two bandits operating for the two strategic choices in an adversarial setting, both the

structure and the prior knowledge are to a large extent ignored in the literature. This

is our main further work.

98

5.5 Conclusions

Exploration / Average

Recommendation simple regret

Algorithm (16,64,256 time steps)

Strategic choice in 7x7 killall Go

(with symetry-breaking; 4 possible choices)

uniform sampling, EBA 0.092 0.0603 0.0244

UCB+MPA 0.079 0.0563 0.022

UCB+UCB 0.0673 0.0523 0.0304

UCB+LCB 0.0751 0.0466 0.0222

Bernstein+LCB 0.0633 0.0537 0.0226

UCB+EBA 0.0744 0.0474 0.0185

EXP3+EDP 0.0849 0.0809 0.0748

SR 0.0627 0.0448 0.021

adapt-UCB-E, EBA 0.0707 0.0483 0.0188

4 artificial options, with reward unif. in [0, 1]

uniform sampling, EBA 0.0652 0.0197 0.00394

UCB+MPA 0.0535 0.0198 0.00453

UCB+UCB 0.064 0.0386 0.00931

UCB+LCB 0.0495 0.0142 0.00626

Bernstein+LCB 0.0563 0.0191 0.00465

UCB+EBA 0.0454 0.0175 0.00401

EXP3+EDP 0.184 0.145 0.11

SR 0.0611 0.0205 0.00681

adapt-UCB-E, EBA 0.0505 0.014 0.00478

4 artificial options, (0.1, 0, 0, 0)

uniform sampling, EBA 0.0509 0.0129 0.0002

UCB+MPA 0.0519 0.0148 0.0001

UCB+UCB 0.0695 0.0277 0.0049

UCB+LCB 0.0503 0.0155 0

Bernstein+LCB 0.0483 0.0136 0.0004

UCB+EBA 0.0501 0.014 0.0001

EXP3+EDP 0.0706 0.062 0.0524

SR 0.0532 0.0409 0.012

adapt-UCB-E, EBA 0.0528 0.014 0.0001

Exploration / Average

Recommendation simple regret

Algorithm (16,64,256 time steps)

4 artificial options, (0.9, 1, 1, 1)

uniform sampling, EBA 0.0151 0.0045 0

UCB+MPA 0.0189 0.0061 0.0001

UCB+UCB 0.0179 0.0045 0.0246

UCB+LCB 0.0167 0.006 0.0001

Bernstein+LCB 0.0168 0.0048 0

UCB+EBA 0.0165 0.0048 0.0001

EXP3+EDP 0.0209 0.0211 0.0214

SR 0.0118 0.0033 0

adapt-UCB-E, EBA 0.0152 0.0057 0

4 artificial options, (0.4, 0.5, 0.5, 0.5)

uniform sampling, EBA 0.0176 0.0088 0.0019

UCB+MPA 0.0128 0.0095 0.0027

UCB+UCB 0.0157 0.0114 0.0065

UCB+LCB 0.0142 0.0078 0.0012

Bernstein+LCB 0.0167 0.0084 0.0028

UCB+EBA 0.016 0.0094 0.002

EXP3+EDP 0.0206 0.0189 0.0174

SR 0.0175 0.0105 0.0025

adapt-UCB-E, EBA 0.0153 0.0081 0.0018

4 artificial options, (0.6, 0.5, 0.5, 0.5)

uniform sampling, EBA 0.0637 0.0527 0.0277

UCB+MPA 0.0636 0.053 0.0246

UCB+UCB 0.0675 0.0561 0.0346

UCB+LCB 0.0621 0.0494 0.0244

Bernstein+LCB 0.0643 0.0498 0.0284

UCB+EBA 0.061 0.05 0.0257

EXP3+EDP 0.0715 0.0709 0.0665

SR 0.0631 0.0531 0.03

adapt-UCB-E, EBA 0.0642 0.0509 0.0247

Table 5.6: Average simple regret for various exploration/recommendation methodologies.

Performance of various strategic systems for choosing initial placement for Black in 7x7

killall-Go. The first row is the real-world case, with 4 arms; then, we consider various cases

with the same number of arms: (1) random uniform probabilities of winning for each arm;

(2) all arms have probability 0 of winning except one arm which has probability 0.1 of

winning (3) all arms have probability 1 of winning except one arm which has probability

0.9 (4) all arms have probability 0.5 except one which has probability 0.4 (5) all arms

have probability 0.5 except one which has probability 0.6. Please note that in the artificial

cases, the index of the special arm (the arm with different reward) is randomly drawn and

is indeed not necessarily the first. Each experiment is reproduced 1000 times and standard

deviations are less than 0.04.

99

5. CONTRIBUTION ON RECOMMENDATION POLICY APPLIED ON
METAGAMING

Exploration Average

/ Recommendation simple regret

Algorithm (16,64,256 time steps)

Strategic choice in 7x7 killall Go

(without symetry-breaking; 11 possible choices)

uniform sampling, EBA 0.121 0.0973 0.0488

UCB+MPA 0.127 0.0677 0.0235

UCB+UCB 0.0835 0.0826 0.0543

UCB+LCB 0.0976 0.0656 0.0213

Bernstein+LCB 0.116 0.076 0.0488

UCB+EBA 0.104 0.0657 0.0222

EXP3+EDP 0.1 �0.1 0.094

SR 0.0987 0.0557 0.0232

adapt-UCB-E, EBA 0.103 0.067 0.023

11 artificial options, with reward unif. in [0, 1]

uniform sampling, EBA 0.172 0.0614 0.017

UCB+MPA 0.219 0.0263 0.00829

UCB+UCB 0.202 0.0837 0.0366

UCB+LCB 0.165 0.0286 0.00758

Bernstein+LCB 0.185 0.0513 0.0111

UCB+EBA 0.168 0.0273 0.00708

EXP3+EDP 0.289 0.238 0.223

SR 0.123 0.0336 0.0118

adapt-UCB-E, EBA 0.154 0.0267 0.0083

11 artificial options, (0.1, 0, . . . , 0)

uniform sampling, EBA 0.0787 0.0474 0.0073

UCB+MPA 0.0787 0.0509 0.0089

UCB+UCB 0.089 0.0773 0.038

UCB+LCB 0.0776 0.048 0.0074

Bernstein+LCB 0.0764 0.0493 0.009

UCB+EBA 0.0788 0.0498 0.0094

EXP3+EDP 0.0862 0.0814 0.0765

SR 0.0788 0.0619 0.0319

adapt-UCB-E, EBA 0.0764 0.0465 0.0079

Exploration / Average

Recommendation simple regret

algorithm (16,64,256 time steps)

11 artificial options, (0.9, 1, . . . , 1)

uniform sampling, EBA 0.0069 0.0045 0.0007

UCB+MPA 0.0072 0.005 0.0005

UCB+UCB 0.0082 0.0051 0.0005

UCB+LCB 0.0065 0.0041 0.0006

Bernstein+LCB 0.0074 0.0048 0.0003

UCB+EBA 0.0072 0.005 0.0009

EXP3+EDP 0.0076 0.0086 0.0063

SR 0.0052 0.0011 0

adapt-UCB-E, EBA 0.0072 0.0041 0.0003

11 artificial options, (0.4, 0.5, . . . , 0.5)

uniform sampling, EBA 0.0055 0.0042 0.0011

UCB+MPA 0.0071 0.0032 0.0008

UCB+UCB 0.0067 0.0037 0.0032

UCB+LCB 0.0055 0.0017 0.0004

Bernstein+LCB 0.0045 0.0039 0.0018

UCB+EBA 0.0075 0.003 0.0003

EXP3+EDP 0.0074 0.0071 0.0066

SR 0.0062 0.0023 0.001

adapt-UCB-E, EBA 0.0049 0.0025 0.0009

11 artificial options, (0.6, 0.5, . . . , 0.5)

uniform sampling, EBA 0.0892 0.0824 0.0686

UCB+MPA 0.0888 0.0764 0.0563

UCB+UCB 0.087 0.0843 0.0726

UCB+LCB 0.0875 0.0766 0.0556

Bernstein+LCB 0.0869 0.0812 0.0691

UCB+EBA 0.0862 0.0783 0.0567

EXP3+EDP 0.0887 0.0869 0.0895

SR 0.0868 0.0817 0.0622

adapt-UCB-E, EBA 0.0868 0.0776 0.0569

Table 5.7: Average simple regret of various exploration/recommendations methodologies

for various real-world or artificial problems. The first row is the real-world case, in case

we do not remove the symetries; this increases the number of possible choices to 11. This

is obviously not what we should do from the point of view of the application; we just do

this in order to generate a new test case. The same artificial cases as in the 4-options case

are reproduced with 11 options. All experiments are reproduced 1000 times and standard

deviations are less than 0.004.

100

6

Algorithm discovery

6.1 Introduction

This chapter develops an idea rather pioneering. So far we focused on improving

each component of Monte Carlo search (MCS) algorithms such as the simulation, the

selection and the recommendation policy. Here, it is the combination of the components

themselves that is under study.

Indeed, MCS algorithms rely on random simulations to evaluate the quality of states

or actions in sequential decision making problems. Most of the recent progress in MCS

algorithms has been obtained by integrating smart procedures to select the simulations

to be performed. This has led to, among other things, the Upper Confidence bounds

applied to Trees algorithm (UCT, [36]) that was popularized thanks to breakthrough

results in computer Go [37]. This algorithm relies on a game tree to store simulation

statistics and uses this tree to bias the selection of future simulations. While UCT is one

way to combine random simulations with tree search techniques, many other approaches

are possible. For example, the Nested Monte Carlo (NMC) search algorithm [86], which

obtained excellent results in the last General Game Playing competition1 [87], relies on

nested levels of search and does not require storing a game tree.

How to best bias the choice of simulations is still an active topic in MCS-related

research. Both UCT and NMC are attempts to provide generic techniques that perform

well on a wide range of problems and that work with little or no prior knowledge. While

working on such generic algorithms is definitely relevant to AI, MCS algorithms are

1http://games.stanford.edu

101

http://games.stanford.edu

6. ALGORITHM DISCOVERY

in practice widely used in a totally different scenario, in which a significant amount of

prior knowledge is available about the game or the sequential decision making problem

to be solved.

People applying MCS techniques typically spend plenty of time exploiting their

knowledge of the target problem so as to design more efficient problem-tailored variants

of MCS. Among the many ways to do this, one common practice is automatic hyper-

parameter tuning. By way of example, the parameter C > 0 of UCT is in nearly all

applications tuned through a more or less automated trial and error procedure. While

hyper-parameter tuning is a simple form of problem-driven algorithm selection, most

of the advanced algorithm selection work is done by humans, i.e., by researchers that

modify or invent new algorithms to take the specificities of their problem into account.

The comparison and development of new MCS algorithms given a target problem is

mostly a manual search process that takes much human time and is error prone. Thanks

to modern computing power, automatic discovery is becoming a credible approach for

partly automating this process. In order to investigate this research direction, we

focus on the simplest case of (fully-observable) deterministic single-player games. Our

contribution is twofold. First, we introduce a grammar over algorithms that enables

generating a rich space of MCS algorithms. It also describes several well-known MCS

algorithms, using a particularly compact and elegant description. Second, we propose

a methodology based on multi-armed bandits for identifying the best MCS algorithm

in this space, for a given distribution over training problems. We test our approach on

three different domains. The results show that it often enables discovering new variants

of MCS that significantly outperform generic algorithms such as UCT or NMC. We

further show the good robustness properties of the discovered algorithms by slightly

changing the characteristics of the problem.

This chapter is structured as follows. Section 6.2 formalizes the class of sequential

decision making problems considered in this chapter and formalizes the corresponding

MCS algorithm discovery problem. Section 6.3 describes our grammar over MCS al-

gorithms and describes several well-known MCS algorithms in terms of this grammar.

Section 6.4 formalizes the search for a good MCS algorithm as a multi-armed bandit

problem. We experimentally evaluate our approach on different domains in Section 6.5.

Finally, we discuss related work in Section 6.6 and conclude in Section 6.7.

102

6.2 Problem statement

6.2 Problem statement

We consider the class of finite-horizon fully-observable deterministic sequential decision-

making problems. A problem P is a triple (x1, f, g) where x1 ∈ X is the initial state, f

is the transition function, and g is the reward function. The dynamics of a problem is

described by

xt+1 = f(xt, ut) t = 1, 2, . . . , T, (6.1)

where for all t, the state xt is an element of the state space X and the action ut is an

element of the action space. We denote by U the whole action space and by Ux ⊂ U

the subset of actions which are available in state x ∈ X. In the context of one player

games, xt denotes the current state of the game and Uxt are the legal moves in that

state. We make no assumptions on the nature of X but assume that U is finite. We

assume that when starting from x1, the system enters a final state after T steps and

we denote by F ⊂ X the set of these final states1. Final states x ∈ F are associated to

rewards g(x) ∈ R that should be maximized.

A search algorithm A(·) is a stochastic algorithm that explores the possible se-

quences of actions to approximately maximize

A(P = (x1, f, g)) ' argmax
u1,...,uT

g(xT+1) , (6.2)

subject to xt+1 = f(xt, ut) and ut ∈ Uxt . In order to fulfill this task, the algorithm is

given a finite amount of computational time, referred to as the budget. To facilitate

reproducibility, we focus primarily in this chapter on a budget expressed as the maxi-

mum number B > 0 of sequences (u1, . . . , uT) that can be evaluated, or, equivalently,

as the number of calls to the reward function g(·). Note, however, that it is trivial in

our approach to replace this definition by other budget measures, as illustrated in one

of our experiments in which the budget is expressed as an amount of CPU time.

We express our prior knowledge as a distribution over problems DP , from which we

can sample any number of training problems P ∼ DP . The quality of a search algorithm

1In many problems, the time at which the game enters a final state is not fixed, but depends on

the actions played so far. It should however be noted that it is possible to make these problems fit this

fixed finite time formalism by postponing artificially the end of the game until T . This can be done,

for example, by considering that when the game ends before T , a “pseudo final state” is reached from

which, whatever the actions taken, the game will reach the real final state in T .

103

6. ALGORITHM DISCOVERY

AB(·) with budget B on this distribution is denoted by JBA (DP) and is defined as the

expected quality of solutions found on problems drawn from DP :

JBA (DP) = EP∼DP {ExT+1∼AB(P){g(xT+1)}} , (6.3)

where xT+1 ∼ AB(P) denotes the final states returned by algorithm A with budget B

on problem P .

Given a class of candidate algorithms A and given the budget B, the algorithm

discovery problem amounts to selecting an algorithm A∗ ∈ A of maximal quality:

A∗ = argmax
A∈A

JBA (DP) . (6.4)

The two main contributions of this chapter are: (i) a grammar that enables in-

ducing a rich space A of candidate MCS algorithms, and (ii) an efficient procedure to

approximately solve Eq. 6.4.

6.3 A grammar for Monte-Carlo search algorithms

All MCS algorithms share some common underlying general principles: random sim-

ulations, look-ahead search, time-receding control, and bandit-based selection. The

grammar that we introduce in this section aims at capturing these principles in a pure

and atomic way. We first give an overall view of our approach, then present in detail

the components of our grammar, and finally describe previously proposed algorithms

by using this grammar.

6.3.1 Overall view

We call search components the elements on which our grammar operates. Formally,

a search component is a stochastic algorithm that, when given a partial sequence of

actions (u1, . . . , ut−1), generates one or multiple completions (ut, . . . , uT) and evaluates

them using the reward function g(·). The search components are denoted by S ∈ S,

where S is the space of all possible search components.

Let S be a particular search component. We define the search algorithm AS ∈ A

as the algorithm that, given the problem P , executes S repeatedly with an empty

partial sequence of actions (), until the computational budget is exhausted. The search

104

6.3 A grammar for Monte-Carlo search algorithms

algorithm AS then returns the sequence of actions (u1, . . . , uT) that led to the highest

reward g(·).
In order to generate a rich class of search components—hence a rich class of search

algorithms—in an inductive way, we rely on search-component generators. Such gener-

ators are functions Ψ : Θ→ S that define a search component S = Ψ(θ) ∈ S when given

a set of parameters θ ∈ Θ. Our grammar is composed of five search component gener-

ators that are defined in Section 6.3.2: Ψ ∈ {simulate, repeat, lookahead, step, select}.
Four of these search component generators are parametrized by sub-search components.

For example, step and lookahead are functions S → S. These functions can be nested

recursively to generate more and more evolved search components. We construct the

space of search algorithms A by performing this in a systematic way, as detailed in

Section 6.4.1.

6.3.2 Search components

Table 6.1 describes our five search component generators. Note that we distinguish

between search component inputs and search component generator parameters. All

our search components have the same two inputs: the sequence of already decided

actions (u1, . . . , ut−1) and the current state xt ∈ X. The parameters differ from one

search component generator to another. For example, simulate is parametrized by a

simulation policy πsimu and repeat is parametrized by the number of repetitions N > 0

and by a sub-search component. We now give a detailed description of these search

component generators.

Simulate. The simulate generator is parametrized by a policy πsimu ∈ Πsimu which

is a stochastic mapping from states to actions: u ∼ πsimu(x). In order to generate

the completion (ut, . . . , uT), simulate(πsimu) repeatedly samples actions uτ according

to πsimu(xτ) and performs transitions xτ+1 = f(xτ , uτ) until reaching a final state. A

default choice for the simulation policy is the uniformly random policy, defined as

E{πrandom(x) = u} =

{
1
|Ux| if u ∈ Ux

0 otherwise.
(6.5)

Once the completion (ut, . . . , uT) is fulfilled, the whole sequence (u1, . . . , uT) is yielded.

This operation is detailed in Figure 6.1 and proceeds as follows: (i) it computes the

reward of the final state xT+1, (ii) if the reward is larger than the largest reward found

105

6. ALGORITHM DISCOVERY

Table 6.1: Search component generators

Simulate((u1, . . . , ut−1), xt)

Param: πsimu ∈ Πsimu

for τ = t to T do

uτ ∼ πsimu(xτ)

xτ+1 ← f(xτ , uτ)

end for

yield((u1, . . . , uT))

————————

Repeat((u1, . . . , ut−1), xt)

Param: N > 0, S ∈ S

for i = 1 to N do

invoke(S, (u1, . . . , ut−1), xt)

end for

————————

LookAhead((u1, . . . , ut−1), xt)

Param: S ∈ S

for ut ∈ Uxt do

xt+1 ← f(xt, ut)

invoke(S, (u1, . . . , ut), xt+1)

end for

————————

Step((u1, . . . , ut−1), xt)

Param: S ∈ S

for τ = t to T do

invoke(S, (u1, . . . , uτ−1), xτ)

uτ ← u∗τ
xτ+1 ← f(xτ , uτ)

end for

————————

Select((u1, . . . , ut−1), xt)

Param: πsel ∈ Πsel, S ∈ S

for τ = t to T do . Select

uτ ∼ πsel(x)

xτ+1 ← f(xτ , uτ)

if n(xτ+1) = 0 then

break

end if

end for

tleaf ← τ

invoke(S, (u1, . . . , utleaf), xtleaf+1) .

Sub-search

for τ = tleaf to 1 do . Backpropagate

n(xτ+1)← n(xτ+1) + 1

n(xτ , uτ)← n(xτ , uτ) + 1

s(xτ , uτ)← s(xτ , uτ) + r∗

end for

n(x1)← n(x1) + 1

————————

106

6.3 A grammar for Monte-Carlo search algorithms

Figure 6.1: Yield and invoke commands

Require: g : F → R, the reward function

Require: B > 0, the computational budget

Initialize global: numCalls← 0

Initialize local: r∗ ← −∞
Initialize local: (u∗1, . . . , u

∗
T)← ∅

procedure Yield((u1, . . . , uT))

r = g(x)

if r > r∗ then

r∗ ← r

(u∗1, . . . , u
∗
T)← (u1, . . . , uT)

end if

numCalls← numCalls+ 1

if numCalls = B then

stop search

end if

end procedure

procedure Invoke(S ∈ S, (u1, . . . , ut−1) ∈ U∗, xt ∈ X)

if t ≤ T then

S((u1, . . . , ut−1), xt)

else

yield (u1, . . . , uT)

end if

end procedure

previously, it replaces the best current solution, and (iii) if the budget B is exhausted,

it stops the search.

Since algorithm AP repeats P until the budget is exhausted, the search algorithm

Asimulate(πsimu) ∈ A is the algorithm that samples B random trajectories (u1, . . . , uT),

evaluates each of the final state rewards g(xT+1), and returns the best found final state.

This simple random search algorithm is sometimes called Iterative Sampling [88].

Note that, in the yield procedure, the variables relative to the best current solu-

tion (r∗ and (u∗1, . . . , u
∗
T)) are defined locally for each search component, whereas the

numCalls counter is global to the search algorithm. This means that if S is a search

107

6. ALGORITHM DISCOVERY

component composed of different nested levels of search (see the examples below), the

best current solution is kept in memory at each level of search.

Repeat. Given a positive integer N > 0 and a search component S ∈ S, repeat(N,S) is

the search component that repeats N times the search component S. For example, S =

repeat(10, simulate(πsimu)) is the search component that draws 10 random simulations

using πsimu. The corresponding search algorithm AS is again iterative sampling, since

search algorithms repeat their search component until the budget is exhausted. In

Table 6.1, we use the invoke operation each time a search component calls a sub-search

component. This operation is detailed in Figure 6.1 and ensures that no sub-search

algorithm is called when a final state is reached, i.e., when t = T + 1.

Look-ahead. For each legal move ut ∈ Uxt , lookahead(S) computes the successor state

xt+1 = f(xt, ut) and runs the sub-search component S ∈ S starting from the sequence

(u1, . . . , ut). For example, lookahead(simulate(πsimu)) is the search component that,

given the partial sequence (u1, . . . , ut−1), generates one random trajectory for each

legal next action ut ∈ Uxt . Multiple-step look-ahead search strategies naturally write

themselves with nested calls to lookahead. As an example,

lookahead(lookahead(lookahead(simulate(πsimu))))

is a search component that runs one random trajectory per legal combination of the

three next actions (ut, ut+1, ut+2).

Step. For each remaining time step τ ∈ [t, T], step(S) runs the sub-search com-

ponent S, extracts the action uτ from (u∗1, . . . , u
∗
T) (the best currently found action

sequence, see Figure 6.1), and performs transition xτ+1 = f(xτ , uτ). The search com-

ponent generator step enables implementing time receding search mechanisms, e.g.,

step(repeat(100, simulate(πsimu))) is the search component that selects the actions

(u1, . . . , uT) one by one, using 100 random trajectories to select each action. As a more

evolved example, step(lookahead(lookahead(repeat(10, simulation(πsimu))))) is a time re-

ceding strategy that performs 10 random simulations for each two first actions (ut, ut+1)

to decide which action ut to select.

Select. This search component generator implements most of the behaviour of a

Monte Carlo Tree Search (MCTS, [36]). It relies on a game tree, which is a non-

uniform look-ahead tree with nodes corresponding to states and edges corresponding

108

6.3 A grammar for Monte-Carlo search algorithms

to transitions. The role of this tree is twofold: it stores statistics on the outcomes of

sub-searches and it is used to bias sub-searches towards promising sequences of actions.

A search component select(πsel, S) proceeds in three steps: the selection step relies

on the statistics stored in the game tree to select a (typically small) sub-sequence of

actions (ut, . . . , utleaf), the sub-search step invokes the sub-search component S ∈ S

starting from (u1, . . . , utleaf), and the backpropagation step updates the statistics to

take into account the sub-search result.

We use the following notation to denote the information stored by the look-ahead

tree: n(x, u) is the number of times the action u was selected in state x, s(x, u) is the

sum of rewards that were obtained when running sub-search after having selected action

u in state x, and n(x) is the number of times state x was selected: n(x) =
∑

u∈Ux n(x, u).

In order to quantify the quality of a sub-search, we rely on the reward of the best so-

lution that was tried during that sub-search: r∗ = max g(x). In the simplest case,

when the sub-search component is S = simulate(πsimu), r∗ is the reward associated

to the final state obtained by making the random simulation with policy πsimu, as

usual in MCTS. In order to select the first actions, selection relies on a selection pol-

icy πsel ∈ Πsel, which is a stochastic function that, when given all stored information

related to state x (i.e., n(x), n(x, u), and s(x, u), ∀u ∈ Ux), selects an action u ∈ Ux.

The selection policy has two contradictory goals to pursue: exploration, trying new

sequences of actions to increase knowledge, and exploitation, using current knowledge

to bias computational efforts towards promising sequences of actions. Such explo-

ration/exploitation dilemmas are usually formalized as a multi-armed bandit problem,

hence πsel is typically one of policies commonly found in the multi-armed bandit liter-

ature. The probably most well-known such policy is UCB-1 [89]:

πucb−1
C (x) = argmax

u∈Ux

s(x, u)

n(x, u)
+ C

√
lnn(x)

n(x, u)
, (6.6)

where division by zero returns +∞ and where C > 0 is a hyper-parameter that enables

the control of the exploration / exploitation tradeoff.

6.3.3 Description of previously proposed algorithms

Our grammar enables generating a large class of MCS algorithms, which includes sev-

eral already proposed algorithms. We now overview these algorithms, which can be

described particularly compactly and elegantly thanks to our grammar:

109

6. ALGORITHM DISCOVERY

� The simplest Monte Carlo algorithm in our class is Iterative Sampling. This

algorithm draws random simulations until the computational time is elapsed and

returns the best solution found:

is = simulate(πsimu). (6.7)

� In general, iterative sampling is used during a certain time to decide which action

to select (or which move to play) at each step of the decision problem. The

corresponding search component is

is′ = step(repeat(N, simulate(πsimu))), (6.8)

where N is the number of simulations performed for each decision step.

� The Reflexive Monte Carlo search algorithm introduced in [90] proposes using a

Monte Carlo search of a given level to improve the search of the upper level. The

proposed algorithm can be described as follows:

rmc(N1, N2) = step(repeat(N1, step(repeat(N2, simulate(π
simu))))), (6.9)

where N1 and N2 are called the number of meta-games and the number of games,

respectively.

� The Nested Monte Carlo (NMC) search algorithm [86] is a recursively defined

algorithm generalizing the ideas of Reflexive Monte Carlo search. NMC can be

described in a very natural way by our grammar. The basic search level l = 0 of

NMC simply performs a random simulation:

nmc(0) = simulate(πrandom) . (6.10)

The level l > 0 of NMC relies on level l − 1 in the following way:

nmc(l) = step(lookahead(nmc(l − 1))) . (6.11)

� Single-player MCTS [91, 92, 93] selects actions one after the other. In order

to select one action, it relies on select combined with random simulations. The

corresponding search component is thus

mcts(πsel, πsimu, N) = step(repeat(N, select(πsel, simulate(πsimu)))) , (6.12)

110

6.4 Bandit-based algorithm discovery

where N is the number of iterations allocated to each decision step. UCT is one

of the best known variants of MCTS. It relies on the πucb−1
C selection policy and

is generally used with a uniformly random simulation policy:

uct(C,N) = mcts(πucb−1
C , πrandom, N) . (6.13)

� In the spirit of the work on nested Monte Carlo, the authors of [94] proposed

the Meta MCTS approach, which replaces the simulation part of an upper-level

MCTS algorithm by a whole lower-level MCTS algorithm. While they presented

this approach in the context of two-player games, we can describe its equivalent

for one-player games with our grammar:

metamcts(πsel, πsimu, N1, N2) =

step(repeat(N1, select(π
sel,mcts(πsel, πsimu, N2)) (6.14)

where N1 and N2 are the budgets for the higher-level and lower-level MCTS

algorithms, respectively.

In addition to offering a framework for describing these already proposed algorithms,

our grammar enables generating a large number of new hybrid MCS variants. We give,

in the next section, a procedure to automatically identify the best such variant for a

given problem.

6.4 Bandit-based algorithm discovery

We now move to the problem of solving Eq. 6.4, i.e., of finding, for a given problem, the

best algorithm A from among a large class A of algorithms derived with the grammar

previously defined. Solving this algorithm discovery problem exactly is impossible in

the general case since the objective function involves two infinite expectations: one over

the problems P ∼ DP and another over the outcomes of the algorithm. In order to ap-

proximately solve Eq. 6.4, we adopt the formalism of multi-armed bandits and proceed

in two steps: we first construct a finite set of candidate algorithms AD,Γ ⊂ A (Section

6.4.1), and then treat each of these algorithms as an arm and use a multi-armed ban-

dit policy to select how to allocate computational time to the performance estimation

of the different algorithms (Section 6.4.2). It is worth mentioning that this two-step

111

6. ALGORITHM DISCOVERY

approach follows a general methodology for automatic discovery that we already suc-

cessfully applied to multi-armed bandit policy discovery [38, 95], reinforcement learning

policy discovery [96], and optimal control policy discovery [97].

6.4.1 Construction of the algorithm space

We measure the complexity of a search component S ∈ S using its depth, defined

as the number of nested search components constituting S, and denote this quan-

tity by depth(S). For example, depth(simulate(πsimu)) is 1, depth(uct) is 4, and

depth(nmc(3)) is 7.

Note that simulate, repeat, and select have parameters which are not search com-

ponents: the simulation policy πsimu, the number of repetitions N , and the selection

policy πsel, respectively. In order to generate a finite set of algorithms using our gram-

mar, we rely on predefined finite sets of possible values for each of these parameters.

We denote by Γ the set of these finite domains. The discrete set AD,Γ is constructed

by enumerating all possible algorithms up to depth D with constants Γ, and is pruned

using the following rules:

� Canonization of repeat: Both search components S1 = step(repeat(2, repeat(5, Ssub)))

and S2 = step(repeat(5, repeat(2, Ssub))) involve running Ssub 10 times at each

step. In order to avoid having this kind of algorithm duplicated, we collapse

nested repeat components into single repeat components. With this rule, S1 and

S2 both reduce to step(repeat(10, Ssub)).

� Removal of nested selects: A search component such as select(πsel, select(πsel, S))

is ill-defined, since the inner select will be called with a different initial state xt

each time, making it behave randomly. We therefore exclude search components

involving two directly nested selects.

� Removal of repeat-as-root: Remember that the MCS algorithm AS ∈ A runs S

repeatedly until the computational budget is exhausted. Due to this repetition,

algorithms such as Asimulate(πsimu) and Arepeat(10,simulate(πsimu)) are equivalent. To

remove these duplicates, we reject all search components whose “root” is repeat.

In the following, ν denote the cardinality of the set of candidate algorithms: AD,Γ =

{A1, . . . , Aν}. To illustrate the construction of this set, consider a simple case where

112

6.4 Bandit-based algorithm discovery

Depth 1–2 Depth 3

sim lookahead(repeat(2, sim)) step(repeat(2, sim))

lookahead(repeat(10, sim)) step(repeat(10, sim))

lookahead(sim) lookahead(lookahead(sim)) step(lookahead(sim))

step(sim) lookahead(step(sim)) step(step(sim))

select(sim) lookahead(select(sim)) step(select(sim))

select(repeat(2, sim)) select(repeat(10, sim))

select(lookahead(sim)) select(step(sim))

Table 6.2: Unique algorithms up to depth 3

the maximum depth is D = 3 and where the constants Γ are πsimu = πrandom, N ∈
{2, 10}, and πsel = πucb−1

C . The corresponding space AD,Γ contains ν = 18 algorithms.

These algorithms are given in Table 6.2, where we use sim as an abbreviation for

simulate(πsimu).

6.4.2 Bandit-based algorithm discovery

One simple approach to approximately solve Eq. 6.4 is to estimate the objective func-

tion through an empirical mean computed using a finite set of training problems

{P (1), . . . , P (M)}, drawn from DP :

JBA (DP) ' 1

M

M∑
i=1

g(xT+1)|xT+1 ∼ AB(P (i)) , (6.15)

where xT+1 denotes one outcome of algorithm A with budget B on problem P (i).

To solve Eq. 6.4, one can then compute this approximated objective function for all

algorithms A ∈ AD,Γ and simply return the algorithm with the highest score. While

extremely simple to implement, such an approach often requires an excessively large

number of samples M to work well, since the variance of g(·) may be quite large.

In order to optimize Eq. 6.4 in a smarter way, we propose to formalize this problem

as a multi-armed bandit problem. To each algorithm Ak ∈ AD,Γ, we associate an arm.

Pulling the arm k for the tkth time involves selecting the problem P (tk) and running the

algorithm Ak once on this problem. This leads to a reward associated to arm k whose

value is the reward g(xT+1) that comes with the solution xT+1 found by algorithm Ak.

The purpose of multi-armed bandit algorithms is to process the sequence of observed

113

6. ALGORITHM DISCOVERY

rewards to select in a smart way the next algorithm to be tried, so that when the time

allocated to algorithm discovery is exhausted, one (or several) high-quality algorithm(s)

can be identified. How to select arms so as to identify the best one in a finite amount

of time is known as the pure exploration multi-armed bandit problem [98]. It has been

shown that index based policies based on upper confidence bounds such as UCB-1

were also good policies for solving pure exploration bandit problems. Our optimization

procedure works thus by repeatedly playing arms according to such a policy. In our

experiments, we perform a fixed number of such iterations. In practice this multi-armed

bandit approach can provide an answer at anytime, returning the algorithm Ak with

the currently highest empirical reward mean.

6.4.3 Discussion

Note that other approaches could be considered for solving our algorithm discovery

problem. In particular, optimization over expression spaces induced by a grammar

such as ours is often solved using Genetic Programming (GP) [99]. GP works by evolv-

ing a population of solutions, which, in our case, would be MCS algorithms. At each

iteration, the current population is evaluated, the less good solutions are removed, and

the best solutions are used to construct new candidates using mutation and cross-over

operations. Most existing GP algorithms assume that the objective function is (at least

approximately) deterministic. One major advantage of the bandit-based approach is to

natively take into account the stochasticity of the objective function and its decompos-

ability into problems. Thanks to the bandit formulation, badly performing algorithms

are quickly rejected and the computational power is more and more focused on the

most promising algorithms.

The main strengths of our bandit-based approach are the following. First, it is

simple to implement and does not require entering into the details of complex muta-

tion and cross-over operators. Second, it has only one hyper-parameter (the explo-

ration/exploitation coefficient). Finally, since it is based on exhaustive search and on

multi-armed bandit theory, formal guarantees can easily be derived to bound the regret,

i.e., the difference between the performance of the best algorithm and the performance

of the algorithm discovered [24, 98, 100].

Our approach is restricted to relatively small depths D since it relies on exhaustive

search. In our case, we believe that many interesting MCS algorithms can be described

114

6.5 Experiments

using search components with low depth. In our experiments, we used D = 5, which

already provides many original hybrid algorithms that deserve further research. Note

that GP algorithms do not suffer from such a limit, since they are able to generate

deep and complex solutions through mutation and cross-over of smaller solutions. If

the limit D = 5 was too restrictive, a major way of improvement would thus consist

in combining the idea of bandits with those of GP. In this spirit, the authors of [101]

recently proposed a hybrid approach in which the selection of the members of a new

population is posed as a multi-armed bandit problem. This enables combining the best

of the two approaches: multi-armed bandits enable taking natively into account the

stochasticity and decomposability of the objective function, while GP cross-over and

mutation operators are used to generate new candidates dynamically in a smart way.

6.5 Experiments

We now apply our automatic algorithm discovery approach to three different testbeds:

Sudoku, Symbolic Regression, and Morpion Solitaire. The aim of our experiments was

to show that our approach discovers MCS algorithms that outperform several generic

(problem independent) MCS algorithms: outperforms them on the training instances,

on new testing instances, and even on instances drawn from distributions different from

the original distribution used for the learning.

We first describe the experimental protocol in Section 6.5.1. We perform a detailed

study of the behavior of our approach applied to the Sudoku domain in Section 6.5.2.

Section 6.5.3, and 6.5.4 then give the results obtained on the other two domains. Finally,

Section 6.5.5 gives an overall discussion of our results.

6.5.1 Protocol

We now describe the experimental protocol that will be used in the remainder of this

section.

Generic algorithms. The generic algorithms are Nested Monte Carlo, Upper Confi-

dence bounds applied to Trees, Look-ahead Search, and Iterative sampling. The search

components for Nested Monte Carlo (nmc), UCT (uct), and Iterative sampling (is)

have already been defined in Section 6.3.3. The search component for Look-ahead

115

6. ALGORITHM DISCOVERY

Search of level l > 0 is defined by la(l) = step(larec(l)), where

larec(l) =

{
lookahead(larec(l − 1)) if l > 0

simulate(πrandom) otherwise.
(6.16)

For both la(·) and nmc(·), we try all values within the range [1, 5] for the level

parameter. Note that la(1) and nmc(1) are equivalent, since both are defined by the

search component step(lookahead(simulate(πrandom))). For uct(·), we try the following

values of C: {0, 0.3, 0.5, 1.0} and set the budget per step to B
T , where B is the total

budget and T is the horizon of the problem. This leads to the following set of generic

algorithms: {nmc(2), nmc(3), nmc(4), nmc(5), is, la(1), la(2), la(3), la(4), la(5),

uct(0), uct(0.3), uct(0.5), and uct(1)}. Note that we omit the B
T parameter in uct for

the sake of conciseness.

Discovered algorithms. In order to generate the set of candidate algorithms, we used

the following constants Γ: repeat can be used with 2, 5, 10, or 100 repetitions; and select

relies on the UCB1 selection policy from Eq. (6.6) with the constants {0, 0.3, 0.5, 1.0}.
We create a pool of algorithms by exhaustively generating all possible combinations of

the search components up to depth D = 5. We apply the pruning rules described in

Section 6.4.1, which results in a set of ν = 3, 155 candidate MCS algorithms.

Algorithm discovery. In order to carry out the algorithm discovery, we used a UCB

policy for 100 × ν time steps, i.e., each candidate algorithm was executed 100 times

on average. As discussed in Section 6.4.2, each bandit step involves running one of the

candidate algorithms on a problem P ∼ DP . We refer to DP as the training distribution

in the following. Once we have played the UCB policy for 100×ν time steps, we sort the

algorithms by their average training performance and report the ten best algorithms.

Evaluation. Since algorithm discovery is a form of “learning from examples”, care

must be taken with overfitting issues. Indeed, the discovered algorithms may perform

well on the training problems P while performing poorly on other problems drawn

from DP . Therefore, to evaluate the MCS algorithms, we used a set of 10, 000 testing

problems P ∼ DP which are different from the training problems. We then evaluate

the score of an algorithm as the mean performance obtained when running it once on

each testing problem.

In each domain, we futher test the algorithms either by changing the budget B

and/or by using a new distribution D′P that differs from the training distribution DP .

116

6.5 Experiments

In each such experiment, we draw 10, 000 problems from D′P and run the algorithm

once on each problem.

In one domain (Morpion Solitaire), we used a particular case of our general setting,

in which there was a single training problem P , i.e., the distribution DP was degenerate

and always returned the same P . In this case, we focused our analysis on the robustness

of the discovered algorithms when tested on a new problem P ′ and/or with a new budget

B.

Presentation of the results. For each domain, we present the results in a table in which

the algorithms have been sorted according to their testing scores on DP . In each column

of these tables, we underline both the best generic algorithm and the best discovered

algorithm and show in bold all cases in which a discovered algorithm outperforms all

tested generic algorithms. We furthermore performed an unpaired t-test between each

discovered algorithm and the best generic algorithm. We display significant results

(p-value lower than 0.05) by circumscribing them with stars. As in Table 6.2, we use

sim as an abbreviation for simulate(πsimu) in this section.

6.5.2 Sudoku

Sudoku, a Japanese term meaning “singular number”, is a popular puzzle played around

the world. The Sudoku puzzle is made of a grid of G2 × G2 cells, which is structured

into blocks of size G×G. When starting the puzzle, some cells are already filled in and

the objective is to fill in the remaining cells with the numbers 1 through G2 so that

� no row contains two instances of the same number,

� no column contains two instances of the same number,

� no block contains two instances of the same number.

Sudoku is of particular interest in our case because each Sudoku grid corresponds

to a different initial state x1. Thus, a good algorithm A(·) is one that intrinsically has

the versatility to face a wide variety of Sudoku grids.

In our implementation, we maintain for each cell the list of numbers that could

be put in that cell without violating any of the three previous rules. If one of these

lists becomes empty then the grid cannot be solved and we pass to a final state (see

Footnote 2). Otherwise, we select the subset of cells whose number-list has the lowest

117

6. ALGORITHM DISCOVERY

cardinality, and define one action u ∈ Ux per possible number in each of these cells (as

in [86]). The reward associated to a final state is its proportion of filled cells, hence a

reward of 1 is associated to a perfectly filled grid.

Algorithm discovery We sample the initial states x1 by filling 33% randomly se-

lected cells as proposed in [86]. We denote by Sudoku(G) the distribution over Sudoku

problems obtained with this procedure (in the case of G2 × G2 games). Even though

Sudoku is most usually played with G = 3 [102], we carry out the algorithm discovery

with G = 4 to make the problem more difficult. Our training distribution was thus

DP = Sudoku(4) and we used a training budget of B = 1, 000 evaluations. To evaluate

the performance and robustness of the algorithms found, we tested the MCS algo-

rithms on two distributions: DP = Sudoku(4) and D′P = Sudoku(5), using a budget of

B = 1, 000.

Table 6.3 presents the results, where the scores are the average number of filled

cells, which is given by the reward times the total number of cells G4. The best

generic algorithms on Sudoku(4) are uct(0) and uct(0.3), with an average score of 198.7.

We discover three algorithms that have a better average score (198.8 and 198.9) than

uct(0), but, due to a very large variance on this problem (some Sudoku grids are far

more easy than others), we could not show this difference to be significant. Although

the discovered algorithms are not significantly better than uct(0), none of them is

significantly worst than this baseline. Furthermore, all ten discovered algorithms are

significantly better than all the other non-uct baselines. Interestingly, four out of the

ten discovered algorithms rely on the uct pattern – step(repeat(select(sim, ·), ·)) – as

shown in bold in the table.

When running the algorithms on the Sudoku(5) games, the best algorithm is still

uct(0), with an average score of 494.4. This score is slightly above the score of the best

discovered algorithm (493.7). However, all ten discovered algorithms are still signifi-

cantly better than the non-uct generic algorithms. This shows that good algorithms

with Sudoku(4) are still reasonably good for Sudoku(5).

Repeatability In order to evaluate the stability of the results produced by the bandit

algorithm, we performed five runs of algorithms discovery with different random seeds

and compared the resulting top-tens. What we observe is that our space contains a

118

6.5 Experiments

Table 6.3: Ranking and Robustness of Algorithms Discovered when Applied to Sudoku

Name Search Component Rank Sudoku(4) Sudoku(5)

Dis#8 step(select(repeat(select(sim, 0.5), 5), 0)) 1 198.9 487.2

Dis#2 step(repeat(step(repeat(sim, 5)), 10)) 2 198.8 486.2

Dis#6 step(step(repeat(select(sim, 0), 5))) 2 198.8 486.2

uct(0) 4 198.7 494.4

uct(0.3) 4 198.7 493.3

Dis#7 lookahead(step(repeat(select(sim, 0.3), 5))) 6 198.6 486.4

uct(0.5) 6 198.6 492.7

Dis#1 select(step(repeat(select(sim, 1), 5)), 1) 6 198.6 485.7

Dis#10 select(step(repeat(select(sim, 0.3), 5))) 9 198.5 485.9

Dis#3 step(select(step(sim), 1)) 10 198.4 493.7

Dis#4 step(step(step(select(sim, 0.5)))) 11 198.3 493.4

Dis#5 select(step(repeat(sim, 5)), 0.5) 11 198.3 486.3

Dis#9 lookahead(step(step(select(sim, 1)))) 13 198.1 492.8

uct(1) 13 198.1 486.9

nmc(3) 15 196.7 429.7

la(1) 16 195.6 430.1

nmc(4) 17 195.4 430.4

nmc(2) 18 195.3 430.3

nmc(5) 19 191.3 426.8

la(2) 20 174.4 391.1

la(4) 21 169.2 388.5

is 22 169.1 388.5

la(5) 23 168.3 386.9

la(3) 24 167.1 389.1

—

119

6. ALGORITHM DISCOVERY

Table 6.4: Repeatability Analysis

Search Component Structure Occurrences in the top-ten

select(step(repeat(select(sim)))) 11

step(step(repeat(select(sim)))) 6

step(select(repeat(select(sim)))) 5

step(repeat(select(sim))) 5

select(step(repeat(sim))) 2

select(step(select(repeat(sim)))) 2

step(select(step(select(sim)))) 2

step(step(select(repeat(sim)))) 2

step(repeat(step(repeat(sim)))) 2

lookahead(step(repeat(select(sim)))) 2

step(repeat(step(repeat(sim)))) 2

select(repeat(step(repeat(sim)))) 1

select(step(repeat(sim))) 1

lookahead(step(step(select(sim)))) 1

step(step(step(select(sim)))) 1

step(step(step(repeat(sim)))) 1

step(repeat(step(select(sim)))) 1

step(repeat(step(step(sim)))) 1

step(select(step(sim))) 1

step(select(repeat(sim))) 1

—

huge number of MCS algorithms performing nearly equivalently on our distribution of

Sudoku problems. In consequence, different runs of the discovery algorithm produce

different subsets of these nearly equivalent algorithms. Since we observed that small

changes in the constants of repeat and select often have a negligible effect, we grouped

the discovered algorithms by structure, i.e. by ignoring the precise values of their

constants. Table 6.4 reports the number of occurrences of each search component

structure among the five top-tens. We observe that uct was discovered in five cases out

of fifty and that the uct pattern is part of 24 discovered algorithms.

120

6.5 Experiments

Table 6.5: Algorithms Discovered when Applied to Sudoku with a CPU time budget

Name Search Component Rank Rank in Table II Sudoku(4)

Dis#1 select(step(select(step(sim), 0.3)), 0.3) 1 - 197.2

Dis#2 step(repeat(step(step(sim)), 10)) 2 - 196.8

Dis#4 lookahead(select(step(step(sim)), 0.3), 1) 3 - 196.1

Dis#5 select(lookahead(step(step(sim)), 1), 0.3) 4 - 195.9

Dis#3 lookahead(select(step(step(sim)), 0), 1) 5 - 195.8

Dis#6 step(select(step(repeat(sim, 2)), 0.3)) 6 - 195.3

Dis#9 select(step(step(repeat(sim, 2))), 0) 7 - 195.2

Dis#8 step(step(repeat(sim, 2))) 8 - 194.8

nmc(2) 9 18 194.7

nmc(3) 10 15 194.5

Dis#7 step(step(select(step(sim), 0))) 10 - 194.5

Dis#10 step(repeat(step(step(sim)), 100)) 10 - 194.5

la(1) 13 16 194.2

nmc(4) 14 17 193.7

nmc(5) 15 19 191.4

uct(0.3) 16 4 189.7

uct(0) 17 4 189.4

uct(0.5) 18 6 188.9

uct(1) 19 13 188.8

la(2) 20 20 175.3

la(3) 21 24 170.3

la(4) 22 21 169.3

la(5) 23 23 168.0

is 24 22 167.8

—

121

6. ALGORITHM DISCOVERY

Time-based budget Since we expressed the budget as the number of calls to the

reward function g(·), algorithms that take more time to select their actions may be

favored. To evaluate the extent of this potential bias, we performed an experiment by

setting the budget to a fixed amount of CPU time. With our C++ implementation,

on a 1.9 Ghz computer, about ≈ 350 Sudoku(4) random simulations can be performed

per second. In order to have comparable results with those obtained previously, we

thus set our budget to B = 1000
350 ≈ 2.8 seconds, during both algorithm discovery and

evaluation.

Table 6.5 reports the results we obtain with a budget expressed as a fixed amount

of CPU time. For each algorithm, we indicate also its rank in Table 6.3. The new

best generic algorithm is now nmc(2) and eight out of the ten discovered have a better

average score than this generic algorithm. In general, we observe that time-based

budget favors nmc(·) algorithms and decreases the rank of uct(·) algorithms.

In order to better understand the differences between the algorithms found with

an evaluations-based budget and those found with a time-based budget, we counted

the number of occurrences of each of the search components among the ten discovered

algorithms in both cases. These counts are reported in Table 6.6. We observe that the

time-based budget favors the step search component, while reducing the use of select.

This can be explained by the fact that select is our search component that involves

the most extra-computational cost, related to the storage and the manipulation of the

game tree.

6.5.3 Real Valued Symbolic Regression

Symbolic Regression consists in searching in a large space of symbolic expressions for

the one that best fits a given regression dataset. Usually this problem is treated using

Genetic Programming approaches. In the line of [68], we here consider MCS tech-

niques as an interesting alternative to Genetic Programming. In order to apply MCS

techniques, we encode the expressions as sequences of symbols. We adopt the Reverse

Polish Notation (RPN) to avoid the use of parentheses. As an example, the sequence

[a, b,+, c, ∗] encodes the expression (a + b) ∗ c. The alphabet of symbols we used is

{x, 1,+,−, ∗, /, sin, cos, log, exp, stop}. The initial state x1 is the empty RPN sequence.

Each action u then adds one of these symbols to the sequence. When computing the

set of valid actions Ux, we reject symbols that lead to invalid RPN sequences, such

122

6.5 Experiments

Table 6.6: Search Components Composition Analysis

Name Evaluations-based Budget Time-based Budget

repeat 8 5

simulate 10 10

select 12 8

step 16 23

lookahead 2 3

—

Table 6.7: Symbolic Regression Testbed: target expressions and domains.

Target Expression fP (·) Domain

x3 + x2 + x [−1, 1]

x4 + x3 + x2 + x [−1, 1]

x5 + x4 + x3 + x2 + x [−1, 1]

x6 + x5 + x4 + x3 + x2 + x [−1, 1]

sin(x2) cos(x)− 1 [−1, 1]

sin(x) + sin(x+ x2) [−1, 1]

log(x+ 1) + log(x2 + 1) [0, 2]
√
x [0, 4]

—

as [+,+,+]. A final state is reached either when the sequence length is equal to a

predefined maximum T or when the symbol stop is played. In our experiments, we

performed the training with a maximal length of T = 11. The reward associated to a

final state is equal to 1−mae, where mae is the mean absolute error associated to the

expression built.

We used a synthetic benchmark, which is classical in the field of Genetic Program-

ming [72]. To each problem P of this benchmark is associated a target expression

fP (·) ∈ R, and the aim is to re-discover this target expression given a finite set of

samples (x, fP (x)). Table 6.7 illustrates these target expressions. In each case, we used

20 samples (x, fP (x)), where x was obtained by taking uniformly spaced elements from

123

6. ALGORITHM DISCOVERY

Table 6.8: Symbolic Regression Robustness Testbed: target expressions and domains.

Target Expression fP (·) Domain

x3 − x2 − x [−1, 1]

x4 − x3 − x2 − x [−1, 1]

x4 + sin(x) [−1, 1]

cos(x3) + sin(x+ 1) [−1, 1]√
(x) + x2 [0, 4]

x6 + 1 [−1, 1]

sin(x3 + x2) [−1, 1]

log(x3 + 1) + x [0, 2]

—

the indicated domains. The training distribution DP was the uniform distribution over

the eight problems given in Table 6.7.

The training budget was B = 10, 000. We evaluate the robustness of the algorithms

found in three different ways: by changing the maximal length T from 11 to 21, by

increasing the budget B from 10,000 to 100,000 and by testing them on another distri-

bution of problems D′P . The distribution D′P is the uniform distribution over the eight

new problems given in Table 6.8.

The results are shown in Table 6.9, where we report directly the mae scores (lower

is better). The best generic algorithm is la(2) and corresponds to one of the discovered

algorithms (Dis#3). Five of the discovered algorithms significantly outperform this

baseline with scores down to 0.066. Except one of them, all discovered algorithms rely

on two nested lookahead components and generalize in some way the la(2) algorithm.

When setting the maximal length to T = 21, the best generic algorithm is again

la(2) and we have four discovered algorithms that still significantly outperform it. When

increasing the testing budget to B = 100, 000, nine discovered algorithms out of the ten

significantly outperform the best generic algorithms, la(3) and nmc(3). These results

thus show that the algorithms discovered by our approach are robust both w.r.t. the

maximal length T and the budget B.

In our last experiment with the distribution D′P , there is a single discovered al-

gorithm that significantly outperform la(2). However, all ten algorithms behave still

124

6.5 Experiments

Table 6.9: Ranking and Robustness of the Algorithms Discovered when Applied to Sym-

bolic Regression

Name Search Component Rank T = 11 T = 21 T = 11, B = 105 D′P

Dis#1 step(step(lookahead(lookahead(sim)))) 1 *0.066* *0.083* *0.036* 0.101

Dis#5 step(repeat(lookahead(lookahead(sim)), 2)) 2 *0.069* *0.085* *0.037* 0.106

Dis#2 step(lookahead(lookahead(repeat(sim, 2)))) 2 *0.069* *0.084* *0.038* 0.100

Dis#8 step(lookahead(repeat(lookahead(sim), 2))) 2 *0.069* *0.084* *0.040* 0.112

Dis#7 step(lookahead(lookahead(select(sim, 1)))) 5 *0.070* 0.087 *0.040* 0.103

Dis#6 step(lookahead(lookahead(select(sim, 0)))) 6 0.071 0.087 *0.039* 0.110

Dis#4 step(lookahead(select(lookahead(sim), 0))) 6 0.071 0.087 *0.038* 0.101

Dis#3 step(lookahead(lookahead(sim))) 6 0.071 0.086 0.056 0.100

la(2) 6 0.071 0.086 0.056 0.100

Dis#10 step(lookahead(select(lookahead(sim), 0.3))) 10 0.072 0.088 *0.040* 0.108

la(3) 11 0.073 0.090 0.053 0.101

Dis#9 step(repeat(select(lookahead(sim), 0.3), 5)) 12 0.077 0.091 *0.048* *0.099*

nmc(2) 13 0.081 0.103 0.054 0.109

nmc(3) 14 0.084 0.104 0.053 0.118

la(4) 15 0.088 0.116 0.057 0.101

nmc(4) 16 0.094 0.108 0.059 0.141

la(1) 17 0.098 0.116 0.066 0.119

la(5) 18 0.099 0.124 0.058 0.101

is 19 0.119 0.144 0.087 0.139

nmc(5) 20 0.120 0.124 0.069 0.140

uct(0) 21 0.159 0.135 0.124 0.185

uct(1) 22 0.147 0.118 0.118 0.161

uct(0.3) 23 0.156 0.112 0.135 0.177

uct(0.5) 24 0.153 0.111 0.124 0.184

—

125

6. ALGORITHM DISCOVERY

reasonably well and significantly better than the non-lookahead generic algorithms.

This result is particularly interesting since it shows that our approach was able to dis-

cover algorithms that work well for symbolic regression in general, not only for some

particular problems.

6.5.4 Morpion Solitaire

Figure 6.2: A random policy that plays the game Morpion Solitaire 5T: initial grid; after

1 move; after 10 moves; game end.

The classic game of morpion solitaire [103] is a single player, pencil and paper game,

whose world record has been improved several times over the past few years using MCS

techniques [86, 90, 104]. This game is illustrated in Figure 6.2. The initial state x1 is an

empty cross of points drawn on the intersections of the grid. Each action places a new

point at a grid intersection in such a way that it forms a new line segment connecting

consecutive points that include the new one. New lines can be drawn horizontally,

vertically, and diagonally. The game is over when no further actions can be taken. The

goal of the game is to maximize the number of lines drawn before the game ends, hence

the reward associated to final states is this number1.

There exist two variants of the game: “Disjoint” and “Touching”. “Touching”

allows parallel lines to share an endpoint, whereas “Disjoint” does not. Line segments

with different directions are always permitted to share points. The game is NP-hard

[105] and presumed to be infinite under certain configurations. In this chapter, we treat

1In practice, we normalize this reward by dividing it by 100 to make it approximately fit into the

range [0, 1]. Thanks to this normalization, we can keep using the same constants for both the UCB

policy used in the algorithm discovery and the UCB policy used in select.

126

6.5 Experiments

the 5D and 5T versions of the game, where 5 is the number of consecutive points to

form a line, D means disjoint, and T means touching.

We performed the algorithm discovery in a “single training problem” scenario: the

training distribution DP always returns the same problem P , corresponding to the 5T

version of the game. The initial state of P was the one given in the leftmost part of

Figure 6.2. The training budget was set to B = 10, 000. To evaluate the robustness of

the algorithms, we, on the one hand, evaluated them on the 5D variant of the problem

and, on the other hand, changed the evaluation budget from 10,000 to 100,000. The

former provides a partial answer to how rule-dependent these algorithms are, while the

latter gives insight into the impact of the budget on the algorithms’ ranking.

The results of our experiments on Morpion Solitaire are given in Table 6.10. Our

approach proves to be particularly successful on this domain: each of the ten discovered

algorithms significantly outperforms all tested generic algorithm. Among the generic

algorithms, la(1) gave the best results (90.63), which is 0.46 below the worst of the ten

discovered algorithms.

When moving to the 5D rules, we observe that all ten discovered algorithms still

significantly outperform the best generic algorithm. This is particularly impressive,

since it is known that the structure of good solutions strongly differs between the 5D

and 5T versions of the game [103]. The last column of Table 6.10 gives the performance

of the algorithms with budget B = 105. We observe that all ten discovered algorithms

also significantly outperform the best generic algorithm in this case. Furthermore, the

increase in the budget seems to also increase the gap between the discovered and the

generic algorithms.

6.5.5 Discussion

We have seen that on each of our three testbeds, we discovered algorithms, which are

competitive with, or even significantly better than generic ones. This demonstrates that

our approach is able to generate new MCS algorithms specifically tailored to the given

class of problems. We have performed a study of the robustness of these algorithms

by either changing the problem distribution or by varying the budget B, and found

that the algorithms discovered can outperform generic algorithms even on problems

significantly different from those used for the training.

127

6. ALGORITHM DISCOVERY

Table 6.10: Ranking and Robustness of Algorithms Discovered when Applied to Morpion

Name Search Component Rank 5T 5D 5T,B = 105

Dis#1 step(select(step(simulate),0.5)) 1 *91.24* *63.66* *97.28*

Dis#4 step(select(step(select(sim,0.5)),0)) 2 *91.23* *63.64* *96.12*

Dis#3 step(select(step(select(sim,1.0)),0)) 3 *91.22* *63.63* *96.02*

Dis#2 step(step(select(sim,0))) 4 *91.18* *63.63* *96.78*

Dis#8 step(select(step(step(sim)),1)) 5 *91.12* *63.63* *96.67*

Dis#9 step(select(step(select(sim,0)),0.3)) 6 *91.22* *63.67* *96.02*

Dis#5 select(step(select(step(sim),1.0)),0) 7 *91.16* *63.65* *95.79*

Dis#10 step(select(step(select(sim,1.0)),0.0)) 8 *91.21* *63.62* *95.99*

Dis#6 lookahead(step(step(sim))) 9 *91.15* *63.68* *96.41*

Dis#7 lookahead(step(step(select(sim, 0)))) 10 *91.08* 63.67 *96.31*

la(1) 11 90.63 63.41 95.09

nmc(3) 12 90.61 63.44 95.59

nmc(2) 13 90.58 63.47 94.98

nmc(4) 14 90.57 63.43 95.24

nmc(5) 15 90.53 63.42 95.17

uct(0) 16 89.40 63.02 92.65

uct(0.5) 17 89.19 62.91 92.21

uct(1) 18 89.11 63.12 92.83

uct(0.3) 19 88.99 63.03 92.32

la(2) 20 85.99 62.67 94.54

la(3) 21 85.29 61.52 89.56

is 21 85.28 61.40 88.83

la(4) 23 85.27 61.53 88.12

mcts 24 85.26 61.48 89.46

la(5) 25 85.12 61.52 87.69

—

128

6.6 Related Work

The importance of each component of the grammar depends heavily on the problem.

For instance, in Symbolic Regression, all ten best algorithms discovered rely on two

nested lookahead components, whereas in Sudoku and Morpion, step and select appear

in the majority of the best algorithms discovered.

6.6 Related Work

Methods for automatically discovering MCS algorithms can be characterized through

three main components: the space of candidate algorithms, the performance criterion,

and the search method for finding the best element in the space of candidate algorithms.

Usually, researchers consider spaces of candidate algorithms that only differ in the

values of their constants. In such a context, the problem amounts to tuning the con-

stants of a generic MCS algorithm. Most of the research related to the tuning of these

constants takes as performance criterion the mean score of the algorithm over the distri-

bution of target problems. Many search algorithms have been proposed for computing

the best constants. For instance, [52] employs a grid search approach combined with

self-playing, [106] uses cross-entropy as a search method to tune an agent playing GO,

[107] presents a generic black-box optimization method based on local quadratic re-

gression, [108] uses Estimation Distribution Algorithms with Gaussian distributions,

[27] uses Thompson Sampling, and [109] uses, as in the present chapter, a multi-armed

bandit approach. The paper [110] studies the influence of the tuning of MCS algorithms

on their asymptotic consistency and shows that pathological behaviour may occur with

tuning. It also proposes a tuning method to avoid such behaviour.

Research papers that have reported empirical evaluations of several MCS algorithms

in order to find the best one are also related to this automatic discovery problem. The

space of candidate algorithms in such cases is the set of algorithms they compare, and

the search method is an exhaustive search procedure. As a few examples, [52] reports

on a comparison between algorithms that differ in their selection policy, [55] and [111]

compare improvements of the UCT algorithm (RAVE and progressive bias) with the

original one on the game of GO, and [44] evaluates different versions of a two-player

MCS algorithm on generic sparse bandit problems. [112] provides an in-depth review

of different MCS algorithms and their successes in different applications.

129

6. ALGORITHM DISCOVERY

The main feature of the approach proposed in the present chapter is that it builds

the space of candidate algorithms by using a rich grammar over the search components.

In this sense, [113, 114] are certainly the papers which are the closest to ours, since

they also use a grammar to define a search space, for, respectively, two player games

and multi-armed bandit problems. However, in both cases, this grammar only models

a selection policy and is made of classic functions such as +, −, ∗, /, log , exp , and
√

. We have taken one step forward, by directly defining a grammar over the MCS

algorithms that covers very different MCS techniques. Note that the search technique

of [113] is based on genetic programming.

The decision as to what to use as the performance criterion is not as trivial as

it looks, especially for multi-player games, where opponent modelling is crucial for

improving over game-theoretically optimal play [115]. For example, the maximization

of the victory rate or loss minimization against a wide variety of opponents for a

specific game can lead to different choices of algorithms. Other examples of criteria to

discriminate between algorithms are simple regret [109] and the expected performance

over a distribution density [116].

6.7 Conclusion

In this chapter we addressed the problem of automatically identifying new Monte Carlo

search (MCS) algorithms performing well on a distribution of training problems. To

do so, we introduced a grammar over the MCS algorithms that generates a rich space

of candidate algorithms (and which describes, along the way, using a particularly com-

pact and elegant description, several well-known MCS algorithms). To efficiently search

inside this space of candidate algorithms for the one(s) having the best average perfor-

mance on the training problems, we relied on a multi-armed bandit type of optimisation

algorithm.

Our approach was tested on three different domains: Sudoku, Morpion Solitaire,

and Symbolic Regression. The results showed that the algorithms discovered this way

often significantly outperform generic algorithms such as UCT or NMC. Moreover,

we showed that they had good robustness properties, by changing the testing budget

and/or by using a testing problem distribution different from the training distribution.

130

6.7 Conclusion

This work can be extended in several ways. For the time being, we used the mean

performance over a set of training problems to discriminate between different candidate

algorithms. One direction for future work would be to adapt our general approach to use

other criteria, e.g., worst case performance measures. In its current form, our grammar

only allows using predefined simulation policies. Since the simulation policy typically

has a major impact on the performance of a MCS algorithm, it could be interesting to

extend our grammar so that it could also “generate” new simulation policies. This could

be arranged by adding a set of simulation policy generators in the spirit of our current

search component generators. Previous work has also demonstrated that the choice of

the selection policy could have a major impact on the performance of Monte Carlo tree

search algorithms. Automatically generating selection policies is thus also a direction

for future work. Of course, working with richer grammars will lead to larger candidate

algorithm spaces, which in turn, may require developing more efficient search methods

than the multi-armed bandit one used in this chapter. Finally, another important

direction for future research is to extend our approach to more general settings than

single-player games with full observability.

131

6. ALGORITHM DISCOVERY

132

7

Conclusion

This research was motivated by improving decision making under uncertainty. The

present dissertation gathers research contributions in the field of Monte Carlo Search

Algorithms. These contributions focus on the selection, the simulation and the recom-

mendation policies. Moreover, we develop a methodology to automatically generate an

MCS algorithm for a given problem.

Our contributions on the selection policy are twofold. First we categorize the selec-

tion policies into 2 main categories: Deterministic and Stochastic. We study the most

popular applied to the game of Tron and our findings in Chapter 2 are cogent with the

current literature where the deterministic policies perform better than the stochastic

ones. Second, in most of the bandit literature, it is assumed that there is no struc-

ture or similarities between arms. Thus each arm is independent from one another.

In games however, arms can be closely related. There are several good reasons for

sharing information. Chapter 3 makes use of the structure within a game. The results,

both theoretical and empirical, show a significant improvement over the state-of-the-art

selection policies.

In Chapter 4, we ponder on how to consistently generate different expressions by

changing the probability to draw each symbol. We formalize the situation into an

optimization problem and try different approaches. When the length of an expression

is relatively small (as in the simple example), it is easy to enumerate all the possible

combinations and validate our answer. However, we are interested into situations where

the length is too big to allow an enumeration (for instance a length of 25 or 30). We

133

7. CONCLUSION

show a clear improvement in the sampling process for any length. We further test the

best approach by embedding it into a MCS algorithm and it still show an improvement.

A recommendation policy is the policy to use when you make the actual decision,

which has nothing to do with the strategy of how you gather the information. The

selection policy and the recommendation policy are mutually dependent. A good rec-

ommendation policy is a policy that works well with a given selection policy. There

exists several different strategies of recommendation and Chapter 5 studies the most

common in combination with selection policies. There is a trend that seems to favor a

robust recommendation policy over a riskier one.

Chapter 6 presents a contribution where the idea is to first list the core components

upon which most MCS algorithms are built upon. From this list of core components

we automatically generate several MCS algorithms and propose a methodology based

on multi-armed bandits for identifying the best MCS algorithm(s) for a given problem.

The results show that it often enables discovering new variants of MCS that significantly

outperform generic MCS algorithms. This contribution is significant because it presents

an approach to provide a customized MCS algorithm for a given problem.

Most of the future work is presented at the end of each chapter. As a global future

work, an interesting research is to gather all the contributions presented in this thesis

together in a global algorithm. For instance, in Chapter 4 we found a way to efficiently

generate expressions. Potentially we can generate our own selection policy through

this process. If it was to be embedded into an automatic generation of algorithm as

presented in Chapter 6, then we would have an algorithm that, given a problem, can

generate its own fully customized MCS algorithm, including the selection policy. The

runtime of such an algorithm is likely to be a heavy constraint, yet the idea of no human

intervention is thrilling.

134

References

[1] Nicholas Metropolis. The beginning of the Monte

Carlo method. Los Alamos Science, 15(584):125–130,

1987. 2

[2] Jun S Liu. Monte Carlo strategies in scientific computing.

Springer, 2008. 2

[3] Marco Dorigo, Luca Maria Gambardella, Mauro Birat-

tari, Alcherio Martinoli, Riccardo Poli, and Thomas

Stützle. Ant Colony Optimization and Swarm Intelli-

gence: 5th International Workshop, ANTS 2006, Brus-

sels, Belgium, September 4-7, 2006, Proceedings, 4150.

Springer, 2006. 2

[4] David Ruppert, Matthew P Wand, and Raymond J Car-

roll. Semiparametric regression, 12. Cambridge Uni-

versity Press, 2003. 2

[5] Petar M Djuric, Jayesh H Kotecha, Jianqui Zhang, Yufei

Huang, Tadesse Ghirmai, Mónica F Bugallo, and Joaquin

Miguez. Particle filtering. Signal Processing Magazine,

IEEE, 20(5):19–38, 2003. 2

[6] John Gittins, Kevin Glazebrook, and Richard Weber.

Multi-armed bandit allocation indices. Wiley, 2011. 3

[7] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer.

Finite-time analysis of the multiarmed bandit

problem. Machine learning, 47(2):235–256, 2002. 3,

88

[8] Michael N Katehakis and Arthur F Veinott. The

multi-armed bandit problem: decomposition and

computation. Mathematics of Operations Research,

12(2):262–268, 1987. 3

[9] Richard Weber. On the Gittins index for multi-

armed bandits. The Annals of Applied Probability,

pages 1024–1033, 1992. 3

[10] L Kocsis and Cs Szepesvari. Bandit Based Monte-

Carlo Planning. In 15th European Conference on Ma-

chine Learning (ECML), pages 282–293, 2006. 5, 90

[11] G. Chaslot, J.T. Saito, B. Bouzy, J. Uiterwijk, and H.J.

Van Den Herik. Monte Carlo Strategies for Com-

puter Go. In Proceedings of the 18th BeNeLux Confer-

ence on Artificial Intelligence, Namur, Belgium, pages

83–91, 2006. 5, 16, 22, 24

[12] R. Coulom. Efficient Selectivity and Backup Oper-

ators in Monte-Carlo Tree Search. Computers and

Games, pages 72–83, 2007. 5, 11, 25

[13] G.M.J.B. Chaslot. Monte Carlo Tree Search. PhD the-

sis, Ph. D. thesis, Department of Knowledge Engineer-

ing, Maastricht University, Maastricht, The Nether-

lands.[19, 20, 22, 31], 2010. 5, 16

[14] S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modifi-

cation of UCT with Patterns in Monte Carlo Go.

Research report, INRIA, 2006. 5, 17

[15] A.L. Samuel. Some Studies in Machine Learning

using the Game of Checkers. IBM Journal of re-

search and development, 44(1.2):206–226, 2000. 11

[16] M. Campbell, A.J. Hoane, and F. Hsu. Deep Blue. Ar-

tificial intelligence, 134(1):57–83, 2002. 11

[17] M. Müller. Computer Go. Artificial Intelligence,

134(1):145–179, 2002. 11

[18] Y. Björnsson and H. Finnsson. CadiaPlayer: A

Simulation-Based General Game Player. IEEE

Transactions on Computational Intelligence and AI in

Games, 1(1):4–15, 2009. 11

[19] S. Samothrakis, D. Robles, and S.M. Lucas. A UCT

Agent for Tron: Initial Investigations. In Proceed-

ings of the IEEE Symposium on Computational Intelli-

gence and Games, pages 365–371, 2010. 11, 12, 15, 20,

30

[20] S.M. Lucas. Evolving a Neural Network Location

Evaluator to Play Ms. Pac-Man. In Proceedings of

the IEEE Symposium on Computational Intelligence and

Games, pages 203–210. Citeseer, 2005. 11

[21] N.G.P. Den Teuling. Monte Carlo Tree Search for

the Simultaneous Move Game Tron. Univ. Maas-

tricht, Netherlands, Tech. Rep, 2011. 12, 15

[22] M. Shafiei, N. Sturtevant, and J. Schaeffer. Compar-

ing UCT versus CFR in Simultaneous Games. In

Proceedings of the General Game Playing workshop at IJ-

CAI’09, 2009. 12, 17

[23] O. Teytaud and S. Flory. Upper Confidence Trees

with Short Term Partial Information. In Proceed-

ings of the 2011 International Conference on Applications

of Evolutionary Computation - Volume Part I, EvoAppli-

cations’11, pages 153–162, 2011. 12, 17, 22, 24

[24] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Ma-

chine learning, 47(2):235–256, 2002. 12, 20, 23, 114

[25] Francis Maes, Louis Wehenkel, and Damien Ernst. Au-

tomatic discovery of ranking formulas for play-

ing with multi-armed bandits. In 9th European

workshop on reinforcement learning (EWRL), Athens,

Greece, September 2011. 13, 21

[26] J.Y. Audibert, R. Munos, and C. Szepesvári. Tuning

bandit algorithms in stochastic environments. In

Proceedings of the Conference on Algorithmic Learning

Theory (ALT), pages 150–165, Berlin, 2007. Springer-

Verlag. 13, 21

[27] O. Chapelle and L. Li. An Empirical Evaluation of

Thompson Sampling. In Proceedings of the Confer-

ence on Advances in Neural Information Processing Sys-

tems (NIPS), 2011. 13, 23, 24, 129

135

REFERENCES

[28] L.V. Allis et al. Searching for Solutions in Games and

Artificial Intelligence. Ponsen & Looijen, 1994. 14

[29] Bruno Saverino. A Monte Carlo Tree Search for playing

Tron. Master’s thesis, Montefiore, Department of Elec-

trical Engineering and Computer Science, Université de

Liège, 2011. 15, 26

[30] H.L. Bodlaender. Complexity of Path-Forming

Games. RUU-CS, (89-29), 1989. 15

[31] H.L. Bodlaender and AJJ Kloks. Fast Algorithms for

the Tron Game on Trees. RUU-CS, (90-11), 1990.

15

[32] T. Miltzow. Tron, a combinatorial Game on ab-

stract Graphs. Arxiv preprint arXiv:1110.3211, 2011.

15

[33] P. Funes, E. Sklar, H. Juillé, and J.B. Pollack. The

Internet as a Virtual Ecology: Coevolutionary

Arms Races Between Human and Artificial Pop-

ulations. Computer Science Technical Report CS-97-

197, Brandeis University, 1997. 15

[34] Pablo Funes, Elizabeth Sklar, Hugues Juillé, and Jor-

dan Pollack. Animal-Animat Coevolution: Using

the Animal Population as Fitness Function. From

Animals to Animats 5: Proceedings of the Fifth Interna-

tional Conference on Simulation of Adaptive Behavior,

5:525–533, 1998. 15

[35] A. Blair, E. Sklar, and P. Funes. Co-evolution, De-

terminism and Robustness. Simulated Evolution and

Learning, pages 389–396, 1999. 15

[36] L. Kocsis and C. Szepesvári. Bandit based Monte

Carlo planning. In Proceedings of the 17th European

Conference on Machine Learning (ECML), pages 282–

293, 2006. 16, 20, 101, 108

[37] R. Coulom. Efficient Selectivity and Backup Op-

erators in Monte-Carlo Tree Search. pages 72–83.

Springer, 2007. 16, 101

[38] Francis Maes, Louis Wehenkel, and Damien Ernst.

Learning to play K-armed bandit problems. In

International Conference on Agents and Artificial Intel-

ligence (ICAART’12), Vilamoura, Algarve, Portugal,

February 2012. 21, 50, 112

[39] G. Chaslot, J.T. Saito, B. Bouzy, J. Uiterwijk, and H.J.

Van Den Herik. Monte Carlo strategies for com-

puter go. In Proceedings of the 18th BeNeLux Confer-

ence on Artificial Intelligence, Namur, Belgium, pages

83–91, 2006. 22

[40] J.Y. Audibert and S. Bubeck. Minimax policies for

adversarial and stochastic bandits. 2009. 22, 34,

39, 40

[41] R.S. Sutton and A.G. Barto. Reinforcement Learning:

An Introduction, 1. Cambridge Univ. Press, 1998. 23

[42] B.C. May and D.S. Leslie. Simulation Studies in Op-

timistic Bayesian Sampling in Contextual-Bandit

Problems. Technical report, Technical Report 11: 02,

Statistics Group, Department of Mathematics, Univer-

sity of Bristol, 2011. 24

[43] P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire.

Gambling in a rigged casino: The adversarial

multi-armed bandit problem. In Foundations of

Computer Science, 1995. Proceedings., 36th Annual Sym-

posium on, pages 322–331. IEEE, 1995. 24, 33, 37, 88

[44] D.L. St-Pierre, Q. Louveaux, and O. Teytaud. Online

Sparse bandit for Card Game. In Proceedings of

Conference on Advances in Computer Games (ACG),

2011. 24, 34, 35, 129

[45] Cheng-Wei Chou, Ping-Chiang Chou, Chang-Shing Lee,

David Lupien Saint-Pierre, Olivier Teytaud, Mei-Hui

Wang, Li-Wen Wu, and Shi-Jim Yen. Strategic Choices:

Small Budgets and Simple Regret. In Technologies

and Applications of Artificial Intelligence (TAAI), 2012

Conference on, pages 182–187. IEEE, 2012. 33, 83

[46] D.L. St-Pierre, M.H.M. Winands, and D.A. Watt. A Se-

lective Move Generator for the game Axis and

Allies. In Computational Intelligence and Games (CIG),

2010 IEEE Symposium on, pages 162–169. Citeseer,

2010. 33

[47] Steven R Grenadier. Option exercise games: An

application to the equilibrium investment strate-

gies of firms. Review of financial studies, 15(3):691–

721, 2002. 33

[48] Trey Hedden and Jun Zhang. What do you think I

think you think?: Strategic reasoning in matrix

games. Cognition, 85(1):1–36, 2002. 33

[49] Michael D Grigoriadis and Leonid G Khachiyan. A

sublinear-time randomized approximation algo-

rithm for matrix games. Operations Research Letters,

18(2):53–58, 1995. 33, 41

[50] Richard J Lipton, Evangelos Markakis, and Aranyak

Mehta. Playing large games using simple strate-

gies. In Proceedings of the 4th ACM conference on Elec-

tronic commerce, pages 36–41. ACM, 2003. 33

[51] O. Teytaud and S. Flory. Upper Confidence Trees

with Short Term Partial Information. Applica-

tions of Evolutionary Computation; EvoGames, pages

153–162, 2011. 34, 35, 37, 38, 46, 91, 94, 96, 98

[52] P. Perrick, D.L. St-Pierre, F. Maes, and D. Ernst.

Comparison of Different Selection Strategies in

Monte Carlo Tree Search for the Game of Tron.

In Proceedings of the IEEE Conference on Computational

Intelligence and Games (CIG), Granada, Spain, 2012.

37, 129

[53] P. Auer. Using confidence bounds for

exploitation-exploration trade-offs. The Jour-

nal of Machine Learning Research, 3:397–422, 2003.

39

[54] Bruno Bouzy and Guillaume Chaslot. Monte-Carlo Go

reinforcement learning experiments. In Compu-

tational Intelligence and Games, 2006 IEEE Symposium

on, pages 187–194. IEEE, 2006. 49

[55] Sylvain Gelly and David Silver. Combining online

and offline knowledge in UCT. In Proceedings of

the 24th international conference on Machine learning,

pages 273–280. ACM, 2007. 49, 129

136

REFERENCES

[56] David Silver and Gerald Tesauro. Monte-Carlo simu-

lation balancing. In Proceedings of the 26th Annual In-

ternational Conference on Machine Learning, pages 945–

952. ACM, 2009. 49

[57] Francis Maes, Louis Wehenkel, and Damien Ernst. Au-

tomatic discovery of ranking formulas for playing

with multi-armed bandits. In 9th European workshop

on reinforcement learning (EWRL’11), Athens, Greece,

September 2011. 50

[58] Francis Maes, David Lupien St-Pierre, and Damien Ernst.

Monte Carlo Search Algorithm Discovery for

One Player Games. In To appear in IEEE Trans-

actions on Computational Intelligence and AI in Games,

arXiv 1208.4692, 2013. 50

[59] Y. Hu and S.X. Yang. A knowledge based genetic

algorithm for path planning of a mobile robot.

In Proceedings of the IEEE International Conference on

Robotics and Automation(ICRA’04), 5, pages 4350–

4355. IEEE, 2004. 50

[60] Hillol Kargupta and Kevin Buescher. The Gene Ex-

pression Messy Genetic Algorithm For Financial

Applications. In Proceedings of the IEEE International

Conference on Evolutionary Computation, pages 814–

819. IEEE Press, 1996. 50

[61] G. Jones, P. Willett, R.C. Glen, A.R. Leach, and R. Tay-

lor. Development and validation of a genetic al-

gorithm for flexible docking1. Journal of molecular

biology, 267(3):727–748, 1997. 50

[62] U. Maulik and S. Bandyopadhyay. Genetic algorithm-

based clustering technique. Pattern recognition,

33(9):1455–1465, 2000. 50

[63] S. Kikuchi, D. Tominaga, M. Arita, K. Takahashi, and

M. Tomita. Dynamic modeling of genetic networks

using genetic algorithm and S-system. Bioinfor-

matics, 19(5):643–650, 2003. 50

[64] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A

fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Transactions on Evolutionary Compu-

tation, 6(2):182–197, 2002. 50

[65] J. Koza and R. Poli. Genetic programming. Search

Methodologies, pages 127–164, 2005. 50

[66] J.H. Holland. Genetic algorithms. Scientific Ameri-

can, 267(1):66–72, 1992. 50

[67] M. O’Neill and C. Ryan. Grammatical evolu-

tion. IEEE Transactions on Evolutionary Computation,

5(4):349–358, 2001. 50

[68] T. Cazenave. Nested Monte-Carlo Expression Dis-

covery. In Proceedings of the 19th European Conference

on Artificial Intelligence (ECAI’2010), pages 1057–1058.

IOS Press, 2010. 51, 70, 75, 122

[69] D.L. St-Pierre, F. Maes, D. Ernst, and Q. Louveaux. A

Learning Procedure for Sampling Semantically

Different Valid Expressions. 2013. 51, 62

[70] D.L. St-Pierre, F. Schnitzler, and Q. Louveaux. A

Clustering Approach to Enhance a Monte-Carlo

based Method for Expressions Generation. 2013.

51

[71] J. MacQueen et al. Some Methods for Classifica-

tion and Analysis of Multivariate Observations.

In Proceedings of the fifth Berkeley Symposium on Math-

ematical Statistics and Probability, 1, page 14. Califor-

nia, USA, 1967. 67

[72] N.Q. Uy, N.X. Hoai, M. ONeill, RI McKay, and E. Galván-

López. Semantically-based crossover in genetic

programming: application to real-valued sym-

bolic regression. Genetic Programming and Evolvable

Machines, 12(2):91–119, 2011. 75, 123

[73] Tristan Cazenave. Nested Monte-Carlo Search. In

Proceedings of the 21st International Joint Conference on

Artificial Intelligence (IJCAI’09), pages 456–461, 2009.

75

[74] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure

Exploration in Multi-armed Bandits Problems.

In ALT, pages 23–37, 2009. 88, 89, 97

[75] Amine Bourki, Matthieu Coulm, Philippe Rolet, Olivier

Teytaud, and Paul Vayssière. Parameter Tuning by

Simple Regret Algorithms and Multiple Simulta-

neous Hypothesis Testing. In ICINCO2010, page 10,

funchal madeira, Portugal, 2010. 88, 98

[76] T.L. Lai and H. Robbins. Asymptotically efficient

adaptive allocation rules. Advances in Applied Math-

ematics, 6:4–22, 1985. 88

[77] Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audib-

ert. Empirical Bernstein stopping. In ICML ’08:

Proceedings of the 25th international conference on Ma-

chine learning, pages 672–679, New York, NY, USA,

2008. ACM. 89

[78] Jean-Yves Audibert and Sébastien Bubeck. Best Arm

Identification in Multi-Armed Bandits. In COLT

2010 - Proceedings, page 13 p., Haifa, Israël, 2010. 89,

90

[79] David Auger, Sylvie Ruette, and Olivier Teytaud.

Sparse bandit algorithms. submitted, 2012. 96

[80] Bruno Bouzy and Marc Métivier. Multi-agent Learn-

ing Experiments on Repeated Matrix Games. In

ICML, pages 119–126, 2010. 98

[81] David Auger. Multiple Tree for Partially Observ-

able Monte-Carlo Tree Search. In EvoApplications

(1), pages 53–62, 2011. 98

[82] Rémi Coulom. Computing Elo Ratings of Move Pat-

terns in the Game of Go. In Computer Games Work-

shop, Amsterdam, The Netherlands, 2007. 98

[83] Chang-Shing Lee, Mei-Hui Wang, Guillaume Chaslot,

Jean-Baptiste Hoock, Arpad Rimmel, Olivier Teytaud,

Shang-Rong Tsai, Shun-Chin Hsu, and Tzung-Pei Hong.

The Computational Intelligence of MoGo Re-

vealed in Taiwan’s Computer Go Tournaments.

IEEE Transactions on Computational Intelligence and AI

in games, 2009. 98

[84] G.M.J.B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk,

H.J. van den Herik, and B. Bouzy. Progressive Strate-

gies for Monte-Carlo Tree Search. In P. Wang

et al., editors, Proceedings of the 10th Joint Conference

on Information Sciences (JCIS 2007), pages 655–661.

World Scientific Publishing Co. Pte. Ltd., 2007. 98

137

http://hdl.handle.net/2268/142763
http://hdl.handle.net/2268/142763
http://hdl.handle.net/2268/142763
http://hal.inria.fr/inria-00467796/en/
http://hal.inria.fr/inria-00467796/en/
http://hal.inria.fr/inria-00467796/en/
http://hal-enpc.archives-ouvertes.fr/hal-00654404
http://hal-enpc.archives-ouvertes.fr/hal-00654404
http://hal.inria.fr/inria-00369786/en/
http://hal.inria.fr/inria-00369786/en/

REFERENCES

[85] Adrien Couetoux, Jean-Baptiste Hoock, Nataliya

Sokolovska, Olivier Teytaud, and Nicolas Bonnard.

Continuous Upper Confidence Trees. In LION’11:

Proceedings of the 5th International Conference on

Learning and Intelligent OptimizatioN, page TBA,

Italie, January 2011. 98

[86] T. Cazenave. Nested Monte Carlo Search. In

Proceedings of the 21st International Joint Conference

on Artificial Intelligence (IJCAI), pages 456–461, 2009.

101, 110, 118, 126

[87] J. Méhat and T. Cazenave. Combining UCT and

Nested Monte Carlo Search for Single-Player

General Game Playing. IEEE Transactions on Com-

putational Intelligence and AI in Games, 2(4):271–277,

2010. 101

[88] G. Tesauro and G. R. Galperin. On-line Policy Im-

provement using Monte Carlo Search. In Pro-

ceedings of the Conference on Advances in Neural Infor-

mation Processing Systems 9 (NIPS), pages 1068–1074,

1996. 107

[89] P. Auer, P. Fischer, and N. Cesa-Bianchi. Finite-time

Analysis of the Multi-armed Bandit Problem.

Machine Learning, 47:235–256, 2002. 109

[90] T. Cazenave. Reflexive Monte Carlo Search. In

Proceedings of Computer Games Workshop 2007 (CGW),

pages 165–173, Amsterdam, 2007. 110, 126

[91] G. Chaslot, S. de Jong, J-T. Saito, and J. Uiterwijk.

Monte-Carlo Tree Search in Production Manage-

ment Problems. In Proceedings of the Benelux Confer-

ence on Artificial Intelligence (BNAIC), 2006. 110

[92] Maarten P. D. Schadd, Mark H. M. Winands, H. Jaap

Van Den Herik, Guillaume M. J b. Chaslot, and Jos W.

H. M. Uiterwijk. Single-player Monte-Carlo Tree

Search. In Proceedings of Computers and Games (CG),

Lecture Notes in Computer Science, 5131, pages 1–12.

Springer, 2008. 110

[93] F. De Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel.

Bandit-Based Optimization on Graphs with Ap-

plication to Library Performance Tuning. In

Proceedings of the International Conference on Machine

Learning (ICML), Montréal, Canada, 2009. 110

[94] G.M.J-B. Chaslot, J-B. Hoock, J. Perez, A. Rimmel,

O. Teytaud, and M.H.M Winands. Meta Monte Carlo

Tree Search for Automatic Opening Book Gen-

eration. In Proceedings of IJCAI Workshop on General

Intelligence in Game Playing Agents, pages 7–12, 2009.

111

[95] F. Maes, L. Wehenkel, and D. Ernst. Meta-Learning of

Exploration/Exploitation Strategies: The Multi-

Armed Bandit Case. In Proceedings of Interna-

tional Conference on Agents and Artificial Intelligence

(ICAART) - Springer Selection, arXiv:1207.5208, 2012.

112

[96] M. Castronovo, F. Maes, R. Fonteneau, and D. Ernst.

Learning exploration/exploitation strategies for

single trajectory reinforcement learning. In Pro-

ceedings of the 10th European Workshop on Reinforce-

ment Learning (EWRL), Edinburgh, Scotland, June

2012. 112

[97] Francis Maes, Raphael Fonteneau, Louis Wehenkel, and

Damien Ernst. Policy Search in a Space of Simple

Closed-form Formulas: Towards Interpretability

of Reinforcement Learning. In Proceedings of the

Conference on Discovery Science (DS), Lyon, France,

October 2012. 112

[98] S. Bubeck, R. Munos, and G. Stoltz. Pure Exploration

in Multi-armed Bandits Problems. In Proceed-

ings of the Conference on Algorithmic Learning Theory

(ALT), pages 23–37, 2009. 114

[99] J. Koza and R. Poli. Genetic Programming. In Ed-

mund K. Burke and Graham Kendall, editors, Proceedings

of the Conference on Search Methodologies (SM), pages

127–164. Springer-Verlag, Berlin, 2005. 114

[100] P-A. Coquelin and R. Munos. Bandit Algorithms

for Tree Search. In Proceedings of the Conference on

Uncertainty in Artificial Intelligence (UAI), Vancouver,

Canada, 2007. 114

[101] J-B. Hoock and O. Teytaud. Bandit-Based genetic

programming. In Proceedings of the 13th European

Conference on Genetic Programming, EuroGP, pages

268–277, Berlin, 2010. Springer-Verlag. 115

[102] Z. Geem. Harmony Search Algorithm for Solv-

ing Sudoku. In Proceedings of International Conference

on Knowledge-Based Intelligent Information and Engi-

neering Systems (KES), pages 371–378, Berlin, 2007.

Springer-Verlag. 118

[103] C. Boyer. http://www.morpionsolitaire.com. 2012.

126, 127

[104] C.D. Rosin. Nested Rollout Policy Adaptation for

Monte Carlo Tree Search. In Proc. 22nd Int. Joint

Conf. Artif. Intell., Barcelona, Spain, pages 649–654,

2011. 126

[105] E.D. Demaine, M.L. Demaine, A. Langerman, and

S. Langerman. Morpion solitaire. Theory of Com-

puting Systems, 39(3):439–453, 2006. 126

[106] I.S.G. Chaslot, M.H.M. Winands, and H.J. van den Herik.

Parameter tuning by the cross-entropy method.

In Proceedings of the European Workshop on Reinforce-

ment Learning (EWRL), 2008. 129

[107] R. Coulom. CLOP: Confident local optimization

for noisy black-box parameter tuning. In Pro-

ceedings of the 13th International Advances in Computer

Games Conference (ACG 2011), 2011. 129

[108] Francis Maes, Louis Wehenkel, and Damien Ernst. Op-

timized look-ahead tree search policies. In Pro-

ceedings of the 9th European workshop on reinforcement

learning (EWRL), Athens, Greece, September 2011. 129

[109] A. Bourki, M. Coulom, P. Rolet, O. Teytaud,

P. Vayssière, et al. Parameter Tuning by Simple

Regret Algorithms and Multiple Simultaneous

Hypothesis Testing. In Proceedings of the Interna-

tional Conference on Informatics in Control, Automation

and Robotics (ICINCO), 2010. 129, 130

138

http://hal.archives-ouvertes.fr/hal-00542673/en/

REFERENCES

[110] V. Berthier, H. Doghmen, and O. Teytaud. Con-

sistency modifications for automatically tuned

Monte Carlo tree search. In Proceedings of the

4th Conference on Learning and Intelligent Optimization

(LION), pages 111–124, 2010. 129

[111] G.M.J. Chaslot, M.H.M. Winands, H. Herik, J. Uiterwijk,

and B. Bouzy. Progressive strategies for Monte

Carlo tree search. In Proceedings of the 10th Joint

Conference on Information Sciences (JCIS), pages 655–

661, 2007. 129

[112] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowl-

ing, P. Rohlfshagen, S. Tavener, D. Perez, S. Samoth-

rakis, and S. Colton. A Survey of Monte Carlo

Tree Search Methods. IEEE Transactions on Compu-

tational Intelligence and AI in Games, 4(1):1–43, 2012.

129

[113] T. Cazenave. Evolving Monte Carlo Tree Search

Algorithms. Technical report, 2007. 130

[114] F. Maes, L. Wehenkel, and D. Ernst. Automatic

discovery of ranking formulas for playing with

multi-armed bandits. In Proceedings of the 9th Eu-

ropean Workshop on Reinforcement Learning (EWRL

2011), 2011. 130

[115] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron.

The challenge of poker. Artificial Intelligence, 134(1-

2):201–240, 2002. 130

[116] V. Nannen and A.E. Eiben. Relevance estimation and

value calibration of evolutionary algorithm pa-

rameters. In Proceedings of the 20th International Joint

Conference on Artifical Intelligence (IJCAI), pages 975–

980. Morgan Kaufmann Publishers, 2007. 130

139

	1 Introduction
	1.1 Monte Carlo Search
	1.2 Multi-armed bandit problem
	1.2.1 Computing rewards

	1.3 MCS algorithms
	1.4 Selection Policy
	1.5 Simulation Policy
	1.6 Recommendation Policy
	1.7 Automatic MCS Algorithms Generation

	2 Overview of Existing Selection Policies
	2.1 Introduction
	2.2 The game of Tron
	2.2.1 Game description
	2.2.2 Game complexity
	2.2.3 Previous work

	2.3 Simultaneous Monte-Carlo Tree Search
	2.3.1 Monte-Carlo Tree Search
	2.3.1.1 Selection
	2.3.1.2 Expansion
	2.3.1.3 Simulation
	2.3.1.4 Backpropagation

	2.3.2 Simultaneous moves

	2.4 Selection policies
	2.4.1 Deterministic selection policies
	2.4.1.1 UCB1
	2.4.1.2 UCB1-Tuned
	2.4.1.3 UCB-V
	2.4.1.4 UCB-Minimal
	2.4.1.5 OMC-Deterministic
	2.4.1.6 MOSS

	2.4.2 Stochastic selection policies
	2.4.2.1 Random
	2.4.2.2 n-greedy
	2.4.2.3 Thompson Sampling
	2.4.2.4 EXP3
	2.4.2.5 OMC-Stochastic
	2.4.2.6 PBBM

	2.5 Experiments
	2.5.1 Simulation heuristic
	2.5.2 Tuning parameter
	2.5.3 Results

	2.6 Conclusion

	3 Selection Policy with Information Sharing for Adversarial Bandit
	3.1 Introduction
	3.2 Problem Statement
	3.2.1 Nash Equilibrium
	3.2.2 Generic Bandit Algorithm
	3.2.3 Problem Statement

	3.3 Selection Policies and Updating rules
	3.3.1 EXP3
	3.3.2 TEXP3
	3.3.3 Structured EXP3

	3.4 Theoretical Evaluation
	3.5 Experiments
	3.5.1 Artificial experiments
	3.5.2 Urban Rivals

	3.6 Conclusion

	4 Simulation Policy for Symbolic Regression
	4.1 Introduction
	4.2 Symbolic Regression
	4.3 Problem Formalization
	4.3.1 Reverse polish notation
	4.3.2 Generative process to sample expressions
	4.3.3 Problem statement

	4.4 Probability set learning
	4.4.1 Objective reformulation
	4.4.2 Instantiation and gradient computation
	4.4.3 Proposed algorithm

	4.5 Combination of generative procedures
	4.6 Learning Algorithm for several Probability sets
	4.6.1 Sampling strategy
	4.6.2 Clustering
	4.6.2.1 Distances considered
	4.6.2.2 Preprocessing

	4.6.3 Meta Algorithm

	4.7 Experimental results
	4.7.1 Sampling Strategy: Medium-scale problems
	4.7.2 Sampling Strategy: Towards large-scale problems
	4.7.3 Sampling Strategy: Application to Symbolic Regression
	4.7.4 Clustering: Parameter study
	4.7.5 Clustering: Evaluation

	4.8 Conclusion

	5 Contribution on Recommendation Policy applied on Metagaming
	5.1 Introduction
	5.2 Recommendation Policy
	5.2.1 Formalization of the problem
	5.2.2 Terminology, notations, formula

	5.3 Algorithms
	5.3.1 Algorithms for exploration
	5.3.2 Algorithms for final recommendation

	5.4 Experimental results
	5.4.1 One-player case: killall Go
	5.4.1.1 7x7 killall Go
	5.4.1.2 13x13 killall Go

	5.4.2 Two-player case: Sparse Adversarial Bandits for Urban Rivals

	5.5 Conclusions
	5.5.1 One-player case
	5.5.2 Two-player case

	6 Algorithm discovery
	6.1 Introduction
	6.2 Problem statement
	6.3 A grammar for Monte-Carlo search algorithms
	6.3.1 Overall view
	6.3.2 Search components
	6.3.3 Description of previously proposed algorithms

	6.4 Bandit-based algorithm discovery
	6.4.1 Construction of the algorithm space
	6.4.2 Bandit-based algorithm discovery
	6.4.3 Discussion

	6.5 Experiments
	6.5.1 Protocol
	6.5.2 Sudoku
	6.5.3 Real Valued Symbolic Regression
	6.5.4 Morpion Solitaire
	6.5.5 Discussion

	6.6 Related Work
	6.7 Conclusion

	7 Conclusion
	References

