
Network Fingerprinting: TTL-Based Router Signatures

Yves Vanaubel
Université de Liège

Belgium

yves.vanaubel@ulg.ac.be

Jean-Jacques Pansiot
Université de Strasbourg

France
pansiot@unistra.fr

Pascal Mérindol
Université de Strasbourg

France
merindol@unistra.fr

Benoit Donnet
Université de Liège

Belgium

benoit.donnet@ulg.ac.be

ABSTRACT

Fingerprinting networking equipment has many potential
applications and benefits in network management and se-
curity. More generally, it is useful for the understanding of
network structures and their behaviors. In this paper, we de-
scribe a simple fingerprinting mechanism based on the initial
TTL values used by routers to reply to various probing mes-
sages. We show that main classes obtained using this simple
mechanism are meaningful to distinguish routers platforms.
Besides, it comes at a very low additional cost compared
to standard active topology discovery measurements. As a
proof of concept, we apply our method to gain more insight
on the behavior of MPLS routers and to, thus, more accu-
rately quantify their visible/invisible deployment.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network
topology

General Terms

Measurement

Keywords

network discovery, fingerprinting, MPLS, router signatures,
initial TTL

1. INTRODUCTION
Fingerprinting [1, 2] refers to the act of dividing network

equipment into disjoint classes by analyzing messages sent
by that equipment, usually in response to some form of ac-
tive probing. Those classes may correspond, for instance,
to router operating system (OS), router brand, or router
configuration. Providing such a fingerprinting is useful for
several applications and studies. Indeed, for instance in net-
work management, if the fingerprinting is based on router

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IMC’13, October 23–25, 2013, Barcelona, Spain.

Copyright 2013 ACM 978-1-4503-1953-9/13/10 ...$15.00.

http://dx.doi.org/10.1145/2504730.2504761.

OS, it may help in listing the network nodes and identifying
vulnerable hosts in terms of security and fault tolerance [1,
3]. It may also help in identifying which nodes have an
abnormal behavior (e.g., delay, packets drop/modification,
etc). In network topology discovery [4], fingerprinting could
find a suitable usage to understand how various types of
equipment are interconnected. Indeed, obtaining the router
level map of the topology from traceroute data requires
an additional probing intensive step: alias resolution [5].
Router fingerprinting may drastically speed up this step,
since IP addresses belonging to different classes cannot be
aliases and, so, do not require to be further probed for alias
resolution. Another interesting application is to understand
whether IP networks are heterogenous in terms of hardware
and software at different scales (e.g., temporal to study the
evolution and structural to understand internal structure of
autonomous systems). Indeed, an accurate fingerprinting
technique may allow one to distinguish router OS among a
given brand.

However, fingerprinting can be costly and possibly intru-
sive as it could require many probes [1]. In this case, fin-
gerprinting could be a time consuming process using undue
network resources. Moreover, too many probes towards a
network node or a subnet could be seen as remote host scan-
ning and, consequently, be filtered.

In this paper, we present a fingerprinting method that is
a companion to traceroute-like exploration. Our method is
simple1, requires few additional probes to traceroute ones,
but still allows for classifying Internet routers based on their
hardware and OS. Our fingerprinting method infers initial
TTL values [6, 7] used by routers when building their dif-
ferent kinds of reply packets. We call this set of TTL values
router signatures. Router signatures are meaningful for fin-
gerprinting as the initial TTL values vary not only between
different router platforms but also depending on the proto-
col and the type of message (error versus standard replies
for instance). Indeed, no specific default value has been
standardized for the TTL field.2

We consider a router signature as a n-tuple made of n ini-
tial TTL values. Those n TTL values are derived from TTL
included in different types of probe replies. The number and

1Note that most routers do not reply to “complex” scanning
tools such as nmap [1].
2It is worth to notice that RFC1700 recommends to use 64
as initial TTL value [8]. This is however not followed by
most router manufacturers.

32 64 128 255 ∗

iTTL

0.0

0.2

0.4

0.6

0.8

1.0

c
d

f

echo-reply

time-exceeded

dst-unreachable

Figure 1: Initial TTL distribution (∗ refers to non-
responding routers)

the variety of probes sent give the actual value of n. In this
preliminary work, we focus on n = 2 TTL values, but we
already envision longer (i.e., n > 2) signatures to provide
better distributions among router’s OS. Indeed, the more
discriminating, the more meaningful the significant classes.
Note that it is not that easy since the OS market is known
to be not uniformly shared. Thus, for an application such
as providing a pre-partition to speed up alias resolution pro-
cess, the interest may be limited at the granularity of the
partition.
Based on a large-scale measurement campaign, we first

demonstrate that our router signatures are consistent among
measurement points. After providing some general distribu-
tion results, we illustrate how it can be used in the context
of topology discovery [4] or active probing in general. In
particular, it can be useful to determine if measurements
are biased due to router type dependency. In this paper,
we focus on MPLS tunnels identification and validation [9,
10]. We try to map the behavior of several MPLS tunnel
classes [10] to our set of router signatures. We are thus able
to improve our previous study [10] on MPLS quantification
thanks to TTL-based fingerprinting. We believe that any
active probing tool can take benefit from our simple finger-
printing proposal.
The remainder of this paper is organized as follows: Sec. 2

discusses our TTL-based signatures and our methodology;
Sec. 3 shows how those classes can be helpful to improve
our previous MPLS tunnels classification and quantification;
Sec. 4 positions this paper regarding the state of the art;
finally, Sec. 5 concludes this paper by providing discussions
on ongoing works and perspectives for further works.

2. ROUTER SIGNATURES
This section introduces the fundamentals of our finger-

printing method. In order to obtain replies from most routers,
our probing mechanism must remain as basic as possible.
We thus only rely on the standard behavior of IP routers.
The IP packet header contains a time-to-live (TTL) field

used to avoid packets looping forever when a routing loop
occurs. This 8-bit field is set by the originating host/router
to an initial value that is usually and nearly always a power
of 2 in the list 32 (or 30), 64, 128, and 255. The TTL field
is decremented by one at each intermediate node along the
path the packet takes. When the TTL value is one, the
router determines that the packet has consumed sufficient
resources in the network, drops it, and informs the packet

source by sending back an Internet Control Message Protocol
(ICMP) time-exceeded message. traceroute [11] is based
on this simple behavior.

In this paper, we need to determine the initial TTL (iTTL)
of a received packet. Obviously, the (known) received value
is equal to iTTL − #hops where #hops is the number of
hops between the sender and the receiver. It is worth to
notice that #hops < 30 most of the time (99.8% of the
paths, in our dataset, are less than 30 hops). Therefore,
the iTTL value can be estimated as the smallest number
in 32, 64, 128, 255 that is larger than the received value. In
very infrequent cases, an iTTL of 64 together with a very
long route (#hops > 32) would give an incorrect guess of 32
instead of 64, e.g., a route of length 34 would be interpreted
as a route of length 2. Those cases could be managed during
a traceroute campaign by looking at the number of hops
of the forward route. A difference between the number of
forward and backward hops close to 32 would indicate that
the iTTL is 64 instead of 32.

A router signature is made of a n-tuple of n iTTLs, those
iTTLs being retrieved from different ICMP messages. Our
basic pair-signature (with n = 2) simply uses the iTTL of
two different messages: a time-exceededmessage elicited by
a traceroute probe, and an echo-reply message obtained
from an echo-request probe. Quite surprisingly, for the
same ICMP protocol, a significant proportion of nodes use
two different iTTL values for these two messages, as shown
on Fig. 1.3 We also tried to add a third iTTL to our sig-
natures: a destination-unreachable message elicited by a
UDP probe. As shown on Fig. 1, more than 40% of routers
do not respond to such probes. Mostly, our basic signatures
are thus extended with an absence of response. We decided
to not take the destination-unreachable iTTL into ac-
count in this preliminary study. However, the information
it brings extends the number of possible signatures and we
think it could be helpful for alias resolution in particular.
In future works, we envision to consider more ICMP reply
types and also different IP header fields. We already ob-
served that the iTTL does not only depend on the reply
type (error or standard replies) nor the answer origin (the
central or the per interface processors).

In theory, using n probes, we may have up to 4 × 5n−1

different signatures since we can count the absence of an-
swer for echo-reply (i.e., a ∗) as a valuable pattern. It is
worth to notice that the “4” before the multiplication sign is
due to the fact that ICMP time-exceeded messages are our
basic probing mechanism, i.e., time-exceeded messages are
used to direct subsequent probes (echo-request, UDP pack-
ets, . . .). This means that the ∗ does not count for time-

exceeded messages and, only |{255,128,64,32}| patterns are
available for such replies.

2.1 Measurement campaign
We used Paris Traceroute [12] with ICMP echo-request

packets to collect IP level paths. Each ICMP time-exceeded

packet received is used to build the first component of a
router signature. In addition, for each IP interface discov-
ered, we sent 6 ICMP echo-request probes (in particular
to ensure the robust meaning of a ∗ and help our MPLS dis-
covery). We used the ICMP echo-reply packets received
to complete the second component of our router signature.

3The methodology of our measurement campaign will be
given in Sec. 2.1.

Note that, each IP address collected is pinged six times only
once per vantage point (i.e., when it is discovered for the
first time).
We perform our measurement study with a team of 200

randomly selected PlanetLab vantage points (VPs). Of the
200 VPs, 121 were located within the US; 10 VPs were lo-
cated in Europe, and the other 69 in different countries. We
randomly selected 1,000,000 destinations in the Archipelago [13]
target list and evenly divided this target list among our VPs
team. The dataset has been collected between January 8th,
2013 and January 10th, 2013 using scamper [14]. Once the
data has been collected, we consider each IP address only
once and associate this unique address to its signature. We
so gathered 335,646 distinct IP addresses.

2.2 Measurement Cost
The additional overhead of a measurement campaign to

fingerprint a set of routers found by a traceroute measure-
ment campaign comes at a low cost: each discovered IP
address must be probed with k ICMP echo-request mes-
sages, where k is a robustness parameter. Usually, many
traces discover the same IP addresses that need to be probed
only once [15]. So, at worst, this fingerprinting needs k more
messages per IP address than traceroute only, and, on the
average, much less. In our measurement campaign (where
k = 6), 13.437.896 traceroute responses and 14.803.614
ping responses have been received. That is with our finger-
printing method, and on the average, a probed node sends
about the same number of time-exceeded messages and
echo-reply messages. This number could be further re-
duced by using a smaller robustness factor or by adding
some extra cooperation between VPs in order to avoid as
much as possible pinging the same IP address several times.

2.3 Signatures Consistency
The objective behind fingerprinting is to obtain a signa-

ture that depends only on the probed node. To verify that
fact, we compared the signatures of IP addresses observed
by at least two distinct VPs (that is through distinct trace-
route and ping probes). Note that we consider only IP ad-
dresses that responded to traceroute probes, but some of
them do not always respond to ping probes (i.e., the second
component of the signature may take the value ∗). For the
IP addresses seen from several VPs, we classify our signa-
tures into three categories:

• coherent : the same signature is observed for a given
router interface among measurements done by all VPs.
This is the perfect case. Coherent signatures are ob-
served in 95.92% of the cases.

• weakly incoherent : from some VPs, the signature is of
the type < x, y > while it is < x, ∗ > for some others.
This concerns 3.94% of our signatures.

• incoherent : several different signatures are observed
for a given router interface among measurements done
by all VPs. This is the worst case but it is also very
infrequent (0.14% of the cases).

Weakly incoherent signatures can be explained by two
phenomena: some nodes may not respond to ping at some
time, for example because of overloading, rate limiting, or
filtering inducing the echo-reply lost on some paths [16].
For the 3.94% of weakly incoherent signatures we observed

25
5
−

25
5

25
5
−

∗

25
5
−

64

64
−

64

64
−

∗

12
8
−

12
8

12
8
−

∗

ot
h
er

signature

0.0

0.1

0.2

0.3

0.4

0.5

p
d

f

Figure 2: Main signatures distribution

in our dataset, we decide to keep only the best signature (i.e.,
the complete one). We therefore replace each weakly inco-
herent signatures by the complete one. After this operation,
around 17.5% of the entire set of IP addresses collected in
our campaign were still associated to incomplete signatures
(of the type < x, ∗ >). Most of them (i.e., 10.19%) are
seen by several VPs, while the remaining IP addresses (i.e.,
7.31%) are seen by a single VP. This latter value could be
further reduced by trying to ping those IP addresses from
other VPs.

Incoherent signatures may be explained by some artifacts
(due to their extremely low proportion). Some middleboxes
may rewrite the TTL field [17, 18, 19], or the same IP ad-
dress may correspond to different nodes depending on the
network location (anycast address). There is also the pre-
viously mentioned possible ambiguity between iTTL values
32 and 64.

2.4 Signatures Distribution
While many different platforms could correspond to the

same signature, we know the signature of some well known
platforms (to this purpose, we performed a bunch of tests
in an emulation lab). For instance, Cisco routers generate
signature < 255, 255 > while, for Juniper routers, we have
< 255, 64 > with Junos and < 128, 128 > with JunosE.
Some Brocade and Alcatel equipment together with some
Linux boxes result in a < 64, 64 > signature. Although these
signatures encompass the main router platforms, it would be
very interesting to have a more complete correspondence be-
tween platforms and signatures. Obviously, when restricted
to our 2-tuple, several very different platforms may have the
same signature. So a more accurate signature, i.e., an n-
tuple with n > 2, would be helpful. We already did some
preliminary work analyzing signatures extended with other
types of message (destination-unreachable in particular)
or some other criterion, such as the ICMP messages size.
However, since most routers come from a few major ven-
dors, we cannot expect to partition the network nodes into
a very fine-grained classification using this type of finger-
printing. This is why, in this study, we only consider this
basic 2-tuple as a proof of concept that may be generalized
by further study.

Fig. 2 illustrates the distribution of the main router sig-
natures. The first class < 255, 255 >, that includes Cisco
routers is largely dominant, corresponding to more than 50%
of nodes. The fourth class < 64, 64 >, that includes sev-
eral vendors or OSes (including Linux), and the third class
< 255, 64 > that includes Juniper routers running JunOS

R1 R2 R3 R4 R5

Monitor

Destination

LSP

1. R1

2. R2

3. R3

4. R4

5. R5

6. Destination

1. R1

2. R2 - MPLS

3. R3 - MPLS

4. R4 - MPLS

5. R5

6. Destination

1. R1

2. R4 - MPLS

3. R5

4. Destination

1. R1

2. R4

3. R5

4. Destination

ImplicitExplicit Opaque Invisible

IH LHIngress

LER

Egress

LER

propagate

IP→ MPLS

propagate

MPLS→ IP

Figure 3: Example of MPLS tunnel

0 50 100 150 200

vantage point
0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n

Figure 4: Proportion of paths,
per VP, having at least one
MPLS tunnel

have about 11% each. The second most frequent class <

255, ∗ >, with about 15%, corresponds to an incomplete sig-
nature and is probably mostly made of nodes belonging, ac-
tually, to < 255, 255 > or < 255, 64 > but did not respond
to ping for various reasons [16]. The class < 128, 128 >,
including Juniper platforms running the JunosE system, is
around 3% while the remaining classes are either incomplete
or very rare. Therefore, at a global scale, our fingerprinting
technique seems to reflect the market distribution.
To summarize, we first observe, that among different brands

and OSes, routing devices use distinct iTTL values, and,
second, we also notice that a single device can use multiple
iTTL values (at least, this is the case for Juniper routers).
We now focus on a specific use case illustrating the technical
interest of a classification based on such observations.

3. MPLS USE CASE
Multiprotocol Label Switching (MPLS) [20] is increasingly

deployed by ISPs to provide attractive services such as vir-
tual private networks and traffic engineering. It is therefore
interesting to have some insights on MPLS technologies in
the Internet. However, MPLS tunnels may hide IP-level in-
formation by masking MPLS routers from traceroute. We
propose to use our fingerprinting method to refine informa-
tion on our previous tunnels deployment analysis [10]. We
will show, using MPLS as an example, that our method
could be used to determine whether a feature (here MPLS
characteristics) is independent of the router type. Moreover,
our fingerprinting method may also be extended to check if
a given sample of routers is representative of the Internet
heterogeneity.

3.1 MPLS Tunnels Signatures
The MPLS architecture is based on labels: an IP router

inserts one or more 32-bit label stack entries (LSE – that
contains a label, a TTL field called LSE-TTL, and a type-
of-service field) into a packet, before the IP header, that de-
termines the forwarding actions made by subsequent MPLS
Label Switching Routers (LSRs) in the network. A series of
LSRs connected together form a Label Switched Path (LSP).
In an MPLS network, packets are forwarded using an ex-

act match lookup of the 20-bit label found in the LSE. At
each MPLS hop, the label of the incoming packet is replaced
by a corresponding outgoing label found in an MPLS switch-
ing table.

Fig. 3 illustrates the general behavior of an MPLS tunnel.
Router R1 is the entry of the MPLS tunnel and is the first
router to push an MPLS label; we call this router the ingress
Label Edge Router (LER). Router R2 is the first LSR where
the incoming packet includes a LSE; we call this router the
ingress hop (IH). Router R4 is the last router that pops the
MPLS label; we call this router the last hop (LH). At least
for Cisco routers, most of the time the LH router is located
one hop before the egress LER due to the use of penultimate
hop popping (PHP) [20].

Similarly to the IP-TTL, the LSE-TTL field is decre-
mented by LSR that may send ICMP time-exceeded mes-
sages when the LSE-TTL expires. In order to debug net-
works where MPLS is deployed, routers may also implement
RFC4950 [21], an extension to ICMP that specify that a LSR
should embed the MPLS label stack of the incoming packet
into an ICMP time-exceeded message. The first MPLS
router of an LSP may copy the IP-TTL value to the LSE-
TTL field rather than setting the LSE-TTL to an arbitrary
value such as 255. That is the ingress LER uses TTL prop-
agation. During a traceroute, LSRs along the LSP will
reveal themselves via ICMP messages even if they do not
implement RFC4950. Operators configure this action using
the ttl-propagate option provided by the router OS.

Based on those two MPLS transparency features, we pre-
viously proposed an MPLS taxonomy made of two-by-two
classes [10]. Fig. 3 illustrates those classes that are: explicit
tunnels (i.e., ttl-propagate and RFC4950 are enabled), im-
plicit tunnels (i.e., the router that pushes the MPLS label
enables the ttl-propagate option but LSRs do not imple-
ment RFC4950), opaque tunnels (i.e., the LH implements
RFC4950 but the ingress LER does not enable the ttl-

propagate option), and, finally, invisible tunnels (i.e., the
ingress LER does not enable the ttl-propagate option and
RFC4950 is not implemented by the LH router). Our previ-
ous work provides MPLS signatures detection for revealing
implicit and opaque tunnels based on three main patterns:

1. the quoted IP-TTL (qTTL) in ICMP time-exceeded

messages4. A qTTL > 1 will likely reveal the ttl-

propagate option at the ingress LER of an LSP. For
each subsequent traceroute probe within an LSP, the

4These kind of replies should contain the quotation of the
original IP header triggering the error message. Look at
RFC 792 and 1812.

25
5
−

25
5

25
5
−

∗

25
5
−

64

64
−

64

64
−

∗

12
8
−

12
8

12
8
−

∗

ot
h
er

signature

0.0

0.1

0.2

0.3

0.4

0.5

p
d

f

MPLS

non MPLS

Figure 5: Signature distribution among MPLS and
non MPLS routers

qTTL will be one greater resulting in an increasing
sequence of qTTL values in traceroute;

2. #hops differences with the IP-TTL in echo-replymes-
sages (uturn). It relies on the fact that LSRs along
an LSP present an original label stack default rout-
ing behavior: when the LSE-TTL expires, an LSR
first sends the time-exceeded reply to the Egress LER
which then forwards the reply on its own to the prob-
ing source 5, while an LSR replies to other probes using
its own IP routing table if available.

3. opaque tunnels are revealed through an abnormal LSE-
TTL (1 <LSE-TTL< 255) returned by the LH in the
time-exceeded reply.

Generally speaking, Fig. 4 shows that a large proportion
of paths hits one or more MPLS tunnels: from about half
of the VPs, at least half of the paths reveal MPLS tun-
nels. Explicit and implicit tunnels are by far the most fre-
quent (respectively 46,657 and 61,054 tunnels corresponding
to roughly 40% and 60% of IP addresses belonging to tun-
nels and, altogether, 17% of IP addresses collected). How-
ever, note that most implicit tunnels are discovered using
a probing inference heuristic (uturn). This could lead to
false positive or false negative tunnels. Besides, opaque tun-
nels are rather rare (and so subject to weak statistics – 523
opaque tunnels), and, by definition, we do not have any hints
to find the invisible ones. In our previous MPLS work, we
tried to extrapolate the invisible tunnels quantity using uni-
form linear rules over opaque and implicit ones. We made
assumptions regarding RFC4950 and ttl-propagate inde-
pendence, and did not look at any correlation between those
features and the router OS. We intend here to determine
how we can extend and possibly validate this work using
our TTL-signatures, particularly by checking the existence
of a correlation between our MPLS patterns and the router
OS.

3.2 MPLS Tunnels TTL-Classification
Fig. 5 highlights the difference in frequency of our sig-

natures between MPLS IP addresses (i.e., tagged as such
by traceroute – it does not include implicit tunnels) and
non MPLS IP addresses. The first striking difference is that
the signature < 64, 64 > is much less prevalent in MPLS
visible networks. This could be explained by the fact that

5Look at the mpls ip ttl-expiration pop command of
Cisco routers

25
5
−

25
5

25
5
−

∗

25
5
−

64

64
−

64

64
−

∗

12
8
−

12
8

12
8
−

∗

ot
h
er

signature

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p
ro

p
o
rt

io
n

explicit

implicit

opaque

(a) Main tunnel classes

25
5
−

25
5

25
5
−

∗

25
5
−

64

64
−

64

64
−

∗

12
8
−

12
8

12
8
−

∗

ot
h
er

signature

0.0

0.1

0.2

0.3

0.4

0.5

p
ro

p
o
rt

io
n

qTTL

uturn

(b) Implicit sub-classes
Figure 6: Router Signature distribution among
MPLS tunnel classes

this signature corresponds to a variety of middleboxes and
probably less to high-end routers commonly used in MPLS
networks. The second lesson is that the dominant share
of < 255, 255 > in non MPLS networks is less dominant for
MPLS, while signatures < 255, 64 > and < 255, ∗ > increase
their share. The increase of < 255, ∗ > may be due to LSRs
that do not have a complete IP routing table and thus can-
not reply with an echo-reply message. Recall that, in this
case, an error message such as a time-exceeded message is
usually propagated to the end of the tunnel before being
forwarded to its destination (this is the behavior captured
by our uturn heuristic). The increase of < 255, 64 > signa-
tures is likely to balance the decrease of < 255, 255 >: it
seems that < 255, 64 > routers (e.g., Juniper ones) increase
their market position for MPLS operations (compared to the
previous ratio < 255, 255 > / < 255, 64 > at a global scale).

Each of our tunnel classes exhibits a specific router signa-
ture distribution. Fig. 6(a) presents those distributions. The
X-axis gives the various signatures, while the Y-axis shows
the proportion of tunnels, in a given MPLS class, that ex-
hibits a given signature. From Fig. 6(a), we see that opaque
tunnels are only characterized by signatures < 255, 255 >

and < 255, ∗ >. This property shows a bias in the lin-
ear extrapolation we used to quantify invisible tunnels [10].
We assumed that the LH router would always insert a la-
bel stack into the ICMP time-exceeded message if it im-
plements RFC4950. Consequently, the difference between
an opaque and an invisible tunnel was based on RFC4950
implementation on the LH router. Our new results clearly
demonstrate that this is not the case (see Fig. 6(a)): if the
LH does not belong to < 255, 255 > class (or its incomplete

companion < 255, ∗ >), it will not insert a label stack in the
ICMP message even if it implements RFC4950. Hence, the
tunnel will actually be invisible. We verified this on a virtual
testbed: considering an LSP made of Juniper OS compliant
with RFC 4950 (but where the ingress LER does not propa-
gate the IP-TTL), one may not discover any visible tunnels
(there are only invisible tunnels, no opaque ones). Moreover,
with Cisco OS, the same LSP will appear as opaque or invisi-
ble depending on the PHP behavior associated to the probed
IP address. It seems that the opaque tunnels are more the
exception and invisible tunnels the rule. This means that
the ratio invisible/opaque is probably much higher than we
previously expected. Thus, and unfortunately, invisible tun-
nels are much more common than previously stated.
A last question deserves attention: the amount of im-

plicit tunnels being larger than the explicit one, is our uturn
heuristic reliable? Indeed, this sub-mechanism is prevalent
in our implicit tunnel detection. We can observe that the
proportion of signature < 255, ∗ > is less prevalent in im-
plicit tunnels (compared to other categories) and the pro-
portion of < 64, 64 > is also a bit higher (tunnels that do
no implement RFC4950 are likely to be older and less main-
stream). For the first fact, the reason is obvious: uturn
signatures cannot result from such a < 255, ∗ > pattern.
The remaining ≈ 5% only comes from the qTTL technique
(that is reliable by definition: it does not result from a
probing heuristic). Except for these specific signatures, the
distributions for implicit and explicit tunnels are relatively
close. Such results tend to show that our probing heuris-
tic to detect implicit tunnels seems quite reliable. However,
the slight divergences may be due to uturn signatures that
are by definition more subject to false positives than qTTL
ones.
In order to understand if it is the case, Fig. 6(b) focuses

on the implicit tunnels signatures to distinguish our two
heuristics. The signature < 255, ∗ > only exists with the
qTTL technique. The relative populations of signatures
< 255, 64 > and < 255, 255 > balance this decrease for
uturn tunnels. It confirms the robustness of our uturn tech-
nique: quantity of < 64, 64 > does not move while the nat-
ural decrease of < 255, ∗ > is reported to < 255, 64 > and
< 255, 255 > classes in the same proportion as for MPLS ex-
plicit tunnels. We can conclude that uturn is not the cause
of the previous and single < 64, 64 > actual difference (that
seems to be induced by the RFC4950 implementation).

4. RELATED WORK
The remote identification of operating systems, also known

as OS fingerprinting, aims at discovering the remote machine
OS. Based on how data is acquired from the remote machine,
two families of OS fingerprinting techniques are possible: ac-
tive (that requires sending traffic towards the target) [22,
23, 24] and passive methods (that requires listening to com-
munications between the target and a third-party) [25, 26].
Typically, both families investigate several fields of packet
headers. In particular, it focuses on the IP and TCP head-
ers [22, 24], or the various types of ICMP packets [23]. To
the best of our knowledge, none of those solutions have ex-
plored iTTL n-tuple and applied it to router-level topology
discovery.
Closer to our work, Sherry et al. [27] performs alias resolu-

tion based on signatures from IP timestamp behavior. Also,
Madhyastha et al. [28] use the iTTL in order to estimate the

number of hops on the reverse path back from every router
to the measurement point. None of them explore iTTL n-
tuples nor use signatures to determine possible measurement
biases.

Recently, the deployment of MPLS started to be an active
research subject. For instance, Sherwood et al. [29] investi-
gated the presence of anonymous and hidden routers as part
of DisCarte using signatures based on the IP record route
option. Sommers et al. [9] examined the characteristics of
MPLS tunnels that are explicitly identified using RFC4950
extensions to statistically infer non explicit ones. In the
same vein, we proposed a practical taxonomy of MPLS tun-
nels based on RFC4950 extensions and ttl-propagate op-
tion [10]. We have developed techniques for revealing the
presence of implicit and opaque tunnels. As demonstrated
on this paper, our TTL-based fingerprinting method can be
used to refine MPLS identification and quantification.

5. CONCLUSION
Router fingerprinting may help for many purposes such

as detecting vulnerable routers or abnormal behaviors and
alias resolution. In this paper, we proposed a lightweight
router fingerprinting technique based on router signature,
i.e., a n-tuple made of initial TTL values used by a router
when forging ICMP reply packets. We showed that such a
signature is suitable to consistently discriminate IP inter-
faces. Indeed, various router brands and OSes use different
deterministic initial TTL values depending on the type of
packet to forge.

Based on data collected during a large-scale measurement
campaign, we analyzed the mapping of router OS distribu-
tion according to router signatures. As a proof of concept,
we applied it on our previous work about MPLS tunnel clas-
sification and validated heuristics for revealing non explicit
MPLS tunnels. At the same time, we refined our previous
conclusions about the invisible MPLS tunnels quantification.
More generally, our method or its extension could be used
both to determine if a sample of routers is representative of
the Internet router mix, and to determine whether a routing
feature is independent of the router type.

As a further work, we envision to extend our basic signa-
ture. Adding new fields will enlarge the spectrum of possible
classes, making them more discriminant. We will try to keep
the probing overhead as low as possible while completing our
n-tuple of initial TTLs with additional and possibly orthog-
onal features. We intend to study, among other features,
the ICMP packet size, the LSE-TTL field, and the MPLS
label range. In a second step, we would like to develop a
new multi-probing traceroute tool for inferring equipment-
based paths in the Internet. Generally speaking, our method
can be used to understand whether IP networks are hetero-
geneous in terms of hardware and software and for analyzing
the new OS deployment and market share evolution at dif-
ferent scales.

Acknowledgments

This work is partially funded by the European Commis-
sion funded mPlane ICT-318627 project.

6. REFERENCES
[1] G. F. Lyon, Nmap Network Scanning: The Official

Nmap Project Guide to Network Discovery and
Security Scanning. Nmap Project, 2009, see
http://nmap.org/book/toc.html.

[2] T. Kohno, A. Broido, and k. claffy, “Remote physical
device fingerprinting,” IEEE Transactions on
Dependable and Secure Computing, vol. 2, no. 2, pp.
93–108, May 2005.

[3] F. Veysset, O. Courtay, and O. Heen, “New tool and
technique for remote operating system fingerprinting,”
April 2002, see http://www.leetupload.com/database/
Misc/Papers/remote os detection.pdf.

[4] B. Donnet and T. Friedman, “Internet topology
discovery: a survey,” IEEE Communications Surveys
and Tutorials, vol. 9, no. 4, December 2007.

[5] K. Keys, “Internet-scale IP alias resolution
techniques,”ACM SIGCOMM Computer
Communication Review, vol. 40, no. 1, pp. 50–55,
January 2010.

[6] N. Davis, “Initial TTL values,” November 2011, see
http:
//noahdavids.org/self published/TTL values.html.

[7] A. Sebastian, “Default time to live (TTL) values,”
December 2009, see http://www.binbert.com/blog/
2009/12/default-time-to-live-ttl-values/.

[8] J. Postel, “Assigned numbers,” Internet Engineering
Task Force, RFC 1700, October 1994.

[9] J. Sommers, B. Eriksson, and P. Barford, “On the
prevalence and characteristics of MPLS deployments
in the open Internet,” in ACM SIGCOMM Internet
Measurement Conference, November 2011.

[10] B. Donnet, M. Luckie, P. Mérindol, and J.-J. Pansiot,
“Revealing MPLS tunnels obscured from traceroute,”
ACM SIGCOMM Computer Communication Review,
vol. 42, no. 2, pp. 87–93, April 2012.

[11] V. Jacobson et al., “traceroute,” UNIX,” man page,
1989, see source code:
ftp://ftp.ee.lbl.gov/traceroute.tar.gz.

[12] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,
T. Friedman, M. Latapy, C. Magnien, and R. Teixeira,
“Avoiding traceroute anomalies with Paris traceroute,”
in Proc. ACM SIGCOMM Internet Measurement
Conference (IMC), October 2006.

[13] k. claffy, Y. Hyun, K. Keys, M. Fomenkov, and
D. Krioukov, “Internet mapping: from art to science,”
in Proc. IEEE Cybersecurity Applications and
Technologies Conference for Homeland Security
(CATCH), March 2009.

[14] M. Luckie, “Scamper: a scalable and extensible packet
prober for active measurement of the Internet,” in
ACM SIGCOMM Internet Measurement Conference,
November 2010.

[15] B. Donnet, P. Raoult, T. Friedman, and M. Crovella,
“Efficient algorithms for large-scale topology
discovery,” in Proc. ACM SIGMETRICS, June 2005.

[16] L. Jacquin, V. Roca, M. A. Kaafar, F. Schuler, and
J. L. Roch, “IBTrack: an ICMP black holes tracker,”
in Proc. IEEE Global Communications Conference
(GLOBECOM), December 2012.

[17] A. Medina, M. Allman, and S. Floyd, “Measuring
interactions between transport protocols and
middleboxes,” in Proc. ACM SIGCOMM Internet
Measurement Conference (IMC), October 2004.

[18] M. H. Keio, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda, “Is it still possible to
extend TCP,” in Proc. ACM/USENIX Internet
Measurement Conference (IMC), November 2011.

[19] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel,
and B. Donnet, “Revealing middlebox interference
with tracebox,” in Proc. ACM/USENIX Internet
Measurement Conference (IMC), October 2013.

[20] E. Rosen, A. Viswanathan, and R. Callon,
“Multiprotocol label switching architecture,” Internet
Engineering Task Force, RFC 3031, January 2001.

[21] R. Bonica, D. Gan, D. Tappan, and C. Pignataro,
“ICMP extensions for multiprotocol label switching,”
Internet Engineering Task Force, RFC 4950, August
2007.

[22] Fyodor, “Remote OS detection via TCP/IP stack
fingerprinting,”Phrack, vol. 8, no. 54, October 1998,
see http://nmap.org/nmap-fingerprinting-article.txt.

[23] O. Arkin, “A remote active OS fingerprinting tool
using ICMP,” ;login: the Magazine of USENIX and
Sage, vol. 27, no. 2, pp. 14–19, October 2002.

[24] J. Padhye and S. Floyd, “Identifying the TCP
behavior of web servers,” in Proc. ACM SIGCOMM,
August 2001.

[25] C. Smith and P. Grundl, “Know your enemy: Passive
fingerprinting,” March 2002, see http:
//www.linuxvoodoo.com/resources/security/finger.

[26] M. Zalewski, “p0f,” see
http://lcamtuf.coredump.cx/p0f3/.

[27] J. Sherry, E. Katz-Bassett, M. Pimenova, H. V.
Madhyastha, T. Anderson, and A. Krishnamurthy,
“Resolving IP aliases with prespecified timestamps,” in
Proc. ACM/USENIX Internet Measurement
Conference (IMC), November 2010.

[28] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon,
T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “iPlane: An information plane for
distributed services,” in Proc. USENIX Symposium on
Operating Systems Design and Implementation
(OSDI), November 2006.

[29] R. Sherwood, A. Bender, and N. Spring, “Discarte: a
disjunctive Internet cartographer,” in ACM
SIGCOMM, August 2008.

