Hot gas distribution in the wind of ζ Pup and ζ Ori

Hervé A.^{1,2}, Rauw G.² & Nazé Y.²

1 : LUPM, Université de Montpellier II, 2 : GAPHE, Université de Liège

Abstract : We have developped a new X-ray modelling code based on embedded shocks which computes synthetic spectra as a function of plasma temperature, abundances and localization of the X-ray emitting shell in the wind. We have also included a proper treatment of the radial dependence of the X-ray opacity of the cool matter as well as a treatment for the Forbiden Inter combination Resonance (FIR) lines of He-like ions. Our code combines several synthetic spectra in order to fit all the lines of an X-ray spectrum simultaneously and coherently.

Our results on two O-type stars ζ Pup and ζ Ori reveal non-porous winds with a mass loss rate consistent with studies in the optical domain as well as non-solar abundances for the CNO elements as expected for evolved stars. More important, the X-ray plasma starts emitting close to the stellar surface. An improved version of our code allowing an analysis of the radial dependence of the hot gas filling factor reveals for ζ Ori a non continuity of the X-ray emission regions associated to high values of the hot gas filling factor.

Introduction :

pioneered XMM and Chandra have high-resolution X-ray spectroscopy, allowing among other things, the detailed analyses of massives star' winds.

We are developping **new modelling tools** to determine the mass loss rate, abundances as well as the **distribution** of the temperature of the **X-ray emitting plasma** in the wind and the associated hot gas filling factor.

We present the basics of our modelling tools and the results obtained with the first version of our

Modelling tools :

- 1/ synthethic spectra generator (Hervé et al, 2012, 2013):
- Wind embedded shock scenario.
- Emissivity from AtomdB as a function of plasma temperature and abundances.
- Mass absorption coefficients (κ) calculated with CMFGEN (Hillier & Miller, 1998).
- Wavelength and radial dependence of *k* included in the code with an analytic solution of the modified Owocki & Cohen (2006) calculation of the wind optical depth in conventional (p,z) coordinates :

$$\tau(\lambda, r) = \int_{z_0}^{\infty} \kappa(r)\rho(r)dz = \int_{z_0}^{\infty} \frac{\alpha\kappa(r)R_*}{r(r-R_*) + \alpha\kappa(r)hR_*r} dz$$
 Where $\kappa(r)$ is described as a spline function and h is the porosity length

Modification of the **FIR line emission** due to the stellar UV radiation field (Leutenegger et al, 2006).

code on the well observed star ζ Pup (Naze et al. 2012,2013, Hervé et al 2013). The analysis with our improved code of the spectrum of the second most observed massive star, ζ Ori, reveals very interesting results about the location of the X-ray emission plasma (Hervé et al, in prep).

2/observation fitting procedure :

Bound Variables Least Square algorithm (**BVLS**) used to determine the hot gas filling factor of sub-shells :

 $S_i =$ $f_{hotgas,j,r}M_{j,r,i} + \epsilon$ $i=1 r=R_i$

Where S_{i} is the observed flux at the wavelength i, $f_{hotgas, i,r}$ is the classical volume filling factor of the hot gas component j at the position r in the wind, M_{iri} is the synthetic flux of each X-ray emitting plasma component at the wavelength i at the position r in the wind, and ε is the error of regression.

Results :

Fig 1 : Our best model (in red) compared to the RGS spectrum of ζ Puppis (in black)

Fig 2 : Our best model (in red) compared to the RGS spectrum of ζ Ori (in black)

Wavelength (Å)

Tab 1: Temperature distribution of the X-ray emitting plasma and gas filling factor in the wind of ζ Pup with the first version of the code

	model ₁	h'=0.0	$\chi^2_{\nu} = 15.16$
kT	<i>f</i> hotgas	R _{in}	R _{out}
keV		R_*	R_*
0.10	0.012	7.5	85.
0.20	0.012	1.5	38.
0.40	0.020	2.7	4.0
0.69	0.007	3.1	4.1

Tab 2: Stellar wind parameters of ζ Pup determined from the best fit model.

\dot{M}	X(C)	X(N)	X(O)
$10^{-6}~M_{\odot}{ m yr}^{-1}$			
3.5	6.00×10^{-4}	7.7×10^{-3}	3.05×10^{-3}

Tab 3 : Stellar wind parameters of ζ Ori determined from the best fit model.

\dot{M}	X(C)	X(N)	X(O)	h
$10^{-6} M_{\odot} { m yr}^{-1}$				
1.	2.45×10^{-4}	4.5×10^{-5}	3.4×10^{-4}	0.0

Wavelength (Å)

Our model yields the distribution of the X-ray emitting shells in the wind. However, there exists a degeneracy between the size of a plasma shell and its filling factor. We are currently investigating how this degeneracy can be lifted

<u>Conclusions :</u>

Development of a *new X-ray spectra modelling code*.

First fitting of the full RGS spectra of massive stars, ζ Pup (Hervé et al 2013) and ζ Ori (Hervé et al, in prep).

- Agreement between our results (mass loss rate and abundances) and optical studies. Small differences due to atomic data uncertainties and modelling code approximations. - No porosity needed.

- Determination of the X-ray temperature plasma distribution.

1/ <u>ζ Pup</u> : - Small shell of very hot plasma (0,69 keV) at 3 R* included in shell (2,7R*-4.R*) of a slightly lower temperature (kT=0,4keV).

- Extended shells (> 35R*) of low temperature X-ray plasma (kT = 0,1keV and kT=0,2keV) one located far in the wind (7,5R* for kT=0,100 keV) the other close to the stellar surface (1,5R*).

BUT Too much flux in the blue part of emission lines at longer wavelengths \rightarrow Models are too heavily absorbed in the inner part of the wind and/or for the X-ray photons produced on the rear side of the star. \rightarrow Modification of our code for the study of ζ Ori.

2/<u>ζ Ori</u>: - First shocks/X-ray emission very close to the star surface (1,3 R*) associated to low X-ray temperature plasma.

- temperature plasma between 0,08 kev and 0,69 keV

- '- degeneracy between the size of a plasma shell and its filling factor
- research of physical constraints to break the degeneracy on the size of shells and the associated hot gas filling factor in progress.

Bibliography : Hervé, A., Rauw, G., Nazé, Y., & Foster, A. 2012, ApJ, 748, 89 Hillier, J., & Miller, E. 1998, ApJ, 496, 416 Nazé Y., Flores, C.A., & Rauw, G.2012, A&A, 538, A22 Owocki S.P., & Cohen, D.H. 2006, ApJ, 648, 565 Leutenegger, M.A., Paerels, F.B.S, Kahn, S.M. 2006, ApJ, 650, 1096 Nazé, Y., Oskinova, L. M., & Gosset, E. 2013, ApJ, 763, 143 Hervé, A., Rauw, G., & Nazé, Y. 2013, A&A, 551, A83