J.-P. Michel, Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

xamples

DiPirro system Taub-NUT metri

Application to

Higher symmetries of the conformal Laplacian

J.-P. Michel, J. Silhan, R.

Gent, July 2013

Introduction

Higher symmetries of the conformal Laplacian

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of Δ_Y

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to the R-separation

 \blacksquare On $(\mathbb{R}^2, \mathrm{g}_0)$, we consider the Schrödinger equation

$$\Delta \phi = E \phi,$$

where

$$\Delta = \partial_x^2 + \partial_y^2, \quad E \in \mathbb{R}.$$

Introduction

Higher symmetries of the conformal Laplacian

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{m{v}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation lacksquare On $(\mathbb{R}^2, \mathrm{g_0})$, we consider the Schrödinger equation

$$\Delta \phi = E \phi,$$

where

$$\Delta = \partial_x^2 + \partial_y^2, \quad E \in \mathbb{R}.$$

■ Coordinates (u, v) separate this equation $\iff \exists$ solution of the form f(u)g(v)

Introduction

Higher symmetries of the conformal Laplacian

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta \mathbf{v}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metric

Application to the *R*-separation \blacksquare On $(\mathbb{R}^2, \mathrm{g}_0)$, we consider the Schrödinger equation

$$\Delta \phi = E \phi$$
,

where

$$\Delta = \partial_x^2 + \partial_y^2, \quad E \in \mathbb{R}.$$

- Coordinates (u, v) separate this equation $\iff \exists$ solution of the form f(u)g(v)
- lacksquare Coordinates (u,v) orthogonal $\Longleftrightarrow g_0(\partial_u,\partial_v)=0$

.-P. Michel, J Silhan, R.

Second order conformal symmetries of Δ_{γ} Conformal Killitensors

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples
DiPirro system

Application to the R-separation

■ There exist 4 families of orthogonal separating coordinates systems :

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

- There exist 4 families of orthogonal separating coordinates systems :
 - Cartesian coordinates

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of $\Delta_{oldsymbol{\gamma}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to

- There exist 4 families of orthogonal separating coordinates systems :
 - Cartesian coordinates
 - 2 Polar coordinates (r, θ) :

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{oldsymbol{\gamma}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation

- There exist 4 families of orthogonal separating coordinates systems :
 - Cartesian coordinates
 - **2** Polar coordinates (r, θ) :

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$$

3 Parabolic coordinates (ξ, η) :

$$\begin{cases} x = \xi \eta \\ y = \frac{1}{2}(\xi^2 - \eta^2) \end{cases}$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

DiPirro system Taub-NUT metric

Application to the *R*-separation

- There exist 4 families of orthogonal separating coordinates systems :
 - Cartesian coordinates
 - 2 Polar coordinates (r, θ) :

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$$

3 Parabolic coordinates (ξ, η) :

$$\begin{cases} x = \xi \eta \\ y = \frac{1}{2}(\xi^2 - \eta^2) \end{cases}$$

4 Elliptic coordinates (α, β) :

$$\begin{cases} x = \sqrt{d}\cos(\alpha)\cosh(\beta) \\ y = \sqrt{d}\sin(\alpha)\sinh(\beta) \end{cases}$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors

Natural and conformally invariant quantization

Structure of the conformal

Examples

DiPirro system Taub-NUT metri

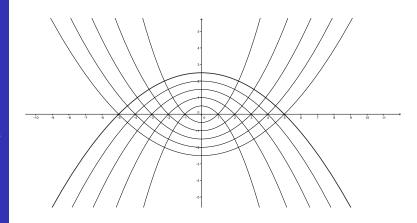


Figure: Coordinates lines corresponding to the parabolic coordinates system

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

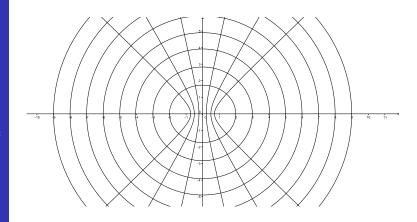


Figure: Coordinates lines corresponding to the elliptic coordinates system

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of $\Delta \gamma$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation Separating coordinates systems allow to simplify the resolution of the Schrödinger equation :

J.-P. Michel, Silhan, R.

Second order conformal symmetries of $\Delta_{m{v}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to

- Separating coordinates systems allow to simplify the resolution of the Schrödinger equation :
- Example : in cartesian coordinates (x, y), f(x)g(y) is a solution of $\Delta \phi = E \phi$ iff

$$(\partial_x^2 f)g + f(\partial_y^2 g) - Efg = 0$$

J.-P. Michel, Silhan, R.

Second order conformal symmetries of $\Delta_{m{v}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation

- Separating coordinates systems allow to simplify the resolution of the Schrödinger equation :
- Example : in cartesian coordinates (x,y), f(x)g(y) is a solution of $\Delta \phi = E \phi$ iff

$$(\partial_x^2 f)g + f(\partial_y^2 g) - Efg = 0$$

iff

$$\frac{\partial_x^2 f}{f} + \frac{\partial_y^2 g}{g} - E = 0$$

J.-P. Michel, a Silhan, R.

Second order conformal symmetries of $\Delta_{\mathbf{v}}$

Conformal Killing tensors
Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metric

Application to the R-separation

- Separating coordinates systems allow to simplify the resolution of the Schrödinger equation :
- Example : in cartesian coordinates (x,y), f(x)g(y) is a solution of $\Delta \phi = E \phi$ iff

$$(\partial_x^2 f)g + f(\partial_y^2 g) - Efg = 0$$

iff

$$\frac{\partial_x^2 f}{f} + \frac{\partial_y^2 g}{g} - E = 0$$

iff

$$\begin{cases} \partial_x^2 f - E_1 f = 0 \\ \partial_y^2 g - (E - E_1)g = 0 \end{cases}$$

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

Di Pirro system Taub-NUT metri

Application to the *R*-separation

Bijective correspondence

{Separating coordinates systems}

{Second order symmetries of Δ : second order differential operators D such that $[\Delta, D] = 0$ }

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

Di Pirro system Taub-NUT metri

Application to the *R*-separation

■ Bijective correspondence

{Separating coordinates systems}

{Second order symmetries of Δ : second order differential operators D such that $[\Delta, D] = 0$ }

Coordinates system	Symmetry
(x,y)	∂_x^2
(r,θ)	L_{θ}^2
(ξ,η)	$\frac{1}{2}(\partial_{x}L_{\theta}+L_{\theta}\partial_{x})$
(α, β)	$L_{\theta}^2 + d\partial_x^2$

with
$$L_{\theta} = x \partial_y - y \partial_x$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{m{\gamma}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples Di Birro system

DiPirro system Taub-NUT metri

Application to the *R*-separation Link between the symmetry and the coordinates system: if the second-order part of D reads as

$$\left(\begin{array}{cc}\partial_x & \partial_y\end{array}\right) A \left(\begin{array}{c}\partial_x \\ \partial_y\end{array}\right),$$

the eigenvectors of A are tangent to the coordinates lines.

Second order conformal symmetries of $\Delta_{m{v}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation ■ Link between the symmetry and the coordinates system: if the second-order part of *D* reads as

$$\left(\begin{array}{cc} \partial_{x} & \partial_{y} \end{array}\right) A \left(\begin{array}{c} \partial_{x} \\ \partial_{y} \end{array}\right),$$

the eigenvectors of A are tangent to the coordinates lines.

Example : second-order part of L_{θ}^2 :

$$\left(\begin{array}{cc} \partial_x & \partial_y \end{array}\right) \left(\begin{array}{cc} y^2 & -xy \\ -xy & x^2 \end{array}\right) \left(\begin{array}{c} \partial_x \\ \partial_y \end{array}\right),$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

Application to the R-separation

■ Link between the symmetry and the coordinates system: if the second-order part of *D* reads as

$$\left(\begin{array}{cc} \partial_{x} & \partial_{y} \end{array}\right) A \left(\begin{array}{c} \partial_{x} \\ \partial_{y} \end{array}\right),$$

the eigenvectors of A are tangent to the coordinates lines.

Example : second-order part of L_{θ}^2 :

$$\left(\begin{array}{cc} \partial_{x} & \partial_{y} \end{array}\right) \left(\begin{array}{cc} y^{2} & -xy \\ -xy & x^{2} \end{array}\right) \left(\begin{array}{c} \partial_{x} \\ \partial_{y} \end{array}\right),$$

eigenvectors of A in this case :

$$\left(\begin{array}{c} x \\ y \end{array}\right), \left(\begin{array}{c} -y \\ x \end{array}\right)$$

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of $\Delta_{m{\gamma}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to

lacksquare On a *n*-dimensional pseudo-Riemannian manifold (M, g),

$$\Delta_Y := \nabla_i g^{ij} \nabla_j - \frac{n-2}{4(n-1)} Sc,$$

where Sc is the scalar curvature of g.

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal
symmetries

Examples

Di Pirro system Taub-NUT metri

Application to the *R*-separation lacksquare On a n-dimensional pseudo-Riemannian manifold (M, g),

$$\Delta_Y := \nabla_i g^{ij} \nabla_j - \frac{n-2}{4(n-1)} Sc,$$

where Sc is the scalar curvature of g.

lacksquare Riemann curvature : $R_{ab}{}^c{}_dv^d=[
abla_a,
abla_b]v^c$

J.-P. Michel, Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation lacksquare On a n-dimensional pseudo-Riemannian manifold (M, g),

$$\Delta_Y := \nabla_i g^{ij} \nabla_j - \frac{n-2}{4(n-1)} Sc,$$

- lacksquare Riemann curvature : $R_{ab}{}^c{}_d v^d = [
 abla_a,
 abla_b] v^c$
- Ricci tensor : $\operatorname{Ric}_{bd} = R_{ab}{}^{a}{}_{d}$

J.-P. Michel, Silhan, R.

Second order conformal symmetries of $\Delta_{m{\gamma}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation lacksquare On a *n*-dimensional pseudo-Riemannian manifold (M, g),

$$\Delta_Y := \nabla_i g^{ij} \nabla_j - \frac{n-2}{4(n-1)} Sc,$$

- Riemann curvature : $R_{ab}{}^{c}{}_{d}v^{d} = [\nabla_{a}, \nabla_{b}]v^{c}$
- Ricci tensor : $\operatorname{Ric}_{bd} = R_{ab}{}^{a}{}_{d}$
- Scalar curvature : $Sc = g^{ab}Ric_{ab}$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{γ}

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metric

Application to the *R*-separation lacksquare On a *n*-dimensional pseudo-Riemannian manifold (M, g),

$$\Delta_Y := \nabla_i g^{ij} \nabla_j - \frac{n-2}{4(n-1)} Sc,$$

- Riemann curvature : $R_{ab}{}^{c}{}_{d}v^{d} = [\nabla_{a}, \nabla_{b}]v^{c}$
- Ricci tensor : $\operatorname{Ric}_{bd} = R_{ab}{}^{a}{}_{d}$
- Scalar curvature : $Sc = g^{ab}Ric_{ab}$
- lacksquare Symmetry of $\Delta_Y:D\in\mathcal{D}(M)$ such that $[\Delta_Y,D]=0$

J.-P. Michel, Silhan, R.

Second order conformal symmetries of $\Delta_{m{\gamma}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metric

Application to the *R*-separation

lacksquare On a *n*-dimensional pseudo-Riemannian manifold (M, g),

$$\Delta_Y := \nabla_i g^{ij} \nabla_j - \frac{n-2}{4(n-1)} Sc,$$

- Riemann curvature : $R_{ab}{}^{c}{}_{d}v^{d} = [\nabla_{a}, \nabla_{b}]v^{c}$
- Ricci tensor : $\operatorname{Ric}_{bd} = R_{ab}{}^{a}{}_{d}$
- lacksquare Scalar curvature : $\mathrm{Sc} = \mathrm{g}^{ab}\mathrm{Ric}_{ab}$
- lacksquare Symmetry of $\Delta_Y:D\in\mathcal{D}(M)$ such that $[\Delta_Y,D]=0$
- Conformal symmetry of $\Delta_Y: D_1 \in \mathcal{D}(M)$ such that $\exists D_2 \in \mathcal{D}(M)$ such that $\Delta_Y \circ D_1 = D_2 \circ \Delta_Y$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

Di Pirro system Taub-NUT metri

Application to the *R*-separation • (M, g) conformally flat : for each $x \in M$, there exist a neighborhood U of x and a function f on U such that $e^{2f}g$ is flat on U

Conformal symmetries of Δ_Y known (M. Eastwood, J.-P. Michel)

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

Di Pirro system Taub-NUT metri

Application to the *R*-separation • (M, g) conformally flat : for each $x \in M$, there exist a neighborhood U of x and a function f on U such that $e^{2f}g$ is flat on U

Conformal symmetries of Δ_Y known (M. Eastwood, J.-P. Michel)

• (M, g) Einstein : Ric = fgExistence of a second order symmetry (B. Carter)

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

DiPirro system Taub-NUT metric

Application to the *R*-separation

1 Second order conformal symmetries of Δ_Y

- Conformal Killing tensors
- Natural and conformally invariant quantization
- Structure of the conformal symmetries

2 Examples

- DiPirro system
- Taub-NUT metric

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{oldsymbol{\gamma}}$

Conformal Killing tensors

Natural and conformally invariant quantization Structure of the conformal symmetries

xamples

DiPirro system Taub-NUT metric

Application to the *R*-separation ■ If $D \in \mathcal{D}^k(M)$ reads

$$\sum_{|\alpha| \leqslant k} D^{\alpha} \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n},$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors

Natural and conformally invariant quantization Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation ■ If $D \in \mathcal{D}^k(M)$ reads

$$\sum_{|\alpha| \leqslant k} D^{\alpha} \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n},$$

$$\sigma(D) = \sum_{|\alpha|=k} D^{\alpha} p_1^{\alpha_1} \dots p_n^{\alpha_n},$$

where (x^i, p_i) are the canonical coordinates on T^*M

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{m{v}}$

Conformal Killing tensors Natural and conformally invariant

invariant
quantization
Structure of th
conformal
symmetries

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation

■ If $D \in \mathcal{D}^k(M)$ reads

$$\sum_{|\alpha| \leqslant k} D^{\alpha} \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n},$$

$$\sigma(D) = \sum_{|\alpha|=k} D^{\alpha} p_1^{\alpha_1} \dots p_n^{\alpha_n},$$

where (x^i, p_i) are the canonical coordinates on T^*M

 \bullet $\sigma(D)$ can be viewed as a contravariant symmetric tensor of degree k:

$$\sigma(D) = \sum_{|\alpha| = k} D^{\alpha} \partial_1^{\alpha_1} \vee \ldots \vee \partial_n^{\alpha_n}$$

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of Δ_{Υ}

Conformal Killing tensors

Natural and conformally invariant quantization Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

Application to the R-separation

■ If D is a conformal symmetry of Δ_Y , there exists an operator D' such that $\Delta_Y \circ D = D' \circ \Delta_Y$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{m{v}}$

Conformal Killing tensors

Natural and conformally invariant quantization Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

- If D is a conformal symmetry of Δ_Y , there exists an operator D' such that $\Delta_Y \circ D = D' \circ \Delta_Y$
- $\sigma(\Delta_Y) = H = g^{ij} p_i p_j$, then $\{H, \sigma(D)\} \in (H)$, i.e. $\sigma(D)$ is a conformal Killing tensor

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors

Natural and conformally invariant quantization Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

- If D is a conformal symmetry of Δ_Y , there exists an operator D' such that $\Delta_Y \circ D = D' \circ \Delta_Y$
- $\sigma(\Delta_Y) = H = g^{ij} p_i p_j$, then $\{H, \sigma(D)\} \in (H)$, i.e. $\sigma(D)$ is a conformal Killing tensor
- Conformal Killing tensor K: trace-free part of $\nabla_{(i_0} K_{i_1 \cdots i_k)}$ vanishes

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{\mathbf{Y}}$

Conformal Killing tensors

Natural and conformally invariant quantization Structure of th conformal symmetries

Examples

Di Pirro system Taub-NUT metri

- If D is a conformal symmetry of Δ_Y , there exists an operator D' such that $\Delta_Y \circ D = D' \circ \Delta_Y$
- $\sigma(\Delta_Y) = H = g^{ij} p_i p_j$, then $\{H, \sigma(D)\} \in (H)$, i.e. $\sigma(D)$ is a conformal Killing tensor
- Conformal Killing tensor K: trace-free part of $\nabla_{(i_0} K_{i_1 \dots i_k)}$ vanishes
- If D is a symmetry of Δ_Y , $[\Delta_Y, D] = 0$, then $\{H, \sigma(D)\} = 0$, i.e. $\sigma(D)$ is a Killing tensor

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{\mathbf{Y}}$

Conformal Killing tensors

Natural and conformally invariant quantization Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

- If D is a conformal symmetry of Δ_Y , there exists an operator D' such that $\Delta_Y \circ D = D' \circ \Delta_Y$
- $\sigma(\Delta_Y) = H = g^{ij} p_i p_j$, then $\{H, \sigma(D)\} \in (H)$, i.e. $\sigma(D)$ is a conformal Killing tensor
- Conformal Killing tensor K: trace-free part of $\nabla_{(i_0} K_{i_1 \cdots i_k)}$ vanishes
- If D is a symmetry of Δ_Y , $[\Delta_Y, D] = 0$, then $\{H, \sigma(D)\} = 0$, i.e. $\sigma(D)$ is a Killing tensor
- Killing tensor $K: \nabla_{(i_0} K_{i_1 \cdots i_k)} = 0$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta \gamma$

Conformal Killing tensors Natural and conformally invariant

conformally invariant quantization Structure of th conformal symmetries

Examples

DiPirro system Taub-NUT metri

- If D is a conformal symmetry of Δ_Y , there exists an operator D' such that $\Delta_Y \circ D = D' \circ \Delta_Y$
- $\sigma(\Delta_Y) = H = g^{ij} p_i p_j$, then $\{H, \sigma(D)\} \in (H)$, i.e. $\sigma(D)$ is a conformal Killing tensor
- Conformal Killing tensor K: trace-free part of $\nabla_{(i_0} K_{i_1 \cdots i_k)}$ vanishes
- If D is a symmetry of Δ_Y , $[\Delta_Y, D] = 0$, then $\{H, \sigma(D)\} = 0$, i.e. $\sigma(D)$ is a Killing tensor
- Killing tensor $K: \nabla_{(i_0} K_{i_1 \cdots i_k)} = 0$
- \blacksquare The existence of a (conformal) Killing tensor is necessary to have the existence of a (conformal) symmetry of Δ_Y

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors Natural and conformally invariant

conformally invariant quantization Structure of th conformal symmetries

Examples

DiPirro system Taub-NUT metri

- If D is a conformal symmetry of Δ_Y , there exists an operator D' such that $\Delta_Y \circ D = D' \circ \Delta_Y$
- $\sigma(\Delta_Y) = H = g^{ij} p_i p_j$, then $\{H, \sigma(D)\} \in (H)$, i.e. $\sigma(D)$ is a conformal Killing tensor
- Conformal Killing tensor K: trace-free part of $\nabla_{(i_0} K_{i_1 \cdots i_k)}$ vanishes
- If D is a symmetry of Δ_Y , $[\Delta_Y, D] = 0$, then $\{H, \sigma(D)\} = 0$, i.e. $\sigma(D)$ is a Killing tensor
- Killing tensor $K: \nabla_{(i_0} K_{i_1 \cdots i_k)} = 0$
- lacktriangle The existence of a (conformal) Killing tensor is necessary to have the existence of a (conformal) symmetry of Δ_Y
- Is this condition sufficient?

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors Natural and

conformally invariant quantization Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

Application to

Definition

A quantization on M is a linear bijection \mathcal{Q}^M from the space of symbols $\operatorname{Pol}(T^*M)$ to the space of differential operators $\mathcal{D}(M)$ such that

$$\sigma(\mathcal{Q}^M(S)) = S, \quad \forall S \in \text{Pol}(T^*M)$$

J.-P. Michel, J Silhan, R.

conformal symmetries of Δγ Conformal Killing tensors Natural and conformally invariant quantization

Examples

DiPirro system Taub-NUT metric

Application to the *R*-separation

Definition

A natural and conformally invariant quantization is the data for every manifold M of a quantization \mathcal{Q}^M depending on a pseudo-Riemannian metric defined on M such that

■ If Φ is a local diffeomorphism from M to a manifold N, then one has

$$Q^{M}(\Phi^{*}g)(\Phi^{*}S) = \Phi^{*}(Q^{N}(g)(S)),$$

for all pseudo-Riemannian metric g on N and all $S \in \operatorname{Pol}(T^*N)$

■ $Q^M(g) = Q^M(\tilde{g})$ whenever g and \tilde{g} are conformally equivalent, i.e. whenever there exists a function Υ such that $\tilde{g} = e^{2\Upsilon}g$.

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of $\Delta \gamma$ Conformal Killir

Conformal Killing tensors Natural and conformally invariant quantization Structure of the

symmetrie -

DiPirro system Taub-NUT metri

Application to

- Proof of the existence of Q^M :
 - Work by A. Cap, J. Silhan
 - 2 Work by P. Mathonet, R.

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors Natural and conformally invariant quantization Structure of the

conformal symmetries

DiPirro system

Application to

If K is a conformal Killing tensor of degree 2, there exists a conformal symmetry of Δ_Y with K as principal symbol iff $\mathrm{Obs}(K)^\flat$ is an exact one-form, where

$$Obs = \frac{2(n-2)}{3(n+1)} p_i \partial_{p_j} \partial_{p_l} \left(C^k{}_{jl}{}^i \nabla_k - 3A_{jl}{}^i \right)$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

symmetries Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation If K is a conformal Killing tensor of degree 2, there exists a conformal symmetry of Δ_Y with K as principal symbol iff $\mathrm{Obs}(K)^{\flat}$ is an exact one-form, where

$$Obs = \frac{2(n-2)}{3(n+1)} p_i \partial_{p_j} \partial_{p_l} \left(C^k_{jl}^i \nabla_k - 3A_{jl}^i \right)$$

C : Weyl tensor :

$$\begin{aligned} C_{abcd} &= R_{abcd} - \frac{2}{n-2} (\mathrm{g}_{a[c} \mathrm{Ric}_{d]b} - \mathrm{g}_{b[c} \mathrm{Ric}_{d]a}) \\ &+ \frac{2}{(n-1)(n-2)} \mathrm{Sc} \; \mathrm{g}_{a[c} \mathrm{g}_{d]b} \end{aligned}$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{m{v}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Di Pirro system

Application to the *R*-separation If K is a conformal Killing tensor of degree 2, there exists a conformal symmetry of Δ_Y with K as principal symbol iff $\mathrm{Obs}(K)^{\flat}$ is an exact one-form, where

$$Obs = \frac{2(n-2)}{3(n+1)} p_i \partial_{p_j} \partial_{p_l} \left(C^k{}_{jl}{}^i \nabla_k - 3 A_{jl}{}^i \right)$$

C : Weyl tensor :

$$\begin{split} C_{abcd} &= R_{abcd} - \frac{2}{n-2} (\mathrm{g}_{a[c} \mathrm{Ric}_{d]b} - \mathrm{g}_{b[c} \mathrm{Ric}_{d]a}) \\ &\quad + \frac{2}{(n-1)(n-2)} \mathrm{Sc} \ \mathrm{g}_{a[c} \mathrm{g}_{d]b} \end{split}$$

A : Cotton-York tensor :

$$A_{ijk} = \nabla_k \operatorname{Ric}_{ij} - \nabla_j \operatorname{Ric}_{ik} + \frac{1}{2(n-1)} \left(\nabla_j \operatorname{Sc} \, g_{ik} - \nabla_k \operatorname{Sc} \, g_{ij} \right)$$

Structure of the conformal

symmetries

• If $\mathrm{Obs}(K)^{\flat} = 2df$, the conformal symmetries of Δ_Y whose the principal symbol is given by K are of the form

$$Q(K)-f+L_X+c,$$

where X is a conformal Killing vector field and where $c \in \mathbb{R}$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{\pmb{\gamma}}$

Conformal Killing tensors Natural and conformally invariant quantization

Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation • If K is a Killing tensor of degree 2, there exists a symmetry of Δ_Y with K as principal symbol iff $\mathrm{Obs}(K)^\flat$ is an exact one-form

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta \mathbf{v}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Di Piero eveto

DiPirro system Taub-NUT metri

Application to the R-separation

- If K is a Killing tensor of degree 2, there exists a symmetry of Δ_Y with K as principal symbol iff $Obs(K)^{\flat}$ is an exact one-form
- If $\mathrm{Obs}(K)^{\flat}=2df$, the symmetries of Δ_Y whose the principal symbol is given by K are of the form

$$Q(K)-f+L_X+c,$$

where X is a Killing vector field and where $c \in \mathbb{R}$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{m{Y}}$

Conformal Killing tensors Natural and conformally invariant quantization

Structure of the conformal symmetries

Examples
DiPirro system

Application to the *R*-separation

■ Remarks :

I If (M, g) is conformally flat, no condition on the (conformal) Killing tensor K

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{oldsymbol{\gamma}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

symmetries Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation

Remarks :

- I If (M, g) is conformally flat, no condition on the (conformal) Killing tensor K
- 2 If $Ric = \frac{1}{n}Sc$ g and if K is a Killing tensor of degree 2, then

$$\mathrm{Obs}(K)^{\flat} = d\left(\frac{2-n}{2(n+1)}(\nabla_{i}\nabla_{j}K^{ij}) + \frac{2-n}{2n(n-1)}\mathrm{Sc}\;\mathrm{g}_{ij}K^{ij}\right)$$

and $\nabla_i K^{ij} \nabla_i$ is a symmetry of Δ_Y

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system
Taub-NUT metric

Application to the R-separation

lacksquare On \mathbb{R}^3 , diagonal metrics admitting diagonal Killing tensors are classified :

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{\mathbf{Y}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system
Taub-NUT metri

Application to the *R*-separation ■ On \mathbb{R}^3 , diagonal metrics admitting diagonal Killing tensors are classified : Hamiltonian $H = g^{ij}p_ip_i$:

$$\frac{1}{2(\gamma(x_1,x_2)+c(x_3))}\left(a(x_1,x_2)p_1^2+b(x_1,x_2)p_2^2+p_3^2\right),$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to the R-separation

■ On \mathbb{R}^3 , diagonal metrics admitting diagonal Killing tensors are classified : Hamiltonian $H = g^{ij}p_ip_i$:

$$\mathbf{g}^{*} \rho_{i} \rho_{j}$$

$$\frac{1}{2(\gamma(x_1,x_2)+c(x_3))}\left(a(x_1,x_2)p_1^2+b(x_1,x_2)p_2^2+p_3^2\right),$$

Killing tensor K:

$$\frac{c(x_3)a(x_1,x_2)p_1^2+c(x_3)b(x_1,x_2)p_2^2-\gamma(x_1,x_2)p_3^2}{\gamma(x_1,x_2)+c(x_3)}$$

$$a,b,\gamma\in \mathcal{C}^\infty(\mathbb{R}^2)$$
, $c\in\mathcal{C}^\infty(\mathbb{R})$.

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of $\Delta_{oldsymbol{\gamma}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metric

Application to the R-separation

• If $\tilde{\mathbf{g}} = \frac{1}{2(\gamma(x_1, x_2) + c(x_3))} \mathbf{g}$, then

$$\mathrm{Obs}(K)^{\flat} = d(-\frac{1}{8}(3\mathrm{Ric}_{ij} - \mathrm{Sc}\ \tilde{\mathrm{g}}_{ij})K^{ij})$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{γ}

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

xamples

DiPirro system Taub-NUT metri

Application to the *R*-separation • If $\tilde{g} = \frac{1}{2(\gamma(x_1, x_2) + c(x_3))} g$, then

$$\mathrm{Obs}(K)^{\flat} = d(-\frac{1}{8}(3\mathrm{Ric}_{ij} - \mathrm{Sc}\ \tilde{\mathrm{g}}_{ij})K^{ij})$$

■ Symmetry of Δ_Y :

$$\nabla_{i} K^{ij} \nabla_{j} - \frac{1}{16} (\nabla_{i} \nabla_{j} K^{ij}) - \frac{1}{8} \operatorname{Ric}_{ij} K^{ij}$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{\mathbf{v}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

xamples

DiPirro system
Taub-NUT metric

- Four-dimensional fiber bundle M over S^2 with coordinates (ψ, r, θ, ϕ)
- Taub-NUT metric g:

$$\left(1 + \frac{2m}{r}\right) \left(dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2\right) + \frac{4m^2}{1 + \frac{2m}{r}} \left(d\psi + \cos \theta d\phi\right)^2$$

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of $\Delta_{m{\gamma}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples DiPirro system Taub-NUT metric

Application to the *R*-separation

- Four-dimensional fiber bundle M over S^2 with coordinates (ψ, r, θ, ϕ)
- Taub-NUT metric g :

$$\left(1 + \frac{2m}{r}\right) \left(dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2\right) + \frac{4m^2}{1 + \frac{2m}{r}} \left(d\psi + \cos \theta d\phi\right)^2$$

lacktriangler g hyperkähler: there exist three complex structures J_i which are covariantly constant and which satisfy the quaternion relations

$$J_1^2 = J_2^2 = J_3^2 = J_1 J_2 J_3 = -\mathrm{Id}.$$

I.-P. Michel, J Silhan, R.

Second order conformal symmetries of Δ_{γ}

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

Taub-NUT metric

Application to the R-separation

■ The skewsymmetric tensor Y of degree 2 is Killing-Yano iff $\nabla_{(\lambda} Y_{\mu)\nu} = 0$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{\mathbf{v}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

xamples

DiPirro system
Taub-NUT metric

- The skewsymmetric tensor Y of degree 2 is Killing-Yano iff $\nabla_{(\lambda} Y_{\mu)\nu} = 0$
- \blacksquare Killing-Yano tensor Y:

$$2m^2(d\psi + \cos\theta d\phi) \wedge dr + r(r+m)(r+2m)\sin\theta d\theta \wedge d\phi$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

DiPirro system
Taub-NUT metric

Application to the *R*-separation

- The skewsymmetric tensor Y of degree 2 is Killing-Yano iff $\nabla_{(\lambda} Y_{\mu)\nu} = 0$
- \blacksquare Killing-Yano tensor Y:

$$2m^2(d\psi + \cos\theta d\phi) \wedge dr + r(r+m)(r+2m)\sin\theta d\theta \wedge d\phi$$

*Y conformal Killing-Yano tensor :

$$\nabla_{(\lambda} * Y_{\mu)\nu} = \frac{2}{3} (g_{\lambda\mu} \nabla_{\kappa} (*Y_{\nu}^{\kappa}) + \nabla_{\kappa} (*Y_{(\lambda}^{\kappa}) g_{\mu)\nu})$$

Second order conformal symmetries of

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

DiPirro system
Taub-NUT metric

Application to the *R*-separation

- The skewsymmetric tensor Y of degree 2 is Killing-Yano iff $\nabla_{(\lambda}Y_{\mu)\nu}=0$
- \blacksquare Killing-Yano tensor Y:

$$2m^2(d\psi + \cos\theta d\phi) \wedge dr + r(r+m)(r+2m)\sin\theta d\theta \wedge d\phi$$

 $\blacksquare *Y$ conformal Killing-Yano tensor :

$$\nabla_{(\lambda} * Y_{\mu)\nu} = \frac{2}{3} (g_{\lambda\mu} \nabla_{\kappa} (*Y_{\nu}^{\kappa}) + \nabla_{\kappa} (*Y_{(\lambda}^{\kappa}) g_{\mu)\nu})$$

 J_i Killing-Yano tensors, hence

$$K_i = p_\mu p_
u \left(* Y_\lambda^{(\mu} J_i^{
u)\lambda} \right)$$

conformal Killing tensors

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

⊏xampres DiPirro system

Taub-NUT metric

■ The skewsymmetric tensor Y of degree 2 is Killing-Yano iff $\nabla_{(\lambda} Y_{\mu)\nu} = 0$

Killing-Yano tensor Y :

$$2m^2(d\psi + \cos\theta d\phi) \wedge dr + r(r+m)(r+2m)\sin\theta d\theta \wedge d\phi$$

 $\blacksquare *Y$ conformal Killing-Yano tensor :

$$\nabla_{(\lambda} * Y_{\mu)\nu} = \frac{2}{3} (g_{\lambda\mu} \nabla_{\kappa} (*Y_{\nu}^{\kappa}) + \nabla_{\kappa} (*Y_{(\lambda}^{\kappa}) g_{\mu)\nu})$$

■ J_i Killing-Yano tensors, hence

$$\mathcal{K}_i = p_\mu p_
u \left(* Y_\lambda^{(\mu} J_i^{
u)\lambda}
ight)$$

conformal Killing tensors

■ Obs $(K_i)^{\flat}$ not exact, then there are no conformal symmetries whose principal symbols are the K_i

J.-P. Michel, Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation

Schrödinger equation : $(\Delta_Y + V)\psi = E\psi$, $V \in C^\infty(M)$ is a fixed potential and $E \in \mathbb{R}$ a free parameter

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{m{v}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

- Schrödinger equation : $(\Delta_Y + V)\psi = E\psi$, $V \in C^{\infty}(M)$ is a fixed potential and $E \in \mathbb{R}$ a free parameter
- Solving Schrödinger equation : finding a solution for all

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{\mathbf{v}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

- Schrödinger equation : $(\Delta_Y + V)\psi = E\psi$, $V \in C^{\infty}(M)$ is a fixed potential and $E \in \mathbb{R}$ a free parameter
- Solving Schrödinger equation : finding a solution for all
- Schrödinger equation at zero energy : $(\Delta_Y + V)\psi = 0$, $V \in C^\infty(M)$ is a fixed potential

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system
Taub-NUT metric

Application to the R-separation

Schrödinger equation at zero energy R-separable in an orthogonal coordinates system (x^i) $(g_{ij} = 0 \text{ if } i \neq j)$

$$\iff$$

 \exists n+1 functions $R, h_i \in C^{\infty}(M)$ and n differential operators $L_i := \partial_i^2 + l_i(x^i)\partial_i + m_i(x^i)$ such that

$$R^{-1}(\Delta_Y + V)R = \sum_{i=1}^n h_i L_i.$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta \gamma$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation

Schrödinger equation R-separable in an orthogonal coordinates system (x^i)

$$\iff$$

 $\forall E \in \mathbb{R}, \exists n+1 \text{ functions } R, h_i \in C^{\infty}(M) \text{ and } n$ differential operators $L_i := \partial_i^2 + l_i(x^i)\partial_i + m_i(x^i)$ such that

$$R^{-1}(\Delta_Y + V)R - E = \sum_{i=1}^n h_i L_i.$$

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{m{\gamma}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

=xamples DiPirro system Taub-NUT metric

Application to the R-separation

Schrödinger equation R-separable in an orthogonal coordinates system (x^i)

$$\iff$$

 $\forall E \in \mathbb{R}, \exists n+1 \text{ functions } R, h_i \in C^{\infty}(M) \text{ and } n$ differential operators $L_i := \partial_i^2 + l_i(x^i)\partial_i + m_i(x^i)$ such that

$$R^{-1}(\Delta_Y + V)R - E = \sum_{i=1}^n h_i L_i.$$

 $R \prod_{i=1}^{n} \phi_i(x^i)$ solution of one of the two previous equations

$$\iff$$

$$L_i \phi_i = 0 \quad \forall i$$

J.-P. Michel, J Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

Application to the *R*-separation

Schrödinger equation at zero energy R-separates in an orthogonal coordinate system if and only if:

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{m{v}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

- Schrödinger equation at zero energy R-separates in an orthogonal coordinate system if and only if:
 - (a) \exists a *n*-dimensional linear space of conformal Killing 2-tensors $\mathcal I$ such that
 - $\{K_1, K_2\} \in (H) \text{ for all } K_1, K_2 \in \mathcal{I},$

J.-P. Michel, Silhan, R.

Second order conformal symmetries of $\Delta_{\mathbf{v}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

DiPirro system Taub-NUT metri

- Schrödinger equation at zero energy R-separates in an orthogonal coordinate system if and only if:
 - (a) \exists a *n*-dimensional linear space of conformal Killing 2-tensors $\mathcal I$ such that
 - $\{K_1, K_2\} \in (H) \text{ for all } K_1, K_2 \in \mathcal{I},$
 - lacksquare as endomorphisms of TM, the tensors in $\mathcal I$ admit a basis of common eigenvectors.

J.-P. Michel, Silhan, R.

Second orde conformal symmetries (

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

- Schrödinger equation at zero energy *R*-separates in an orthogonal coordinate system if and only if :
 - (a) \exists a *n*-dimensional linear space of conformal Killing 2-tensors $\mathcal I$ such that
 - $\{K_1, K_2\} \in (H) \text{ for all } K_1, K_2 \in \mathcal{I},$
 - lacksquare as endomorphisms of TM, the tensors in $\mathcal I$ admit a basis of common eigenvectors.
 - (b) For all $K \in \mathcal{I}$, \exists second order conformal symmetry D, i.e. an operator such that $[\Delta_Y + V, D] \in (\Delta_Y + V)$, with principal symbol $\sigma_2(D) = K$.

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{m{v}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples
DiPirro system

Application to the *R*-separation

Schrödinger equation R-separates in an orthogonal coordinate system if and only if:

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of $\Delta_{\mathbf{v}}$

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

Di Pirro system Taub-NUT metri

- Schrödinger equation R-separates in an orthogonal coordinate system if and only if:
 - (a) \exists a *n*-dimensional linear space of Killing 2-tensors $\mathcal I$ such that
 - $\{K_1, K_2\} = 0 \text{ for all } K_1, K_2 \in \mathcal{I},$

J.-P. Michel, Silhan, R.

Second order conformal symmetries of $\Delta_{\mathbf{v}}$

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

DiPirro system Taub-NUT metri

- Schrödinger equation R-separates in an orthogonal coordinate system if and only if:
 - (a) \exists a *n*-dimensional linear space of Killing 2-tensors $\mathcal I$ such that
 - $\{K_1, K_2\} = 0 \text{ for all } K_1, K_2 \in \mathcal{I},$
 - lacksquare as endomorphisms of TM, the tensors in $\mathcal I$ admit a basis of common eigenvectors.

J.-P. Michel, J. Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

Di Pirro system Taub-NUT metri

- Schrödinger equation R-separates in an orthogonal coordinate system if and only if:
 - (a) \exists a *n*-dimensional linear space of Killing 2-tensors $\mathcal I$ such that
 - $\{K_1, K_2\} = 0 \text{ for all } K_1, K_2 \in \mathcal{I},$
 - lacksquare as endomorphisms of TM, the tensors in $\mathcal I$ admit a basis of common eigenvectors.
 - (b) For all $K \in \mathcal{I}$, \exists second order symmetry D, i.e. an operator such that $[\Delta_Y + V, D] = 0$, with principal symbol $\sigma_2(D) = K$.

J.-P. Michel, Silhan, R.

Second order conformal symmetries of Δ_{Y}

Conformal Killing tensors Natural and conformally invariant quantization Structure of the conformal

Examples

Taub-NUT metric

Application to the *R*-separation

Link between the (conformal) symmetries and the R-separating coordinate systems :

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal symmetries

Examples

DiPirro system Taub-NUT metri

- Link between the (conformal) symmetries and the R-separating coordinate systems :
- Hyperplans orthogonal to the eigenvectors of the tensors in $\mathcal{I} \longleftrightarrow$ integrable distributions

J.-P. Michel, . Silhan, R.

Second order conformal symmetries of

Conformal Killing tensors
Natural and conformally invariant quantization
Structure of the conformal

Examples

DiPirro system Taub-NUT metri

- Link between the (conformal) symmetries and the R-separating coordinate systems :
- Hyperplans orthogonal to the eigenvectors of the tensors in $\mathcal{I} \longleftrightarrow$ integrable distributions
- Leaves of the corresponding foliations ←→ Coordinate hyperplans of the R-separating coordinate systems